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ABSTRACT 
 

Prior awareness of impending failures of primary flight command electromechanical actuators 
(EMAs) utilizing prognostic algorithms can be extremely useful. Indeed, early detection of the 
degradation pattern might signal the need to replace the servomechanism before the failure 
manifests itself. Furthermore, such algorithms frequently use a model-based approach based 
on a direct comparison of the real (High Fidelity) and monitor (Low Fidelity) systems to 
discover fault characteristics via optimization methods. The monitor model enables the 
gathering of accurate and exact data while requiring a minimal amount of processing. This 
work describes a novel simplified monitor model that accurately reproduces the dynamic 
response of a typical aerospace EMA. The task of fault detection and identification is carried 
out by comparing the output signal of the reference system (the high fidelity model) with that 
acquired from the monitor model. The Genetic Algorithm is then used to optimize the 
matching between the two signals by iteratively modifying the fault parameters, getting the 
global minimum of a quadratic error function. Once this is found, the optimization parameters 
are connected with the assumed progressive failures to assess the system's health. The high-
fidelity reference model examined in this study is previously conceptualized, developed, 
implemented in MATLAB-Simulink and finally experimentally confirmed.  

Keywords: actuators, aerospace, safety, Genetic Algorithm, prognostics 

 
 

1 INTRODUCTION 

Primary flight controls represent one of the most critical features in the aircraft system design and, for this reason, they 
are developed with a conservative safe-life approach. The aforementioned technique consists in replacing associated 
components after a certain number of flight hours or operating cycle which is previously defined by the normative. 
However, the employ of this approach does not let us to assess the actual condition of the components, and maintenance 
is only limited to the specific scheduled operation. More in details, the initial defects – which could arise from the 
manufacturing process – are not assessed when safe-life approach is used: thus, they can generate a sudden fault, also 
able to compromise the aircraft safety. 
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Indeed, even if a component does not present any unacceptable behaviour, its gradual degradation often leads to a low 
efficiency condition, and consequently, the whole system functionality results compromised. Moreover, the detection of 
the cause and the location of a malfunction is not possible when safe-life criterion is applied. However, an accurate 
identification of the specific failed subcomponent could be effective in reducing maintenance inefficiencies and costs: for 
example, the substitution of a single subcomponent, and not of the entire system, might be sufficient to restore the 
system functionality. Recently, new tools with a high grade of robustness to isolate those incipient have been developed. 
They are thought in order to detect the most common flight control system failure modes before they start affecting the 
performance of the whole system, in terms of stability, dynamical response, accuracy positioning or stall force. All these 
methodologies are at the base of a new engineering discipline which is focused on the prediction of when a particular 
component is no longer able to be fully effective or to achieve the required performance, thus losing its functionality. This 
discipline is now called Prognostics and Health Management (PHM) [1,2] and its primary purpose is the evaluation of the 
ongoing state of the system and the estimation of the Remaining Useful Life (RUL) [3]. It is based on the analysis and 
prediction of all possible failure scenarios, by developing the ability to detect the early signs of aging. If properly 
assembled and organized, all these information could represent the input to an appropriate failure propagation model. 
The evaluation of the system’s health is generally named as Fault Detection and Identification (FDI) and it consists in 
identifying and estimating the entity of faults. Considering that PHM strategies are based on the analysis of the system 
functional parameters – which are acquired in the form of electrical signals – the use of electromechanical systems, and in 
particular electromechanical actuators (EMA), results advantageous because no further signal conversion is needed and, 
consequently, no additional sensors are required. More in details, the complexity and multidisciplinary nature of the 
monitored systems make the FDI task on EMA particularly challenging: indeed, an acceptable level of accuracy is hardly 
achievable due to the interactions between different failure modes. A wide choice of FDI techniques is nowadays 
available in the literature: direct comparison of the system response with an appropriate monitoring model [4,5], spectral 
analysis of system-specific behaviours [6-8], artificial neural networks [9-12], or several combinations of some of these 
methods [13,14]. Typically, model-based approaches are more computationally expensive and require proper system 
knowledge but often give more accurate results than data-driven methods. Indeed, data-driven techniques, despite being 
computationally less costly – but not considering the offline training phase – approach the system as a black box. Thus, in 
these last cases, all knowledge of the system behaviour is obtained from the row data, requiring large experimental 
training data set which, unfortunately, are rarely available [15-17]. The failure management could result more effective by 
applying PHM strategies in aerospace systems, with a lot of benefits: lower operating costs, less maintenance 
interventions, lower redundancies installed on board aircraft, but also an improvement of the aircraft safety and 
reliability and simpler logistic. Consequently, maintenance can be scheduled properly with the instantaneous outcome of 
limited downtime and related costs, so guaranteeing a better management of spare parts warehouses [18]. Finally, it is 
important to underline that in recent years prognostic concepts have attracted great interest in the scientific and 
technological world, above all thanks to the variety of applications, resulting the subject of extensive development and 
dissemination in the scientific literature field. 

2 AIMS OF THE STUDY 

In the last decade the use of electromechanical actuators for aircraft flight control systems has increased significantly in 
the aerospace sector [19,20]. However, some problems about their reliability make their use still limited in safety-critical 
applications [21]: for this reason, PHM covers a crucial role to apply EMAs in the aerospace industry.  
So, in this work a new FDI method is proposed: it is based on genetic algorithms (GAs) and it is conceived for EMAs 
equipped with a permanent magnet sinusoidal motor (PMSM). Moreover, a numerical EMA virtual test bench is designed 
and modelled to develop and validate this process. 
The purpose is to propose an algorithm with a precision which results at least comparable to the existing ones but, at the 
same time, without requiring large data sets for the automatic learning tools formation, or excessive computational 
times. More precisely, a computation time of the order of minutes is considered acceptable for detecting slow 
progressing faults. Then, the proposed technique is tested in different failure condition to evaluate its robustness and 
field of applicability. According to [13], the FDI algorithm was tested with five different progressive failure modes: partial 
PMSM coil short circuit, backlash, dry friction, drift of the proportional gain of the PID (Proportional-Integrative-
Derivative) position control logic and rotor eccentricity. As reported by [15] they represent the most common damages 
affecting EMAs and all of them usually have progressive evolution. Besides, otherwise from how available in the literature 
[7,20,21], the proposed algorithm can address multiple fault modes, also affecting different actuator subsystems 
simultaneously. 



3 EMA ARCHITECTURE  

The current trend about the development of new flight control systems is to progressively replace the traditional hydro-
mechanical and electro-hydraulic actuators with EMAs, pursuing the “More Electric Aircraft” [22] or the “All Electric 
Aircraft” [23] concepts. Nowadays, these technologic solutions are already implemented on next-generation aircraft – 
such as B-787 or A 320 [24,25] – but they are generally relegated to secondary flight control systems and non-safety 
critical applications [26]. Figure 1 resumes the general EMA architecture: a permanent-magnet sinusoidal motor (PMSM) 
generates the mechanical power that, thanks to a reduction gearbox, operates the rotational or linear motion of the final 
user – like flight control surfaces, landing gear or other onboard devices. Moreover, these motors are characterized by a 
wide range of speed control [27,28]. The magnet and the armature winding are arranged so that the back-
electromagnetic force takes a sine wave form; then also the control system shall supply engines with sinusoidal signal 
[29]. These motors are highly efficient and, if compared to the simpler brushless motors (aka BLDC [30]), they produce 
less noise, also resulting more resistant to wear: as a result, currently PMSMs are the preferred electric motor type in 
servomechanism applications (aerospace, automotive, etc.). Finally, a network of sensors (e.g., position, actuation 
velocity, phase current, temperature) and dedicated actuation control electronic (ACE) close the position control loop. 
The ACE output lets the Power Electronic to convert the DC or AC electrical supply into the required three-phase power 
for the PMSM. 
The frequency and the amplitude of the motor three-phase sinusoidal currents are regulated as a function of command 
input and rotor angular position. The application of these systems is relatively recent for the aerospace sector, therefore 
their reliability and the various failure mode are not yet known and available data does not guarantee a satisfactory 
confidence level. In addition, some failure modes, potentially compromising the whole system's efficiency, represent a 
critical issue involving EMA safety. In consequence of these considerations, intense work has been done in recent years to 
develop robust and effective techniques for prognostics in order to improve the overall safety of operations. 
 

 

Figure 1. A typical EMA configuration. 

4 EMA FAULT MODES 

The low EMAs employ in aerospace application makes the cumulated flight hours not enough to provide significant 
statistics about their most common failure modes. They can be typically summarized into four different failures categories 
[31]: structural/mechanical, motor, control electronics, sensor. Unfortunately, an electromechanical system could be 
affected by a failure mode which can’t be faced with prognostic approaches. It is the case of faults types characterized by 
sudden manifestation and extremely rapid evolution, like breaking of a torsion of the flap transmission. The impossibility 
of identifying the incipient failure sufficiently in advance limits the typical benefits of the PHM approach. According to 
[16] this work is focused on five specific progressive failure modes among the most frequent ones in EMAs. More in 
details, there were considered the effects of mechanical failures resulting from progressive wear, which manifests itself in 
an increase of backlash and friction; two common PMSM motor failures, the coil-short circuits and the bearing gear 
generating rotor static eccentricity, together with a drift of the proportional gain of the controller. Indeed, electronic and 
sensor failures are no less relevant, although their failure precursors are often hard to identify and analyse as they usually 
occur very quickly, if not instantaneously [27]. 

5 DEVELOPED MODELS 

This research proposes a prognostic tool able to identify early identifying degradation patterns of an EMA, esteeming its 
actual health status.  
To evaluate the robustness and accuracy of this technique, different multi-fidelity model types were developed for the 
considered mechatronic system. 



5.1 HIGH FIDELITY MODEL 
The first step of this work is the creation of a High Fidelity, lumped parameters model of an EMA able to collect reference 
data of the actuator operation, considering different working conditions and the effect of multiple fault modes. It 
presents a very high level of detail and its general architecture – as reported by the fig 2 – reflects the subsystems and the 
components hierarchy of common hardware EMAs. More precisely, the model includes: 

 The Actuator Control Electronics (ACE) model; 

 The Power Electronics Model; 

 The Motor Electromagnetic model; 

 The Motor and Transmission Dynamical model  
It should be noted that this High Fidelity model – despite the reduced dimensionality and its lumped parameter structure 
– still requires a quite heavy computational effort, so resulting not suitable for iterative evaluations using FDI algorithms. 
However, it represents the numerical reference model able to simulate the behaviour of a real servomechanism, making 
possible to early identify the symptoms recognized as the failure precursors of EMA degradations. 

 

Figure 2. The block diagram of the High Fidelity model. 

5.1.1 The Actuator Control Electronic (ACE) model 
The Actuator Control Electronics (ACE) model shall determine the torque command to the motor: to obtain this, it 
implements the control law which compares the commanded position with the feedback signals of measured position and 
speed.  
The control law presents a proportional position loop and a Proportional-Integral-Derivative (PID) velocity loop: more in 
details, the controller accepts as an input the position or velocity setpoint, the measured motor speed and the measured 
user position. Using the speed-position mode switch it is possible to choose between a position control mode and a speed 
control mode; in any case, the velocity setpoint is limited by a saturation accounting for the maximum speed achievable 
by the motor. Then, a velocity error is fed to a PID controller to determine the required motor torque. Finally, the output 
of the PID controller has the dimensions of a reference torque for the motor. 

5.1.2 The Power Electronic model 
The model of Power Electronics determines the motor phase commutation sequence and actuates the current control for 
each of the motor phases. In this work a Permanent Magnet Synchronous Motor (PMSM) is employed: it is a machine 
conceptually similar to a BLDC but with a significative different output. Indeed, the stator’s polar extension and the 
permanent magnets on the rotor are arranged to produce a sine wave back-EMF on each of the stator phases. The rotor 
position is measured using a resolver or an absolute encoder, obtaining a resolution of at least in the order of 1°/𝑃. In 
order to produce the maximum torque with minimum current, in usual operating conditions the PMSM power electronics 
commands a stator current in quadrature with respect to the permanent magnet rotor. In the analysed case, the current 
setpoint 𝐼𝑟𝑒𝑓 from the control electronics is routed directly to 𝑖: this is acceptable if the required performances are 
compatible with the supply voltage and the nominal back-EMF coefficient of the motor. The current setpoints for the 
three phases 𝐼𝑟𝑒𝑓𝐴, 𝐼𝑟𝑒𝑓𝐵, 𝐼𝑟𝑒𝑓𝐶 are evaluated through inverse Park and inverse Clarke transformations: in order to make 
this operation, three different reference frames shall be introduced. 



 

Figure 3. Reference frames for Clark-Park transformations. 

 α – β are axes fixed with respect to the stator, the 𝛼 axis being aligned with the axis of symmetry of the electrical 
phase A, and the 𝛽 axis is offset by 90° electrical to form a right-handed frame. The angle Φ is used as a polar 
coordinate to describe the angles along the stator, starting from the 𝛼 axis.  

 𝑑 – 𝑞 axes are a reference frame rotating with the rotor. The d axis is aligned with a north pole of the rotor, and the q 
axis is 90° electrical in advance. The angle 𝜉 is used as polar coordinate to describe the angles along the rotor, starting 
from the 𝑑 axis.  

 The three-phase reference frame with axes A, B, and C aligned with the respective stator phases. The A axis of this 
reference frame coincides with the 𝛼 axis.  

As reported by the figure, the angle 𝜃𝑒 is the shift between the 𝛼 – 𝛽 and the 𝑑 – 𝑞 frame. Using two coordinate changes, 
it is possible to switch between the three reference frames.  
More in details, the Clarke transformation allows to convert the current and magnetic flux vectors expressed in the three-
phase reference frame to the 𝛼 – 𝛽 reference frame. Instead, the Park transformation allows to convert the current and 
magnetic flux vectors from the 𝛼 – 𝛽 reference frame to the 𝑑 – 𝑞 one. Considering the 𝛼 – 𝛽 reference frame, the current 
vector is: 

𝑖 = 𝑖𝛼 + 𝑗𝑖𝛽  (1) 

Instead, in the three-phase reference system A-B-C, the current vector is: 

𝑖 = 𝑖𝐴 + 𝑒
𝑗2𝜋
3 𝑖𝐵 + 𝑒

𝑗4𝜋
3 𝑖𝐶  (2) 

Considering the axes disposition, is then possible to write the following equation for the Park transformation in the matrix 
form: 
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Where [B] is the Park matrix. 
In the same way, considering the reference frame d-q the current vector is: 

𝑖 = 𝑖𝛼 + 𝑗𝑖𝛽  (2) 
 

(4) 

And then in matrix form: 

[
𝑖𝑑
𝑖𝑞
] = [

cos(𝜃) 𝑠𝑒𝑛(𝜃)

−𝑠𝑒𝑛(𝜃) cos(𝜃)
] [

𝑖𝛼
𝑖𝛽

] = [𝐴] [
𝑖𝛼
𝑖𝛽

] (5) 

where [𝐴] is the Park matrix. 

5.1.3 The Motor Electromagnetic model 
The electromagnetic model of the motor computes the torque and the back-EMF produced by the electrical machine. The 
electromagnetic coupling between rotor and the stator phases is described by three back-EMF coefficients ka, kb, kc. They 
are defined as the derivative of the magnetic flux concatenated which each phase, with respect to the rotor angle ϴM. The 
back-EMF coefficients are calculated considering the distribution of the magnetic field: for the PMSM three sine waves, 
out of phase by 120°, are computed and multiplied by the nominal back-EMF coefficient. Then, modifying the coefficients 



lets to simulate the electrical fault modes. Moreover, a RL circuit is employed to evaluate the phase currents. The circuit is 
connected with a star arrangement and for each integration timestep the following equations are solved: 

𝑖𝐴 + 𝑖𝐵 + 𝑖𝐶 = 0 (6) 

𝑉𝑗 − 𝑘𝐽𝜔 = 𝑅𝑗𝑖𝑗 + 𝐿𝑗

𝑑𝑖𝑗

𝑑𝑡
 (7) 

For j=A,B,C, while the resistance and inductance of each phase (Rj and Lj) are the nominal values from the motor 
datasheet. 
The currents and the respective back-EMF coefficients are employed to compute the motor torque. Assuming a linear 
superposition of the contributions of each phase, the total motor torque is calculated as: 

𝑇𝑚 = ∑ 𝑖𝑗𝑘𝑗

𝑗=𝐴,𝐵,𝐶

 (8) 

5.1.4 The Motor and Transmission Dynamic model 
The model computes the motor and the user positions, receiving as input the motor and external load torques. It is 
described by the following equation: 

𝑇𝑚 − 𝑇𝑙 = 𝐽𝑚
𝑑2𝜃𝑚

𝑑𝑡2
+ 𝐶𝑚

𝑑𝜃𝑚

𝑑𝑡
 (9) 

 
Where Jm and Cm are respectively the inertia and the damping of the motor-user assembly. Moreover, the model 
considers also non-linear phaenomena affecting actuators’ behaviour such as friction and backslashes.  

5.1.5 The EMA test bench 
A specific test bench has been developed to validate the response of the model [32-35,48]. It has got an architecture 
thought to mirror that of a typical electromechanical actuator for flight controls and it comprehends different 
components and subsystems. At first, for the actuation section a commercial solution was adopted, in order to reduce 
costs and time related to the test-bench design and development. Specifically, a PMSM motor were selected – the 
Siemens 1FK7060-2AC71-1QA0 – which is a permanent magnet, three phase, four pole-pairs driven by a three-phase 
inverter at 400 V for the power module and by a 24 VDC for the logic section. The inverter controls the phase 
commutation and it allows to measure currents, voltages and rotor position and speed with a sampling frequency of 400 
Hz. The table 1 resumes the most important features of the motor. Then, the test bench employs a compound planetary 
gearbox as a transmission between the motor and user shaft. The particular architecture proposed for this application 
guarantees a high gear ratio within a limited size and with few moving parts, so respecting weight and size requirements 
for aerospace actuation [36]. The gearbox was built through Fused Deposition Modelling (FDM) additive manufacturing, 
employing a Poly-Lactic Acid polymer. In this way the costs and time associated to manufacturing were limited and the 
design phase was simplified. The mechanical efficiency was measured at 65%, a satisfying value considering the material 
employed, while the reverse efficiency is 51%. The output of the gearbox is connected to a high resolution, 5000 pulses 
per revolution, incremental encoder that allows to close the position control loop. Figure 5.2 (a) shows the general layout 
of the gearbox while Figure 5.2 (b) the distribution of velocity on the gears, useful to compute the transmission ratio.  
Finally, the gearbox is composed by low strength polymeric materials and then it can undergo only a small fraction of the 
motor stall torque. Then, external loads on the actuator cannot be simulated by applying a torque directly on the output 
shaft of the gearbox, but a breaking unit is required. The brake is controlled in closed loop to follow a torque setpoint, 
while an AT328P microcontroller reads the loadcell: this commands a small servomotor to actuate the calliper until the 
desired torque is applied. At the same time, the microcontroller logs the measured torque to a PC. 
 

Table I - Motor datasheet 

Quantity Unit Value 

Torque gain Nm/A 1.91 

Phase resistance Ohm 2.75 

Phase inductance mH 30.5 

Number of poles - 8 

Max current A 10.7 

Max voltage V 380 

Inertia Kgcm
2
 7.7 

 



 

 

Figure 4. Scheme (a) and photography (b) of the test bench. 

5.2 LOW FIDELITY MODEL 
To perform the prognostic analysis, a new monitoring model is developed through a simplification of the High Fidelity 
model already described in chapter 5.1. The most important assumptions introduced to the model’s structure are about 
the electromagnetic subsystem implementation. In this way, the overall complexity and dimensionality result reduced, 
making the model computationally lighter and faster. More precisely, the three-phases architecture that characterized 
the PMSM is now replaced by a simplified equivalent single-phase motor [37]. 
 

 

Figure 5. Layout of the compound planetary drive (a) and velocity distribution (b). 



It comprehends a more straightforward first-order RL dynamical model based upon equivalent electrical and mechanical 
characteristics, which are calculated on the base of the actual system’s electrical features. Operating as reported by [38], 
the three-phases motor currents are assumed as a signal to perform the FDI of the real system because it is sensitive to 
different fault modes. The simplifications implemented bring the LF monitoring model to do not calculate the three-phase 
current but an equivalent single-phase: consequently, a calibration procedure was developed. This was made by 
comparing the equivalent single-phase current with the corresponding quadrature current of the PMSM – in turn 
calculated through the Clarke-Park transformation applied to the three measured currents signals provided by the HF 
model – knowing that both of them are proportional to the motor’s torque. Then, a first-order one degree of freedom 
non-linear model, with a simplified hysteresis current loop, replaces the complex modelling of PMSM and power 
electronics implemented in the HF model. Moreover, electrical faults are simulated through a surrogate modelling 
approach: for this purpose, two shape functions [30] were introduced modulating equivalent stator phase resistance, 
motor back-EMF coefficient, and torque gain as a function of the rotor angular position. These shape functions do not 
represent a specific physical phenomenon and they are designed to best approximate the detailed model’s behaviour, 
requiring a lower computational cost. The two shape functions, which describe the eccentricity and short circuit failures 
affecting the real EMA, are a proper combination of sine waves dependent on failures magnitude, rotor angular position 
and some calibration factors.  
The short circuit (SC) shape function is defined as: 

𝜑𝑆𝐶 = 𝑘𝐹𝑇 {𝑁𝐴[1 + + 𝑘𝐹𝑆 sin2(𝜃𝑒 + 𝜋)]

+ 𝑁𝐵 [1 + + 𝑘𝐹𝑆 sin2 (𝜃𝑒 +
𝑝𝑖

3
)]

+ 𝑁𝐶 [1 + 𝑘𝐹𝑆 sin2 (𝜃𝑒 −
𝑝𝑖

3
)] } 

(10) 

 
where NA, NB, NC are the fractions of undamaged windings of each phase, kFT and kFS are the global and single contribution 
calibration coefficients, and θe is the rotor electrical angular position. 
Instead, the shape function of static rotor eccentricity (ECC) [8] is formulated as follows: 

𝜑
𝐸𝐶𝐶

= 1 − 𝑘𝐸𝜁[cos (𝜃𝑒 + 𝜙
𝑒
] (11) 

where ζ and ϕe represent the amplitude and direction of the rotor static eccentricity, respectively, and kE is an additional 
eccentricity calibration coefficient. The shape functions coefficients (the global and single contributions of the short 
circuit calibration coefficients, the eccentricity calibration one, the equivalent torque gain, and the back-EMF coefficient) 
are initially undefined: then, a calibration process is required. 

2.2.2 Model calibration 
As already described previously, one of the most important differences between HF and LF models is represented by the 
architecture of the PMSM motor, with the three-phases architecture replaced by a simplified equivalent single-phase 
motor. Consequently, a calibration process is required to uniform the output currents of the two models, as shown by the 
figure. The current is directly proportional to the motor torque and at the first stage of actuation, the signal has initially a 
linear behaviour. When considering the models in nominal conditions, the currents show comparable trends, but they 
differ for a small offset in terms of magnitude: this can be regarded as an ‘error’ and it can be compensated using the 
Genetic Algorithm included in MATLAB Optimization Toolbox. The error is due to a slightly lower stator-rotor 
electromagnetic coupling in the monitor model and it causes a higher equivalent current when the same operating 
conditions (torque and speed) are considered. Hence, a different response can be observed from position and velocity 
time histories as the faster model will reach first the commanded position. When a fault in the electrical model is taken 
into account, the angular position phase displacement gives current ripples signal, hindering the correct fault 
identification. In order to minimize the position error in nominal condition, the coefficient ke and the motor gain torque 
GT of the monitor model shall be calibrated by applying the genetic algorithm, in order to minimize the obtained error. 
The Mean Squared functions is employed to compute the Mean Squared Error (MSE) as follows: 

𝑀𝑆𝐸 = ∑(𝐼𝐻𝐹 − 𝐼𝐿𝐹)2

𝑛

𝑖=1

 [𝐴2] (12) 

where 𝐼𝐻𝐹  and 𝐼𝐿𝐹  are, respectively, the high fidelity and the low fidelity current components at each integration step, 
whereas n is the sampling number. Before the calibration, the MSE has a value equal to: 

𝑀𝑆𝐸𝑖𝑛𝑖𝑡 = 0,1292 [𝐴2] (13) 



 

Figure 6. Comparison between the two output currents before (upper) and after (lower) calibration 

6 PROPOSED FDI ALGORITHM 

Model based FDI is a parameter estimation task [39] which can be solved with an optimization algorithm. An objective 
function is defined as a cumulative error between the actual system and the model. In this work, the high-fidelity 
reference model replaces the physical actuator and it is considered as the real model (RM), while the low fidelity model is 
the monitor model (MM). The optimization updates iteratively a set of parameters encoding the actuator’s fault condition 
and the process is stopped when an adequate match is found between the two responses. 
Several optimization techniques can be employed, but as observed in literature [40], most algorithms are more likely to 
converge to local minima, so failing to find the global solution. This behaviour is harmful to a robust and reliable fault 
detection, since it can estimate incorrect faults, with a high likelihood of false positives or missed detections. At contrary, 
more robust global search methods, such as Genetic Algorithms and Simulated Annealing, offer a higher success rate in 
detecting the global function minimum, at the expense of a longer computational time [38,39]. 
The core of the proposed FDI strategy is a standard Genetic Algorithm, as available in the MATLAB optimization toolbox 
[47]. Genetic Algorithms are a class of metaheuristic evolutionary optimization algorithms, inspired by the natural 
selection process. During each iteration – called generation – the objective function (often referred to as the fitness 
function) is evaluated in a population of points, called chromosomes or individuals. Each chromosome is a potential 
solution of the minimization and the individuals of each generation are ranked, according to their fitness. The best ranked 
individuals are chosen as parents for the next generation: in this way it results composed by the best individuals of the 
previous iteration and by new ones, which are created using different operators (selection, crossover and mutation).  
The process is repeated iteratively until a stopping criterion is satisfied.  



 

Figure 7. Flow chart of Genetic Algorithm. 

Genetic Algorithms (GAs) [41] have been engaged for several applications to solve problems in different fields of 
application, such as the optimal design of antennas and structural components, the control strategies for robotic 
applications or the aerodynamic optimization of turbomachinery [42-45]. Generally, they represent the best solution in 
problems featuring an expensive objective function depending on multiple variables. For this reason, in recent years they 
have been employed for model-based diagnostic and prognostic tasks, above all for mechatronics applications and 
electrical machines 
According to how previously said, in this work a model-based FDI strategy is developed in order to identify and quantify 
the faults levels of an EMA. The algorithm analyzes the dynamic response of the system (RM), comparing it with the 
numerical model (MM) through a GA optimization. Specifically, the analyzed signals are the stator current and the motor 
speed and the envelope of the three phases is considered to compare the RM three-phase square-wave current with the 
MM single-phase equivalent current. 
More in detail, at each calculation step, the FDI algorithm executes the monitoring model with a certain fault vector k: it 
contains the values of the faults which are considered during the optimization. Then, an appropriate Fitness Function (FF) 
is introduced and the i-th LF solution is compared with the reference HF one, accordingly updating the elements’ values of 
the fault vector k. The Fitness Function (FF) is finally computed with a Modified Total Least Squares Method [30,46], 
which is tolerant to small phase lags cumulated between the two EMA models, despite the presence of steep gradients 
and abrupt changes in the equivalent current. The proposed FF is defined as: 

𝑟 = ∑
(𝐼1(𝑡0)−𝐼2(𝑡0))

2

√𝑑𝐼1(𝑡0)2

𝑑𝑡
+1

𝑡 = ∑
(𝐼𝐻𝐹(𝑡0)−𝐼𝐿𝐹(𝑡0))

2

√𝑑𝐼𝐻𝐹(𝑡0)2

𝑑𝑡
+1

𝑡   (14) 

where 𝐼𝐻𝐹  is the current of the HF model, 𝐼𝐿𝐹  is that of LF and 𝑡0 is a generic instant of the simulation. 
Once the error function is minimized, the RM and MM responses match at their best. Inasmuch as both models account 
for the same fault modes and they are validated to show a consistent behaviour over a wide range of operating 
conditions, the fault parameters of the MM can be considered as an approximation of those initially injected in the RM. A 
GA is then employed to search the global minimum of the objective function, by varying the fault parameters of the 
monitor model. 

6.1 NORMALIZATION OF THE FAULTS VECTOR 
Fault parameters are introduced to both the reference and monitor models in the form of an eight-elements normalized 
vector 𝑘. These elements represent the arguments of the fitness function described in the previous paragraph. Because 
genetic algorithms are found to provide a faster convergence with normalized parameters, each argument of the fitness 
function has been made to vary between 0 and 1 by performing a linear interpolation based on the minimum and 
maximum values for each fault: 
 



 𝑘(1) ∈ [0,1] refers to the normalized friction fault: 𝑘(1) = 0 in normal conditions, whereas 𝑘(1) = 1 when the value 
is three times the one in normal conditions. 

 𝑘(2) ∈ [0,1] refers to the normalized backlash fault: 𝑘(2) = 0 in normal conditions, whereas 𝑘(2) = 1 when the 
value is one hundred times the one in nominal conditions. 

 𝑘(3), 𝑘(4), 𝑘(5)  ∈ [0,1] represent respectively the normalized short circuit of phases A, B and C: 𝑘(3) = 0 when 
phase A is fully functional, whereas 𝑘(3) = 1  when there’s a complete short circuit for the same phase. In order to 
avoid any divergence through the simulation, whenever two of the three parameters reach simultaneously the 
maximum value (1), they are immediately set to 0.99 because otherwise two fully short-circuited phases will make the 
monitor model current diverge to infinite. This condition may lead to the total breakdown of the motor. 

 

 𝑘(6), 𝑘(7) ∈ [0,1] represent the eccentricity fault in terms of amplitude and phase. 𝑘(6) is the rotor eccentricity 
amplitude, 𝑘(6) = 0 when the rotor eccentricity is null whereas 𝑘(6) = 1 when it is equal to 1. 𝑘(7) is the rotor 
eccentricity phase, which is the direction of the minimum air gap, 𝑘(7) = 0 when the phase is equal to -π whereas 
𝑘(7) = 1 when it is equal to π. Due to the fact that the eccentricity phase can assume any value between -π and π 
when the magnitude is null, it can to be suitably managed during the assessment of the function error. 

 𝑘(8) ∈ [0,1] is the proportional gain fault. 𝑘(8) = 0 when only the 50% of the nominal value is considered and 
𝑘(8) = 1 when the percentage is increased to 150%. Thus, in nominal conditions 𝑘(8) = 0.5. 

Once normalized, the fault vector is: 

𝑘 = [0, 0, 0, 0, 0, 0, 0.5, 0.5] 

During the execution of the optimization algorithm, the fault parameters of the reference model are varied depending on 
whether single fault or multiple fault optimization is chosen. By comparing the current trends of the two models, the 
algorithm generates suitable values of the fault parameters in the monitor model. 
The last step of the work is to concretely evaluate fault detection for the considered model. At this step, only a single fault 
is considered for each optimization process. 

6.2 SINGLE FAULT ISOLATION 
As previously stated, the reference current is produced by feeding a fault vector k into the reference model. The fault 
detection is then performed by the genetic algorithm which, through the monitor model, attempts to approximate as 
closely as possible the values of each fault coefficient corresponding to the equivalent current trend. The percentage of 
error is computed by using the following relation: 

%𝑒𝑟𝑟 = 100√
1

8
(∑(𝑘𝑖 − �̅�𝑖)

2
6

𝑖=1

+ �̅�6 ∙ (𝑘7 − �̅�7)
2
+ (𝑘8 − �̅�8)

2
) (15) 

where ki is the value of the i-th fault parameter of the monitor model and �̅�𝑖  is the corresponding i-th fault parameter of 
the reference model. 
The relation 15 is exactly the same as a mean square error with a minor dissimilarity in the definition of the eccentricity 
phase error k7, which can assume any value when the eccentricity coefficient ζ is null. 

Three distinct objective functions are examined for each fault: the low fault detection (with �̅�𝑖 ≤ 0.25), medium fault 

detection (with 0.25 < �̅�𝑖 < 0.7) and high fault detection (with �̅�𝑖 ≥ 0.7). 
In order to emphasize the stochastic behaviour of the genetic algorithm, ten optimizations have been carried out for each 
case, with slightly different results being achieved each time.  
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table II - Medium friction optimization results 

 
 

Table III - Random multiple fault parameters results 

 

 𝒌𝟏 𝒌𝟐 𝒌𝟑 𝒌𝟒 𝒌𝟓 𝒌𝟔 𝒌𝟕 𝒌𝟖  

Ref. 0.5 0 0 0 0 0 0.5 0.5 %𝒆𝒓𝒓 

1 0.4938 0.0102 0.0008 0.0127 0.0079 0.0107 0.7192 0.4858  

 0.62% 1.02% 0.08% 1.27% 0.79% 1.07% 21.92% 1.42% 2.54% 

2 0.5012 0.0068 0.0038 0 0.0114 0.0139 0.7530 0.5024  

 0.12% 0.68% 0.38% 0% 1.14% 1.39% 25.30% 0.24% 1.97% 

3 0.4841 0.0125 0 0.0084 0 0.0082 0.4084 0.4872  

 1.59% 1.25% 0% 0.84% 0% 0.82% 9.16% 1.28% 2.14% 

4 0.4748 0.0183 0.0014 0.0140 0.0036 0 0.6334 0.4775  

 2.52% 1.83% 0.14% 1.4% 0.36% 0% 13.34% 2.25% 3.24% 

5 0.4948 0.0179 0.0009 0 0.0006 0.0064 0.3463 0.4933  

 0.52% 1.79% 0.09% 0% 0.06% 0.64% 15.37% 0.67% 2.02% 

6 0.4809 0.0033 0 0 0.0032 0.0008 0.1049 0.4768  

 1.91% 0.33% 0% 0% 0.32% 0.08% 39.51% 2.32% 2.37% 

7 0.4957 0.0098 0.0034 0.0093 0.0095 0.0021 0.8051 0.4931  

 0.43% 0.98% 0.34% 0.93% 0.95% 0.21% 30.51% 0.69% 1.83% 

8 0.4714 0.0046 0 0.0089 0.0014 0.0069 0.9035 0.4873  

 2.86% 0.46% 0% 0.89% 0.14% 0.69% 40.35% 1.27% 1.76% 

9 0.4882 0.0075 0.0116 0.0036 0 0.0162 0.0057 0.5036  

 1.18% 0.75% 1.16% 0.36% 0% 1.62% 49.43% 0.36% 2.19% 

10 0.5042 0.0221 0.0022 0 0.0093 0 0.5948 0.4904  

 0.42% 2.21% 0.22% 0% 0.93% 0% 9.48% 0.96% 2.59% 

 𝒌𝟏 𝒌𝟐 𝒌𝟑 𝒌𝟒 𝒌𝟓 𝒌𝟔 𝒌𝟕 𝒌𝟖  

Ref. 0.2383 0.5003 5.32∙10
-7

 0.4503 0.0404 0.0028 0.2785 0.5 %err 

1 0.2051 0.4727 9.44∙10
-4

 0.4414 0.0445 0.0041 0.4334 0.4950  

 3.32% 2.76% 0.09% 0.89% 0.41% 0.13% 15.49% 0.5% 4.46% 

2 0.2137 0.4680 0.0111 0.4449 0.0033 0.0006 0.6516 0.4949  

 2.46% 3.23% 1.11% 0.54% 3.71% 0.22% 37.31% 0.51% 5.66% 

3 0.2192 0.4858 5.59∙10
-5

 0.4421 0.0026 0.0067 0.1195 0.5096  

 1.91% 1.45% 0.01% 0.82% 3.78% 0.39% 15.90% 0.96% 4.67% 

4 0.2132 0.4732 0.0015 0.4466 0.0221 0.0010 0.0874 0.4962  

 2.51% 2.71% 0.15% 0.37% 1.83% 0.18% 19.11% 0.38% 4.16% 

5 0.2137 0.4813 2∙10
-4

 0.4504 0.0021 0.0067 0.1402 0.4970  

 2.46% 1.9% 0.02% 0.01% 3.83% 0.39% 13.83% 0.3% 4.96% 

6 0.2143 0.4771 0.0012 0.4545 0.0031 0.0052 0.2438 0.4999  

 2.4% 2.32% 0.12% 0.42% 3.73% 0.24% 3.47% 0.01% 5.03% 

7 0.2011 0.4936 7.9∙10
-4

 0.5019 0.0178 0.0066 0.5405 0.5350  

 3.72% 0.67% 0.08% 5.16% 2.26% 0.38% 26.20% 3.5% 7.64% 

8 0.1959 0.4807 7.52∙10
-4

 0.4776 0.0373 0.0017 0.1992 0.4995  

 4.24% 1.96% 0.08% 2.73% 0.31% 0.11% 7.93% 0.05% 5.42% 

9 0.2123 0.4780 2.59∙10
-4

 0.4660 0.0087 0.0009 0.6436 0.4978  

 2.6% 2.23% 0.03% 1.57% 3.17% 0.19% 36.51% 0.22% 4.93% 

10 0.2142 0.4784 3.5∙10
-5

 0.4590 0.0018 0.0015 0.9062 0.4996  

 2.41% 2.19% 0% 0.87% 3.86% 0.13% 62.77% 0.04% 5.13% 



This process has been applied for different scenarios: 

 Friction fault 

 Backslash fault 

 Short circuit fault 

 Rotor Eccentricity fault 

 Proportional gain fault 
All the aforementioned cases have been assessed by implementing a low (k1=0.25), medium (k1=0.5) and high (k1=0.75) 
level of damage to analyse the behaviour of the system in each of these scenarios. For each case, ten optimizations have 
been executed and the results have been reported in the tables below. The table 2 shows the results for the friction fault 
medium case.  

6.2 MULTIPLE FAULTS ISOLATION 
In a real scenario, faults do not occur one at a time but there may be situations in which multiple faults are present. In 
order to test the performance and the accuracy of the genetic algorithm, a multiple fault optimization is executed. The 
reference values can be introduced either to liking or randomly. The latter method has been chosen and the results 
acquired are shown in the table 3. 

7 CONCLUSIONS 

This work enabled the development of a new FDI algorithm for direct comparison of high fidelity and low fidelity models, 
in order to discover fault characteristics in aerospace EMAs using optimization methods. 
The experimental test bench validated the high fidelity model, while the low fidelity produced a very satisfiable 
approximation thanks to the developed calibration process. Then, it is possible to conclude that the outcomes of this 
work are consistent with the objectives set. 
However, some considerations and future actions could be studied to ulteriorly improve the models’ quality. 
At first, a critical parameter is represented by the eccentricity phase. Indeed, when it is very low, the FDI process is still 
limited because it is not phase dependent, and as a result, it may exhibit very high percentual error. But if the eccentricity 
is very low, the result is not a clear representation of the actual situation, because this error is not significant.  
A second task that could improve this process is the analysis of new algorithms that could guarantee better results. 
Metaheuristic methods, for example, should be investigated, as should hybrid strategies, such as taking into account both 
genetic and deterministic methods or machine learning techniques. 
Finally, it is critical to investigate how the process can be reduced from its current operating time of about 15 minutes to 
a quasi-real time process. This could be accomplished by intervening on the optimization algorithm and then simplifying 
the structure of the low fidelity model. 
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