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Abstract: Mélanges are heterogeneous geological deposits and represent the most widespread
bimrock (block-in-matrix) formations. This paper presents the efforts undertaken to characterise an
Italian mélange composed of a clayey-marly matrix enclosing strong calcareous blocks. Due to its
low uniaxial compressive strength, this geomaterial can be classified as a soft rock. The weak nature
of the marly matrix and its water sensitivity, as well as the presence of rock inclusions, made the
collection and preparation of intact specimens extremely complex and time-consuming operations.
The difficulties encountered during these phases are described in detail; the various non-conventional
procedures considered and developed to overcome these problems are also presented. The potential
of the solutions proposed lies in the fact that they can be conveniently applied to other soft rocks
with a block-in-matrix internal arrangement, such as the Italian mélange. To characterise the Italian
mélange, point load and uniaxial compressive tests were carried out. From the results of these tests, a
conversion factor equal to 14 is proposed to correct the point load strength index in order to estimate
the uniaxial compressive strength of soft rocks, such as the mélange under study. Moreover, to
estimate local strains and the deformability of the geomaterial, the non-destructive digital image
correlation technique was applied.

Keywords: soft rocks; mélanges; bimrocks; uniaxial compression tests; point load tests; conversion
factor; digital image correlation

1. Introduction

Mélanges (a French word meaning “mixtures”) are chaotic, heterogeneous geological
formations composed of rock blocks embedded in a pervasively deformed fine grained
matrix [1–5]. These geological units belong to structurally complex formations and are the
most widespread bimrocks (block-in-matrix rocks) [3,6–9]. This term, which has no geologi-
cal connotation, was coined by Medley (1994) to indicate “mixtures of rocks, composed of
geotechnically significant blocks within a bonded matrix of finer texture”.

Due to the erratic variability of the mechanical properties of mélanges, considerable
difficulties may arise in their sampling, testing and characterisation [10–16]. Moreover,
the design and execution of geotechnical works in/on these geomaterials, such as tunnel
excavations or landslide repairs, have proven to be extremely challenging [1,10,11,17–21].

Mélanges are often composed of a clayey-marly matrix. In this case, they usually present
a low uniaxial compressive strength (UCS). For this reason, they also belong to the category
of soft (or weak) rocks, which are characterised by UCS values that typically fall between
0.5 MPa and 25 MPa [22–26]. Typical soft rocks include mudrocks, marls, ignimbrites,
conglomerates, and poorly cemented sandstones [27], shales, greywackes or sedimentary
rocks [28,29], flysches [30,31], kakirites [32], chalks [25] and breccias [13,17,33,34].

Soft rocks are extremely problematic geomaterials, since they exhibit very poor me-
chanical properties and they degrade very quickly when submerged in water [22,35].
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As a consequence, undisturbed sampling and laboratory specimen preparation are very
challenging, as well as time-consuming and expensive, operations [26,31,34,36–41]. This
implies that it is rarely possible to obtain high-quality specimens for laboratory tests for the
determination of their strength. Hence, less rigorous approaches are necessary for their
characterisation. Among these, point load (PL) tests and qualitative descriptions of the
strength of intact rocks (Table 1) are the most common.

Table 1. Field estimates of uniaxial compressive strength of intact rocks (After [30], modified from [42]).

Grade * Term Uniaxial Comp.
Strength (MPa)

Point Load
Index (MPa) Field Estimate of Strength Examples

R6 Extremely
Strong >250 >10

Specimen can only be
chipped with a geological

hammer

Fresh basalt, chert,
diabase, gneiss,

granite, quartzite

RS Very strong 100–250 4–10
Specimen requires many

blows of a geological
hammer to fracture it

Amphibolite, sandstone,
basalt, gabbro, gneiss,

granodiorite, peridotite,
rhyolite, tuff

R4 Strong 50–100 2–4

Specimen requires more
than one blow of a

geological hammer to
fracture it

Limestone, marble,
sandstone, schist

R3 Medium
strong 25–50 1–2

Cannot be scraped or peeled
with a pocket fractured with

a single blow from a
geological hammer

Concede, phyllite,
schist, siltstone

R2 Weak 5–25 **

Can be peeled with a
pocketknife with difficulty,
shallow indentation made

by firm blow with point of a
geological hammer

Chalk, claystone,
potash, marl, siltstone,

shale, rocksalt

R1 Very weak 1–5 **

Crumbles under firm blows
with point of a geological

hammer, can be peeled by a
pocketknife.

Highly weathered or
altered rock, shale

R0 Extremely
weak 0.25–1 ** Indented by thumbnail Stiff fault gouge

* Grade according to Brown (1981), [24]. ** Point load tests on rocks with a uniaxial compressive strength below
25 MPa are likely to yield highly ambiguous results.

Moreover, since soft rocks constitute transition materials between (hard) rocks and
(stiff) soils, they are often too soft to be tested in rock mechanics apparatus and too hard
for soil mechanics equipment [13,28,43]. Furthermore, they present numerous undesirable
characteristics, such as low strength, disaggregation, presence of rock inclusions, capillarity
suction, crumbling, high plasticity, slaking, and fast weathering [8,13,23,25,27,28,31,44–46].
These issues are responsible for a lack of knowledge about their mechanical behaviour,
which often leads to the adoption of very conservative parameters to the detriment of cost
effectiveness.

Many authors have worked on these complex geomaterials in order to:

• study how the presence of water affects their behaviour (degradation or weathering
behaviour) [25,27,31,43,44,46,47]. In fact, water induces a very rapid decrease in
stiffness and strength in most weak rocks;

• correlate the history of the geological processes of soft rocks to their mechanical
behaviour, since different forming and alteration processes result in specific properties
that inevitably influence the overall behaviour of these geomaterials [26,28];
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• evaluate and correlate the uniaxial compressive strength to other test results, i.e., the
Point Load Strength Index, the Block Punch Index, and the needle penetration test
results [15,25,37,39,41,48–50].

In this paper, a widespread heterogeneous Italian mélange was chosen and studied
in detail to explore and address the challenges of working with a soft rock composed
of a marly matrix enclosing small quantities of calcareous rock blocks. Specifically, non-
conventional operative and laboratory procedures were developed and used to tackle
most of the technical difficulties encountered in the preparation of regular specimens for
laboratory tests. The potential of these procedures is that they can also be applied to other
soft rocks that present the same problems. Moreover, the mechanical behaviour under
compression of the marly matrix of this complex formation was investigated by performing
PL tests and uniaxial compressive tests. In this regard, in order to reliably predict the
UCS of soft rocks, such as the Italian mélange, from PL tests, an appropriate value of the
conversion factor, C (to apply to the point load strength index, IS(50)), was proposed.

Finally, because of the weakness of the geomaterial and the dusty, irregular, and hetero-
geneous surfaces of the specimens, neither strain gauges nor direct contact extensometers
could be used during the UC tests to measure local strains. Hence, the non-destructive
digital image correlation (DIC) technique was applied to evaluate the deformability of the
specimens tested. The DIC technique compares a series of digital images, for example, of the
surface of a loaded specimen, and measures the displacements by matching the same pixels
in consecutive photographs, before and after deformation. This technique, used in many
research fields, has been widely and successfully employed in rock mechanics [51–53].

2. The Italian Sedimentary Mélange

The Materials and Methods should be described.
The Italian sedimentary mélange studied in this paper is located in the Oltrepò Pavese

area and presents a chaotic block-in-matrix fabric (Figure 1a). This internal structural
arrangement results from the stacking of different Late Oligocene—Early Miocene cohesive
submarine debris flows [15,54]. Each debris flow ranges from meters to tens of metres in
thickness. As shown in Figure 1b, each stratigraphic layer is composed of rock inclusions
characterised by an inverse grading of the largest blocks above a basal shear zone a few
centimetres thick. The blocks are mainly limestones of irregular shape embedded in a
foliated and water sensitive clayey-marly matrix [54].
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2.1. Collection of Intact Samples

The composition of the matrix posed severe difficulties during the on-site sampling.
In fact, the water sensitivity of the matrix did not allow the extraction of undisturbed
samples with the classic coring techniques, since the use of perforation fluids would have
irreversibly damaged the material. Moreover, the dry drilling technique did not provide
good results, as the material jammed into the drill bit; it was not possible to extract the core
without damaging it. For these reasons, only a manual coring could be performed.

In order to obtain mélange samples that are as intact and undisturbed as possible,
the superficial weathered material (about 0.4 m thick) was removed before collecting the
samples by means of hammers, picks and chisels. Moreover, the material was extracted at
depths (rather close to the basal shear zone) at which sufficiently small rock blocks could
be found, so as to be able to perform laboratory tests with standard equipment.

Although a great number of lumps were split during the sampling due to the weak na-
ture of the marl, a sufficient number of irregular lumps, with dimensions of approximately
25 × 30 × 30 cm, were collected (an example is given in Figure 2).
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Figure 2. A typical irregular mélange lump extracted manually.

The samples were carefully wrapped and transported to the geotechnical laboratory
operating in the Department of Structural, Geotechnical and Building Engineering (DISEG)
of Politecnico di Torino for the preparation of specimens for laboratory testing.

2.2. Preparation of Specimens for Laboratory Tests

The presence of the clay in the mélange matrix made it extremely challenging to
obtain good-quality specimens, since no standard techniques requiring cooling fluids,
such as core drillings, oil circular saws or water circular saws, could be used without
irreversibly damaging the material. Therefore, alternative techniques, such as laser-cutting
and waterjet, were evaluated. However, the former technique could not be applied, since
all the specimens were higher than 2–3 cm, which was the maximum thickness that the
laser could have cut. The waterjet technique also failed because the trial sample was badly
damaged by the water, although it had been expected that a jet of water of thousands of
bars of pressure emitted from an orifice a few microns wide would have allowed for a good
cut to be executed.

Hence, it was necessary to resort to a dry cutting technique, by constructing a diamond
band saw with a sufficient cutting height and weight to avoid vibrations during the cutting
operations [15]. Specifically, the Fervi 0764/455 wood band saw was modified by replacing
the supplied blade with a diamond blade customized by the Italian Turri Technologies S.r.l.
(Figure 3a,b). This blade was built for reducing vibrations and cutting the stronger rock
inclusions without deforming the softer matrix.



Geosciences 2022, 12, 70 5 of 15

Geosciences 2022, 12, ×  FOR PEER REVIEW 5 of 16 
 

 

2.2. Preparation of Specimens for Laboratory Tests 
The presence of the clay in the mélange matrix made it extremely challenging to 

obtain good-quality specimens, since no standard techniques requiring cooling fluids, 
such as core drillings, oil circular saws or water circular saws, could be used without 
irreversibly damaging the material. Therefore, alternative techniques, such as laser-
cutting and waterjet, were evaluated. However, the former technique could not be 
applied, since all the specimens were higher than 2–3 cm, which was the maximum 
thickness that the laser could have cut. The waterjet technique also failed because the trial 
sample was badly damaged by the water, although it had been expected that a jet of water 
of thousands of bars of pressure emitted from an orifice a few microns wide would have 
allowed for a good cut to be executed.  

Hence, it was necessary to resort to a dry cutting technique, by constructing a 
diamond band saw with a sufficient cutting height and weight to avoid vibrations during 
the cutting operations [15]. Specifically, the Fervi 0764/455 wood band saw was modified 
by replacing the supplied blade with a diamond blade customized by the Italian Turri 
Technologies S.r.l. (Figure 3a,b). This blade was built for reducing vibrations and cutting 
the stronger rock inclusions without deforming the softer matrix.  

 
Figure 3. Diamond band saw—(a) the FERVI 0764/455 wood band saw; (b) new diamond blade; (c) 
plastic element for dust containment assembled on the worktable of the Fervi saw and connected to 
a vacuum cleaner hose; (d) vacuum cleaner; € boards. 

In order to contain the dust produced during the cutting, a plastic element to be 
connected to a vacuum cleaner was also designed and printed at DISEG (Figure 3c,d). 

To work in safe conditions, two specially made boards were constructed and used to 
push the irregular lumps manually towards the rotating band saw (Figure 3e). Moreover, 
to make the samples more stable, they were incorporated in the grout, taking care to 
protect them from the water (contained in the fresh grout) by putting them into plastic 
bags. 

With the use of these devices, the cutting was able to be carried out safely and more 
easily. However, it was an extremely time-consuming operation and far from being simple 
and flawless. In fact, the weak nature of the marly matrix and the presence of bedding 
planes and innate micro and macro fractures often caused the formation of cracks and, in 
any case, required a great number of cuts before a regular specimen could be obtained. 

Figure 3. Diamond band saw—(a) the FERVI 0764/455 wood band saw; (b) new diamond blade;
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In order to contain the dust produced during the cutting, a plastic element to be
connected to a vacuum cleaner was also designed and printed at DISEG (Figure 3c,d).

To work in safe conditions, two specially made boards were constructed and used to
push the irregular lumps manually towards the rotating band saw (Figure 3e). Moreover, to
make the samples more stable, they were incorporated in the grout, taking care to protect
them from the water (contained in the fresh grout) by putting them into plastic bags.

With the use of these devices, the cutting was able to be carried out safely and more
easily. However, it was an extremely time-consuming operation and far from being simple
and flawless. In fact, the weak nature of the marly matrix and the presence of bedding
planes and innate micro and macro fractures often caused the formation of cracks and, in
any case, required a great number of cuts before a regular specimen could be obtained.
Moreover, rock inclusions were frequently found at (or very close to) the edges of the
specimens. In these cases, block detachments often occurred which produced holes. Con-
sequently, too small, irregular and useless specimens were often obtained, as shown in
Figure 4.
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Figure 4. Mélange samples damaged during the cutting phase.

Due to such difficulties, some defects were in any case accepted in the specimens used
for laboratory tests.

A total of 45 specimens were obtained by sawing the samples retrieved on site. Ac-
cording to their dimensions, 37 of them were used for PL tests, while the remaining 8 were
tested under uniaxial compression conditions. In fact, due to the difficulties encountered
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during the cutting phase, only a very limited number of specimens with an adequate
geometry for unconfined compression tests could be successfully prepared. The specimens
were cut following the ISRM (2007) recommendations as much as possible and trying to
keep the natural discontinuities of the material as perpendicular as possible to the direction
of application of the load.

As clearly visible in Figure 4, almost all the specimens contained small quantities
of rock inclusions. The number of blocks contained in a sample can be quantified by
computing its volumetric block proportion (VBP), which is the ratio between the volume of
the rock blocks inside the specimen and the total specimen volume. This parameter was
evaluated on all the specimens used for the unconfined compression tests. Specifically, after
the tests, each specimen was dissolved in water and the rock inclusions were collected by
sieving. Since the VBPs of all the specimens were extremely low (see Table 3), according to
previous findings from the literature [2,3,7], it was assumed that the mechanical behaviour
of the mélange was not affected by the presence of the rock inclusions.

3. Laboratory Tests
3.1. Point Load Tests

When dealing with soft rocks, the PL test is often the only possibility for evaluating
their uniaxial compressive strength (UCS). In fact, many technical problems arise when
preparing regular prismatic or cylindrical specimens to be tested in uniaxial compres-
sion [25]. On the contrary, PL tests can be easily conducted even on shapeless lumps and
cut blocks [48,55–58].

The test is performed with the aim of determining the point load strength index, IS(50),
of the rock specimens. The relationship between the IS(50) and UCS is expressed by a
conversion factor, C. The value of this coefficient is generally set as equal to 24 for hard
rocks. However, for soft rocks (i.e., argillaceous rocks, siltstones, flysches, etc.), it could
be much lower than this value. Previous findings from the literature [25,30,41,45,48,58,59]
have indeed shown that C varied from 5 up to 24 for chalks, from about 7 to 21 for
sandstones and from 13 to 15 for argillaceous rocks. Hence, a conversion factor equal to 14
was considered reliable and used for the mélange under study.

PL Test Results

The PL tests were performed on 37 specimens according to the ASTM recommenda-
tions [56] using the apparatus of the geotechnical laboratory operating in the DISEG of
Politecnico di Torino (Figure 5a). After each test, the failure surface of the specimen was
inspected to verify the validity of the test (Figure 5c).
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Figure 5. (a) DISEG point load test apparatus: gauges for reading the applied load (1), jack (2), steel
tips for applying the load (3), ruler for measuring the distance between the tips (4), specimen (5); (b) a
mélange specimen; (c) mélange specimen n. 11 successfully tested and showing a highly irregular
failure surface; (d) mélange specimen n. 22 split along a plane of weakness.
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The results obtained for the mélange under study are shown in Table 2.

Table 2. PL test results. “Inv.” stands for invalid test while “min” and “Max” refer to the minimum
and maximum obtained UCS, respectively, which were discarded according to the ASTM Standards.
A conversion factor equal to 14 was used to compute the UCS values.

Sample De2

[m2]
P

[kN]
Is

[kN/m2]
De

[mm]
F
[-]

Is50
[kPa]

UCS
[MPa]

1 0.0011 0.00 0.00 33.84 0.84 0.0 -
2 0.0007 0.28 392.50 26.71 0.75 296.0 4.14
3 0.0007 0.00 0.00 26.47 0.75 0.0 -
4 0.0006 0.00 0.00 23.94 0.72 0.0 -
5 0.0011 0.50 449.08 33.37 0.83 374.4 5.24
6 0.0053 0.10 18.87 72.80 1.18 22.3 Inv.
7 0.0046 0.10 21.81 67.72 1.15 25.0 min2
8 0.0036 0.00 0.00 59.78 1.08 0.0 -
9 0.0017 0.00 0.00 41.62 0.92 0.0 -

10 0.0036 0.10 27.45 60.36 1.09 29.9 Inv.
11 0.0032 0.48 150.72 56.43 1.06 159.2 2.23
12 0.0022 0.30 136.76 46.84 0.97 132.8 1.86
13 0.0017 0.15 86.07 41.75 0.92 79.4 1.11
14 0.0032 0.23 72.25 56.42 1.06 76.3 1.07
15 0.0019 0.00 0.00 43.42 0.94 0.0 -
16 0.0037 0.05 13.63 60.57 1.09 14.9 min1
17 0.0018 0.15 81.77 42.83 0.93 76.3 1.07
18 0.0031 0.00 0.00 55.73 1.05 0.0 -
19 0.0022 0.00 0.00 47.19 0.97 0.0 -
20 0.0008 0.18 217.38 28.78 0.78 169.5 2.37
21 0.0017 0.30 173.16 41.62 0.92 159.4 2.23
22 0.0016 0.10 62.40 40.03 0.90 56.5 0.79
23 0.0022 0.30 133.81 47.35 0.98 130.6 1.83
24 0.0015 0.32 209.33 39.10 0.90 187.4 2.62
25 0.0021 0.30 145.64 45.39 0.96 139.4 1.95
26 0.0012 0.20 163.37 34.99 0.85 139.1 1.95
27 0.0008 0.48 600.96 28.26 0.77 464.9 Max1
28 0.0009 0.00 0.00 29.86 0.79 0.0 -
29 0.0013 0.32 245.55 36.10 0.86 212.1 2.97
30 0.0009 0.00 0.00 30.45 0.80 0.0 -
31 0.0009 0.00 0.00 29.90 0.79 0.0 -
32 0.0008 0.40 486.07 28.69 0.78 378.5 Max2
33 0.0016 0.10 60.62 40.62 0.91 55.2 0.77
34 0.0016 0.30 181.85 40.62 0.91 165.6 2.32
35 0.0016 0.27 173.16 39.49 0.90 155.7 2.18
36 0.0002 0.00 0.00 12.36 0.53 0.0 -
37 0.0021 0.20 95.73 45.71 0.96 91.9 1.29

Average σc (MPa) 2.10
Standard deviations (-) 1.12

Two specimens yielded invalid tests and twelve specimens provided no significant
result (null IS50 values). This outcome and the dispersion in the test results were mainly
ascribed to the presence of bedding planes within the material and to their variable orienta-
tion, which was not always perpendicular to the direction of application of the load. In fact,
some irregular samples possessed undulated, variably oriented and/or not clearly visible
bedding planes, which could not be identified before the tests were carried out. (e.g., see
Figures 2 and 5d). Therefore, the variability of the results obtained, which requires a great
number of tests to be carried out, is a peculiarity of this type of geomaterial and is ascribed
to its heterogeneous composition and foliated (so, anisotropic) matrix.

The minimum and maximum strengths were 0.77 MPa and 5.24 MPa, respectively,
while the average UCS obtained was 2.1 MPa, with a standard deviation as equal to 1.12.



Geosciences 2022, 12, 70 8 of 15

3.2. Unconfined Compression Tests

The UCS of the mélange under study was also estimated by means of uniaxial compres-
sion tests performed at the geotechnical laboratory operating in the DISEG of Politecnico di
Torino. These tests were also carried out with the aim of estimating the deformability of
the material and validating the value of the conversion factor, C, used to process the point
load test results.

Due to the difficulties encountered during the preparation of the specimens, only
8 specimens with a sufficiently regular geometry could be obtained from the shapeless
samples and tested. The specimens were expected to have null or very low block contents,
which were assumed to not have affected the UC test results. In fact, previous findings
from the literature [2,3,7] demonstrated (experimentally and numerically) that no strength
increase is registered in heterogeneous materials with VBPs lower than 20%–25%. The
assumption of very low block contents was later confirmed from sieve analyses, which
were carried out after each test.

The tests were performed under axial displacement control at a constant rate of
0.005 mm/min. During the tests, a data acquisition system recorded the values of time,
axial displacement of the piston (acquired by an LVDT transducer) and axial load (acquired
by a load cell), with a sampling rate of 100 Hz. Moreover, in order to estimate local strains
and the deformability of the mélange by means of the DIC technique, a Canon EOS 550D
digital camera was placed on a tripod in front of one specimen surface to take photos every
5 s. This time interval was considered sufficiently large to allow the photos to be stored but,
at the same time, small enough to capture the displacements during each test.

Unconfined Compression Test Results

Since the samples were cut with the diamond band saw, a few indications of the ISRM
Standards (2007) could not be met. First, it was not possible to obtain cylindrical specimens.
Moreover, the final geometry of the prismatic specimens was never completely free of
irregularities since the specimen ends were often far from being smooth and perpendicular
to its axis (Figure 6).
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Figure 6. Non-standard mélange specimens n. 7 and 8.

In addition, the height to diameter (i.e., width) ratio of 2.5 suggested by the ISRM
Standards (2007) could never be obtained. Specifically, the specimens tested had a variable
H/D ratio, ranging from 1.38 to 2.10, as indicated in Table 3.
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Table 3. Values of VBP, H/D, UCS and elastic modulus in terms of global strains (Eglob) and local
strains (EaverageDIC), of the specimens tested.

Specimen VBP
[%]

H/D
[-]

UCS
[MPa]

Eglob
[GPa]

EaverageDIC
[GPa]

1 0.2 1.38 2.2 0.27 0.39
2 0.1 1.74 0.98 0.30 1.44
3 1.4 1.52 1.59 0.01 -
4 5.1 1.67 2.04 0.13 0.20
5 6.9 1.75 2.40 0.17 0.38
6 5.2 1.4 2.66 0.13 -
7 4.9 2.1 3.12 0.45 1.23
8 2.6 1.9 2.15 0.18 1.08

The use of non-standard specimens may seem to be a potentially significant limitation
of this study. However, according to previous findings from the literature [42,60–62], it
can be assessed that the prismatic shape and the rather low slenderness ratios (average
H/D = 1.7) of the mélange specimens tested produced modest effects on the UCS values
obtained. In fact, the work of Xu and Cai (2017) demonstrated that the peak strength of
rocks tested in uniaxial compression was very slightly affected by the cross-sectional shape
(circular, square or rectangular) of the specimens. Moreover, laboratory tests [42,61,63]
and numerical analyses [60,62] carried out on specimens with different slenderness ratios
revealed that the non-homogeneous strain field induced in the specimens by the friction of
the end plates caused an overestimation of the uniaxial stresses for H/D ratios generally
lower than 2.5. However, the strength increased with decreasing H/D ratios from 2.5 to 1.7
was found to be moderate in most cases.

Therefore, according to the outcomes of these investigations, the average UCS obtained
in this research can be considered only slightly overestimated and, in any case, quite
representative of the real strength of the geomaterial.

4. Results

The results of the UC tests are shown in Figure 7 and Table 3.

Geosciences 2022, 12, ×  FOR PEER REVIEW 10 of 16 
 

 

(average H/D = 1.7) of the mélange specimens tested produced modest effects on the UCS 
values obtained. In fact, the work of Xu and Cai (2017) demonstrated that the peak 
strength of rocks tested in uniaxial compression was very slightly affected by the cross-
sectional shape (circular, square or rectangular) of the specimens. Moreover, laboratory 
tests [42,61,63] and numerical analyses [60,62] carried out on specimens with different 
slenderness ratios revealed that the non-homogeneous strain field induced in the 
specimens by the friction of the end plates caused an overestimation of the uniaxial 
stresses for H/D ratios generally lower than 2.5. However, the strength increased with 
decreasing H/D ratios from 2.5 to 1.7 was found to be moderate in most cases.  

Therefore, according to the outcomes of these investigations, the average UCS 
obtained in this research can be considered only slightly overestimated and, in any case, 
quite representative of the real strength of the geomaterial. 

4. Results 
The results of the UC tests are shown in Figure 7 and Table 3. 

 
Figure 7. Stress–strain curves in terms of global strains of the specimens. 

From Figure 7, it is possible to observe a significant variability in the mechanical 
behaviour of the 8 mélange specimens tested, in terms of stiffness, peak and post-peak 
strength and strain at failure. 

Specimens 1, 2 and 7 presented the most regular stress–strain curves, as well as the 
lowest deformability and strains at failure, although their UCS was remarkably different: 
specimen 2 showed the lowest UCS, while specimen 7 of the maximum strength of all the 
specimens tested. On the other hand, abrupt changes in stress values can be observed, 
both before and after reaching the peak, in almost all the stress–strain curves, especially 
for specimens 4, 6 and 8. This behaviour was attributed to both natural micro fractures 
within the material and local failures at block-matrix contacts, which occurred during the 
tests. A completely different behaviour was exhibited by specimen 3, which showed a 
lower strength, an almost elastic, perfectly plastic behaviour and a much lower stiffness. 
The variability in the results could be due to the heterogeneity of the bimrock samples as 
well as to the anisotropy of the specimens tested (i.e., micro fractures and presence of 
bedding planes, which were also occasionally found to be non iso-oriented). 

The stress–strain curves shown in Figure 7 were subsequently processed to 
determine the average UCS and the deformability modulus (in terms of global strains), 

Figure 7. Stress–strain curves in terms of global strains of the specimens.



Geosciences 2022, 12, 70 10 of 15

From Figure 7, it is possible to observe a significant variability in the mechanical
behaviour of the 8 mélange specimens tested, in terms of stiffness, peak and post-peak
strength and strain at failure.

Specimens 1, 2 and 7 presented the most regular stress–strain curves, as well as the
lowest deformability and strains at failure, although their UCS was remarkably different:
specimen 2 showed the lowest UCS, while specimen 7 of the maximum strength of all the
specimens tested. On the other hand, abrupt changes in stress values can be observed,
both before and after reaching the peak, in almost all the stress–strain curves, especially for
specimens 4, 6 and 8. This behaviour was attributed to both natural micro fractures within
the material and local failures at block-matrix contacts, which occurred during the tests.
A completely different behaviour was exhibited by specimen 3, which showed a lower
strength, an almost elastic, perfectly plastic behaviour and a much lower stiffness. The
variability in the results could be due to the heterogeneity of the bimrock samples as well
as to the anisotropy of the specimens tested (i.e., micro fractures and presence of bedding
planes, which were also occasionally found to be non iso-oriented).

The stress–strain curves shown in Figure 7 were subsequently processed to determine
the average UCS and the deformability modulus (in terms of global strains), Eglob, of the
mélange (Table 3). Eglob was then compared to that obtained by using the DIC technique
(in terms of local strains).

Strength
By averaging the peak strength values obtained, an UCS value equal to 2.14 MPa was

found. Therefore, according to the PLT results, the mélange under study can be classified
as a soft rock belonging to the grade R1 of the ISRM classification shown in Table 1.

A particularly striking finding to emerge from this result is that the average strength
obtained with the UC tests was comparable to that obtained by the PL tests (i.e., 2.1 MPa).
This outcome, while preliminary, suggests that a conversion factor C equal to 14 can be
applied to the point load strength index to reliably predict the UCS of soft rocks, such as
the Oltrepò Pavese mélange. It is worth pointing out that this value also fit well with the
empirical relation proposed by Sonmez and Osman [64]. In this relation, the conversion
factor, C, is obtained according to the following Equation (1):

C = 3.3 mi
0.665 (1)

where mi is the rock material constant of Hoek and Brown criterion.
Specifically, from Equation (1), if an mi = 7 ± 2 is assumed for marls [65], C ranged

from 9.6 to 14.2.
Deformability
An estimation of the elastic modulus, Eglob, of the mélange was obtained by analysing

the global strains inferred from the LVDT mounted on the edge of the samples. Specifically,
the pseudo-linear portion of the stress–strain curve of each specimen was considered,
providing the results listed in Table 3. From these results, an average Eglob equal to about
0.21 GPa was found.

However, the deformability evaluated based on global strains is generally affected
by some degree of error. The friction between the specimen ends and the steel plates and
the different elastic properties of the two materials (i.e., steel and mélange) cause shear
stresses at the specimen ends, because of the end restraint. This condition induces a triaxial
state of stress (close to the ends of the specimen) that tends to transform into a uniaxial
state of stress towards the centre of the specimen [61]. Consequently, the elastic modulus
found using global strains is generally different (i.e., lower) from that evaluated analysing
local strains. Therefore, direct contact extensometers and strain gauges are generally used
to measure local strains and determine the deformability of the material under study.
Nevertheless, due to the high weakness of the material, as well as to the dusty, irregular,
and heterogeneous surfaces of the specimens, neither instrument could be used. Moreover,
it is worth pointing out that, in this research, the heterogeneity of the geomaterial and the
settling/rotation of the top loading plate due to both the non-planarity and non-parallelism
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of the specimen bases may have induced an even greater overestimation of global strains.
In light of the above considerations, the average of 0.21 GPa should be considered only as a
preliminary and conservative result.

In order to estimate a more reliable value of the elastic modulus of the mélange, the DIC
technique was applied by using the 2D open source Ncorr software package implemented
in Matlab [66]. The Ncorr program requires the definition of a region of interest (ROI) on
the reference image (Figure 8). In this research, the edges of the specimen were excluded
from the ROI to prevent numerical errors that could arise during the computation since the
edges of the specimens used are not perfectly regular (for example the jagged right edge in
Figure 8) nor perfectly vertical (for example, the left edge in Figure 8), as well as to avoid
boundary effects due to the contact between the loading plates and the sample faces.
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To obtain results representative of the overall behaviour of the mélange, we decided
to take into account the deformations of the three vertical lines joining points 1–7, 2–8 and
3–9 of Figure 8.

From the analysis of the axial displacements of these lines, intersecting both blocks
and matrix, their deformations could easily be obtained from Equation (2):

εyP0P1 = δyP1,i − δyP0,i /lP0P1,in (2)

being:

• εyP0P1 the axial deformation at time i between two points, say P0 and P1;
• δyP1,i and δyP0,i the vertical displacements of points P0 and P1 at time i;
• lP0P1,in the initial (vertical) distance between points P0 and P1.

The results obtained (i.e., stress–strain curves) are shown in Figure 9 for specimen n. 7,
by way of example. The blue part of each curve indicates the data that were linearized and
then used to determine the elastic modulus. This linearization interval was chosen to have
an almost linear elastic stress–strain behaviour.
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As can be seen from Table 3, the average deformability modulus obtained for each
specimen with the DIC analysis, EaverageDIC, is significantly higher (up to 5 times) than that
found using the global deformations, Eglob. This outcome seems to confirm the consistency
and reliability of the results found with the DIC technique. Moreover, this result indicates
that the estimation of the deformability modulus should not be performed using global
deformations, which are affected by the many uncertainties described above and can lead
to a significant underestimation of the E values.

Finally, the results shown in Table 3 also highlight that important differences in
the deformability of this geomaterial do exist. Specifically, the deformability moduli of
specimens 1, 4 and 5 seem to be much lower than those of specimens 2, 7 and 8, although
no relevant differences in their UCS were generally found. This discrepancy in the results
is difficult to explain. However, it could be argued that factors such as the presence of
some rock inclusions in specimens 7 and 8, variably oriented bedding planes and/or innate
micro-fractures within specimens 1, 4 and 5 may have affected the deformability of the
mélange differently. Likewise, microfractures or other defects on the surface of specimens
analysed with the DIC technique may also have influenced the result of these analyses,
leading to lower elastic moduli than expected. This could be the case of specimen 1, whose
elastic modulus EaverageDIC was only 0.39 GPa. In fact, from the stress–strain curves of
Figure 7, the highest elastic moduli were expected to be obtained for specimens 1 and 7.

To conclude, the specimens tested and analysed with the DIC technique provided an
overall average elastic modulus of 0.79 GPa, with a minimum of 0.2 GPa and a maximum
value equal to 1.44 GPa.

5. Conclusions

Soft rocks such as marls are extremely problematic geomaterials, since they exhibit
very poor mechanical properties, degrade very fast when submerged in water and can
also contain bedding planes and rock inclusions. As a consequence, undisturbed sampling,
specimen preparation and laboratory tests are usually very challenging, as well as time-
consuming and expensive operations.

In this paper, a heterogeneous Italian marly mélange was chosen and characterised
in order to explore and address the challenges of working with water-sensitive soft rocks
with a block-in-matrix internal arrangement.

Several technical difficulties were encountered during the collection and preparation
of intact specimens for laboratory tests. In this regard, various non-conventional operative
methodologies were considered and applied, and an effective procedure was developed. In
order to obtain specimens as regular as possible, the construction of a dry cutting machine
was found to be the only suitable solution. Specifically, a wood band saw was modified to
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include additional appropriate devices to contain vibrations, dust and sample deformations,
as well as to guarantee safe working conditions. The potential of the solutions proposed in
this research lies in the fact that they can be conveniently applied to other (heterogeneous)
soft rocks, such as the Italian mélange.

The mechanical behaviour of the mélange under compression was investigated by
carrying out a series of PL and UC tests, from which an average UCS of about 2.1 MPa was
found. According to the classification proposed by ISRM (1981), the geomaterial under
study could be defined as a very weak rock.

Another highly relevant outcome of the experimental research carried out in this study
is that a conversion factor C equal to 14 was found, which can be applied to the IS50 to
reliably predict the UCS of soft rocks, such as the Italian mélange, from PL tests. This
outcome can be particularly useful, since PL tests are often the only way to determine the
strength of soft rocks.

Finally, since neither strain gauges nor direct contact extensometers could be used
to measure local strains, a preliminary estimation of the deformability of the mélange
specimens was determined using the global deformations recorded using the LVDT. The
average elastic modulus was found to be equal to 0.21 GPa. However, since the deformabil-
ity evaluated by using global strain values is generally affected by some degree of error,
the non-destructive digital image correlation (DIC) technique was also used to determine
the elastic modulus of the geomaterial in terms of axial strains. The result of this analysis
showed that the elastic modulus found using the global deformations strongly underes-
timates (up to 5 times) the stiffness of the specimens. Therefore, when dealing with soft
rocks, such as the Italian mélange, the use of the DIC technique is highly recommended to
obtain a reliable estimation of the elastic modulus of the material.
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