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 16 

ABSTRACT 17 

The paper proposes a hybrid technique to solve the inverse problem of damage localization and severity 18 

estimation in beam structures. The first phase of the method involves the use of influence lines (IL) to 19 

extract information about the damage location. Then, a genetic algorithm (GA), representing the core of the 20 

whole procedure, utilizes static parameters as displacements and rotations at few points to evaluate the 21 

bending stiffness along the structure by updating a finite element model. The information obtained in the 22 

first phase is used in the second phase for: (i) reducing the number of design variables of the GA and the 23 

consequent computational time; (ii) improving the accuracy of GA solutions because it allows a suitably 24 

trained neural network to select proper values for the coefficients of the proposed cost function inside the 25 

genetic algorithm. The procedure is applied to a test problem, namely a simply supported, prestressed 26 
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concrete railway bridge, located in northern Italy. Numerical experiments are also conducted to test the 27 

procedure when the beam length and geometric properties vary. 28 

Keywords: PC bridge; damage detection; influence line; neural network; genetic algorithm. 29 

 30 

INTRODUCTION 31 

In the last two decades, the need to control the safety of civil infrastructure facilities has become 32 

increasingly important. As proved also by recent happenings, the lack of knowledge of the actual structural 33 

conditions of structures and infrastructures and the consequent underrating of their vulnerability can imply 34 

severe problems. For example, structural damage due to corrosion, fatigue and aging can lead to significant 35 

losses, both in terms of human lives and economic resources. On the one hand, the development of a 36 

maintenance plan based on operations of detection, localization and quantification of damage is a complex 37 

task for engineers and infrastructure owners. On the other hand, the necessity of infrastructure managers to 38 

have a monitoring system that could be sustainable from an economic standpoint and able to point out the 39 

structural criticalities needs answers. 40 

The state of the infrastructural asset is in continuous change due both to gradual (e.g. fatigue, corrosion) 41 

and shock (e.g. earthquakes, floods, and tornados) deterioration phenomena. Railway concrete bridges are 42 

subjected to several types of degradation mechanisms. The taxonomy (Maksymowicz et al. 2006) of the 43 

degradation processes and their classification highlight the main structural issues. They are due to 44 

deformation, discontinuity, displacement, loss of material, and deterioration (Bień et al. 2007). In detail, 45 

chemical (carbonation, salt, and acid actions) and physical (creep, fatigue, freeze-thaw action, overloading, 46 

shrinkage) phenomena can change structural features. Significant benefits are obtained from the acquisition 47 

of structural information to reduce the risk of human and economic losses. Some methods, e.g. Bayesian 48 

decision analysis (Iannacone et al. 2021), are useful to estimate them. On the other hand it is now well-49 

known, and quantified by the De Sitter’s “Law of five” (De Sitter 1984), the severe impact that a lack of 50 

maintenance can have on the overall costs. The recent happenings (Bazzucchi et al. 2018), including the 51 
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collapse of the Polcevera Viaduct in Genoa, Italy, have shown the need for effective control strategies to 52 

ensure safety in the infrastructural field (Clemente 2020). 53 

Bridges structural evaluation based on non-destructive monitoring system (Kaloop et al. 2016) has been 54 

performed using both dynamic and static measurements. The first approach involves the use of vibrational 55 

measurements by means of operational modal analysis (OMA) and Experimental modal analysis (EMA) 56 

(Schwarz and Richardson 1999) to estimate the modal parameters and to track their evolutions. OMA is the 57 

most common procedure (Magalhães and Cunha 2011) as it does not require the use of any artificial 58 

excitation with consequent interruption of the facility operation. Dynamic methods in Structural Health 59 

Monitoring (SHM) have been investigated and developed for several decades and represent effective tools. 60 

The literature on the subject is very vast. Examples of data analysis from ambient vibration recording are 61 

reported in (Azzara et al. 2017)(Roselli et al. 2018)(Chiaia et al. 2020). At the same time, critical issues 62 

arise when using them for in-situ monitoring. In fact, damage detection based on the response in terms of 63 

frequencies (Salawu 1997), mode shapes (Allemang 2003), and damping ratios (Curadelli et al. 2008) has 64 

highlighted as factors like data volume, monitoring time, uncertainty (Reynders et al. 2008), and 65 

environmental effects have a significant impact on damage detection because they generate data variance 66 

(Wu et al. 2020). As a matter of fact, many novelty detection methods are not able to distinguish between 67 

frequency variations due to environmental/operational conditions and variations induced by a damage in 68 

the structure. It is true that methods exist for filtering data from disturbances, but this is not an easy 69 

operation and usually requires a long-term monitoring, and thus a lot of data to be stored. Progression to 70 

real-world applications is delayed by the shortcomings still present in addressing the negative effects 71 

produced by these factors (Moughty and Casas 2017). Furthermore, as in the case in matter, infrastructure 72 

managers experience difficulties in storing dynamic data from continuous monitoring and they require 73 

investigations that are able to exploit static data from periodic monitoring. 74 

The second approach requires static load testing and collection of displacement (Nguyen et al. 2016), strain 75 

(Sanayei et al. 2012), and curvature (Tonnoir et al. 2018) data. The advantage in their use lies in a more 76 

direct achieving of the second level of the hierarchical structure into which the damage identification 77 
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problem can be divided, i.e. damage localization (Farrar and Worden 2012). In recent years, data-driven 78 

algorithms have been implemented within the SHM framework due to their ability in analyzing data and 79 

providing a real-time solution for decision making (Tibaduiza Burgos et al. 2020).  Big data (BD) and 80 

Artificial Intelligence (AI) are considered promising approaches for an effective structural assessment (Sun 81 

et al. 2020). The applications of machine learning (Bao and Li 2020) and deep learning techniques (Toh 82 

and Park 2020) (Azimi et al. 2020) have been having a rapid increase and have been garnering a growing 83 

focus due to their better performance in a damage detection scenario (Flah et al. 2020). Therefore, 84 

investigations in this direction are of interest and new methodologies can assist more traditional ones like 85 

dynamic health monitoring, acoustic emission monitoring, etc. 86 

The present work aims at investigating the possibility of using a reduced number of sensors/measure points 87 

while achieving satisfactory results in terms of damage identification at the same time. Structural 88 

assessment is designed as an outcome of a periodic (not continuous) monitoring in which few static 89 

parameters are recorded when a given external load acts in different positions over the structure. Comparing 90 

measurements made at different times under the same conditions can give information about possible 91 

changes in the structural response. For this purpose, the paper proposes a hybrid technique to solve the 92 

inverse problem of the damage localization and its severity estimation based on a genetic algorithm 93 

supported by influence lines and a neural network. The first phase involves the use of influence lines to 94 

extract information about the damage location (Chen et al. 2021). Then, a genetic algorithm (GA), 95 

representing the core of the whole procedure, utilizes static parameters measured at few points, i.e. mid-96 

span deflections and end rotations, for estimating the bending stiffness along the discretized structure. The 97 

use of a limited number of parameters, distributed to capture potential changes both in the middle of the 98 

beam and near the supports, falls within an optimization perspective. Indeed, an increase in parameters 99 

would imply redundancy and greater reliability in the damage identification problem resolution but 100 

producing, on the other hand, an increase in cost and computational time. The information provided by the 101 

first phase yields two advantages: (1) it allows reducing the number of design variables of the algorithm 102 

and the consequent computational time; (2) it improves the accuracy of the solution given by the GA 103 
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because it allows a suitably trained neural network to find the best values of the coefficients of the GA’s 104 

cost function. The use of a cost function composed by parts having different sensitivities to the damage 105 

locations gives the possibility to weight the different contributions by means of power coefficients. 106 

To initially validate the overall approach (influence lines, genetic algorithm, and neural network) on an 107 

elementary test problem, the method is applied to a simply supported beam with damage scenarios 108 

characterized by localized reductions in the bending stiffness. To check the feasibility with actual values, 109 

model data refer to an existing prestressed concrete railway bridge, located in northern Italy. In addition, 110 

numerical experiments are conducted to test the procedure when the beam length and geometric 111 

properties are changed. Obtained results look promising and encourage further developments for an 112 

extension of the proposed method to more complex structural systems. 113 

 114 

MOTIVATION AND PROBLEM DEFINITION  115 

The methodology, although included in a general framework,  was focused on a simply supported 116 

prestressed concrete railway bridge. Such choice is motivated by the fact that this type of viaduct represents 117 

most railway viaducts built in Italy since the second half of the 20th century. They suffer from a lot of 118 

damage phenomena, like transverse and longitudinal cracking, surface and internal humidity, water 119 

infiltration, defects in concrete along the cable track, and defects in prestressing cables. Fig. 1 shows some 120 

of the most important phenomena. As can be deduced, the severity of the deterioration can also be high, 121 

therefore causing considerable variations of the effective geometric properties of the beam cross-sections 122 

(e.g., bending rigidity). 123 

The present work proposes a solution to address the damage detection problem in the framework of the 124 

structural health monitoring based on static measurements. The analysis focused on a specific bridge. Figs. 125 

2a and b display a general view of the viaduct and a bottom view of the deck, respectively. The deck has a 126 

span of about 30 meters and is composed of four longitudinal prestressed beams, 2.5 meters deep, and five 127 
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diaphragms. The piers of the viaduct, having circular section with a diameter of 4 m, are connected at the 128 

top to a pier cap on which the beams lean against (Fig. 2). 129 

In the structural design, the simultaneous presence of the LM71 (static vertical load of normal railway 130 

trains) and SW/2 (static load of heavy railway trains) on the two tracks was considered as the most severe 131 

condition for traffic loads. Figs. 3a and 3b display the longitudinal distribution of vertical loads for LM71 132 

and SW/2, respectively. In the transverse direction, the design load distribution factors of LM71 lying on 133 

the left tracks are about 70% / 30% for the left inner / outer beam, respectively; and approximately 60% / 134 

40% for the right inner / outer beam for SW/2 lying on the tracks on the right. Therefore, the left inner beam 135 

is the most loaded one (see Fig. 4). 136 

Only the longitudinal flexural behavior was considered in this preliminary study. The single longitudinal 137 

beam-slab system (interior beam in Figure 4) was considered for the analyses. Its undamaged bending 138 

stiffness is EI = 9.407×1010 Nm2 (Young's modulus E = 36.28×109 N/m2, area moment of inertia I = 2.593 139 

m4); the length is L=27.8 m. From the design report, it results a cracking bending moment equal to 31693.38 140 

kNm (acting moment ad mid-span = 18209.80 kNm; safety factor = 1.7) and an ultimate resisting moment 141 

equal to 46200.39 kNm (acting moment at mid-span = 18209.80; safety factor = 2.5). 142 

In the calculations, we considered a vertical travelling force whose magnitude, equal to 294.2 kN, is 143 

comparable to that of one of the concentrated loads in Figure 3a. It corresponds to the weight of a high-144 

speed train bogie, providing a plausible force value for the test. The method can easily be extended to a 145 

series of travelling forces (train carriage). 146 

 147 

METHODS 148 

To analyze the damage scenarios, a finite element model (FEM) was used, with the beam discretized by NE 149 

= 27 beam elements (Fig. 5). We solved the structural problem by the implementing the displacement 150 

method based on the exact two-node beam stiffness matrix, which coincides with that of the two-node 151 

Euler-Bernoulli beam finite element. The solution in terms of nodal displacements is exact since nodal 152 

forces are considered; the deflection curve is sufficiently well described since element length is 1/27th of 153 
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the total beam length. We selected 27 elements for considering damages extending for a length of 1 m 154 

(which is realistic in some cases; see Figure 1). Considering more elements would only increase the 155 

computational effort, which however is rather small for a simple problem as the one under discussion. 156 

Static deflection was chosen to assess the structural state (Chou and Ghaboussi 2001) because it is more 157 

locally sensitive to damage than dynamic response. Moreover, static measurements are often easier to 158 

perform and more precise than dynamic ones (Jenkins et al. 1997). The mid-span deflection and the 159 

rotations at the two supports were taken as the reference quantities. The values of bending stiffness along 160 

the structure, considered as unknowns, are calculated based on the measured and model computed quantities 161 

in order to evaluate the structural conditions. The “measured” quantities (mid-span deflection or end 162 

rotation), which should come from in-situ measurements in practice, were derived from the FEM model 163 

corresponding to the imposed damage scenario in this analysis; they are input data. The model computed 164 

quantities (mid-span deflection or end rotation) were those produced by the FEM model which uses the 165 

trial bending stiffness values coming from the genetic algorithm. Thus, the unknown quantities, expressed 166 

in this context by the values of bending stiffness, can be determined (estimated) by comparing measured 167 

and computed quantities and looking for those values which minimize the difference between the two sets 168 

of data. 169 

The structural assumptions and the main steps of the proposed methodology, that will be explained in detail 170 

in the following sections, are summarized in the flowchart displayed in Fig. 6.  171 

 172 

Damage localization: influence line method 173 

As is well known, influence lines give the value at a particular point in a structure of entities such as shear 174 

force, bending moment, support reaction, displacement and rotation for all positions of a travelling unit 175 

load. The presence of damage in beams (Chen et al. 2014; Štimac et al. 2006) can be observed and localized 176 

utilizing influence lines (Megson 2019). For example, let 𝜂𝑚(𝑥) and �̅�𝑚(𝑥) be the displacement influence 177 

lines at mid-span of the damaged and undamaged structures, respectively, i.e., the mid-point displacement 178 
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in the two structures when a travelling unit transverse force is acting at section x. Thus, the difference  179 

𝛿𝑚
𝜂 (𝑥) = 𝑎𝑏𝑠(𝜂𝑚(𝑥) − �̅�𝑚(𝑥))  will be larger at sections 𝑥 = 𝑥𝑑 where a damage is present. Rotations or 180 

curvatures influence lines may be used in the same way (Štimac et al. 2006). This allows identifying the 181 

sections with possible damage, and also to investigate damage evolution by comparing measurements made 182 

at different times. 183 

As an illustrative example, let us consider a simply supported beam, 10 m long, with undamaged bending 184 

rigidity EI = 1 Nm2. Assume that the beam is discretized into 20 elements, 0.5 m long each, and that a 185 

damage is present in the fifth one (from the left) producing a 10% reduction in its bending rigidity, i.e. EId 186 

= 0.9 Nm2. Influence lines can be calculated under the action of a travelling unit transverse force for the 187 

undamaged and damaged conditions. Fig. 7a shows, from left to right, the mid-span displacement influence 188 

line for the damaged beam, for the integer structure, and their difference as functions of the abscissa (load 189 

position). Similarly, Fig. 7b shows, from left to right, the left-support rotation influence line for the damaged 190 

beam, for the integer structure, and their difference as functions of the abscissa (load position). As can 191 

easily be seen, the diagrams of the difference show a maximum in correspondence to the damaged element, 192 

according with the discretization adopted. 193 

 194 

Estimation of damage severity: genetic algorithm 195 

The genetic algorithm (GA) is an optimization technique based on Darwinian principles (Mahalakshmi et 196 

al. 2013; Mirjalili et al. 2020) that allows the generation of good solutions starting from a population of 197 

individuals (often generated randomly) that evolve over time. After defining a set of possible solutions, 198 

namely a population of npop individuals, each solution is evaluated using a cost function. By using 199 

crossover and mutation operators, the better individuals are chosen to create new individuals (offsprings). 200 

Individuals' merge and sort operations are performed at this point, based on their cost function. The new 201 

generation will be made up of the better npop individuals. When the specified number of iterations is 202 

reached or the quality of the better solution is considered to be acceptable, the process is complete. Only 203 
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the most "suitable" individuals survive and replicate, reducing the cost of future generations. A lot of 204 

damage identification problems have been addressed in the scientific literature by exploiting this approach. 205 

Most of the investigations have been based on the comparison between the computed and the measured 206 

dynamic response (Au et al. 2003; Buezas et al. 2011; Hao and Xia 2002; Khatir et al. 2016; Meruane and 207 

Heylen 2011; Nobahari and Seyedpoor 2011). They use the natural frequencies and mode shapes of several 208 

vibration modes. Although effective, they imply the use of many sensors and a large volume of data. Studies 209 

which combine both static and dynamic characteristics (Jung and Kim 2013) point out an improvement of 210 

the results. The combination of modal parameters and static displacements (Jung and Kim 2013) (He and 211 

Hwang 2006), as well as the use of static response exclusively (He and Hwang 2007), is less common. 212 

For the particular issue, in the present study individuals are constituted by the bending stiffness of the 213 

elements which were identified as damaged by the influence lines. Thus, the genetic algorithm, using the 214 

available static measurements, calculates the bending stiffness of the damaged elements once their location 215 

and number are known. 216 

Design of genetic algorithm 217 

The architecture of the GA requires the definition of several parameters, which are both “qualitative” and 218 

“quantitative” (Eiben and Smit 2011). The selection, crossover, and mutation operators are examples of the 219 

former type. The population size (npop), the crossover rate (CR), and the mutation rate (MR) belong to the 220 

latter type. The first set of parameters, known as high-level parameters, defines the algorithm's key 221 

structure: in this study, the Roulette Wheel Selection and the Uniform Crossover were the selected 222 

operators. The second set of parameters, known as low-level parameters, are used to create a version of the 223 

algorithm: they were determined as will be described later on. 224 

Cost function 225 

The GA's cost function is based on static parameters as mid-span displacement and support rotations. The 226 

construction of a cost function based exclusively on static measurements, able to exploit only three 227 
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measured values thus eliminating the need to accumulate large volume of data, is one of the distinctive 228 

features of the proposed approach. It is made of the sum of five contributions: 229 

 𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡𝐷𝑖𝑠𝑝𝑝𝑜𝑙

𝜌 + 𝐶𝑜𝑠𝑡𝑓
𝜑 + 𝐶𝑜𝑠𝑡𝑅𝑜𝑡𝐴

𝛼1 + 𝐶𝑜𝑠𝑡𝑅𝑜𝑡𝐵
𝛼2 + 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑖𝑜𝑅𝑜𝑡

𝛿 (1) 230 

Power coefficients 𝜌, 𝜑, 𝛼1, 𝛼2, and 𝛿 are introduced to weight the single contributions, which can be more 231 

or less sensitive to damage location. Their influence will be assessed in the following sections. Usually, 232 

they are initially set equal to one for preliminary analysis, and then computed at a later stage to improve the 233 

goodness of the solution, if necessary. 234 

The expressions of each of the five contributions in Eq. (1) are the following (Eqs. (2-6)): 235 

  𝐶𝑜𝑠𝑡𝐷𝑖𝑠𝑝𝑝𝑜𝑙

𝜌 =  ((𝑁𝐸 − 2)
∑ 𝑎𝑏𝑠(𝐷𝑖𝑠𝑝𝑎−𝐷𝑖𝑠𝑝𝑚)

∑ 𝑎𝑏𝑠(𝐷𝑖𝑠𝑝𝑚)
)

𝜌
 (2) 236 

  𝐶𝑜𝑠𝑡𝑓
𝜑 = (𝑎𝑏𝑠 (

𝑓𝑚−𝑓𝑎

𝑓𝑚
))

𝜑

 (3) 237 

  𝐶𝑜𝑠𝑡𝑅𝑜𝑡𝐴
𝛼1 = (𝑎𝑏𝑠 (

𝑅𝑜𝑡𝐴𝑚−𝑅𝑜𝑡𝐴𝑎

𝑅𝑜𝑡𝐴𝑚
))

𝛼1

 (4) 238 

  𝐶𝑜𝑠𝑡𝑅𝑜𝑡𝐵
𝛼2 = (𝑎𝑏𝑠 (

𝑅𝑜𝑡𝐵𝑚−𝑅𝑜𝑡𝐵𝑎

𝑅𝑜𝑡𝐵𝑚
))

𝛼2

 (5) 239 

  𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑖𝑜𝑅𝑜𝑡
𝛿 = (𝑎𝑏𝑠(𝑅𝑎𝑡𝑖𝑜𝑚 − 𝑅𝑎𝑡𝑖𝑜𝑎))

𝛿
 (6) 240 

Eqs. (7) and (8) show the expressions adopted for 𝑅𝑎𝑡𝑖𝑜𝑚 and 𝑅𝑎𝑡𝑖𝑜𝑎, respectively: 241 

  𝑅𝑎𝑡𝑖𝑜𝑚 = 𝑎𝑏𝑠 (
𝑅𝑜𝑡𝐴𝑚

𝑅𝑜𝑡𝐵𝑚
), (7) 242 

  𝑅𝑎𝑡𝑖𝑜𝑎 = 𝑎𝑏𝑠 (
𝑅𝑜𝑡𝐴𝑎

𝑅𝑜𝑡𝐵𝑎
). (8) 243 

 244 
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The terms 𝐶𝑜𝑠𝑡𝑓
𝜑, 𝐶𝑜𝑠𝑡𝑅𝑜𝑡𝐴

𝛼1 , and 𝐶𝑜𝑠𝑡𝑅𝑜𝑡𝐵
𝛼2 are directly linked to the measurements made 245 

(displacement at mid-span and rotations at supports A and B). The first term, 𝐶𝑜𝑠𝑡𝐷𝑖𝑠𝑝𝑝𝑜𝑙

𝜌, is stemmed from 246 

the displacements of the other structural nodes, which are estimated using the Vurpillot algorithm starting 247 

from the measured quantities; the differences between computed and measured quantities which appear in 248 

the numerator are normalized with respect to the average measured displacement. The last term, 249 

𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑖𝑜𝑅𝑜𝑡
𝛿, is based on the ratio between the rotations at the supports. Subscripts m and a denote 250 

measured and analytical (computed) quantities, respectively. The measured values were numerically 251 

simulated using a FEM analysis, with the damaged elements having a reduced bending stiffness, as 252 

previously mentioned; in real-world application, they should come from on-site measurements. The 253 

analytical quantities, on the other hand, were determined using a FEM analysis in which the values of 254 

bending stiffness of the damaged elements were picked-up from the GA individuals. The power coefficients 255 

for each part of the cost function were set equal to 1 at the beginning. 256 

Advantages coming from the use of such a cost function include: (i) utilizing few sensors/measure points 257 

(thanks to the form of the cost function and information provided by influence lines); (ii) inclusion of 258 

parameters as end rotations which are usually not considered; (iii) no need to save big volumes of data; (iv) 259 

reduced computational time. 260 

Preliminary study: tuning of the numerical parameters of GA 261 

Each quantitative hyperparameter utilized within the genetic algorithm has a specific influence (Hassanat 262 

et al. 2019) and a great impact on its performance. Consequently, it is not appropriate to recklessly proceed 263 

with their selection.  264 

Along with the previously described parameters (npop, CR, MR), there are three additional ones (β, ɣ, σ) 265 

that depend on the chosen operators and deserve further exploration. The first one, β, allows the Roulette 266 

Wheel method to select the parents by assigning probabilities (probs) to the individuals of the population. 267 

This approach is carried out by defining a probability distribution over the population in a way such that 268 

the better individuals of the population have a higher chance of being selected as parents. 269 
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 𝑝𝑟𝑜𝑏𝑠 = 𝑒−𝛽𝑐 (9)  270 

The symbol c, used in Eq. (9), represents the cost of the individual normalized with respect to the average 271 

cost of the population. 272 

The second hyperparameter, ɣ, is related to the uniform crossover operator. It increases the exploration 273 

capabilities of the GA. A couple of offsprings 𝑦𝑗   (j=1,2) with n genes (Eq. (11)) is built starting from a 274 

couple of parents 𝑥𝑗 (j=1,2) with n genes (Eq. (10)). The i-th genes of the j-th offspring (Eq. (12)) is linked 275 

to the i-th gene of the corresponding parent (𝑥𝑗𝑖) and to the i-th gene of the other (𝑥�̅�𝑖) by means of the 276 

parameter 𝛼𝑖. The ɣ parameter is used to extend the classical dispersion range of 𝛼𝑖 from [0, 1] to [–ɣ, 1+ɣ]. 277 

In this way, it is possible to create offspring somehow different from their parents.  278 

 𝑥𝑗 = (𝑥𝑗1,𝑥𝑗2, … … , 𝑥𝑗𝑛) (10)  279 

  𝑦𝑗 = (𝑦𝑗1,𝑦𝑗2, … … , 𝑦𝑗𝑛) (11) 280 

 𝑦𝑗𝑖 = 𝛼𝑖𝑥𝑗𝑖 + (1 − 𝛼𝑖)𝑥�̅�𝑖 (12) 281 

The third hyperparameter, σ, is related to the mutation operator. Such operation occurs by adding a random 282 

number with zero mean and variance 𝜎2. 283 

In the general context of a grid search strategy (Pontes et al. 2016; RAMADHAN et al. 2017; Shekar and 284 

Dagnew 2019), a complete search was performed on a subset of the space of hyperparameters defined in 285 

Tab.1. This latter gives details on the range values and step used for each of them. 286 

 287 

Neural network: supervised learning for selection of cost function power coefficients  288 

A neural network, namely a supervised learning model nowadays successful in many scientific fields 289 

(Abiodun et al. 2018), was used to improve accuracy (and consequently decrease the error) of the solutions 290 

provided by the genetic algorithm.  It was trained to select suitable power coefficients for the cost function, 291 

once the damaged elements were localized. Numerical simulations were carried out to associate the damage 292 

scenarios, characterized by some damaged elements, to the power coefficients. Several damage cases were 293 

investigated and, for each of them, numerical analyses considering 10,000 combinations of power 294 
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coefficients were performed. The minimum and the maximum values of the investigated variability range 295 

for each power coefficient were set equal to 0.1 and 1, respectively; the step was set to 0.1. The only 296 

exception was made for 𝜌. Since the corresponding term in the cost function is linked to computed 297 

parameters rather than measured ones, this coefficient was set to 1. For each damage scenario, the 298 

combination of power coefficients corresponding the least error was chosen among the 10,000 ones. In this 299 

analysis, the error was defined as the absolute value of the difference between the genetic algorithm's 300 

solution and the correct value of the variables. Further connections between other cases of damage and 301 

power coefficients were built using a simplified method due to the high computational and time effort 302 

involved in this procedure (Bergstra and Bengio 2012; Fayed and Atiya 2019; Huang et al. 2012; Shekar 303 

and Dagnew 2019; Syarif et al. 2016). For damage cases similar to the ones already considered, where 304 

similar means that the positions of the damages are near to the ones just analyzed, the power coefficients 305 

previously calculated with the addition of a noise were utilized. The added noise ranges from 0.5% to 1.5% 306 

based on the greater or lesser proximity to the previously investigated case. A neural network was trained 307 

and tested using the 171 connections created. Its structure is depicted in Fig. 8. Every example fed into the 308 

neural network has seven inputs. The first five are reserved for indicating damaged elements, which were 309 

marked by a number ranging from 1 to 27. If the number of damaged elements, nd, is less than 5, the 310 

remaining 5–nd inputs are given a zero value. The positions of the most affected elements are included in 311 

the last two inputs. The targets, on the other hand, are made up of the four power coefficients. 312 

The samples were subdivided into three parts: training (70%), validation(15%) and testing (15%). A two-313 

layer feedforward network, with a sigmoid transfer function in the hidden layer and a linear transfer 314 

function in the output layer, was employed. The number of hidden neurons was set to 27, and the training 315 

algorithm used Bayesian regularization. Regression value, R, and Mean Squared Error, MSE, were used to 316 

evaluate the performance. R measures the correlation between outputs and targets. Values of R close to 1 317 

indicate close relationship, whereas values close to 0 indicate random relationship. The Mean Squared Error 318 
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is the avearge square difference between outputs and targets. Low values of this index indicate a good 319 

performance. 320 

 321 

RESULTS 322 

The influence lines of mid-span deflection and support rotations under the above-mentioned travelling force 323 

were numerically computed for the undamaged and damaged structures for the problem in exam. This 324 

allowed the damaged elements in the discretized structure parameter to be identified, providing information 325 

for the genetic algorithm.  326 

Fig. 9 shows three structural damage scenarios with two damaged elements. The upper part of the figure 327 

displays the structural schemes. The most severely damaged element, and the associated flexural stiffness, 328 

is highlighted in red. Orange color is used for the element with less severe damage. For example, the case 329 

on the right has two damaged elements, one with a 0.9EI for element n. 7 (de = 7) and the other with a 330 

0.75EI for element n. 16 (de = 16). The squares of relative differences  𝛿𝑚
𝜂,𝑟𝑒𝑙

, 𝛿𝐴
𝜑,𝑟𝑒𝑙

 and 𝛿𝐵
𝜑,𝑟𝑒𝑙

 for the mid-331 

span displacement, the left (A) and right (B) support rotations (e.g. 𝛿𝑚
𝜂,𝑟𝑒𝑙

= 𝑎𝑏𝑠((𝜂𝑚(𝑥) −332 

�̅�𝑚(𝑥))/�̅�𝑚(𝑥)) show peaks (diamonds) in correspondence to the damaged elements. The use of these three 333 

indices also makes it possible to localize damage even in regions, like those near the supports, for which is 334 

usually difficult (see the second case in Fig. 9). 335 

It is worth noting that the selected bridge has a relatively high bending stiffness. Under the applied travelling 336 

force, this resulted in very small variations in the values of displacement and rotation between the 337 

undamaged and damaged states. However, high-sensitivity displacement transducers, such as LVDT 338 

sensors, as well as modern techniques such as Digital Image Correlation (DIC) (Lacidogna et al. 2020), are 339 

now available for micrometer measurements. Other damage-sensitive mechanical quantities, such as 340 

strains, may also be used, the technique still being accurate and the above-described procedure remaining 341 

unvaried in principle. The operation of damage localization performed by the influence lines results 342 

effective for the subsequent estimation of damage severity. Performing these two operations simultaneously 343 
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would turn out to be a process with a high computational cost, especially for complex problems. In these 344 

cases, in fact, the number of design variables is high and the accuracy of the solution decays. Influence 345 

lines not only exclude from further analysis those elements with a low probability of damage, as it occurs 346 

in grey relation analysis (He and Hwang 2007), but are also able to drastically reduce the number of design 347 

variables by identifying damaged elements. The use of influence lines applied to the simple beam structure 348 

is a simplification that has allowed a first validation of the procedure. To better describe the structural 349 

behavior of the bridge, influence surfaces should be used on a 2D structural model (Štimac et al. 2006). 350 

As previously pointed-out, a preliminary study was conducted for tuning the numerical parameters of the 351 

GA. The goal of this preliminary analysis was not to find the best combination of hyperparameters, but 352 

rather the combination that produce suitable results for subsequent studies. Thus, the comparison among 353 

the performances in terms of cost, for each structural problem (case of damage) and each combination of 354 

parameters, was carried out ignoring the stochastic nature of the problem. A total of 8400 combinations of 355 

parameters were generated by using the range values and steps in Tab. 1. 356 

The behavior of the cost function with respect to the combination of parameters was observed for each of 357 

the four investigated damage cases (DC). For simplicity, in each case only one damaged element is present 358 

in the structure. Therefore, the number of the variables within the GA was set equal to one. Tab. 2 reports, 359 

for the four examined damage cases, the number de (comprised between 1 and 27, starting from the left 360 

support A) that identifies the damaged element, and the corresponding bending stiffness, EId, expressed as 361 

a fraction of the undamaged bending stiffness EI. Fig. 10 shows the cost as a function of the combinations 362 

of parameters and damage scenarios DC1 to DC4. The cost resulted to be highly sensitive to the used 363 

parameters, especially for DC1. Thus, referring to DC1 as the worst case, the combination of parameters 364 

that corresponds to the minimum cost was chosen, i.e. combination 558; see Tab. 3. 365 

For the examined damage scenarios, the results in terms of cost, accuracy, and error  are collected in Tab. 366 

4. The accuracy was computed as the ratio between the computed solution and the correct value. The error 367 

was calculated as follows: 368 
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 𝐸𝑟𝑟𝑜𝑟 =  
𝐺𝐴_𝑣𝑎𝑙𝑢𝑒−𝐶𝑜𝑟𝑟𝑒𝑐𝑡_𝑣𝑎𝑙𝑢𝑒

𝐶𝑜𝑟𝑟𝑒𝑐𝑡_𝑣𝑎𝑙𝑢𝑒
 (13)  369 

 The findings might be deemed acceptable, but they are still subject of improvement. For this purpose, the 370 

impact of the power coefficients 𝜑, 𝛼1, 𝛼2, 𝛿 of the cost function, up to now considered unitary, was 371 

investigated starting from the knowledge of the damage location. After having found the benefits obtainable 372 

from the variation of these coefficients in the simplest damage scenario (only one damaged element), it was 373 

considered appropriate to fully exploit the information related to the location of the damage to obtain better 374 

results also in the most complex damage scenarios. 375 

By exploiting the neural network as previously described, a value of regression R of about 0.92 for the 376 

training set and about 0.88 for the test set were obtained. They may be judged as satisfactory, although of 377 

course they can still be improved by increasing the number of sample cases used to train the network. 378 

Recent studies focused on the investigation of the effects of varying the number of train samples for a fixed 379 

model and a training samples have shown that by drastically increasing the number of training samples with 380 

respect to the complexity of the model, it is possible to decrease the error on the test (Nakkiran and Yang 381 

2018). 382 

Fig. 11 (right) shows the value of MSE for the training and test sets vs. the variation of the epochs. The best 383 

value of MSE was reached by the training set at epoch 1000 and it is fairly small. Besides, the downward 384 

trend of the MSE index for the test set indicates that there is no overfitting of the training data. By 385 

overcoming the overfitting process, an increase in the number of epochs could boost the network's 386 

efficiency even further (Nakkiran and Yang 2018). Another method for measuring the network's goodness 387 

is the error histogram shown in Fig. 11 (left). We can see that the error follows a Gaussian distribution with 388 

a mean close to zero and a slight dispersion. 389 

A series of validation tests were performed to verify the NN's robustness in generating power coefficients 390 

that allow an accurate damage severity estimation. Starting from new damage cases, assumed known the 391 

damage location from the influence line method, the neural network was used to produce the power 392 
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coefficients to be introduced into the genetic algorithm for the estimation of the bending stiffness of the 393 

damaged elements. Tab. 5 contains the findings for one of the new damage cases tested. The error in 394 

estimating the bending stiffness was calculated by Eq. (13). 395 

The error distribution is depicted in Fig. 12. The normal distribution, with a mean equal to –0.011 and a 396 

standard deviation equal to 0.06, points out that about the 70% of damage cases has an error less than 6%. 397 

In the same figure, the logistic distribution is also used to fit the data. With a mean of –0.0026 and a standard 398 

deviation of 0.025, it seems to fit the data even better. The damaged cases in Fig. 12 are those showing the 399 

largest errors. In general, the findings are thus considered satisfactory and still improvable by training the 400 

NN with more cases in order to remove the tails of the probability distribution. 401 

The same damage cases were used to test the actual improvement in results which can be obtained, with 402 

the approach described so far, by using power coefficients extracted from the neural network. Using unitary 403 

coefficients, a normal distribution of the error was obtained with a mean of –0.015 and a standard deviation 404 

of 0.48, i.e. a less accurate solution compared to the above results. The approach is therefore valid. 405 

Moreover, the same damage scenarios were used to test the validity of the methodology as the geometric 406 

properties of the beam are changed. For example, if a beam length of 50 meters is considered, the error 407 

distribution remains essentially unchanged. Also, even by varying the value of the moment of inertia I, the 408 

distributions undergo very slight changes. Results for moment of inertia values of 2 and 1.5 m4 were 409 

investigated. In these cases, the mean of the normal distribution is about –0.01, with a standard deviation 410 

of about 0.08. These results are encouraging about the validity of the methodology as the geometric 411 

properties of the beam vary. 412 

Lastly, we underline that the methodology results sustainable also from a computational point of view. The 413 

required computational time is in fact equal to about 2.5 seconds for each analysis involving the genetic 414 

algorithm. 415 

 416 

CONCLUSIONS 417 
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The paper aimed at exploring the potential of a hybrid technique based on static measurements which can 418 

help a genetic algorithm to identify and quantify damage in structures using a reduced number of variables. 419 

A simply supported beam problem was selected to initially test the method, with data taken from a real 420 

bridge structure for checking its effectiveness with actual values. The proposed hybrid technique for the 421 

inverse problem of damage identification (detection, localization and estimation) has proven to be 422 

successful and promising. The main new features and the associated advantages can be summarized as 423 

follows: 424 

 The use of influence lines with the three associated indices – namely, the square of relative 425 

differences between undamaged and damaged stages for the mid-span displacement, (𝛿𝑚
𝜂,𝑟𝑒𝑙

)
2
, and 426 

the left (A) and right (B) support rotations, (𝛿𝐴
𝜑,𝑟𝑒𝑙

)
2
 and (𝛿𝐵

𝜑,𝑟𝑒𝑙
)

2
 – makes it possible to identify  427 

damaged regions (beam elements), either along the span or near the supports. 428 

 The use of influence lines sharply reduces the design variables of the genetic algorithm by 429 

overcoming the concept of excluding unlikely damage locations (e.g. grey relation analysis). In this 430 

way the computational time drops. 431 

 The use of a cost function expressed as the sum of five addends, more or less influenced by the 432 

damage according to its location, allows to associate a specific weight to each of them by means of 433 

power coefficients and to improve the accuracy (decrease the error) of the solution. Results show 434 

that, in the analyzed case, very good predictions are obtained adopting three measure 435 

points/sensors. Displacements at any node used in the cost function are calculated starting from the 436 

values of the mid-span displacement and the two end rotations only. 437 

 The trained neural network turns out to be an effective support to set the power coefficient of the 438 

cost function. Its architecture can also encompass cases with more than two damaged elements. 439 
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 Here, the approach was positively tested on a simply supported beam with damage scenarios 440 

defined by localized bending stiffness reductions. The same damage scenarios were used to test the 441 

validity of the methodology when the beam length and geometric properties are varied: good results 442 

were obtained without changing the coefficients in the algorithm. 443 

Summarizing, the obtained advantages are in terms of computational time, location of critical elements 444 

using few measure points, and versatility of the approach. The satisfactory results obtained for the analyzed 445 

case make this approach appealing and worthy of further deepening. Although further work is to be done 446 

before moving to real-world application, the proposed method is amenable to generalization. In this 447 

direction, planned future developments go toward the use of more refined structural models (grillage) as 448 

well as the use of influence surfaces for damage localization, other damage indicators, and the analysis of 449 

different damage scenarios. 450 

 451 

Data Availability 452 

Some or all data, models or code that support the findings of this study are available from the corresponding 453 

author upon reasonable request.  454 
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Table 1. Grid search for hyperparameter optimization. 624 

Parameter Range Step 

npop [10-50] 20 

CR [0.5-1] 0.15 

MR [0.01-0.1] 0.02 

β [0.8-2] 0.2 

ɣ [0.1-0.5] 0.1 

σ [0.1-40] 10 

 625 
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 629 
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 639 

 640 

 641 
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Table 2. Damage scenarios. 647 

 DC1 DC2 DC3 DC4 

de 14 14 2 2 

EId 0.5EI 0.8EI 0.5EI 0.8EI 

 648 
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Table 3. Chosen combination of parameters. 666 

Combination 558 
npop CR MR β ɣ σ 

50 0.8 0.03 1.4 0.2 0.1 

 667 
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Table 4. Cost and accuracy with combination 558. 692 

 DC1 DC2 DC3 DC4 

Cost 0.59 0.30 0.24 0.29 

Accuracy 1.00 0.91 1.00 1.00 

Error 0 -0.09 0 0 

 693 
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Table 5. Example of new case of damage. 717 

Damage case 

de EId de EId 
10 0.8EI 27 0.95EI 

Power coefficients 

φ α1 α2 δ 

0.75 1.07 0.36 0.52 

Error 

 1.32×10–3 1.8×10–2 

 718 

 719 

 720 
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 724 
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 729 
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 733 
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 735 
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 737 
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Figure 1. Damage phenomena in PC bridges: a) transverse cracks, b) longitudinal cracks, c) traces of 
humidity with efflorescence on the intrados, d) cavity located on the intrados, e) cables with strands 

interrupted at the intrados, f) corroded and broken wires. 



 

Figure 2. a) General view of the viaduct, b) bottom view of the deck. 

 



Figure 3: Design live loads: a) LM71, b) SW/2. 



  

Figure 4. Pile elevation and bridge cross-section with indication of considered beam (dimensions in 

centimeters). 

 



 

Figure 5. Simply-supported beam discretized by 27 elements. Red color identifies a generic couple of 

damaged elements. 



 

Figure 6. Flowchart of damage identification process.  

 



 

Figure 7.  Damage identification by influence line method: illustrative example. a) mid-span deflection, b) 

left-support rotation. 



 

Figure 8. Neural network architecture. 

 



 

Figure 9.  Three damage scenarios identified by influence line method. 



 

Figure 10. Cost as a function of the combinations of parameters and damage scenarios. 



 

Figure 11. Error histogram and performance of neural network. 



 

Figure 12. Distribution of the errors. 
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