
08 June 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Characterizing the Computational and Memory Requirements of Virtual RANs / Pramanik, Somreeta; Ksentini, Adlen;
Chiasserini, Carla Fabiana. - ELETTRONICO. - (2022). (Intervento presentato al convegno IEEE/IFIP WONS 2022
tenutosi a Virtual conference due to COVID-19 nel 30 March 2022 - 01 April 2022)
[10.23919/WONS54113.2022.9764455].

Original

Characterizing the Computational and Memory Requirements of Virtual RANs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.23919/WONS54113.2022.9764455

Terms of use:
openAccess

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2954149 since: 2022-07-05T16:12:01Z

IEEE

Characterizing the Computational and Memory
Requirements of Virtual RANs

Somreeta Pramanik
Politecnico di Torino

Torino, Italy
somreeta.pramanik@polito.it

Adlen Ksentini
EURECOM

Sophia Antipolis, France
adlen.ksentini@eurecom.fr

Carla Fabiana Chiasserini
Politecnico di Torino

Torino, Italy
carla.chiasserini@polito.it

Abstract—The virtualization of radio access networks (RANs)
is emerging as a key component of future wireless systems, as
it brings agility to the RAN architecture and offers degrees
of design freedom. In this paper, we investigate and charac-
terize the computational and memory requirements of virtual
RANs. To this end, we build a virtual RAN test-bed leveraging
the srsRAN open-source mobile communication platform and
general-purpose processor-based servers. Through extensive ex-
periments, we profile the consumption of computing and memory
resources, and we assess the system performance. Further,
we build regression models to predict the system behavior as
the number of connected users increases, under diverse radio
transmission settings. In so doing, we develop a methodology
and prediction models that can help designing and optimizing
virtual RANs.

Index Terms—Virtual radio access networks, 5G, experimental
test-bed, regression models.

I. INTRODUCTION

Virtualization of the Radio Access Network (RAN) is well-
recognized as a key technology to accommodate the ever-
increasing mobile data traffic of emerging applications with
stringent requirements [1]. By exploiting software defined
networking and network function virtualization, the Cloud
RAN (C-RAN) [2] concept has evolved towards the Virtual
RAN (vRAN) paradigm [3], where a virtual eNB centralizes
a softwarized radio point of access stack into a computing
edge infrastructure. The majority of the baseband processing
of a virtual radio point of access (vRPA) is executed in virtual
network functions running in computing platforms, typically
located at edge servers close to the antennas. In so doing, a
vRPA is able to adapt to time varying/non-uniform data traffic
demands, as new vRPAs can be added and upgraded easily,
thereby improving scalability and easing network maintenance
while reducing site lease costs, energy usage, and maintenance
expenses. Moreover, due to the virtual network functions being
implemented in edge servers, a vRPA can reduce latency,
ensure highly efficient network operation and service delivery,
and offer an improved user experience.

Importantly, vRAN has also become a cornerstone tech-
nology for the realization of the emerging Open Radio Ac-
cess Network (O-RAN) paradigm [4]. Indeed, the level of
virtualization and flexibility that characterize a vRAN make
it a perfect fit for the openness and intelligence concepts
that are at the basis of the O-RAN architecture [5]. It is

therefore expected that open standard radio frequency (RF)
interfaces, combined with vRAN technologies, will further
increase operational savings and increase the scalability of
radio access networks.

However, the increased network flexibility and programma-
bility allowed by vRANs come at the cost of a higher con-
sumption of computing and memory resources at the network
edge [6]. In particular, computing resources are typically
pooled inefficiently since most of the implementations over
dimension computing capacity to cope with peak demands in
real-time workloads [7], [8]. It follows that the gains currently
attainable by a vRAN are far from optimal, preventing its
deployment at scale.

To solve the above issues, it is critical to dynamically
adapt the resources allocation to the temporal variations of
the demand across vRPAs [9]. Towards this goal, a first,
fundamental step is to gain a better hands-on understanding
of the behavior of vRPAs and the relation between radio
and computing/memory resource dynamics, as well as their
dependency on such factors as radio channel conditions and
user’s traffic demand. While the studies in [6], [7], [9]–
[17] have focused on the optimization of vRANs through
experimental work or by designing analytical models and
algorithmic solutions, to our knowledge, this paper is the first
attempt to characterize the computing and memory resource
consumption of vRANs under diverse settings, as the number
of connected users increases.

In particular, we address the following research questions:
1. What are the computing and memory requirements of a

vRAN, as different settings in terms of number of occupied
resource blocks and type of modulation and coding scheme
are adopted?

2. How do the computing and memory requirements of a
vRAN change as the number of connected users varies?
We answer these questions by investigating the behavior of
a vRPA using a test-bed implementation and conducting an
extensive measurement campaign. In particular, we leverage
an srsRAN implementation of an eNB and investigate its
CPU and memory consumption under different experimental
settings.

Our main contributions are as follows.
� We develop an srsRAN-based experimental test-bed and

perform extensive experiments, in order to profile the per-

formance limits of the eNB in terms of processing, mem-
ory, and throughput. We show that the CPU utilization of
the eNB increases with the modulation and coding (MCS)
index, number of occupied Resource Blocks (RBs), and
importantly, with the number of connected users.

� Using empirical data, we define regression models to
predict the percentage of CPU utilization and memory
consumption of the virtual eNB, as the number of con-
nected users varies. In so doing, we obtain a prediction
accuracy of 99% for both CPU and memory utilization.
These approximated models provide real-world insights
and key inputs to formulate, design, and evaluate opti-
mized resource management in vRANs.

The rest of the paper is organized as follows. Section II
discusses the related work and highlights the novelty of our
study. Section III introduces the design and implementation
of our vRAN test-bed, while Section IV presents experimental
results and our empirical models. Finally, Section V concludes
the paper and presents possible directions for future research.

II. RELATED WORK

Owing to the intricate relationship between radio and
computing resource dynamics, and the advantages offered
by vRANs, several works have aimed at investigating and
optimizing such a virtual system. While the studies in [9]–
[13] focus on evaluating the performance of a vRAN through
experiments, the works in [6], [7], [14]–[17] provide an insight
into the theoretical framework.

Experimental work. The work in [9] is one of the first
experimental studies that characterize the potential savings in
compute resources when exploiting the variations in the pro-
cessing load across base stations. Interestingly, [10] presents
a linear model to calculate the uplink processing time for
a single user in terms of the sub-carrier load, MCS index,
and number of antennas. The linear model is then used
to develop RT-OPEX, a C-RAN scheduling algorithm. The
impact of MCS and SNR (radio parameters) on real-time C-
RAN processing (i.e., CPU) is studied in [11], along with
a mathematical model for predicting the decoding time. The
work in [12] profiles instead the performance of a C-RAN
in terms of CPU and memory usage, as the iperf transmission
bandwidth increases. In [13], the authors investigated the CPU
consumption of the baseband unit (BBU) under various con-
ditions for the C-RANs, and characterized the computational
demand in terms of throughput. However, no such work has
investigated and characterized the performance of a vRAN in
terms of CPU and memory usage as the number of connected
users increases and under diverse settings.

Theoretical work. For the sake of completeness, we also
mention that quite a large literature exists on analytical models
and algorithmic solutions for the optimization of a vRAN. In
particular, the works of [7], [18] set a theoretical basis for
CPU-aware radio resource control. In [7], the authors aim at
reducing the level of variability of the computational load,
which leads to eventual computational outages (where frames
are not decoded in time), by jointly optimizing the selection

of the MCS index and the allocation of the physical resource
blocks. The authors in [14], [19] investigate the trade-off
between the consumption of data processing resources and
achievable data rates, taking into account specifically the pro-
cessing requirements of forward error correction (FEC) on the
uplink. The study in [14] proposes a model for computational
outage and shows how it relates to channel outage.

The above discussed works rely on the same model relating
computational requirements and SNR, and they neglect varia-
tions on the arrival bit-rate load. This issue is addressed instead
in [20], which combines real-time traffic classification and
CPU scheduling in a mobile edge computing setup. However,
[20] also relies on a simplistic base-band processing model
and does not include an experimental validation. The works
in [14], [21] propose to enable the coordination between
radio and computing resources schedulers by introducing a
computationally aware MCS selection policy that reduces
the computational complexity requirements, at the cost of
slightly decreased spectral efficiency. An analytical frame-
work, FuidRAN, for the vRAN design is introduced in [15],
which jointly selects the function split and routing policy,
tailored to the available network and computing resources.
However, the model is provided for one user only. In [16],
a novel reinforcement learning framework is presented, which
efficiently allocates radio resources to multiple users in terms
of link, MCS index, RBs and airtime for packet transmissions
in heterogeneous vRANs. A related relevant contribution is
also given in [6], which designs a solution, named as vrAIn,
that dynamically learns the optimal allocation of computing
and radio resources in order to meet the target level of quality
of service. A novel pipeline architecture for 5G distributed
units (DUs) is then presented in [17] to guarantee a minimum
set of signals that preserve synchronization between the DU
and its users, during computing capacity shortages. This study
relies on techniques that require predictable computing to
provide carrier-grade reliability.

In conclusion, there is no such work which characterizes the
computing requirements of vRANs with respect to contextual
dynamics (for instance, traffic load and number of users).
Importantly, designing resource allocation schemes without
knowing such requirements may severely hamper the system
performance in terms of throughput.

III. VRAN TEST-BED

We now introduce our vRAN test-bed using srsRAN, detail-
ing the test-bed architecture and configuration, and the adopted
experimental methods.

A. Test-bed architecture

Figure 1(a) provides a snapshot of the test-bed we devel-
oped, while Figure 1(b) represents its architecture. We leverage
software defined radio (SDR) interfaces enabling point-to-
point communications between vRPA and User Equipment
(UE). An vRPA implements the necessary processing stack
to transfer data to/from UEs. In our case, the vRPA acts
as a virtual eNB implemented at the edge of the network.

(a)

srsUE

srsUE

srsUE

srsUE

srsENB+srsEPC

INTERNET

USRP

USRP
(Edge node)

(b)

Fig. 1: vRAN test-bed implementation using srsRAN: (a) snapshot of our test-bed highlighting the edge node hosting the
virtual eNB and EPC, and four UEs; (b) test-bed architecture including UEs, virtual eNB and virtual EPC.

The connectivity between the vRPA and UEs is supported by
means of an LTE radio link implemented using the srsRAN
[22] – an open-source SDR LTE stack implementation offering
Evolved Packet Core (EPC), eNB, and UE applications. It
is compliant with LTE Release 9 and supports up to 20-
MHz bandwidth channels as well as transmission modes from
1 to 4, all using the frequency division duplexing (FDD)
configuration.

As RF front-end, Ettus Universal Software Radio Periph-
eral (USRP) B210 devices are used to perform up/down-
conversion, filtering, amplification and AD/DA conversion of
the UE and eNB LTE signals. All the RF front-ends are
connected to the vRPA and the UEs via USB. Then, physical
layer is implemented through a set of OFDMA-modulated
channels, using RB filling across ten 1-ms subframes forming
a frame. RBs assigned to UEs by the MAC layer are modulated
and encoded with an MCS that depends on the user’s Channel
Quality Indicator (CQI), a measure of SNR that is locally
available at the UEs for uplink transmission and is reported
periodically by UEs. The modulation order can vary up to 256-
QAM, while FEC is employed using LDPC or Turbo codes
with coding rate of 1/2, 2/3, or 3/4 [23]. At the MAC layer,
an automatic repeat request error control is in place, i.e., an
unsuccessfully transmitted packet can be resent till a maximum
number of allowed re-transmission attempts.

The edge host and the mobile terminals are each installed
in Ubuntu 18.04 systems. The edge host is equipped with an
Intel i7-7700HQ 4-cores CPU and 8 GB of DDR4 RAM, while
the UEs feature an Intel i7-8550U 4-cores CPU and 16 GB
of DDR4 RAM. Each Ubuntu system is connected to USRP
B210 boards using USRP Hardware Driver v3.15. In order
to faciltate the experiments, all performance management
features in the BIOS (e.g., Intel@TurboBoost, Hyper-thread
control, Intel SpeedStep) are enabled and C-states have been
turned off. Moreover, the real-time thread priorities are enabled
in the srsRAN as the applications (srsENB and srsUE) are
executed with root privileges. A set of threads are created in
srsRAN for performance and priority management reasons.
The threading architecture of the physical layer implementa-
tion is motivated by the stringent latency requirements. Also,

we monitor the level of CPU consumption and ensure that,
during our experiments, the allocated CPU is sufficient to keep
up with the required data rate so as to avoid severe system
failures during the radio data transfer. Finally, in order to
establish a stable connection, we set the transmit gain (tx gain)
at the eNB to its maximum value.

B. Monitoring the srsRAN eNB and UEs
To monitor the behavior and track the performance of the

vRAN entities, we leverage some of the useful features of
srsRAN (e.g., detailed log system with per-layer log levels,
MAC layer Wireshark packet capture, command-line trace
metrics, detailed input configuration file). A configuration
file is provided to set parameters such as downlink carrier
frequency and log or packet capture options, making the
software easy to use. Moreover, we have relied on a useful
feature of srsUE which provides real-time traces.

The srsENB application metrics are generated once per
second by default. Metrics are provided on a per-UE basis for
the downlink and uplink, respectively. The eNB is configured
in band 7 (FDD) and the transmission bandwidth has been set
to 10 MHz, corresponding to 50 RBs. In order to determine the
successful connection between eNB and UE, the RRC states
are observed. Specifically, when the UEs are successfully
paired to the eNB, the RRC connection setup message is
seen. We have also saved the UE and eNB logs to verify such
entities’ status.

As experimental set-up, we connected 30 dB attenuators to
the antennas of each network node; furthermore, the UEs were
placed close enough to the eNB so as to ensure high values
of SINR (� 25 dB). We focus on downlink data transfer and
used iperf for data packet generation.

IV. EXPERIMENTAL RESULTS AND EMPIRICAL MODELS

We present here the performance of the vRPA, i.e., the
srsRAN eNB, in terms of CPU and memory utilization as
the number of occupied RBs and the MCS index vary, when
a single UE or multiple UEs are connected. The results have
been obtained by averaging over 10 experiments; in every plot,
both the average value of the presented performance metric
and the corresponding 95% confidence interval are shown.

A. CPU utilization

The CPU usage is analysed using an Intel Core i7-7700HQ
2.80 GHz CPU. The CPU utilization is calculated using the
top process in Linux, which is widely used and provides
a dynamic real-time view of a running system managed by
the kernel. Specifically, the percentage of consumed CPU is
collected by sampling the top reports every second, over a
period of 200 seconds.

� � �� �� �� ��

	������!

��

��

��

� ��
���

�	�
���

���
�"

���
���

���

	��

���������

�

��

��

��

��
���

���
���

��
��

Fig. 2: CPU utilization and UDP downlink throughput of the
virtual eNB, for different values of the MCS index and a single
connected UE.

Figure 2 shows the average CPU utilization (left-hand side
y-axis) and the throughput (right-hand side y-axis) obtained
over 10 iterations of the virtual eNB, as the MCS varies
and for a single connected user. For this experiment, UDP
traffic is generated at the eNB at 30 Mbps and sent to the
UE, setting the number of allocated RBs to 50. Also, we set
the transmission gain to its maximum value, thus ensuring
that the SNR does not drop below 32 dB. From the plot, we
can observe that, as also shown in [6], the CPU utilization of
the virtual eNB increases as the MCS index grows from 0 to
27. Further, the consumption of computing resources, which
is mainly due to the modulation, demodulation, coding and
decoding operations, is quite significant in absolute terms: as
an example, for MCS= 27, a single user consumes around
51% of a single CPU of the edge node. Using empirical data,
we found that the CPU utilization of the virtual eNB can be
well approximated as a linear increasing function of the MCS,
i.e., CPU[%] = 0:429 � MCS + 39:58.

Figure 3 shows the CPU utilization (left-hand side y-axis) of
the virtual eNB as the number of allocated RBs varies from 12
to 50, for a single user and MCS= 27. The downlink traffic
load is set to 9 (for 12 RBs), 15 (for 24 RBs), 21 (for 36
RBs) and 30 (for 50 RBs) Mbps, respectively. We notice that
the CPU utilization increases as the number of occupied RBs
increases, with a maximum of 51% for a single UE. A higher
number of occupied RBs leads to the user transmitting at a
higher rate, which results in a higher computational resource
consumption. From the experimental data, we found that the
CPU utilization of the eNB can be well approximated as a
linear increasing function of the number of occupied RBs,
i.e., CPU[%] = 0:2892 � No RB + 37:02. We remark that the

�� �� �� ��

�&���#�!��!��&"������$

����

����

����

�	��

����

����

'�#
���

���
��&

%
���

(�
%

�!
���

�

���

��#!&��"&%

��

��

��

��

��

��#
!&

��"
&

%
��

�"
$�

Fig. 3: CPU utilization and UDP downlink throughput of the
virtual eNB vs the number of occupied RBs, for a single
connected UE and MCS=27.

�� �� �� ��

�
�������

��

��

��

��

	���
���

�

���

���
���

���
���

��

����

����

����

����

Fig. 4: CPU utilization of the virtual eNB vs the MCS index,
for a varying number of connected UEs and a total number of
occupied RBs equal to 36.

provided approximation functions can help in interpolating the
average CPU utilization with different radio configurations.

We are now interested in how the computing resource
consumption varies as the number of users connected to the
eNB changes. It is indeed a fact that the number of served
UEs is rapidly increasing, and that cellular networks will have
to support a massive number of users. Figure 4 presents the
CPU utilization (left-hand side y-axis) of the virtual eNB as
the MCS index varies, for different numbers of users. For this
experiment, the overall maximum number of RBs that can be
used is set to 36, downlink traffic is generated at 21 Mbps,
and the tx gain is set to its maximum value, so that the SNR
is always above 28 dB for all the UEs. In this scenario, an
interesting behavior emerges: for a fixed value of the MCS
index, the average CPU consumption of the eNB increases
significantly as the number of users increases, although the
traffic load is kept constant. As an example, for MCS= 27,
the average CPU consumption with four UEs is 62% of a
single CPU, i.e., about 30% more than with one UE.

In addition, Figure 5 shows the CPU consumption of the
virtual eNB as the number of allocated RBs varies from 24
to 36, for a different number of connected UEs, MCS= 27,
and maximum tx gain. The downlink traffic load for 24 RBs

���� �
�� ���� ���� ����

�%���"� �� ��%!������#

��

��

��

	�
�&
�"

���
�
�

��%
$�

��'
�$

� �
���

�

���� ���� ���� ����

Fig. 5: CPU utilization of the virtual eNB vs number of
occupied RBs, for a varying number of connected UEs and
MCS= 27.

� � 	

�*"��'�$����(

����

����

����

�
��

����

�+
�'�

���
���

�*
)

! ,
�)

 $
#�

���

'�(&*�'����������

��)*�!���)��%$ #)(

���'�(($#�"$��!��(�%�'��&�����

Fig. 6: Regression plot as the number of UEs varies, for 36
occupied RBs and MCS= 27.

-1.5

-0.5

0.5

1.5

0 1 2 3 4

R
es

id
ua

ls

Number of UEs

(a)

-1.5

-0.5

0.5

1.5

0 1 2 3

R
es

id
ua

ls

Number of UEs

(b)

Fig. 7: (a) Residual plot for the regression model in Eq. (1),
with 36 occupied RBs and MCS= 27; (b) Residual plot for the
regression model in Eq. (2), for different values of the MCS
index and 36 occupied RBs.

is set to 15 Mbps, while it is 21 Mbps for 36 RBs, so that all
the allocated RBs are always occupied. Interestingly, as the
number of connected users grows, the CPU consumption of
the virtual eNB increases linearly.

Since the MCS index and the number of occupied RBs are
always finite values that vary over a very specific range, we are
mainly interested in understanding the CPU requirements of
the virtual eNB as the number of users increases. Then, using
the empirical data, we build a regression model that predicts
the CPU utilization of the eNB as the number, n, of connected
UEs varies. For 36 occupied RBs and MCS= 27, we obtain:

CPU [%] = 4:099 � n + 44:935 : (1)

We remark that similar models can be built for different values
of MCS index and number of occupied RBs.

Figure 6 shows the CPU utilization under the above settings,
along with the curve obtained using the regression model
in (1). The Significance F for our model is 0.004, which,
being well below 0.05, shows that the model can predict
correctly the behavior under study. Further, the regression
output (R-squared) indicates that 99% of the variation in CPU
consumption is due to the number of UEs. Specifically, every
additional UE is expected to entail about 4.1% of increase in
CPU usage at the eNB; it follows that 15 users will easily
consume up to 100% of a CPU.

Again for 36 occupied RBs and MCS= 27, Figure 7a plots
the residuals, i.e., the difference in percentage between the
actual value of CPU utilization and the one predicted by the
regression model, obtained when the number of UEs varies
between 0 and 4. We observe that such residuals are always
within -0.5% to 1% of CPU usage, which confirms the very
good accuracy of the model.

Next, it is important to show that a linear regression model
(as in (1)), obtained from experimental data, correctly charac-
terizes the computing requirements of a vRAN as the number
of users increases. To this end, we use all the experimental
data obtained for a number of UEs up to three (i.e., for varying
number of occupied RBs and MCS indices), and we predict
the CPU consumption when four UEs are connected. The
corresponding regression model is given by:

CPU [%] = 3:9 � n + 0:369 � m + 35:658 (2)

where n is the number of connected UEs and m is the adopted
MCS index. A similar model can be obtained considering as
explanatory variables the number of connected UEs and the
number of occupied RBs.

Tab. I and Tab. II report the actual CPU utilization when
four UEs are connected, and the corresponding value pre-
dicted through (2). Furthermore, Figure 7b plots the residuals
obtained for the model in (2): again, all residual values are
within -1% and 1%. These results, along with an F-statistic
value of 0.0023, indicates that the linear regression model well
describes the behavior of CPU utilization. Similar results have
been obtained for different values of the number of occupied
RBs.

TABLE I: Actual vs predicted CPU usage with 4 UEs, a
varying number of occupied RBs, and MCS= 27

No. occupied RBs Actual CPU [%] Predicted CPU [%]

24 56.36 55.51
36 61 60.759

TABLE II: Actual vs predicted CPU usage with 4 UEs,
different MCS indices, and 36 occupied RBs

MCS index Actual CPU [%] Predicted CPU [%]

12 54.31 55.55
18 58.76 57.71
27 61 61.19

B. Memory utilization

Beside CPU, also memory is a precious resource at the net-
work edge. It is therefore important to investigate the memory
usage of the virtual eNB for different radio configurations.

The memory usage is monitored using the top process in
Linux, which reports both the amount of memory used by the
process in GB as well as the percentage value. As done for
the CPU utilization, we profile the memory usage for different
values of MCS index, number of occupied RBs, and number of
connected UEs. In our experiments, the downlink traffic load
is set to 30 Mbps in order to ensure that all allocated RBs are
actually occupied.

Figure 8 shows the memory usage (left-hand side y-axis)
as the number of occupied RBs varies from 24 to 50, for
MCS= 27 and only one connected UE. As observed for the
CPU utilization, the memory usage also increases linearly
with the number of occupied RBs. We also find a similar
behavior as the number of UEs grows, as shown in Figure 9 for
MCS= 27 and 50 occupied RBs. In particular, the percentage
of memory utilization (left-hand side y-axis) increases almost
linearly with the number of users, in spite of the constant
traffic load. Furthermore, we observe that 3:24 GB of memory
are consumed with four connected UEs, which is over 20%
more than when only one UE is connected.

Based on the experimental data we obtained, the regression
model predicting the percentage of memory utilization, for 50

�� �� �� �� �� ��

�$���!�������$ ������"

��	�

��	�

��
�

��
�

����

�%
�!�

���
���

�!&
�$

#�
��'

�#
���

���
�

���!&�$"���

��!�$�� $#

��

��

��

��

��!
�$

��
$#

��

� "

�

Fig. 8: Memory utilization of the virtual eNB as the number
of occupied RBs varies, for MCS= 27 and one connected UE.

� � � �

�!�����������

����

����

����

��
�

	���

	���

�"�
���

���
���

�#
�!

���
$�

 ��
���

��

� ���$� �������

� ���$� ������
�

��	

���

���

���

�"�
���

���
���

�#
�!

���
$�

 ��
���

�
�

Fig. 9: Memory utilization of the virtual eNB vs number of
UEs, for MCS= 27 and 50 occupied RBs.

� � 	

�)!��&�#����'

����

����

����

��
�

����

����

�*�
&

���
�!�

!#
&

+
�)

(�
 �,

�(
�#

"�
���

&�'%)�&����������

��()� ���(��$#�"('

���&�''�#"�!#�� ��'�$�&��%���	�

(a)

-0.2

-0.1

0

0.1

0.2

0 1 2 3 4

R
es

id
ua

ls

Number of UEs

(b)

Fig. 10: Percentage of memory usage: (a) linear regression
plot, (b) residual plot for MCS= 27 and 50 occupied RBs.

occupied RBs and MCS= 27, is as follows:

Memory[%] = 0:42 � n + 4:55; (3)

where n is the number of UEs. A similar linear regression
model can be built for different values of number of occupied
RBs and MCS index.

The accuracy of the model is shown in Figures 10a–10b,
for MCS= 27 and 50 occupied RBs. The two plots depict,
respectively, the difference between the actual and predicted
percentage of memory utilization, and the residuals, as the
number of UEs varies. Both figures highlight that also the
regression model we built for the percentage of memory
utilization closely mimics the resource consumption of a
vRAN.

V. CONCLUSIONS

Virtualized radio access networks (vRANs) are the basis
of future base stations design. To provide real-world insights

and key inputs to formulate, design, and evaluate optimized
resource-management problems in vRANs, we investigated
and characterized the computational requirements of vRANs
by developing an srsRAN-based test-bed. Through extensive
experiments, we profiled the CPU and memory utilization
of the vRAN. Our results shed light on the vRAN behavior
across different scenarios, showing that, remarkably, the CPU
and the memory utilization of the eNB increases substantially
with the number of users. It is worth underlining that the
result has been obtained under a constant value of traffic
load and number of occupied resource blocks. Based on these
empirical results, we also built linear regression models for
the prediction of CPU and memory utilization as the number
of users varies. To the best of our knowledge, this is the first
work that thoroughly studies the computational and memory
requirements of a vRAN.

We believe that our study and the obtained models can pro-
vide researchers and practitioners with real-world insights and
the necessary tools for designing advanced efficient resource-
provisioning and allocation strategies in vRAN systems. As
future work, we intend to exploit the results of this work to
develop algorithms for the efficient and effective scaling of
the vRAN functions, and the optimal settings of the vRAN
parameters in the case of shortage of CPU and memory
resources at the network edge.

REFERENCES

[1] W. River, “vran: The next step in network transformation,” White Paper,
2017.

[2] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S.
Berger, and L. Dittmann, “Cloud ran for mobile networks—a technology
overview,” IEEE Communications Surveys Tutorials, vol. 17, no. 1,
pp. 405–426, 2015.

[3] L. Gavrilovska, V. Rakovic, and D. Denkovski, “From cloud ran to open
ran.,” Wirel. Pers. Commun., vol. 113, no. 3, pp. 1523–1539, 2020.

[4] O. Alliance, “O-ran: Towards an open and smart ran, white paper,” 2018.
[5] S. Niknam, A. Roy, H. S. Dhillon, S. Singh, R. Banerji, J. H. Reed,

N. Saxena, and S. Yoon, “Intelligent o-ran for beyond 5g and 6g wireless
networks,” arXiv preprint arXiv:2005.08374, 2020.

[6] J. A. Ayala-Romero, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez,
A. Banchs, and J. J. Alcaraz, “vrain: Deep learning based orchestration
for computing and radio resources in vrans,” IEEE Transactions on
Mobile Computing, 2020.

[7] D. Bega, A. Banchs, M. Gramaglia, X. Costa-Pérez, and P. Rost,
“Cares: Computation-aware scheduling in virtualized radio access net-
works,” IEEE Transactions on Wireless Communications, vol. 17, no. 12,
pp. 7993–8006, 2018.

[8] P. Rost, I. Berberana, A. Maeder, H. Paul, V. Suryaprakash, M. Valenti,
D. Wübben, A. Dekorsy, and G. Fettweis, “Benefits and challenges
of virtualization in 5g radio access networks,” IEEE Communications
Magazine, vol. 53, no. 12, pp. 75–82, 2015.

[9] S. Bhaumik, S. P. Chandrabose, M. K. Jataprolu, G. Kumar, A. Muralid-
har, P. Polakos, V. Srinivasan, and T. Woo, “Cloudiq: A framework for
processing base stations in a data center,” Mobicom ’12, p. 125–136.

[10] K. C. Garikipati, K. Fawaz, and K. G. Shin, “Rt-opex: Flexible schedul-
ing for cloud-ran processing,” CoNEXT ’16, p. 267–280, Association
for Computing Machinery.

[11] H. Khedher, S. Hoteit, P. Brown, R. Krishnaswamy, W. Diego, and
V. Vèque, “Processing time evaluation and prediction in cloud-ran,”
in IEEE International Conference on Communications (ICC), pp. 1–6,
2019.

[12] P.-C. Lin and S.-L. Huang, “Performance profiling of cloud radio
access networks using openairinterface,” in IEEE Asia-Pacific Signal
and Information Processing Association Annual Summit and Conference
(APSIPA ASC), pp. 454–458, 2018.

[13] T. X. Tran, A. Younis, and D. Pompili, “Understanding the computa-
tional requirements of virtualized baseband units using a programmable
cloud radio access network testbed,” in IEEE International Conference
on Autonomic Computing (ICAC), pp. 221–226, IEEE, 2017.

[14] M. C. Valenti, S. Talarico, and P. Rost, “The role of computational outage
in dense cloud-based centralized radio access networks,” in 2014 IEEE
Global Communications Conference, pp. 1466–1472.

[15] A. Garcia-Saavedra, X. Costa-Perez, D. J. Leith, and G. Iosifidis, “Flu-
idran: Optimized vran/mec orchestration,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications, pp. 2366–2374, 2018.

[16] S. Tripathi, C. Puligheddu, C. F. Chiasserini, and F. Mungari, “A context-
aware radio resource management in heterogeneous virtual rans,” IEEE
Transactions on Cognitive Communications and Networking, 2021.

[17] G. Garcia-Aviles, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez,
P. Serrano, and A. Banchs, “Nuberu: Reliable ran virtualization in shared
platforms,” in Proceedings of the 27th Annual International Conference
on Mobile Computing and Networking, MobiCom ’21, p. 749–761,
2021.

[18] P. Rost, A. Maeder, M. C. Valenti, and S. Talarico, “Computationally
aware sum-rate optimal scheduling for centralized radio access net-
works,” in 2015 IEEE Global Communications Conference (GLOBE-
COM), pp. 1–6, 2015.

[19] P. Rost, S. Talarico, and M. C. Valenti, “The complexity–rate tradeoff
of centralized radio access networks,” IEEE Transactions on Wireless
Communications, vol. 14, no. 11, pp. 6164–6176, 2015.

[20] K. Wang, X. Yu, W. Lin, Z. Deng, and X. Liu, “Computing aware
scheduling in mobile edge computing system,” Wireless Networks,
vol. 27, no. 6, pp. 4229–4245, 2021.

[21] M. Sharara, S. Hoteit, P. Brown, and V. Vèque, “Coordination between
radio and computing schedulers in cloud-ran,” in 2021 IFIP/IEEE
International Symposium on Integrated Network Management (IM),
pp. 37–44, IEEE, 2021.

[22] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith, “Srslte: An open-source platform for lte
evolution and experimentation,” WiNTECH ’16, p. 25–32, Association
for Computing Machinery, 2016.

[23] “3gpp ts 36.213 v12.4.0, release 12, evolved universal terrestrial radio
access (e-utra) physical layer procedures (2014),” tech. rep.

