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Boltzmann Configurational Entropy Revisited in the
Framework of Generalized Statistical Mechanics
Antonio Maria Scarfone

Istituto dei Sistemi Complessi (ISC-CNR), c/o Dipartimento di Scienza Applicata e Tecnologia del Politecnico di
Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; antoniomaria.scarfone@cnr.it

Abstract: As known, a method to introduce non-conventional statistics may be realized by modifying
the number of possible combinations to put particles in a collection of single-particle states. In this
paper, we assume that the weight factor of the possible configurations of a system of interacting
particles can be obtained by generalizing opportunely the combinatorics, according to a certain ana-
lytical function f{π}(n) of the actual number of particles present in every energy level. Following this
approach, the configurational Boltzmann entropy is revisited in a very general manner starting from a
continuous deformation of the multinomial coefficients depending on a set of deformation parameters
{π}. It is shown that, when f{π}(n) is related to the solutions of a simple linear difference–differential
equation, the emerging entropy is a scaled version, in the occupational number representation, of the
entropy of degree (κ, r) known, in the framework of the information theory, as Sharma–Taneja–Mittal
entropic form.

Keywords: configurational entropy; (κ, r)-entropy; (κ, r)-multinomial expansion; Sharma-Taneja-
Mittal entropy

PACS: 05.90.+m; 05.20.-y; 02.70.Rr

1. Introduction

Boltzmann entropy of a microcanonical ensemble is a measure of the number of possi-
ble microstates W[n] of a n-identical particles system, for a given macrostate characterized,
in the simplest case, by the total particle number n and the total energy E. Sometimes called
configurational entropy, Boltzmann entropy is given by the logarithm of the microstates
number

SB[n] = ln(W[n]) . (1)

From elementary arguments in combinatorial analysis, it turns out that W(n) is given by
the multinomial coefficient:

W[n] =
[

n
n1 . . . n`

]
≡ n!

n1! n2! . . . n`!
, (2)

constrained by the conditions n = ∑i ni and E = ∑i ni εi, where n = {ni} is the particle
number distribution among the available distinguishable states, characterized by the energy
levels εi, with i = 1, . . . , `, being ni the particles number occurring in the ith level.

As known, (1) can be related to Shannon entropy,

SS[p] = −
`

∑
i=1

pi ln(pi) , (3)

whose expression is derived in the context of the information theory. This follows by
introducing the discrete probability distribution p = {pi} to finding a particular ensemble
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configuration, consistent with the given energy E of the system. In the limit of large n, such
that ni = n pi, it is straightforward to obtain the relation:

1
n

SB[n] ≈ SS[p] . (4)

According to the maximal entropy principle, the most probable particle configuration is the
one that maximizes the configurational entropy under the appropriate constraints given, in
this case, by n and E. As known, such statistics is characterized by an exponential tail that
is typical of the Boltzmann–Gibbs distribution.

However, deviations from the Boltzmann–Gibbs statistics are observed in quasi-
particle excitations occurring in several condensed matter systems. Therefore, the study of
physical systems obeying non-conventional statistics is one of the most investigated topics
of contemporary statistical physics [1–7]. Their interest goes from the theoretical foundation
of generalized statistical mechanics [8–12], to high-temperature gas [13] and high-Tc super-
conductivity [14], Laughlin particle with a fractional charge related to fractional quantum
Hall effect [15], Josephson junctions [16], and others.

A way to introduce non conventional statistics is given by modifying the number of
possible ways to put particles into a collection of single-particle states. This corresponds to
changing the counting rule in (2). In this way it is possible to derive several generalized
statistics. Among them, we recall the Haldane-Wu statistics [17,18], semion [19], the
intermediate statistics by Gentile [20], ewkons [21] and the interpolating Boson-Fermion
statistics [22–25].

Within this approach, in [26,27] a possible generalization of the microcanonical count-
ing based on the q-deformed algebra arising in the framework of the nonextensive statistical
mechanics [28] has been advanced. This mathematical structure is quite fundamental to
the theoretical foundation of the q-generalized statistical physics as does ordinary algebra
in standard statistical physics. In particular, by introducing an opportunely defined multi-
nominal coefficient with its Stirling approximation, in [26] Authors proposed a q-version of
(4) that links the logarithm of the q-multinominal coefficient with the q-generalized version
of the entropy (3) introduced in [28] (and references therein).

Similarly, a combinatorial approach for κ-entropy introduced in [29,30] was presented
in [31]. It is based on the κ-algebra [32] linked to the one-parameter deformed κ-exponential
and κ-logarithmic functions. The resulting κ-generalized statistical mechanics is nowadays
under examination both for its theoretical foundations and for its potential applications in
physics and physical-like systems [33–44].

In this paper, we present a possible generalization of the Boltzmann counting (2),
based on a certain counting rule fixed by a monotonic increasing analytical function f{π}(x)
depending, in general, on a set of deformation parameters {π}, and reducing to the identity
in a suitable limit.

Among the many possible choices, we are mainly interested in those generating
functions f{π}(x) that lead to generalized entropic forms consistent with power-law dis-
tributions. Often, probability distribution functions observed in complex systems (like
sociophysics, econophysics, biophysics and others) are plagued by the heavy tail that
confers to the system an anomalous statistical behavior which differs significantly from that
exponential characterizing the Boltzmann-Gibbs distribution. Such anomalous statistical
proprieties are embodied, in some sense, by the associated entropic form from which the
(meta)-equilibrium distribution is derived according to the already cited maximal entropy
principle.

Thus, by requiring that f{π}(x) be related to the solutions of a simple delay equation,
we obtain a two-parameters family of generalization of the Boltzmann configurational
entropy (1) that, in the large n limit, reproduces a scaled version of entropy of degree (κ , r)
introduced by Sharma and Taneja [45] and Mittal [46]. In particular, the q-case and the
κ-case are derived from the general discussion in the opportune limit of the deformation
parameters.
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As known, entropy is also a fundamental quantity used in the formulation of the
second law of thermodynamics. According to the Boltzmann H-theorem, it governs the
approach toward the equilibrium configuration of a system plague by dissipative processes
like, for instance, diffusion or heat transfer [47]. Indeed, generalized entropic form might
likewise be applied to investigate such physical situations in a more efficient manner to
account for sub-diffusive or super-diffusive processes [48] as well as non-Fourier heat
conduction [49], anomalous entropy production [50], and other.

The plane of the paper is as follows. In the next Section 2, we derive the generalized-
multinomial coefficient and the corresponding configurational entropy by introducing an
suitable counting rule for the occupational number in the framework of a generalized-
deformed algebra modeled by a function f{π}(x). In Section 3, we explore the asymptotic
behavior of the emerging entropic form by assuming that f{π}(x) is related to the solution
of a simple differential-difference equation and obtaining, in this case, the scaled version
of the entropy of degree (κ, r). For this two-parameters case, in Section 4 we generalize
relation (4) and then, in Section 5, we specialize this asymptotic relation to the case of
one-deformation parametric entropies like the q-entropy and the κ-entropy. Finally, Section
6 reports some concluding remarks while a technical appendix closes this work.

2. Occupational Counting in the Generalized Statistics

Let us consider a microcanonical system of n interacting particles with total energy E,
endowed by ` distinguishable energy levels εi. Suppose that the effects of the interactions
among the particles give rise to a kind of correlation that may be taken into account
by changing opportunely the computing of the number of possible microstates W[n]
corresponding to the given macrostate (E, n), according to a certain prescription. This
can be realized by introducing a continuous function f{π}(x), depending on a set of
deformation parameters {π} = {π1, π2, . . .}, that control the effects of the correlations
among the particles, such that the elementary combinatorial calculus changes according to:

n!→ f{π}(n)! = f{π}(n) f{π}(n− 1) . . . f{π}(1) . (5)

It is meant that f{π}(x) reduces to identity in a suitable limit {π} → {π0}, i.e., f{π}(x)→
f{π0}(x) = x, where correlations, and hence interactions among particles, are supposed to
be turning off in the same limit.

We stress that prescription (5) is not just a mere isomorphism x → f{π}(x) between
the real numbers which would be irrelevant for the sake of the new statistics, but rather, it
represents a different manner to compute the statistical weight of a given configuration,
that is, the combinatorial number of possible microscopical configurations available for a
given macrostate. Clearly, it must reduced to the standard combinatorial calculus in the
{π} → {π0} limit, a fact that is guaranteed by the condition f{π0}(x) = x.

Rule (5) is well known within the basic calculus [51] at the foundation of quons algebra
and quons statistics, where the basic factorial is defined in [n]! = [n] [n− 1] . . . [1], that is
just (5) with {π} ≡ q̃ and fq̃(n) = [n] for the basic number [n] = q̃n−1

q̃−1 .
Reasonably, we require that f{π}(x) be a strictly monotone increasing positive function

defined at least on <+, with f{π}(0) = 0. Starting from the function f{π}(x) we can
introduce a commutative semigroup on <+, i.e., an algebraic structure A ≡ (<+; ⊗)
equipped with a binary operation that is commutative x ⊗ y = y ⊗ x and associative
x ⊗ (y⊗ z) = (x ⊗ y)⊗ z, for any x, y, z ∈ <+, where the {π}-product and its inverse
operation the {π}-division are defined in:

x⊗ y = f−1
{π}

(
f{π}(x)× f{π}(y)

)
, (6)

x� y = f−1
{π}

(
f{π}(x)/ f{π}(y)

)
, (7)

and reduces to the standard product and division operations in the {π} → {π0} limit.
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By iteration, we can also introduce the {π}-power x⊗n on <+, which reduces to the
ordinary operation xn in the {π} → {π0} limit, according to:

x⊗n =

n−times

f−1
{π}

(︷ ︸︸ ︷
f{π}(x) · . . . · f{π}(x)

)
. (8)

Link to the ordinary algebra can be realized by introducing the {π}-logarithm,

ln{π}(x) = ln
(

f{π}(x)
)

, (9)

that satisfies the relations

ln{π}(x⊗ y) = ln{π}(x) + ln{π}(y) ,

ln{π}(x� y) = ln{π}(x)− ln{π}(y) , (10)

ln{π}
(
x⊗y) = y ln{π}(x) .

In the same way, the {π}-exponential is introduced as:

exp{π}(x) = f−1
{π}

(
exp(x)

)
, (11)

and satisfies the relations:

exp{π}(x + y) = exp{π}(x)⊗ exp{π}(y) ,

exp{π}(x− y) = exp{π}(x)� exp{π}(y) , (12)

exp{π}(x y) = exp{π}(x)⊗y .

Both ln{π}(x) and exp{π}(x) reduce to the standard functions, respectively ln(x) and
exp(x), in the {π} → {π0} limit.

Remark that, whenever the function f{π}(x) enjoys the property f{π}(1/x) = 1/ f{π}(x),
the generalized logarithm and exponential satisfy the relations ln{π}(1/x) = − ln{π}(x) and
exp{π}(−x) = 1/ exp{π}(x) like the usual logarithm and exponential functions do. In
this case

x� y = x⊗ 1
y

. (13)

Following prescription (5) we assume that the statistical weight of an interacting
particles system is modified in an equivalent number of microstates, according to

W[n]→ W̃{π}[n] ≡
f{π}(n)!

∏`
i=1 f{π}(ni)!

, (14)

which reduces to the usual Boltzmann counting (2) in the {π} → {π0} limit where the
system becomes an ideal ensemble of non-interacting particles.

The next step is a pillar in statistical physics and consists to introduce the configu-
rational entropy of the system as the standard logarithm of the microstates number [52],
that is

SB
{π}[n] = ln

(
W̃{π}[n]

)
. (15)
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However, in the picture of the deformed algebra, it would be more appropriate to write
this last equation throughout the {π}-logarithm rather than the ordinary one. Therefore,
accounting for (9), we rewrite entropy (15) in:

SB
{π}[n] = ln{π}

(
W{π}[n]

)
, (16)

where the {π}-deformed Boltzmann counting function now is defined as

W{π}[n] = f−1
{π}

(
W̃{π}[n]

)
. (17)

We stress once again that (16) corresponds to the orthodox definition of microcanonical
entropy (1) of a system with W̃{π}[n] equivalent number of microstates, although it is written,
for sake of formalism, by means of the {π}-deformed logarithm.

Furthermore, by recalling the definition of the {π}-product, we can rewrite (17) in:

W{π}[n] = n!{π} �
(

`

∏
i=1

⊗
ni!{π}

)
, (18)

where ∏
⊗

denotes a sequence of {π}-products and n!{π}, given in

n!{π} = f−1
{π}

(
f{π}

(
nj
)
!
)
≡ n⊗ (n− 1)⊗ . . .⊗ 1 , (19)

is the generalized factorial whose definition has been advanced for the first time in [26] in
the formalism of the q-deformed algebra.

3. Boltzmann Entropy of Degree (κ, r)

To go one step further, we use (10) to expand the {π}-logarithm of n!{π} in a manner
that mimics the same relation occurring in the standard algebra, that is

ln{π}
(

n!{π}
)
=

n

∑
i=1

ln{π}(i) ≈
n∫

0

ln{π}(x) dx , (20)

where, following the approach proposed in [26], we approximate the summation for large
n by an integration.

By introducing the function:

y(x) = ln{π}
(

exp(x− δ)
)

, (21)

it is shown in Appendix A, that whenever y(x) is a solution of the following delay equation

d y(x)
dx

= λ y(x + δ)− y(x) , (22)

with λ and δ constants to be determined, (20) can be straightforward integrated in:

ln{π}
(

n!{π}
)
≈ n

λ{π}
ln{π}

(
n

δ{π}

)
, (23)

where λ{π} and δ{π} are still constants. Equation (23) represents a generalization of the
well known Stirling approximation, holding for large n.

Under certain assumptions (see Appendix A), the space of the deformation parameters
reduces to a two-dimensional regionR = {−|κ| < r < |κ|, if 0 ≤ |κ| < 1/2 and |κ| − 1 <
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r < 1− |κ|, if 1/2 ≤ |κ| < 1}, with {π} ≡ {κ, r}, and the generalized logarithm takes the
explicit expression:

lnκ,r(x) =

{
xr xκ−x−κ

2 κ , for 0 < κ < 1 ,
ln(x) , for κ = 0,

(24)

that is a continuous, monotonic, increasing and concave function for x ∈ <+ → <, with
lnκ,r(x) = − lnκ,−r(1/x). The two constants λ{π} ≡ λκ,r and δ{π} ≡ eκ,r, given by:

λκ,r =

{
(1+r−κ)(r+κ)/2 κ

(1+r+κ)(r−κ)/2 κ , for 0 < κ < 1 ,

1 , for κ = 0 ,
(25)

eκ,r =

{ (
1+r+κ
1+r−κ

)1/2 κ
, for 0 < κ < 1 ,

e , for κ = 0 ,
(26)

which are well defined inR and are related in lnκ,r(eκ,r) = 1/λκ,r. These constants reduce
in the {κ, r} → (0, 0) limit to λκ,r → λ0,0 = 1 and eκ,r → e0,0 = e, the Neperian number, as
well as, in the same limit, lnκ,r(x)→ ln0,0(x) = ln(x).

Therefore, in the present case, the configurational entropy (16) becomes

SB
κ,r[n] = lnκ,r(n!κ,r)−

`

∑
i=1

lnκ,r(ni!κ,r) , (27)

and, by using the asymptotic approximation (23), it can be rewritten in:

SB
κ,r[n] = −

1
λκ,r

`

∑
i=1

ni lnκ,r

(
ni
eκ,r

)
+ Sκ,r(n) , (28)

where

Sκ,r(n) =
n

λκ,r
lnκ,r

(
n

eκ,r

)
, (29)

is a function depending only on the total particle number. It guarantees the right normal-
ization of the entropy (28) fixed by the relation SB

κ,r[{n, 0, 0, . . .}] = 0.
Remark that, due to the definition of eκ,r, entropy (28) diverges in the r → κ − 1 limit

whenever 1/2 ≤ |κ| < 1.
From (28), by using (10), the asymptotic expression of the Boltzmann counting function

(18) can be written in:

Wκ,r[n] ≈
(

n
eκ,r

)⊗ n
λκ,r
�
(

`

∏
i=1

⊗( ni
eκ,r

)⊗ ni
λκ,r
)

, (30)

which mimics the corresponding function for a system of non interacting particles that is
recovered in the (κ, r)→ (0, 0) limit. In particular, (30) says that the statistical weight of
a system of interacting particles can be modeled like that of a free particles system in a
way such that the effects of correlations are embodied and taken into account through the
underlying generalized algebra.
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4. Connection with the Shannon Entropy of Degree (κ, r)

In the framework of the information theory, an entropic form similar to (28) is known as
entropy of degree (r, s). It was introduced firstly, about fifty years ago, in the form [45,46]:

Sr, s[p] =
1

21−r − 21−s

`

∑
i=1

(pr
i − ps

i ) , (31)

and then rediscovery in the statistical mechanics framework [53], in the form:

Sκ,r[p] =
`

∑
i=1

p1+r−κ
i − p1+r+κ

i
2 κ

≡ −
`

∑
i=1

pi lnκ,r(pi) . (32)

Boltzmann expression (28), in the occupation number representation, is a scaled version of
entropy (32) in the probability representation. The former, named para-entropy of degree
(κ, r) [54], can be put in relation with the latter by generalizing opportunely relation (4).

Firstly, let us recall the composition law of the (κ, r)-logarithm:

lnκ,r(x y) = lnκ,r(x) uκ,r(y) + uκ,r(x) lnκ,r(y) , (33)

where the function uκ,r(x), given in

uκ,r(x) =

{
xr xκ+x−κ

2 , for 0 < κ < 1 ,
1 , for κ = 0

(34)

is, in the parameter region R, a continuous function for x ∈ <+ → <+, with uκ,r(x) =
uκ,−r(1/x), uκ,r(eκ,r) = (1 + r)/λκ,r and reduces to u0,0(x) = 1 in the (κ, r)→ (0, 0) limit.

By introducing the probability of the occupation number according to ni = n pi and
using (33) in lnκ,r(ni/eκ,r) = lnκ,r(n pi/eκ,r), we have

− 1
λκ,r

`

∑
i=1

n pi lnκ,r

(
n pi
eκ,r

)

= − n
λκ,r

`

∑
i=1

pi

(
lnκ,r

(
n

eκ,r

)
uκ,r(pi) + uκ,r

(
n

eκ,r

)
lnκ,r(pi)

)

= − n
λκ,r

lnκ,r

(
n

eκ,r

) `

∑
i=1

pi uκ,r(pi)−
n

λκ,r
u
(

n
eκ,r

) `

∑
i=1

pi lnκ,r(pi) . (35)

It is now useful to introduce the new functional,

Iκ,r[p] =
`

∑
i=1

pi uκ,r(pi) , (36)

that plays a special role in the present theory being strictly related to entropy Sκ,r[p] [35,55].
It is defined as the linear average of uκ,r(x) as well as entropy being the linear average of
lnκ,r(x). Furthermore, in the same spirit of (29), let us define the quantity:

Nκ,r(n) =
n

λκ,r
uκ,r

(
n

eκ,r

)
, (37)

which is a function depending only on the total particle number. In particular, in the
(κ, r)→ (0, 0) limit, these functions reduces, respectively, to the identity I0,0[p] = ∑i pi = 1,
and to the total particle number N0,0(n) = n.
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In this way, recalling the entropy definition (28), relation (35) can be rewritten in:

1
Nκ,r(n)

SB
κ,r[n] ≈ SS

κ,r[p]−
Sκ,r(n)
Nκ,r(n)

(Iκ,r[p]− 1) , (38)

which is the generalized version of (4), which is reobtained in the opportune limit.
Furthermore, since this relation holds in the large n limit, whenever (κ, r) 6= (0, 0),

and using the following straightforward asymptotic relations:

Sκ,r(n) ≈
n1+r+κ

2 κ (1 + r + κ)
, Nκ,r(n) ≈

n1+r+κ

2 (1 + r + κ)
, (39)

Equation (38) can be rewritten in the simplest form:

2 (1 + r + κ)

n1+r+κ
SB

κ,r[n] ≈ SS
κ,r[p]−

1
κ
(Iκ,r[p]− 1) . (40)

It is worth observing that the configurational entropy SB
κ,r[n] is no more proportional to

the probability entropy SS
κ,r[p] like occurs in the simple case (4). This fact stays to indicates

that not all the information carried by the configurational entropy is now contained also
in the probability entropy and a further statistical quantity, represented by the function
Iκ,r[p], is, in general, required. This happens whenever the system under investigation is
enough complex to be described by a generalized entropic form instead of the Shannon–
Boltzmann–Gibbs one that, as widely established, is able to capture the statistical behavior
of not interacting or weakly interacting systems.

5. Some Particular Cases

Sharma–Taneja–Mittal entropic form (32) contains some special cases characterized
by one-parameters deformation. Among these, the κ-entropy [29] and the q-entropy [28]
have been widely employed in the study of statistical and statistical-mechanics behavior
observed in different physics and physical-like systems characterized by the presence of
complex mechanisms. In the sequel, we briefly specialize the result obtained in the previous
sections to these two generalized entropies to make contact with the existent literature.

5.1. κ-Deformed Boltzmann Entropy

The κ-entropy, derived starting from argumentations based on the special relativity
theory [29,30], follows from (32) by posing r = 0

Sκ [p] = −
`

∑
i=1

p1+κ
i − p1−κ

i
2 κ

. (41)

In the spirit of the κ-algebra, underlying to the generalized statistical mechanics founded
on the κ-entropy, we define the function

fκ(x) = exp
(

1
κ

sinh
(
κ ln(x)

))
, (42)

so that, the explicit expressions of the κ-logarithm lnκ(x) = − lnκ(1/x) and κ-exponential
expκ(x) = 1/ expκ(−x) are

lnκ(x) =

{
xκ−x−κ

2 κ , for 0 < κ < 1 ,
ln(x) , for κ = 0 ,

(43)

expκ(x) =

{ (
κ x +

√
1 + κ2 x2

)1/κ
, for 0 < κ < 1 ,

exp(x) , for κ = 0 .
(44)
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In this case, the generalized product reads [32]:

x⊗ y = exp
(

1
κ

arcsinh
(

sinh
(
κ ln(x)

)
+ sinh

(
κ ln(y)

)))
, (45)

whilst, the asymptotic approximation of lnκ(n!κ) obtained from (23) is given by

lnκ(n!κ) ≈
n∫

0

lnκ(x) dx =
n
λκ

lnκ

(
n
eκ

)
, (46)

where the two constants λκ =
√

1− κ2 and eκ = [(1 + κ)/(1− κ)]
1

2 κ are well defined in the
range |κ| < 1.

The κ-version of the configurational entropy (28) is

SB
κ [n] ≈ −

1
λκ

`

∑
i=1

ni lnκ

(
ni
eκ

)
+ Sκ(n) , (47)

and, by using (33) specialized to the κ-case, we can rewrite (47) in

SB
κ [n] ≈

1
λ2

κ
(Sκ [n] + Iκ [n]) + Sκ(n) , (48)

where

Iκ [n] =
`

∑
i=1

n1+κ
i + n1−κ

i
2

. (49)

Finally, posed pi = ni/n in the r.h.s. of (48), we obtain the relation

SB
κ [n] ≈

n1+κ

2 κ (1 + κ)

[
1−

`

∑
i=1

(ni
n

)1+κ
]
+

n1−κ

2 κ (1− κ)

[
`

∑
i=1

(ni
n

)1−κ
− 1

]
, (50)

that corresponds to (38) for r = 0, and, in the limit of large n, whenever κ 6= 0, (50) can be
written in the form:

2 (1 + |κ|)
n1+|κ| SB

κ [n] ≈ SS
κ [p]−

1
|κ| (Iκ [p]− 1) , (51)

corresponding to (40).
We observe that (50) has been previously obtained in [31]. In order to overcame

the question related to the lost of proportionality between the configurational κ-entropy
SB

κ [n] and the probability κ-entropy SS
κ [p], in [31] has been suggest to modify the l.h.s. of

(50) adding a further function of a certain combinatorial capable to adsorbs the quantity
Iκ [n]/λ2 + Sκ(n) in (48). However, the drawback of this approach is the complication of
the expression of the configurational part (the l.h.s. in (48)) in spite of the probabilistic part
(the r.h.s. of (48)) and, at the same time, the introduction of a strange generalized product
(in addition to the one given in (45)) to compute the new combinatorial.

5.2. q-Deformed Boltzmann Entropy

The q-entropy [28] follows from (32), in the so called 2− q formalism [53], by posing
r = ±|κ| = (1− q)/2,

S2−q[p] =
`

∑
i=1

p2−q
i − pi

q− 1
. (52)
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In the present picture, it can be derived by introducing the function:

fq(x) = exp
(

x1−q − 1
1− q

)
, (53)

so that the explicit expression of the q-logarithm lnq(x) = − ln2−q(1/x) and the q-exponential
expq(x) = 1/ exp2−q(−x) are:

lnq(x) =

{
x1−q−1

1−q , for 0 < q < 2; q 6= 1 ,
ln(x) , for q = 1 ,

(54)

expq(x) =

{
(1 + (1− q) x)1/(1−q) , for 0 < q < 2; q 6= 1 ,
exp(x) , for q = 1 .

(55)

In this case, the generalized product firstly introduced in [56,57] reads:

x⊗ y =
(

x1−q + y1−q − 1
)1/(1−q)

, (56)

whilst, the asymptotic approximation of lnq(n!q) obtained from (23) becomes:

lnq
(
n!q
)
≈ n

2− q
(

lnq(n)− 1
)

, (57)

where, in this case λq = 1 and eq = (2− q)1/(1−q) are well defined in the range 0 < q < 2.
The q-version of the configurational entropy (28) is:

SB
2−q[n] ≈

n2−q

2− q
∑`

i=1
( ni

n
)2−q − 1

q− 1
, (58)

and, posed pi = ni/n, it gives:

SB
2−q[n] ≈

n2−q

2− q
SS

2−q[p] , (59)

which coincides with the result obtained firstly in [26].
To make contact with (38), we observe that, in this case, the function Iq[p] (vs. Nq(n))

is related to the q-entropy SS
q [p] (vs. Sq(n)), according to:

I2−q[p] = 1 +
q− 1

2
SS

2−q[p] , (60)

that is, in the Tsallis version of statistical mechanics, the functions Sq and Iq are not inde-
pendent quantities. Therefore, in the framework of the q-deformed statistical mechanics the
only q-version of the probability entropy seems to capture all relevant statistical information
contained in the q-version of the configurational entropy.

By pushing relation (60) in (38), we promptly obtain relation (59).

6. Conclusions

With the aim of better understanding the emergence of generalized distributions
often observed in natural and artificial complex systems, we have investigated a possible
derivation of the configurational Boltzmann entropy by introducing a prescription for
combinatorics dictated by an analytical function f{π}(x), dependent on a set of deforma-
tion parameters {π}, which takes into account possible statistical correlations among the
monade of the system. A possible justification of the generalized multinomial coefficient
may be derived from the presence of interactions between the constitutents of the system
responsible for the changing of the particles allocation among the single-particle states
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available in the energy space. This fact consequently cause a change in the shape of its
equilibrium distribution, different from the exponential one predicted by the Boltzmann
entropy based on the usual multinomial coefficient. The latter is re-obtained in a suitable
limit {π} → {π0}, where it is supposed that the interactions/correlations affecting the
system are turned off so that, in the same limit, it is understood that the system reduces to
an ensemble of ideal not interacting particles.

We sought, among the many possibilities, a generating function f{π}(x) by looking
at an asymptotic approximation for the {π}-factorials of large numbers, that works in the
same way as the Stirling approximation does for the standard factorial. In this way, the
generating function is given by the solution of a simple differential–difference equation and
the resulting configurational entropy (written in the occupational number representation)
is the scaled version of the entropy of degree (κ, r) introduced about fifty years ago by
Sharma–Taneja–Mittal in the framework of the information theory.

It is worth observing that generalized entropic forms consistent with power-law
asymptotic distributions may also be related to certain fractional–differential equations
or fractal–differential equations that differ substantially from the differential–difference
equation used in this work. For instance, generalized entropies are derived within a kinetic
approach based on a fractional diffusive equation [50] or in [58], where a study on fractal
networks has been done within the Tsallis statistics.

More in general, the extension of statistical physics to the study of certain phe-
nomenologies characterized by power-law distributions is usually non-trivial and may
deal with entropic functions that differ substantially from those belonging to the Sharma–
Taneja–Mittal family.

Finally, we explored the relationships between the generalized version of the Boltz-
mann configurational entropy and the corresponding version of the Shannon probability
entropy showing that the known relation (4) acquires a rich structure in the generalized case
[cfr. (38)]. In fact, if in the standard case all information contained in the configurational
entropy is also carried out by the Shannon probability entropy, in the generalized case the
only probability entropy of degree (κ, r) is not enough, in general, to capture all informa-
tion contained in the corresponding configurational entropy. This is reflected by the new
quantity Iκ, r[p], function of the probability distribution, which appears in relation (38).

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Asymptotic Approximation of ln{p}(n!{p})

In this appendix, we derive an asymptotic approximation of the relation

ln{p}(n!{π}) =
n

∑
i=1

ln{π}(i) , (A1)

in the limit of large n for a special class of generalized logarithms whose generator function
f{π}(x) is, in a sense, related to a delay equation.

As a first step, following [26,27], let us approximate the summation in (A1) by the
integral

n

∑
i=1

ln{π}(i) ≈
n∫

0

ln{π}(x) dx =

n∫
0

ln
(

f{π}(x)
)

dx . (A2)

To handle this integral it is more convenient to introduce a new function h{π}(x) related to
f{π}(x) in

h{π}
(

ln(x) + δ
)
= ln

(
f{π}(x)

)
≡ ln{π}(x) , (A3)
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where h{π}(x) is a strictly monotonic increasing function for x ∈ <+ → < and δ an
arbitrary constant that will be fixed in the sequel.

As a next step, let the function h{π}(x) be a solution of the following simple difference–
differential equation,

d y(x)
dx

= λ y(x + δ)− y(x) , (A4)

with λ another constant.
It is straightforward to verify that if h{π}(x) fulfills (A4) than, from (A2), we have:

n∫
0

ln( f{π}(x)) dx =

n∫
0

h{π}
(

ln(x) + δ
)

dx

=
1
λ

n∫
0

x
d

dx
h{π}

(
ln(x)

)
dx +

1
λ

n∫
0

h{π}
(

ln(x)
)

dx , (A5)

and after an integration by part we obtain:

n∫
0

h{π}
(

ln(x) + δ
)

dx =
n
λ

h{π}
(

ln(n)
)

. (A6)

Here, we assumed that a possible singularity in h{π}(x) for x → 0 is mild enough to satisfy
limx→0 x h{π}(x) = 0, so that (A6) can be finally rewritten in:

n∫
0

ln{π}(x) dx =
n
λ

ln{π}
(n

α

)
, (A7)

where α = eδ.
Therefore, whenever the function f{π}(x) is related to the solutions of (A4) by means

of the transformation (A3), the following asymptotic relation holds

ln{π}
(

n!{π}
)
≈ n

λ
ln{π}

(n
α

)
. (A8)

In the following we are interested to those solutions that capture the main properties of the
standard logarithm, that is,

1. ln{π}(1) = 0,
2. d ln{π}(x)/dx > 0,
3. d2 ln{π}(x)/dx2 < 0,

for x ∈ <+ → < and that reduces, in an opportune limit {π} → {π0}, to the classical
logarithm: ln{π0}(x) = ln(x).

Equation (A4) belongs to the family of the delay equations. Its general solution is
given by:

y(x) = ∑
i

ai yi(x) , (A9)

where ai are integration constants fixed by the initial conditions while yi are particular
solutions of (A4) corresponding to eigenvalues of the associated characteristic equation:

1 + ω = λ eδ ω , (A10)

obtained from (A4) with the ansatz y(x) = eω x.
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Since the characteristic equation is transcendental, it has a countably infinite set of
solutions. In the sequel, we limit our analysis only to the case of real eigenvalues so that
the number of possible solutions may be 0, 1 or 2, depending by the constants λ and δ.

Rewriting (A10) in:

µ eµ = A , (A11)

with µ = −δ (1 + ω) and A = −λ δ e−δ, it follows that for A ≥ 0 there is just one single
eigenvalue µ0 = W0(A) where W0(x) is the principal branch of the Lambert function,
such that:

ω0 = −1− 1
δ

W0(A) . (A12)

This solution reduces to ω0 = −1 for A = 0.
Otherwise, for −1/e < A < 0, Equation (A11) admits two distinct eigenvalues

µ1 = W−1(A) and µ2 = W0(A), where W−1(x) is the −1-branch of the Lambert function,
with:

−∞ < µ1 < −1 , −1 < µ2 < 0 . (A13)

They become coincident, µ1 = µ2 = −1, for A = −1/e.
Finally, for A < −1/e, (A11) has only complex conjugate eigenvalues.
Clearly, from (A3), solution (A12) gives:

hω0

(
ln(x) + δ

)
= c xω0 , (A14)

which is a pure power-law. It does not reduce to a standard logarithmic function in any
limit and thus is not relevant in our context. The same considerations apply for A < −1/e
from which oscillating solutions would be obtained.

Differently, for −1/e < A < 0 we have:

ω1 =
1
δ
|W−1(A)| − 1 , and ω2 =

1
δ
|W0(A)| − 1 , (A15)

and, imposing (i), we obtain:

hω1,ω2

(
ln(x) + δ

)
= c (xω1 − xω2) , (A16)

where c > 0 will be fixed in the sequel.
To satisfy (ii) we need ω1 ω2 < 0 which requires, for fixed A ∈ [−1/e, 0)

|W0(A)| < δ < |W−1(A)| , with λ = − A
δ e−δ

, (A17)

that, accounting for (iii), gives:

0 < ω1 < 1 , and − 1 < ω2 < 0 . (A18)

In Figure A1, we depict, in the (A, δ)-parameters plane, the region corresponding to
single real eigenvalue solution (single power-law region), two real eigenvalues (double
power-law region) and complex conjugate eigenvalues (oscillating region) of the character-
istic Equation (A11). The grey areas represent the region where ω1 ω2 < 0. In particular,
the dark grey area corresponds to the parameters region selected by the conditions (i)–(iii).
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Figure A1. Representation, in the (A, δ)-parameters plane, of the solutions of the characteristic
Equation (A11).

Finally, we choose the constant c = ω1 −ω2 and, collecting all results, from (A3) we
obtain:

lnω1,ω2(x) =
xω1 − xω2

ω1 −ω2
, (A19)

that is, the searched deformed logarithm. It reduces to the standard one in the (ω1, ω2)→
(0, 0) limit.

To make contact with the existing literature [53], we re-define the deformation param-
eters ω1 and ω2 in

ω1 = r + κ , ω2 = r− κ , (A20)

to obtain the deformed logarithm in the form

lnκ,r(x) =

{
xr xκ−x−κ

2 κ , for 0 < κ < 1 ,
ln(x) , for κ = 0.

(A21)

In this parametrization, the allowed parameters region (A18) becomes: R = {−|κ| < r <
|κ|, if 0 ≤ |κ| < 1/2 and |κ| − 1 < r < 1− |κ|, if 1/2 ≤ |κ| < 1}, while the scaling quantities
λ ≡ λκ,r and α ≡ eκ,r in (A8) are given by

λκ,r =

{
(1+r−κ)(r+κ)/2 κ

(1+r+κ)(r−κ)/2 κ , for 0 < κ < 1 ,

1 , for κ = 0 ,
(A22)

eκ,r =

{ (
1+r+κ
1+r−κ

)1/2 κ
, for 0 < κ < 1 ,

e , for κ = 0 .
(A23)

In the (κ, r)→ (0, 0) limit, λκ,r → 1 and eκ,r → e, the Neperian number, and (A8) reduces
to the well-known asymptotic approximation ln(n!) ≈ n ln(n)− n, according to the Stirling
formula.
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