
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Supporting decarbonization strategies of local energy systems by de-risking investments in renewables: a case study on
Pantelleria island / Novo, Riccardo; Minuto, FRANCESCO DEMETRIO; Bracco, Giovanni; Mattiazzo, Giuliana;
Borchiellini, Romano; Lanzini, Andrea. - In: ENERGIES. - ISSN 1996-1073. - 15:(2022). [10.3390/en15031103]

Original

Supporting decarbonization strategies of local energy systems by de-risking investments in renewables:
a case study on Pantelleria island

Publisher:

Published
DOI:10.3390/en15031103

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2953756 since: 2022-02-03T14:41:33Z

MDPI



 
 

 

 
Energies 2022, 15, 1103. https://doi.org/10.3390/en15031103 www.mdpi.com/journal/energies 

Article 

Supporting Decarbonization Strategies of Local Energy  
Systems by De-Risking Investments in Renewables:  
A Case Study on Pantelleria Island 
Riccardo Novo 1,2,3,*, Francesco Demetrio Minuto 1,4, Giovanni Bracco 2,3, Giuliana Mattiazzo 1,2,3,  
Romano Borchiellini 1,4 and Andrea Lanzini 1,4 

1 Energy Center Lab, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; 
francesco.minuto@polito.it (F.D.M.); giuliana.mattiazzo@polito.it (G.M.); romano.borchiellini@polito.it (R.B.); 
andrea.lanzini@polito.it (A.L.) 

2 MOREnergy Lab, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; 
giovanni.bracco@polito.it 

3 Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Corso Duca degli Abruzzi 24, 
10129 Torino, Italy 

4 Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy 
* Correspondence: riccardo.novo@polito.it 

Abstract: Nowadays, energy policymakers are asked to develop strategies to ensure an affordable 
clean energy supply as well as minimizing investment risks. In addition, the rise of several 
community engagement schemes and the uptake of user-scale technologies introduce uncertainties 
that may result in a disruptive factor for energy systems evolution. This paper introduces a novel 
scenario analysis approach for local energy planning that supports policymakers and investors in 
prioritizing new renewable power plant investments, addressing the risks deriving from citizens’ 
choices. Specifically, a combined analysis is performed on the adoption trends of distributed 
photovoltaic systems and electric vehicles that are expected to heavily influence the evolution of 
energy systems. For this reason, an energy model is developed for Pantelleria island, and its 
transition from an oil-based energy supply to a renewable one up to 2050 is investigated. It is 
demonstrated how optimal-cost renewable-based scenarios can assure a 45% to 52% CO2 emissions 
reduction and a 6% to 15% overall cost reduction with respect to the diesel-based business-as-usual 
scenario. The analyzed scenarios disclose the recommended investments in each renewable 
technology, considering their learning curves and the unpredictability of user-scale technology 
adoption. Consequently, priorities in the installation of renewable power plants are stressed, 
starting with the most resilient to future uncertainties, as well as promoting specific incentive 
measures for citizens’ commitment at a local scale. 

Keywords: renewable energy sources; renewable energy systems; optimization; investments; 
energy planning 
 

1. Introduction 
The decarbonization of energy systems is urgent for global warming and represents 

a key goal of great common interest. Energy policymakers face a complex problem 
nowadays, as they must combine the achievement of challenging decarbonization targets 
to guarantee cheap energy supply with the de-risking of investments in renewables [1]. 
Their task is made difficult, among other things, by the multiple schemes of community 
engagement in the energy transition process [2], whose implications on a large uptake are 
still uncertain. The scope of this work is to support decision makers in long-term local 
energy planning under the uncertainties related to citizens’ commitment and direct 
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participation in the transition process [3]. The target is the planning towards the energy 
independence of islands, which are ideal environments for implementing specific 
supporting schemes at a local level [4,5]. 

1.1. Literature Review 
Long-term energy planning emerged during the oil crises of the 1970s when the price 

volatility of fossil fuels encouraged national and international bodies to decrease energy 
dependency from abroad through model-supported energy strategies [6]. The 
environmental concerns are currently the main drivers for studying energy systems’ 
evolution on a large time scale. Although national and regional supporting policies are 
essential, local authorities are recognized as critical players in the decarbonization process 
and, more generally, in the sustainable development path [7]. A strong commitment of 
local authorities in defining the main actions to push the energy transition is desirable to 
meet the real territorial needs, enhance communication, and limit the emergence of 
conflicts [8]. More specifically, the energy planning of isolated areas is needed for driving 
the development and decarbonization of thousands of islands and remote areas that are 
highly dependent on the import of fossil fuels or have limited access to energy [9]. In 
addition, advances in the relative supporting models and methodologies can be crucial 
for the policymaking towards the local energy autonomy of interconnected areas, 
representing a topic of increasing importance for ensuring a fully sustainable energy 
supply [10]. In addition, there is a need to identify priorities in terms of environmental 
policies [11]. The following literature review presents and classifies the different types of 
modelling frameworks and tools to support energy planning, focusing on their 
applicability at a local scale. 

There are many energy system models to support energy, environmental, and 
climate change policy strategies. The first classification of models can be performed 
according to the approach they use in describing energy systems. The top-down approach 
generally follows an aggregated view and focuses on macroeconomic relationships as the 
influence of prices and overall financial markets on the energy system evolution. On the 
other hand, the bottom-up approach stresses the energy sector’s technical characteristics, 
ensuring a detailed technological description [12,13]. Although several hybrids exist, two 
main underlying methodologies within the bottom-up approach can be identified, 
depending on whether investments in the energy system are exogenous or endogenous 
[14]. The former includes simulation models that predict the system operation or 
evolution based on relationships, rules, and equations [15]; such models can also include 
utility functions and algorithms to describe the energy market. The latter includes 
optimization models that mainly focus on the evolution of the energy system to prescribe 
investment strategies, according to techno-economic criteria [16]. This paper focuses on 
bottom-up optimization models, which deal with endogenous investments and are better 
suited for recommending the long-term evolution of energy systems. 

Several optimization techniques are available to modelers. Most models make use of 
Linear Programming (LP) or Mixed-Integer Linear Programming (MILP) techniques that 
consist of an objective function and a set of constraints (equations and inequalities); the 
difference between the two is in the possible forcing of some variables to be integrated 
[13]. Other techniques are based on heuristic optimization and non-linear programming. 
For this work, LP/MILP-based modeling techniques are used, which are the most diffused 
and generally have acceptable computational burdens even for simulation periods of 
several decades. Various LP/MILP-based long-term techno-economic optimization 
modeling tools are used in the academy and at different governmental levels. Among the 
most widespread, it is worth mentioning MARKAL [17], EFOM [18], their descendant 
TIMES [19], Balmorel [20], MESSAGE [21], and OSeMOSYS [22,23]. The main distinction 
criteria among the available modeling tools are: (i) the spatial representation and the 
flexibility in its definition; (ii) the temporal representation and the flexibility in its 
definition; (iii) the specific objective function that varies from the maximization of social 
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welfare to a more direct minimization of the energy system discounted cost; and (iv) the 
type of final service demand, which may be elastic or inelastic, leading to different points 
of view on the energy market. 

Most of the modeling tools mentioned above were primarily applied at the national 
or transnational level and employed at the local scale in urban and rural energy systems. 
Cosmi et al. [24] applied MARKAL to study the feasibility of introducing renewable 
technologies in a Southern Italian urban area, identify the most promising technologies, 
and estimate their main economic and environmental benefits, as well as the key obstacles 
for their diffusion. Comodi et al. [25] used TIMES to study the savings from energy 
efficiency policies at a municipal scale, focusing on the public sector, households, and 
transport to prioritize local policymakers’ actions. Howells et al. [26] employed TIMES to 
explore different clean development scenarios for an isolated village in South Africa, 
demonstrated the environmental benefits of connection to the national electricity grid, and 
found in the extremely low cost of wood fuel a major limiting factor for the uptake of 
electricity and Liquified Petroleum Gas (LPG). Fuso Nerini et al. [27] implemented an 
OSeMOSYS model of a village in Southeast Asia to explore different tiers of energy access 
and electrification, highlighting the high costs related to the most ambitious goals and 
suggesting the grid connection as a viable option over a certain level of electricity access. 
Timmons et al. [28]applied OSeMOSYS to study the cost-effectiveness of different high 
Renewable Energy Sources (RES) penetration scenarios in the island country Mauritius, 
identified the 80% RES scenario as the least-cost, and suggested the establishment of a 
new bagasse-bioethanol-solar-wind renewable energy industry. In addition, Riva et al. 
[29] linked an OSeMOSYS-based optimization model with an energy consumption 
projection model based on socioeconomic indicators and a stochastic load profile 
generator for an application in rural India: researchers pointed out the importance of such 
an integrated approach for rural developing areas, where energy demand is expected to 
have a considerable increase. 

It has been observed how several long-term optimization modeling tools have been 
used for different scopes, even at the local and rural levels. In choosing the most 
appropriate modeling tool for exploring the long-term energy scenarios of isolated areas, 
it is worth mentioning that commodity demand at a local scale does not strongly influence 
its market price [30]. Thus, local energy systems can be considered price takers of the 
national ones, as they have minimal impact on the final users’ overall commodity cost. 
When dealing with energy systems of limited spatial extension, such as those of 
municipalities or remote areas, it may thus be sufficient to make use of tools that adopt 
inelastic—or entirely exogenous—service demands, as OSeMOSYS does. 

1.2. Gaps and Contributions 
One of the gaps in LP/MILP-based long-term energy models is related to the models’ 

weakness in accurately assessing the reliability and security of high Variable Renewable 
Energy Sources (V-RES) penetration in future energy systems [31]. Indeed, the need to 
study the evolution of energy systems over tens of years requires the use of representative 
time periods of several hours length, thus renouncing to describe energy systems’ short-
term dynamics. This can lead to an overestimation of optimal V-RES capacity and to an 
underestimation of the needed dispatchable generation; the effect is also greater in energy 
islands, where flexibility is limited and no connection with back-up grids is available. In 
this view, Pavičević et al. [32] soft-linked a long-term energy model with a 30-min time-
step optimal dispatch model, ensuring the feasibility of the proposed scenarios and 
studying the flexibility potentials in each demand sector. However, despite the reliability 
of the resulting outcomes, such an approach requires considerable modelling and 
computational efforts, with limited potential for wide-spread application at the local 
energy planning scale. 

A further need in energy models is related to the inclusion of future uncertainties in 
the main model inputs [33] to highlight the reliability of the obtained outcomes and 
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identify the actions to be implemented independently of the evolution of high-level 
dynamics. In this regard, Leibowicz [34] proposed the use of stochastic programming to 
support decision making on carbon taxes; Dreier et al. [35] successfully developed an 
empirical deterministic-stochastic modeling approach, enabling the use of large real-
world datasets for prescribing future energy scenarios; Guevara et al. [36] introduced a 
machine learning framework to overcome uncertainties in strategic investment for 
national energy systems. Nevertheless, although future uncertainties should also be 
included in local energy plans, large datasets are not always available on a local scale. 

Great interest arises from the uncertainties related to community engagement and 
the uptake of energy technologies at the consumers’ premises, which could represent a 
potentially disruptive factor in the evolution of energy systems. Researchers have so far 
focused on the large-scale impacts of such factors. Gernaat et al. [37] have estimated the 
global economic potential of rooftop PV that can lead to an 80% increase in the total PV 
share by 2050. Krause at al. [38] have studied the effect of electric vehicles (EV) diffusion, 
forecasting a 30% increase in EU electricity consumption in a road transportation high 
electrification scenario. However, it is necessary to correlate trends in user-scale 
technology adoption with the optimal long-run evolution of energy systems to support 
the implementation of targeted energy policies. 

The main objective of this paper is to highlight the importance to identify prioritized 
local energy policy measures, considering the uncertainties related to community 
engagement in the decarbonization process. In this view, an energy scenario analysis 
based on a revised OSeMOSYS framework is introduced to strengthen policymakers’ 
action in the achievement of high self-sufficiency targets for local energy systems. The key 
presented novelties are: 
• A new module for the OSeMOSYS framework to handle the need of dispatchable 

generation in energy islands; 
• A scenario analysis approach to overcome community engagement unpredictability 

and prioritize new RES power plants’ realization. 
Therefore, the generation and combined investigation of a batch of optimal energy 

scenarios is introduced, based on various adoption trends of two user-scale energy 
technologies: distributed PV systems and EV. 

The scenario analysis is developed through an energy system model of Pantelleria 
(Italy), which, as a medium-sized, non-interconnected island, represents a valuable and 
representative case study for the local energy self-sufficiency of both remote and 
interconnected areas. The long-run energy system evolution is studied according to the 
above-mentioned user-scale technology adoption trends, to identify priority energy 
policy measures. 

The paper is structured as follows. In Section 2, the modeling framework is 
illustrated, the energy model and the inputs for the scenario making; in Section 3, the 
performed optimization results are analyzed and compared. The paper is concluded by 
discussing the results and the suggested contributions and outlining future research 
opportunities. 

2. Materials and Methods 
2.1. Modelling Framework 

The energy model hereby presented is based on OSeMOSYS, an open-source energy 
modeling framework for long-term planning dating back to 2008 [39]. OSeMOSYS was 
selected among the bottom-up LP/MILP-based modeling tools available because of its 
convenient learning curve, high accessibility, and transparency; the Python version of the 
code was chosen because of its straightforward interoperability with libraries for datasets 
handling and results representation. 

The energy system structure is based on two key elements: the fuels (f), i.e., energy 
vectors, which represent the commodities and their flows, and the technologies (t) that 
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transform the energy vectors within the modeled system or allow their trading across the 
system boundaries. Every technology can have one or multiple modes of operation (m) 
that represent its operational configurations; for every mode of operation, a technology 
can have different input and output fuels. In addition to technologies, storage (s) systems 
enable fuel exchanges between subsequent time periods. Regarding the temporal 
resolution of the model, each year is divided into time slices (l) that are representative 
portions of the year. Time slices, as represented in Figure 1, are identified by a season, a 
day type (i.e., day of the season), and a daily time bracket (i.e., part of the day). All the 
model inputs are fixed in every time slice. The final demand for fuels can be defined on a 
yearly basis or on a time slice basis, depending on the model purposes and the kind of 
energy or energy-service demand. Concerning the spatial resolution of the model, all 
demands and production are related to a specific region (r), and fuel exchanges between 
regions may occur depending on the fixed constraints. 

 
Figure 1. Temporal resolution in the OSeMOSYS framework. Every year y is subdivided in S seasons 
(s), e.g., spring, summer, autumn, winter. Every season is subdivided in D recurring day types (d), 
e.g., weekdays and weekends. Each day type is subdivided in T daily time brackets (t), e.g., day and 
night. Each combination of y, s, d, and t represents a time slice (l). 

The modeling framework consists of the following functional blocks, as represented 
in Figure 2: (1) Objective function; (2) Costs; (3) Capacity Adequacy; (4) Energy Balance; 
(5) Constraints; (6) Storage (7) Emissions; (8) Dispatchable Generation. The first seven 
blocks are those of the basic OSeMOSYS implementation [23], while the last one was 
implemented for the application hereby presented, in view of the needs of isolated energy 
systems with high V-RES penetration. 

 
Figure 2. Blocks of functionality of the enhanced OSeMOSYS framework (the illustration is based 
on [39]). The new proposed module and equations are highlighted in bold-dashed lines. 
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The objective function to be minimized is the net present cost of the energy system to 
meet the given energy and energy service demands over the simulation period. In other 
words, it is the sum over all regions (r) and years (y) of the discounted costs of all 
technologies (t) and storage systems (s) [40]: 

min ቌ෍ ෍ ൭෍ 𝑇𝑜𝑡𝑎𝑙𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑𝐶𝑜𝑠𝑡𝐵𝑦𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦௥,௧,௬௧ + ෍ 𝑇𝑜𝑡𝑎𝑙𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑜𝑠𝑡௥,௦,௬௦ ൱௬௥ ቍ (1)

where TotalDiscountedCostByTechnologyr,t,y is the total discounted cost of each technology 
and TotalDiscountedStorageCostr,s,y is the total cost of each storage system. The key decision 
variables are the technology and storage installed capacity in every year and the rate of 
activity of technologies in every timeslice. The total installed capacity represents the sum 
of the newly installed capacity and of the residual capacity available from before the 
modeling period; the rate of activity—barring some parameters related to the technology 
efficiency—represents the rate at which energy is consumed or produced by the 
technology itself. 

The cost equations are used to calculate the TotalDiscountedCostByTechnologyr,t,y. The 
framework makes use of three technology cost parameters: CapitalCostr,t,y (CC), that is, the 
capital investment cost of a technology per unit of capacity; VariableCostr,t,m,y (VC), that 
is, the cost of a technology per unit of activity; and the FixedCostr,t,y (FC), that is, the yearly 
O&M cost of a technology per unit of capacity. All costs are discounted to the first year of 
the modelling period. In addition, the modelling framework also considers the salvage 
value of technologies reaching their end-of-life after the last year of the modeling period. 

Capacity adequacy equations ensure that there is enough capacity of technologies 
producing a certain fuel to meet its need, which is the sum of the exogenous demand and 
the use as input in other technologies. Equations are reported on both a time slice and 
yearly basis to account for both the types of fuel demands. In addition, the modeler can 
set a reserve margin to be provided for some fuels through the capacity of specific 
technologies. 

Energy balance equations, on the other side, ensure that the production of fuels meets 
their needs in every year and timeslice. 

The constraints block is related to a wide set of model inputs that allow the modeler 
to narrow the solution space depending on the following: 
(a) The minimum and maximum overall capacity of each technology in every year; 
(b) The minimum and maximum capacity addition of each technology in every year; 
(c) The minimum and maximum activity of each technology, both in every year and over 

the entire simulation period. 
Additionally, the framework includes the possibility of handling some of the 

installed capacity variables as integer variables: In this case, the LP problem becomes an 
MILP problem with a general extension of the required resolution time. 

The storage equations set how the storage facilities store or discharge fuels in every 
timeslice. The fuel demands and technology activities are the same for every timeslice, but 
the SOC (State-Of-Charge) of storage facilities varies along the whole year. However, as 
discussed in [41], extreme values of SOC can only take place in the first or last week of 
every season, and in the first and last occurrences of every day-type in every season. This 
approach allows a straightforward representation of storage systems, with a limited 
number of equations and, thus, a little additional computational burden. 

The emission block is used to allocate pollutant emissions to the operation of a certain 
technology, starting from its specific emission ratio. 

In this work, an additional block of equations is implemented to better investigate 
high V-RES penetrations within energy islands. Indeed, power grid balance and load 
following in energy islands must be completely addressed internally, but this is not 
generally studied within long-term energy models, where time-slices of several hours are 
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the smallest analyzed time-interval. The capacity adequacy equations enable, through 
reserve margin, to account for the investment costs of needed dispatchable energy 
technologies. However, they do not allow for considering their input fuel costs, which are 
often preponderant in the final cost of energy from fossil fuel power plants [42]. Therefore, 
the dispatchable generation module sets the minimum fuel level supplied by dispatchable 
technologies in each time-slice. Having a minimum quantity of dispatchable generation 
in the energy mix is coherent with requirements from main transmission system 
operators, which nowadays often require a minimum share of instantaneous generation 
from conventional power plants for balancing grid and load services [43]. The newly 
implemented equations are presented as follows. The ProductionByDGTechnologyr,l,t,f,y 
variable is defined as: ∀𝑟, 𝑙, 𝑡, 𝑓, 𝑦: 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐵𝑦𝐷𝐺𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦௥,௟,௧,௙,௬  = 𝐷𝐺𝑇𝑎𝑔𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦𝐹𝑢𝑒𝑙௥,௙,௧ ∗ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐵𝑦𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦௥,௟,௧,௙,௬ (2)

where: ∀𝑟, 𝑓, 𝑡: 𝐷𝐺𝑇𝑎𝑔𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦𝐹𝑢𝑒𝑙௥,௙,௧ = ൜1, 𝑖𝑓 𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑎𝑏𝑙𝑒 𝑓0, 𝑖𝑓 𝑡 𝑑𝑜𝑒𝑠𝑛ᇱ𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑎𝑏𝑙𝑒 𝑓 (3)

is a binary parameter tagging the dispatchable technologies supplying every fuel, and 
ProductionByTechnologyr,l,t,f,y is a decision variable related to the rate of activity and 
representing the production of fuel by a technology in a given timeslice. The 
MinProductionByDGTechnologyr,l,f,y represents the minimum quantity of fuel in every 
timeslice to be produced by means of dispatchable generation technologies and is defined 
as: ∀𝑟, 𝑙, 𝑓, 𝑦: 𝐷𝐺𝑇𝑖𝑚𝑒𝑆𝑙𝑖𝑐𝑒𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑅𝑎𝑡𝑖𝑜௥,௙,௬,௟ ∗ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛௥,௟,௙,௬ = 𝑀𝑖𝑛𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐵𝑦𝐷𝐺𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦௥,௟,௙,௬ (4)

where Productionr,l,f,y is the sum over all the technologies of ProductionByTechnologyr,l,f,t,y, 
while DGTimeSliceLowerLimitRatior,f,y,l is a parameter between 0 and 1 that prescribes the 
portion of fuel to be produced by dispatchable technologies in every timeslice. The final 
constraint in Equation (5) ensures that, in every timeslice and for every fuel, the quantity 
of fuel produced by dispatchable technologies is higher than or equal to the minimum 
calculated: ∀𝑟, 𝑙, 𝑓, 𝑦: ෍ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐵𝑦𝐷𝐺𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦௥,௟,௧,௙,௬௧ ≥  𝑀𝑖𝑛𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐵𝑦𝐷𝐺𝑇𝑒ℎ𝑛𝑜𝑙𝑜𝑔𝑦௥,௟,௙,௬ (5)

The modified code version is made available in the GitHub repository [44]. The 
repository also hosts a new configurator package, developed for the fill-in of multiple 
scenario inputs via spreadsheets. 

The IBM ILOG® CPLEX® Optimization Studio software [45] was used as a solver of 
the MILP model. 

2.2. Energy Model 
The developed energy model refers to Pantelleria. The island, as a medium-sized, 

non-interconnected energy system, represents a valuable and representative case study 
for the local energy self-sufficiency of both remote and interconnected areas. Pantelleira 
is situated in the middle of the Strait of Sicily, as depicted in Figure 3. Because of its 
favorable position, it has large availability of solar, wind, and wave energy resources. 
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Figure 3. Pantelleria Island location in the Strait of Sicily [46]. 

2.2.1. Reference Energy System 
The reference energy system of Pantelleria is represented in Figure 4, where currently 

operating technologies are in solid lines, while those that were considered for the future 
system evolution are in dotted lines. The representation includes seven energy vectors: 
LPG (Liquified Petroleum Gases) and gasoline, which are imported from outside the 
system and consumed for kitchen applications and transportation (LPG_IMP and 
GAS_IMP) , respectively; diesel, which is imported from outside (DIESEL_IMP) and used 
in diesel power plants or as a final demand for transportation; water, which is produced 
by electrically powered desalters; electricity, which appears in two different vectors: an 
intermediate vector and, after the distribution grid, as a final demand and input vector for 
desalters; and biomass, which is currently not exploited for the production of any of the 
considered energy vectors and can be internally extracted (BIO_EXTR). The 
transformation technologies consist of a diesel power plant (DIESEL_PP), a biomass 
power plant (BIO_PP), centralized (medium to large size) photovoltaic (PV) power plants 
(PV_CENTR), wave energy converters (WEC), onshore wind turbines (WT), floating 
offshore wind turbines (FOWT), and desalters (DESALT). The electricity produced by 
distributed PV plants is assumed to be completely self-consumed by the integration with 
small-scale storage systems, thus reducing the power demand to the grid. The only 
represented distribution technology is the power distribution grid (DIST_GRID). The 
storage systems are water tanks (WAT_STO), which are already used today, and 
electrochemical storage systems (EL_STO). The boundaries of the modeled system are the 
physical borders of Pantelleria Island, which is not connected to the Italian power grid but 
includes the surrounding sea to exploit marine RES. The energy system representation 
proposed here excludes the burning of biomass in home stoves for heating purposes. 
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Figure 4. Pantelleria reference energy system graphical representation: vertical and horizontal lines 
are the energy vectors of the system; boxes in solid lines represent technologies currently operating 
on the island; boxes in solid lines are the new technologies. 

2.2.2. Commodity Demand and Supply 
Water and electricity demand were specified for every time slice of the modeled 

period, while LPG, gasoline, and diesel demand were specified on a yearly basis. This 
assumption did not entail any restrictions on the energy model validity, as fossil fuels are 
imported from the mainland. 

The actual total water supply to the municipal aqueduct amounts to ~1,070,000 
m3/year. As depicted in Figure 5, the production has strong monthly variations, with a 
peak of over 120,000 m3/month in July/August and a trough of 62,000 m3/month in 
October. The water demand was communicated by the local water supplier, which 
manages the desalination plants, and refers to the year 2018. 

 
Figure 5. Monthly variation of electricity and water final demands (reference year: 2018). 

The final overall electricity demand amounts to 27.3 GWh/year; as the water demand 
has been addressed separately, this value does not consider the energy absorbed by 
desalination plants (~3.7 GWh/year). As depicted in Figure 5, the demand is characterized 
by high monthly variability, with a trough of 1.9 GWh/month in April and a peak of 3.4 
GWh/month in August. The actual total production of electricity on the island amounts to 
39.0 GWh from the diesel power plant and ~0.5 GWh from distributed PV plants on 
households and public buildings roofs. The electricity demand profile was communicated 
by the local Distribution System Operator that handles the production, distribution, and 
sale of electricity on Pantelleria and refers to the year 2018. Overall, the monthly water 
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and electricity demand profiles appear somehow related to each other, and they both 
strongly depend on the tourist numbers on the island. 

Gasoline demand for transportation amounts to 19.7 GWh/year, while final diesel 
demand for transportation amounts to 16.3 GWh/year. LPG demand for kitchen 
applications amounts to 4.4 GWh/year. Data were obtained from a questionnaire 
compiled from the local fossil fuels retailers and are referred to the year 2018 [47]. 

Although all data refer to the year 2018, their validity was extended for simplicity to 
2020. The evolution of the demand for energy vectors up to 2050 is described in 2.3. 

2.2.3. Technologies Specifications, Costs, and Constraints 
The potential for available biomass was obtained from [48], where the maximum 

amount of annually extractable woody biomass on Pantelleria Island was estimated based 
on sustainable forest management and on the collection of agricultural mowing: It 
amounts to 4.2 kt/year, with an average net calorific value of 3.3 kWh/kg. The average 
price for its extraction was estimated at 0.151 EUR/kg [48] (VC) and was assumed as 
constant for the whole simulation period. 

The diesel import price was estimated at 1.01 EUR/L (VC), obtained from the average 
net cost of diesel in Italy in 2019 [49], with a 70% surcharge deriving from Pantelleria’s 
insularity. The same approach was used for gasoline (VC = 0.955 EUR/L) and LPG (VC = 
0.631 EUR/L). 

Concerning desalination, there are currently two reverse osmosis plants on 
Pantelleria island: One comprises of 4 desalination modules with a production capacity of 
1200 m3/day each, while the other one has a single module for 1000 m3/day. Their specific 
power consumption amounts to 3.5 kWh/m3. Since the realized model does not foresee 
the penetration of other alternative technologies, the desalination plants’ investment and 
management costs were excluded from the present analysis. DESALT was considered as 
fully programmable with water being stored in large tanks connected to the plants; the 
WAT_STO capacity, which was communicated by the local municipality, amounts to 
20,500 m3. 

The assumed BIO_PP is characterized by an overall conversion efficiency of 20%. The 
capital cost was estimated at 4580 EUREUR/kW (CC), while the yearly fixed costs were 
estimated at 40 EUR/kW/year [50]. Due to the maturity of the resource, costs were 
estimated to keep the same up to 2050. 

The DIESEL_PP currently operating on Pantelleria Island has a capacity of 10 MW; 
the end of life of its generators is foreseen in 2030; their overall conversion efficiency is 
39%, according to the data communicated from the company managing the power plant. 
The capital cost of diesel generators was estimated at 1020 EUR/kW [50] (CC), while fixed 
costs were neglected. Both DIESEL_PP and BIO_PP contribute to the reserve margin of 
Electricity_INT fuel that—as suggested in [51]—was set to 20%. 

PV_CENTR power plants were assumed to consist of ground-mounted 
monocrystalline panels with a tilt angle of 35°. Their overall yearly productivity was 
estimated at 1′610 kWh/kW; monthly production variability is reported in Figure 6. 
Hourly irradiation input data were obtained from the ERA5 database [52] for the reference 
year 2018. Their capital cost is 1070 EUR/kW in 2020, 520 EUR/kW in 2030, and 290 
EUR/kW in 2050 [53] (CC); intermediate costs were interpolated. Fixed costs amount to 20 
EUR/kW/year [50] (FC). Two constraints were set up for the centralized PV power plants: 
An overall maximum capacity of 6 MW for limiting the land use on the island and 
maximum capacity addition of 1 MW in 2021 and 2 MW in 2022 to consider the required 
timing to put online such plants (due to design, procurement, and permission issues). 
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Figure 6. Comparison of the monthly equivalent full-load hours of the technologies for the 
exploitation of V-RES (reference year: 2018). 

WECs were modeled with reference to the Pendulum Wave Energy Converter 
(PeWEC) device [54]. The PeWEC is a floating pitching device in which wave energy 
conversion is carried out through one or multiple internal pendulums, each connected to 
a power take-off. The configuration being used here consists of two pendulum systems, 
with an overall rated power of 115 kW; such configuration was obtained in [55] as an 
optimization of techno-economic objective functions through a genetic algorithm. The 
overall device productivity was estimated at 1245 kWh/kW. As represented in Figure 6, 
the PeWEC production has a very strong intra-annual variability, with over 75% of the 
energy being produced in the months from October to March. The WEC hourly power 
production was obtained from its power matrix and the hourly sea states off Pantelleria 
coasts, whose parameters were taken from the ERA5 database for the reference year 2018. 
Capital cost was estimated at 4′070 EUR/kW in 2020, contracting to 3350 EUR/kW in 2030 
and 1500 EUR/kW in 2050 (CC); fixed costs amounted to 86 EUR/kW in 2020, decreasing 
up to 50 EUR/kW in 2050 (FC). All costs and costs projections were taken from [56], with 
intermediate values obtained through interpolation. 

WT productivity was obtained through the power curve of the Aeolos-H 60 kW [57]. 
The turbine has a cut-in speed of 3.0 m/s, a rated wind speed of 9.0 m/s, and a cut-out 
wind speed of 25.0 m/s; it falls into the IEC III wind class [58]. The wind speed at the tower 
height, i.e., 22 m, was obtained through the wind profile power law and the hourly wind 
speeds at 10 m height from the ERA5 database [52] for the reference year 2018. The specific 
yearly productivity, obtained from the hourly wind speed and the turbine power curve, 
was estimated at 3780 kWh/kW; monthly specific production is reported in Figure 6. Their 
capital cost varies from 1330 EUR/kW in 2020 to 960 EUR/kW in 2030 and 735 EUR/kW in 
2050 [59] (CC); their fixed cost was assumed as constant, equal to 70 EUR/kW/year [50] 
(FC). According to Pantelleria’s local government recommendations, the total installable 
onshore wind power amounts to 420 kW (7 × 60 kW wind turbines); to consider the 
timeline of permission, design, and procurement procedures, onshore wind turbines were 
considered installable from 2022 onwards. 

The FOWT hourly power production profile was estimated similarly to that of 
onshore wind turbines by using the Vestas V80 2 MW wind turbine’s power curve at a 
tower height of 80 m. The turbine has a cut-in speed of 4.0 m/s, a rated wind speed of 16.0 
m/s, and a cut-out wind speed of 25.0 m/s; the specific turbine model, which falls into the 
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IEC I wind class [58], was chosen as it has been already installed on the IDEOL floating 
platform of the Floatgen project [60]. Floating structures were selected due to the seabed 
bathymetry around the island of Pantelleria, which does not allow the installation of 
bottom-fixed offshore wind turbines at all. The specific yearly productivity, obtained from 
the hourly wind speed and the turbine power curve, was estimated at 3580 kWh/kW; the 
value is slightly lower than for onshore wind turbines that, with their lower tower height, 
encounter fewer hours of wind speeds above the cut-out speed. The monthly specific 
production is reported in Figure 5. Due to the actual maturity level of the technology, 
floating offshore wind turbines were set to be installable from 2025 on. Their capacity was 
also treated as an integer variable, turning the model into a MILP problem. Their capital 
cost decreases from 3875 EUR/kW in 2020 to 2180 EUR/kW in 2030 and 1870 EUR/kW in 
2050 [59] (CC); their fixed cost was assumed as constant and equal to 200 EUR/kW/year 
[50] (FC). 

DIST_GRID is characterized by 4 independent 10.5 kV medium voltage grids starting 
from the diesel power plant, and the related low voltage subnets; overall, the island power 
network has large losses and a low level of innovation. The distribution technology was 
described through an efficiency of 80%. This value was obtained from the ratio between 
the electricity invoiced and the sum of the electricity produced from diesel power plant 
and distributed PV systems; all data were provided by the local Distribution System 
Operator. The distributed PV installed capacity (reference year: 2018) amounts to 330 kW: 
for consistency with the scenarios developed 2.3, and because of the averagely small size 
of the plants, their power production was subtracted to the overall power grid’s hourly 
demand, assuming a complete self-consumption by prosumers. There were no assumed 
costs associated with power distribution. In addition, at least 20% of the electricity 
production at every time slice has been set to be supplied by dispatchable technologies, in 
accordance with the minimum share of instantaneous conventional generation set by 
some European Transmission System Operators [43]. 

EL_STO were modeled with a 90% round-trip efficiency and an expected lifetime of 
15 years. No specific depth of discharge was defined for storage systems: Results in terms 
of storage capacity should therefore be considered as net values to be increased according 
to the optimal depth of discharge of the employed technology. To enable the optimization 
of the discharge time at rated power, power components, and costs of energy components 
were entirely uncoupled, following the approach and the values suggested in [61] for 
Lithium-ion storage systems. This simplification enabled to explore all possible energy-
to-power ratios to give information about the overall future needs in terms of energy 
storage systems. The input power components’ overall costs are 525 EUR/kW in 2020, 400 
EUR/kW in 2025, 330 EUR/kW in 2030, and 250 EUR/kW in 2050 (CC), while the energy 
components global costs are 200 EUR/kWh in 2020, 155 EUR/kWh in 2025, 130 EUR/kWh 
in 2030, and 95 EUR/kWh in 2050 (CCS) [61]. All intermediate values have been 
interpolated. 

The capital and fixed costs of technologies and the capital costs of storage systems at 
the reference years 2020, 2035, and 2050 are summarized in Table 1, while the variable 
costs of fuels supply are summarized in Table 2. 

It is worth mentioning that the current regional regulatory landscape does not allow 
the exploitation of wind power on Pantelleria and limits the installation of ground-
mounted PV to the urban area. However, the local administration, supported by the 
authors, has started revising the regulations that are considered incompatible with an 
ambitious decarbonization process [47]. The main guidelines under discussion have been 
used in this work to define the capacity constraints. 
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Table 1. Capital (CC) and variable (VC) costs of technologies at the reference years 2035 and 2050. 

Technology/ 
Storage Facility CC/CCS 2020 2035 2050 FC 2020 2035 2050 

EL_STO 
[EUR/kW] 525 320 250 - - - - 

[EUR/kWh] 160 100 80 - - - - 
BIO_PP [EUR/kW] 4580 4580 4580 [EUR/kW/y] 40 40 40 

DIESEL_PP [EUR/kW] 1020 1020 1020 [EUR/kW/y] - - - 
PV_CENTR [EUR/kW] 1070 470 290 [EUR/kW/y] 20 20 20 

WEC [EUR/kW] 4070 2890 1500 [EUR/kW/y] 85 65 50 
WT [EUR/kW] 1330 900 740 [EUR/kW/y] 70 70 70 

FOWT [EUR/kW] 3880 2100 1870 [EUR/kW/y] 200 200 200 

Table 2. Variable costs of fuels import or production (assumed as constant along the simulation period). 

Fuel VC All Years 
BIO_EXTR [EUR/kg] 0.151 

DIESEL_IMP [EUR/l] 1.012 
GAS_IMP [EUR/l] 0.955 
LPG_IMP [EUR/l] 0.631 

2.2.4. Time Representation 
The same time representation was used for all the years in the simulation period. 

Every year was firstly divided into 5 seasons. Each season was then further broken down 
into weekdays and weekends to contemplate energy consumption differences within the 
week. Finally, to consider intra-day variability of electricity consumption and solar 
radiation, each day was divided into 5 timeslices. A total number of 50 time slices per year 
was therefore used. Details about the employed seasons, day types, and daily time 
brackets are reported in Table 3. All the needed time series, i.e., those related to power 
consumption, water consumption, and power production from RES were summed in the 
corresponding timeslices. 

Table 3. Seasons, day types, and daily time brackets used for Pantelleria energy model. 

Season (s) Months Day Type (d) Type Daily Time Bracket (t) Hours 
1 Jan–Mar 1 Weekday 1 0–6 
2 Apr–May 2 Weekend 2 6–10 
3 Jun–Aug 

 
3 10–14 

4 Sep–Oct 4 14–18 
5 Nov–Dec 5 18–24 

2.3. Scenario Settings 
Future energy scenarios were explored in terms of the evolution of two macroscopic 

variables related to citizens direct engagement in the energy transition process and, 
specifically, to the adoption of consumer’s technologies: the diffusion of roof-mounted 
distributed PV with related storage systems and the diffusion of Electric Vehicles (EV) on 
the island. These two factors are expected to have a substantial impact on the local energy 
system evolution, especially in terms of the energy provision cost and its related 
emissions. Additionally, both the diffusion of distributed PV and EV are features that can 
be powerfully conveyed on the island by public energy policies, namely, through the 
permission for installing PV panels on buildings roofs (which is mostly not allowed by 
today on Pantelleria) and the incentives for replacing Internal Combustion Engine 
Vehicles (ICEV) with EV. Three different evolutions were foreseen for each of the two 
variables, leading to nine policy scenarios in total. 
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The settings for PV systems diffusion were developed based on different expected 
evolutions of the per-capita distributed PV rooftop installed capacity. The Low PV 
scenarios do not envisage any increase in the actual distributed PV systems penetration, 
which amounts to approx. 0.04 kW/person of PV. The Medium PV scenarios consider an 
increase up to 0.30 kW/person, achieved especially from now until 2035, while the High 
PV scenarios forecasts up to 0.60 kW/person, ensuring the 65% self-sufficiency of the 
residential sector. Table 4 presents the details of the parameter evolutions at the years 
2020, 2035, and 2050. Figure 7 (top) represents the resulting evolution of the overall 
distributed PV capacity for the sets of scenarios. All distributed PV systems have been 
assumed to be equipped with an Electrical Energy Storage (EES) system for the 
maximization of self-consumption. The indicative sizing of the system was obtained from 
[62], where a 4-kW PV system for domestic applications was equipped with a 6.4–3.3 kW 
EES, ensuring an almost full self-consumption of the energy produced. The needed 
storage capacity was thus estimated at 1.6 kWhEES/kWPV. The distributed PV system costs 
were estimated at 2140 EUR/kWPV in 2020, with a lifetime of 26 years, while the EES costs 
were estimated at 1350 EUR/kWPV in 2020, with a lifetime of 13 years [62]. The evolution 
of costs, presented in Table 5, was obtained using the same cost reduction rate of the 
centralized PV and electrochemical storage technologies. 

 
Figure 7. Distributed PV capacity (top) and EV share on the local vehicle stock (bottom) resulting 
from the scenario settings. 

Table 4. Macro-variable evolution cornerstones for scenario settings. 

Variable Scenario Set 2020 2035 2050 

Per capita distributed PV 1 
(kW/person) 

Low PV 0.04 0.04 0.04 
Medium PV 0.04 0.26 0.31 

High PV 0.04 0.50 0.62 

EV sales share 
(-) 

Low EV 2.8% 2.8% 2.8% 
Medium EV 2.8% 22.0% 40.9% 

High EV 2.8% 45.0% 85.5% 
1 The considered number of residents is 7′759 ([24], January 2018). 
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Table 5. Consumer’s technology costs. 

Parameter Tech. Unit 2020 2035 2050 

Distributed PV PV EUR/kWPV 2140 920 570 
EES EUR/kWPV 1350 800 630 

EV diffusion 
ICEV EUR/vehicle 26’240 26’240 26’240 

EV EUR/vehicle 48’450 43’610 40’170 

The settings for EV diffusion were developed based on the policy scenarios defined 
in the Global EV Outlook 2020 by IEA [63], which forecasts the share of EV sales in 2025 
and 2030 depending on the environmental sustainability level of global energy policies. 
The Low EV scenarios entail a fixed share of EV sales, equal to the share in 2019 (2.8%), 
for the whole studied period. The Medium EV scenarios follow the IEA’s Stated Policies 
Scenario, which forecasts an EV sales share of 9.4% in 2025 and 15.7% in 2030. The High 
EV scenarios, finally, follow the IEA’s Sustainable Development Scenario, with an EV 
sales share of 18.0% in 2025 and 31.5% in 2030. Trends have been linearly extrapolated up 
to 2050, with a final EV sales share of 40.9% for the Medium EV scenarios and 85.5% for 
the High EV scenarios. The yearly vehicle stock renewal rate has been calculated as the 
mean value of the last 20 years for Italy, which amounts to 5.54%, while the total amount 
of ICEV currently circulating in Pantelleria is 9560 [64]; both these values have been 
assumed as constant along the whole model period. Because of the rural environment of 
Pantelleria, the vehicle stock has been assumed to consist of 50% of passenger cars and 
50% of SUVs/pick-ups/light trucks. Also, ICEV have been assumed to be equally divided 
between gasoline and diesel vehicles. Figure 7 (bottom) represents the resulting evolution 
of the EV share on the total vehicle stock for the sets of scenarios. The resulting average 
cost for the purchase of ICEV was estimated at 26,240 EUR/vehicle, which is considered 
constant along the whole simulation period. The average cost of EV in 2020 has been 
estimated at 48,450 EUR/vehicle, decreasing to 43,610 EUR/vehicle in 2035 and to 40,170 
EUR/vehicle in 2050. Costs of vehicles and their future evolution trends were obtained 
from [65]. 

The costs of vehicles and PV systems purchased for the simulation period were 
actualized to the year 2020 and added to the total energy system cost; moreover, the 
salvage value of technologies not reaching end-of-life by the end of the modelling period 
was considered. The overall effect of the parameters’ evolution resulted in a change of the 
final energy demands for the different scenarios. The increase in distributed PV systems 
capacity leaded to the progressive decrease of the electricity demand in the model inputs, 
under the hypothesis that all the produced electricity is self-consumed in households. The 
diffusion of EV leads to a decrease in diesel and gasoline demands and to an increase in 
electricity consumption; those two variations are correlated by the values of the overall 
efficiency of ICEV (35%) and EV (85%). In addition, all scenarios include the complete 
electrification by 2050 of the electric stoves that LPG almost entirely covers today. 

Thus, the model parameters that vary between the scenarios are the electricity annual 
demand and the annual demand of diesel, gasoline, and LPG. The annual electricity 
demands from the power grid in 2035 and 2050 for the different scenarios are presented 
in Figure 8: It can be observed how differences in the energy demand in 2035 are less 
pronounced than in 2050. The peak demand (41.6 GWh in 2050) is reached by the Low PV, 
High EVs scenario, while the lowest demand is that of High PV, Low EVs. Overall, the 
impact of EV share on the final demand from the power grid is higher than that of 
distributed PV diffusion. 

For each scenario, the resolution algorithm optimized the overall cost of the global 
energy supply from 2020 to 2050 by setting, in accordance with the fixed constraints, the 
power plants rated power, the electrochemical storage rated power and discharge time, 
and the energy that each of these systems fed into the grid in every timeslice. Results were 
compared in terms of economic and environmental benefits with respect to the Business 
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As Usual (BAU) scenario, where the same energy consumption and energy mix of 2020 
was upheld up to 2050. 

 
Figure 8. Yearly electricity demand from the power grid (excluded desalination systems) for the set 
of scenarios in reference years 2035 and 2050. 

A summary graphical description of the applied methodology with a focus on the 
model inputs and outputs is depicted in Figure 9. 

 
Figure 9. Overall implemented approach. 
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3. Results 
A first overview of the results is depicted in Figure 10, which represents the installed 

capacity by technology for every scenario in 2035 (a) and 2050 (b). In 2035, the total 
installed capacity is quite similar among scenarios, with total values in the range of 18 to 
23 MW. Especially, all the Low PV scenarios and Medium PV, High EV, characterized by 
the highest power demand from the grid, require higher installed capacity. The key 
differences among scenarios are mostly in terms of DIESEL_PP and FOWT capacity. In 
2050, the differences are more pronounced, with overall capacity values in the range of 18 
to 30 MW. The production fleet does not significantly change from 2035 to 2050 for Low 
PV, Low EV and High PV, Low EV, while it meets significant evolutions in the other 
scenarios, also with the inclusion of variable WEC capacity. Especially, Low PV, High EV 
is the scenario requiring the highest overall installed capacity (over 29 MW), followed by 
the Medium PV, High EV scenario (approx. 28 MW). 

 
Figure 10. Installed capacity by technology in 2035 (a) and 2050 (b) for the scenario set. 

The boxplot in Figure 11 represents the most frequent ranges of installed capacity 
over the set of scenarios in 2035 and 2050. The chart makes it possible to identify the 
minimum needed installed capacity of each technology independently of the possible 
trend of adoption of the two analyzed consumer’s technologies, as well as its distribution 
among scenarios. The results show strong consistency among scenarios, with PV_CENTR 
and WT reaching their maximum values already in 2035, 6 MW and 420 kW, respectively, 
and BIOMASS_PP—characterized by high fuel costs—not resulting in any scenario at any 
year. The capacity of offshore wind turbines is in the range 6–8 MW both in 2035 and 2050, 
with a slightly higher mean value in 2050 than 2035. DIESEL_PP range is 6.6–8.4 MW in 
2035, with a mean value of almost 8 MW. The range is even higher in 2050, with a 
minimum value of 6.9 MW, a maximum value of 10.3 MW, and a mean value around 9 
MW. The WEC technology, despite not being included in any scenario in 2035, is 
characterized by a large installation range in 2050, between 0 MW and 4.8 MW, with a 
third quartile of over 2 MW. It is worth mentioning that WECs are also included in the 
technology mix when FOWT saturation is not reached, as in Medium PV, Low EV and High 
PV, Medium EV. 
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Figure 11. Boxplot of installed capacity of each technology in 2035 (a) and 2050 (b) over the whole 
set of scenarios. Boxes range between the first and third quartiles; the whiskers represent the 
minimum and maximum values; the “×” symbol represents the mean value. 

The scatter plot in Figure 12 presents the scenario outcomes in terms of cost reduction 
and direct CO2 emissions reduction with respect to the BAU; both variables are considered 
on the whole model period. The potential energy system cost reduction is in the range of 6–
15%, and the CO2 emissions reduction is between 45% and 52%. The most significant cost 
reduction is obtained for High PV, Low EV, followed by Medium PV, Low EV and by 
Low PV, Low EV. All the Medium EV and High EV scenarios present higher energy 
system costs, thus indicating that the higher investment cost of EV compared to ICEV is 
not balanced by the overcosts for fuel supply on the island. Nevertheless, High PV, High 
EV is the scenario performing the best in terms of overall CO2 emissions, with a reduction 
compared to BAU of over 52%. All High EV scenarios perform better in terms of CO2 
emissions when compared to the corresponding ones in terms of distributed PV diffusion. 
Overall, High PV scenarios can be considered the best ones, as they always perform better 
than the corresponding scenarios for EV diffusion on both the chosen evaluation 
parameters. 

 
Figure 12. Scenarios scatter table: comparison in terms of cost reduction and CO2 emissions 
reduction compared to the BAU scenario. 

A further yardstick is the evolution of the yearly CO2 emissions for the set of 
scenarios. Figure 13 illustrates the yearly CO2 emissions compared to the BAU scenario. 
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Strongly ambitious targets, around 70% carbon emissions reduction, are reached by 2050 
for High PV, High EV and High PV, Medium EV, while most scenarios reach ~60% 
reduction. In addition, it is observable how all scenarios reach 45% carbon emissions 
reduction by 2025, highlighting the low cost-effectiveness of the actual electricity mix. 
Nevertheless, after 2025, the increase in RES penetration is slower, also due to the 
saturation of the identified technical potential of cheaper sources, namely, PV_CENTR 
and WT; further V-RES penetration is then smoother, and it depends on the progressive 
reduction of their costs. 

A more detailed breakdown of the results in terms of evolution of the technology and 
the energy mix is given below. The scenario High PV, Medium EV, which demonstrated 
a good trade-off between environmental and economic sustainability, was selected as a 
representative example. The stack plot of Figure 14 displays the evolution of the energy 
mix in the simulation period. The total electricity production increases from ~40 GWh in 
2020 to ~48 GWh in 2050. Overall, electricity production from centralized power 
technologies decreases from 2020 to 2035, thanks to the distributed generation of rooftop 
PVs. Nevertheless, from 2035 onwards, the demand for electricity progressively increases 
because of EV diffusion. It is also noticeable how electricity production from DIESEL_PP 
strongly decreases in the first five years, has a further fall in 2030, and then slightly 
increases because of the set constraints in terms of the minimum share of electricity 
produced from dispatchable technologies; it reaches 10.0 GWh in 2050. In 2050, the largest 
portion of production from V-RES is that of FOWT, with 19.4 GWh, followed by 
PV_CENTR, with 8.1 GWh. WT and WEC both generate 1.6 GWh in 2050; however, while 
WT reaches this value already in 2022, WEC is included in the energy mix in the very last 
model year. 

 
Figure 13. Yearly CO2 emissions compared to the BAU scenario. 
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Figure 14. Stack plot representing the annual electricity mix for the High PV, Medium EV scenario. 

The charts in Figure 15 represent (a) the annual installed capacity and (b) the yearly 
capacity decommissioning by technology. The capacity of DIESEL_PP remains the same 
up to 2030, when the existing plant reaches its end-of-life and must be replaced; its 
capacity then slightly increases in the last five years. FOWT reaches 6 MW in 2025, 
increasing to 8 MW from 2030 on. The available PV_CENTR capacity becomes saturated 
already in 2025, while 420 kW of WT are installed already in 2022. In 2029, finally, 1.5 MW 
of WEC are added in the technology mix. All RES technologies are fully replaced when 
they reach end-of-life. The energy mix varies with a similar trend, except for what 
concerns DIESEL_PP: The plant reaches its end-of-life in 2030, but strongly decreases its 
operation already in the first decade. The diffusion of V-RES and the consequent decreases 
in power production from dispatchable technologies do not correspond to a significant 
reduction in the capacity of dispatchable technologies but mainly involves a reduction in 
their utilization factor. The energy mix in 2050 is made up as follows: 40.1% FOWT; 20.7% 
DIESEL_PP; 18.7% Distributed PV; 18.6% PV_CENTR; 3.3% WEC; 3.2% WT. The 
penetration of DIESEL_PP on a yearly basis in 2050 is then slightly higher than the 
minimum levels of dispatchable generation in every time-slice. 

 
Figure 15. Stack plot and bar plot representing the annual installed capacity (a) and the yearly 
decommissioning (b), respectively, for the High PV, Medium EV scenario. 

For all policy scenarios, the performed optimizations resulted in a specific capacity 
of energy-intensive storage systems. As shown in Figure 16, optimal storage systems in 
2050 have quite different requirements in terms of energy sizing, in the range of 4.6–7.1 
GWh, while they present small differences in terms of rated power, in the range of 1.1 to 
1.6 MW. The three scenarios requiring the highest storage energy, namely, Medium PV, 
Low EV; High PV, Low EV; and High PV, Medium EV, are those characterized by the 
lowest electricity demands from the grid, and thus by the lowest demand peaks, as well 
as by the lowest minimum dispatchable generation levels. In such scenarios, the lower 
FOWT installed capacity seems to justify larger storage energy. The obtained storage 
characteristics indicate that they could mainly be used in load-levelling applications, as 
well as for the mitigation of V-RES, partially reducing their curtailment. In addition, it 
should be noted that the storage capacity of EES coupled with distributed PV amounts to 
3.8 MWh in Medium PV scenarios and to 7.7 MWh in High PV scenarios in 2050. 
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Figure 16. Storage systems scatter table for the scenarios set. The axes represent the storage energy 
and the storage rated power. 

4. Discussion 
This paper’s main contribution is to tackle the unpredictability of citizens’ 

commitment when planning the decarbonization of local energy systems. The results 
show that different evolutions of distributed PV adoption and EV diffusion may highly 
impact the optimal configuration of energy systems, supporting the need for prioritizing 
interventions and RES installations according to their robustness with respect to future 
uncertainties. Furthermore, the proposed scenario analysis quantifies the positive and 
negative impacts related to the spread of user-scale energy technologies, highlighting the 
most desirable evolutions in terms of economic and environmental sustainability. In 
comparison to other approaches for studying uncertainties in long-term energy modelling 
[34,36], which make use of real-world datasets or reference distributions to discover key 
variables and highlight optimal strategies, the implemented procedure is more specific. 
Nevertheless, it does not require large datasets or input distributions and focuses on the 
prioritization of energy and policy actions, making it realistically applicable at the local 
scale and by a wider audience. 

For the case study of Pantelleria Island, in which a technical potential was set for all 
RES power plants and no minimum environmental targets were defined, it is found that 
High PV diffusion can lead to the strongest reduction in yearly CO2 emissions, up to −70% 
with respect to BAU; other scenarios do not perform better than −60%. In addition, High 
PV scenarios always bring lower energy supply costs than the corresponding Medium PV 
and Low PV ones. Distributed PV + EES systems, characterized by higher costs than 
PV_CENTR, are more cost-effective of less mature power production technologies, as 
FOWT and WEC. Moreover, PV_CENTR potential is always fully exploited 
independently of the adopted distributed rooftop PV diffusion trend; this result shows 
that peak production in the central hours of the day is acceptable, even at the expense of 
high investments for storage systems or RES curtailment. Overall, the outcomes 
demonstrate that High PV scenarios can lead to a 90–100% increase in the overall share of 
PV systems when compared to Low PV ones. This expected increase is not very different 
from the outcomes by Gernaat et al. [37], which obtained a 80% increment in the total 
share of PV when including distributed rooftop PVs in a global energy scenario. The 
observed difference may be explained as follows: Firstly, the PV_CENTR potential of 
Pantelleria is limited because of numerous landscape and environmental constraints; 
secondly, distributed PV systems were combined with EES, assuming no curtailment for 
rooftop PV, thus the higher productivity than utility-scale PV in an energy system with 
high V-RES penetration. 
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Concerning EV penetration, it was evaluated that High EV scenarios lead to an 
overall electricity consumption increase of 40% with respect to scenarios with only ICEV 
in 2050. Compared to Krause et al. [38], who estimated an increase of 30% in EU electricity 
consumption for a road transportation high electrification scenario by 2050, a higher 
relative rise was obtained; such difference can be justified by the lower per capita yearly 
electricity consumption in Pantelleria compared to the European average (3.4 
MWh/person vs. 5.3 MWh/person [66]), partly offset by a lower per capita yearly fuel 
consumption for road transportation (5.4 MWh/person vs. 7.0 MWh/person [66]). 
Nevertheless, it was also noted that higher EV penetrations always entail higher energy 
system costs in Pantelleria, with an average 10% over the cost of High EV scenarios with 
respect to Low EV ones. This result is mainly related to the larger investment cost of EV 
with respect to ICEV that, despite a progressive contraction, was estimated to be +53% in 
2050. 

With respect to previous research studying the long-term impacts of distributed PV 
[37] and EV adoption [38], this paper focuses on a local scale, obtaining results that are 
less applicable to a general scale. However, a methodology that studies the combined 
diffusion of the two user-scale technologies is proposed, identifying distributed PV + EES 
systems and, therefore, the self-sufficiency of households, a major factor for the 
achievement of high decarbonization targets under economic sustainability. A high 
penetration of EV, which entails a significant increase in mobility costs, must be 
adequately accompanied by investments in renewables to ensure a consistent reduction 
in overall carbon emissions. Above all, the impacts of community engagement 
uncertainties on the optimal future energy mix are analyzed, concluding that established 
technologies, namely, PV_CENTR and WT, are by far the most competitive and their 
potential—which was set for the analyzed rural energy system—is always saturated. Key 
differences between scenarios are in the capacity of novel power technologies, i.e., FOWT 
and WEC, and of fossil fuel power plants (DIESEL_PP). The maximum observed 
differences are in the order of 25% for FOWT and 45% for DIESEL_PP; moreover, WEC is 
the technology with the largest uncertainty, in the range of 0 to 4.9 MW. Lastly, the optimal 
sizing of STO_ELC also shows great variations between scenarios, with a maximum 
relative difference of 55%. 

The present work also suggests some interesting outcomes for the energy transition 
of islands and isolated areas. An electricity mix largely based on renewables can be 
economically advantageous for those energy systems with no connection to national 
power grids and with overcosts for fossil fuel supply. Compared to the study of Mauritius 
energy system by Timmons et al. [28], a similar share of fossil fuel power generation is 
obtained in the least cost scenario, around 21 to 22%. In addition, in the Mauritius case 
study—for which technology costs were kept constant along all model period—
researchers have identified an additional 11% share from locally produced sugarcane 
bagasse and no electrochemical storage systems were included. In the present case study, 
where technology learning curves were used, BIO_PP never resulted in being competitive, 
while energy-intensive utility-scale electrochemical storage systems were included in all 
scenarios. 

From a critical analysis of the results, certain indication emerges for future 
developments of the implemented approach. First of all, the diffusion of EV leads to a 
significant increase in electricity demand, and it is worthwhile developing appropriate 
methodologies for including the deriving potential demand flexibility in long-term LP- 
and MILP-based models: This could lead to a reduction in the expected V-RES curtailment 
and to an overall lower required capacity of power generation technologies. Secondly, 
developed scenarios rely on technologies that are not yet fully mature. The cost evolution 
of the studied technologies, both user-scale and utility-scale ones, can be a major factor in 
identifying the optimal future energy mix: It would therefore be interesting to evaluate 
the solidity of results with different learning curve projections. Thirdly, the obtained 
results may be affected by the adopted time-representation. Notwithstanding the large 
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number of timeslices that was used, long-term optimization models underestimate 
generation and load peaks and are not capable of considering the future need for power-
intensive storage systems. This weakness could be partially overcome through the 
introduction of pre-processing algorithms for the optimal choice of timeslices, which 
could lead to tighter granularity around generation and load peaks. 

5. Conclusions 
The level of citizens’ commitment in the energy transition may lead to different 

trends in the adoption of user-scale technologies. Primary importance is held by 
distributed PV systems and EV, whose diffusion is expected to strongly affect future 
energy demand from the grid. However, little effort has been devoted to studying the 
long-term impact of these factors on the evolution of energy systems towards 
decarbonization. Above all, such uncertainties can affect the optimal power electricity mix 
of those local systems with no or limited connection to national grids, as well as of areas 
aiming at energy self-sufficiency. Therefore, this study presents a novel scenario analysis 
approach based on the combined study of distributed PV and EV diffusion up to 2050. 
The suggested technique provides guidance on the prioritization of power plants to be 
realized and energy policies to be implemented, with an eye on the potential contribution 
of technologies under development. A revised OSeMOSYS framework is used to model 
the energy system of Pantelleria as a non-interconnected island, which represents a 
valuable case study for the implementation of policies towards local energy self-
sufficiency. 

In conclusion, it can be stated that the diffusion of distributed PV + EES systems 
represents a key factor for the achievement of high decarbonization targets and that—
based on technology learning curves—it also represents a cost-effective solution. For the 
implemented case study, indeed, High PV scenarios always ensure CO2 emission 
reductions of at least 49% and overall cost reductions of at least 8% compared to BAU. The 
diffusion of EV, on the contrary, requires considerable capital costs, as well as larger 
overall installed capacity. Consolidated power production technologies—namely, PV and 
WT—are installed from the very first years. Furthermore, novel technologies—FOWT and 
WEC—are also progressively installed; their optimal capacity, however, features large 
differences depending on the foreseen evolution of user-scale technology adoption trends. 
The optimal installed capacity of FOWT varies in the range of 6–8 MW in 2050, while that 
of WEC varies in the range of 0 to 5 MW. 

It is worth mentioning that the proposed technique, although it does not make use of 
large datasets on user-scale technologies, requires an accurate description of the local 
energy system under study. Furthermore, the results in terms of the optimal energy 
system configuration highly depend on the available technical potentials identified for the 
energy system under study; this aspect must be carefully addressed with decision makers 
considering environmental and landscape constraints, as well as local community needs. 
In addition, the implementation of MILP-based long-run energy models requires the use 
of time slices to limit the computational burden. The resulting averaging of input time 
series (power load and V-RES production profiles) leads to a reduction in peaks and 
valleys, with the possible under sizing of storage systems when dealing with high V-RES 
shares. 

Future works will focus on extending the proposed approach with the aim of 
considering the influence of other factors related to citizens’ commitment in the evolution 
of energy systems. First and foremost, the role of occupants in buildings and the 
possibilities in terms of energy savings will be considered because of their reduction 
potential in residential and tertiary sector energy consumption [67]. In addition, 
researchers should explore solutions to adequately manage the dimensioning of storage 
facilities when dealing with the modelling of high V-RES shares. In this view, a possible 
contribution could come from the implementation of clustering algorithms on input time-
series [68]. 
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Finally, there are two groups of stakeholders who might benefit from the described 
approach. First and foremost, in order to achieve climate neutrality through a large 
development of RES [69], public planners are asked to identify those areas that can be 
exploited for energy production, also with the aim of ensuring a fair distribution of 
environmental impacts and, then, a high social acceptability. By studying long-term 
future energy scenarios, then, local policymakers can find the right balance between the 
decarbonization of the electricity supply, economic sustainability, and environmental 
protection. In addition, by analyzing the effects of different user-technology diffusion 
through the proposed technique, policymakers can promote and support those RES 
power plants that are more resilient to the uncertainties studied, as well as develop 
specific incentive measures for citizens’ commitment. Secondly, energy utilities can make 
use of the tools proposed in this paper to plan their investments and reduce the risks 
arising from energy oversupply. 
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Acronym Full Name 
BAU Business As Usual 
BIO_EXTR Biomass Extraction 
BIO_PP Biomass Power Plant 
DESALT Desalters 
DIESEL_IMP Diesel Import 
DIESEL_PP Diesel Power Plant 
DIST_GRID Distribution Grid 
EL_STO Electrochemical Storage 
EV Electric Vehicle 
FOWT Floating Offshore Wind Turbines 
GAS_IMP Gasoline Import 
LP Linear Programming 
LPG Liquified Petroleum Gases 
LPG_IMP Liquified Petroleum Gases Import 
MILP Mixed-Integer Linear Programming 
PV Photovoltaic 
PV_CENTR Centralized PV power plant 
RES Renewable Energy Sources 
V-RES Variable Renewable Energy Sources 
WAT_STO Water Storage 
WEC Wave Energy Converters 
WT Onshore Wind Turbines 

References 



Energies 2022, 15, 1103 25 of 27 
 

 

1. Schmidt, T.S. Low-carbon investment risks and de-risking. Nat. Clim. Chang. 2014, 4, 237–239. 
2. Roby, H.; Dibb, S. Future pathways to mainstreaming community energy. Energy Policy 2019, 135, 111020. 

https://doi.org/10.1016/j.enpol.2019.111020. 
3. Schiera, D.S.; Minuto, F.D.; Bottaccioli, L.; Borchiellini, R.; Lanzini, A. Analysis of Rooftop Photovoltaics Diffusion in Energy 

Community Buildings by a Novel GIS- and Agent-Based Modeling Co-Simulation Platform. IEEE Access 2019, 7, 93404–93432. 
https://doi.org/10.1109/ACCESS.2019.2927446. 

4. European Parliament and European Council. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 
December 2018 on the Promotion of the Use of Energy from Renewable Sources (Recast) (Text with EEA Relevance). Off. J. Eur. 
Union 2018, 328, 82–209. 

5. European Commission. Memorandum of Understanding Implementing the Valletta Political Declaration On Clean Energy for 
European Union Islands Hereafter “The Memorandum of Split”. 

6. Mirakyan, A.; De Guio, R. Integrated energy planning in cities and territories: A review of methods and tools. Renew. Sustain. 
Energy Rev. 2013, 22, 289–297. https://doi.org/10.1016/j.rser.2013.01.033. 

7. Neves, A.R.; Leal, V. Energy sustainability indicators for local energy planning: Review of current practices and derivation of a 
new framework. Renew. Sustain. Energy Rev. 2010, 14, 2723–2735. 

8. United Nations. Agenda 21. In Proceedings of the United Nations Conference on Environment & Development, Rio de Janeiro, 
Brazil, 3–14 June 1992. 

9. Liu, Y.; Yu, S.; Zhu, Y.; Wang, D.; Liu, J. Modeling, planning, application and management of energy systems for isolated areas: 
A review. Renew. Sustain. Energy Rev. 2018, 82, 460–470. https://doi.org/10.1016/j.rser.2017.09.063. 

10. Engelken, M.; Römer, B.; Drescher, M.; Welpe, I. Transforming the energy system: Why municipalities strive for energy self-
sufficiency. Energy Policy 2016, 98, 365–377. https://doi.org/10.1016/j.enpol.2016.07.049. 

11. Halicioglu, F. An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey. Energy Policy 
2009, 37, 1156–1164. https://doi.org/10.1016/j.enpol.2008.11.012. 

12. Bhattacharyya, S.C.; Timilsina, G.R. A review of energy system models. Int. J. Energy Sect. Manag. 2010, 4, 494–518. 
https://doi.org/10.1108/17506221011092742. 

13. Ringkjøb, H.K.; Haugan, P.M.; Solbrekke, I.M. A review of modelling tools for energy and electricity systems with large shares 
of variable renewables. Renew. Sustain. Energy Rev. 2018, 96, 440–459. https://doi.org/10.1016/j.rser.2018.08.002. 

14. Lund, H.; Arler, F.; Østergaard, P.A.; Hvelplund, F.; Connolly, D.; Mathiesen, B.V.; Karnøe, P. Simulation versus optimisation: 
Theoretical positions in energy system modelling. Energies 2017, 10, 840. https://doi.org/10.3390/en10070840. 

15. Viti, S.; Lanzini, A.; Minuto, F.D.; Caldera, M.; Borchiellini, R. Techno-economic comparison of buildings acting as Single-Self 
Consumers or as energy community through multiple economic scenarios. Sustain. Cities Soc. 2020, 61, 102342. 
https://doi.org/10.1016/j.scs.2020.102342. 

16. Dagoumas, A.S.; Koltsaklis, N.E. Review of models for integrating renewable energy in the generation expansion planning. 
Appl. Energy 2019, 242, 1573–1587. 

17. IEA-ETSAP. Markal. Available online: https://iea-etsap.org/index.php/etsap-tools/model-generators/markal (accessed on 30 
October 2020). 

18. Van der Voort, E. The EFOM 12C energy supply model within the EC modelling system. Omega 1982, 10, 507–523. 
https://doi.org/10.1016/0305-0483(82)90007-X. 

19. Loulou, R.; Goldstein, G.; Kanudia, A.; Remme, U. Documentation for the TIMES Model Part I: TIMES Concepts and Theory. 
2016. 

20. Wiese, F.; Bramstoft, R.; Koduvere, H.; Pizarro Alonso, A.; Balyk, O.; Kirkerud, J.G.; Tveten, Å.G.; Bolkesjø, T.F.; Münster, M.; 
Ravn, H. Balmorel open source energy system model. Energy Strateg. Rev. 2018, 20, 26–34. 
https://doi.org/10.1016/j.esr.2018.01.003. 

21. Messner, S.; Strubegger, M. User’s Guide for MESSAGE III; IIASA: Laxenburg, Austria, 1995. 
22. Henke, H.T.J. The Open Source Energy Model Base for the European Union (OSEMBE). Master’s Thesis, KTH School of 

Industrial Engineering and Management, Stockholm, Sweden, 2017. 
23. KTH Royal Institute of Technology, OSeMOSYS Documentation, 2021。 Available online: 

https://osemosys.readthedocs.io/_/downloads/en/latest/pdf/ (accessed on 31 January 2022). 
24. Cosmi, C.; Macchiato, M.; Mangialmele, L.; Marmo, G.; Pietrapertosa, F.; Salvia, M. Environmental and economic effects of 

renewable energy sources use on a local case study. Energy Policy 2003, 31, 443–457. https://doi.org/10.1016/S0301-4215(02)00073-3. 
25. Comodi, G.; Cioccolanti, L.; Gargiulo, M. Municipal scale scenario: Analysis of an Italian seaside town with MarkAL-TIMES. 

Energy Policy 2012, 41, 303–315. https://doi.org/10.1016/j.enpol.2011.10.049. 
26. Howells, M.I.; Alfstad, T.; Victor, D.G.; Goldstein, G.; Remme, U. A model of household energy services in a low-income rural 

African village. Energy Policy 2005, 33, 1833–1851. https://doi.org/10.1016/j.enpol.2004.02.019 
27. Fuso Nerini, F.; Dargaville, R.; Howells, M.; Bazilian, M. Estimating the cost of energy access: The case of the village of Suro 

Craic in Timor Leste. Energy 2015, 79, 385–397. https://doi.org/10.1016/j.energy.2014.11.025. 
28. Timmons, D.; Dhunny, A.Z.; Elahee, K.; Havumaki, B.; Howells, M.; Khoodaruth, A.; Lema-Driscoll, A.K.; Lollchund, M.R.; 

Ramgolam, Y.K.; Rughooputh, S.D.D.V.; et al. Cost minimization for fully renewable electricity systems: A Mauritius case study. 
Energy Policy 2019, 133, 110895. https://doi.org/10.1016/j.enpol.2019.110895. 



Energies 2022, 15, 1103 26 of 27 
 

 

29. Riva, F.; Gardumi, F.; Tognollo, A.; Colombo, E. Soft-linking energy demand and optimisation models for local long-term 
electricity planning: An application to rural India. Energy 2019, 166, 32–46. https://doi.org/10.1016/j.energy.2018.10.067. 

30. Timmerman, J.; Deckmyn, C.; Vandevelde, L.; Van Eetvelde, G. Techno-economic energy models for low carbon business parks. 
Chem. Eng. Trans. 2013, 35, 571–576. https://doi.org/10.3303/CET1335095. 

31. Welsch, M.; Howells, M.; Hesamzadeh, M.R.; Ó Gallachóir, B.; Deane, P.; Strachan, N.; Bazilian, M.; Kammen, D.M.; Jones, L.; 
Strbac, G.; et al. Supporting security and adequacy in future energy systems: The need to enhance long-term energy system 
models to better treat issues related to variability. Int. J. Energy Res. 2015, 39, 377–396. https://doi.org/10.1002/er.3250. 

32. Pavičević, M.; Mangipinto, A.; Nijs, W.; Lombardi, F.; Kavvadias, K.; Jiménez Navarro, J.P.; Colombo, E.; Quoilin, S. The 
potential of sector coupling in future European energy systems: Soft linking between the Dispa-SET and JRC-EU-TIMES models. 
Appl. Energy 2020, 267, 115100. https://doi.org/10.1016/j.apenergy.2020.115100. 

33. Lopion, P.; Markewitz, P.; Robinius, M.; Stolten, D. A review of current challenges and trends in energy systems modeling. 
Renew. Sustain. Energy Rev. 2018, 96, 156–166. 

34. Leibowicz, B.D. The cost of policy uncertainty in electric sector capacity planning: Implications for instrument choice. Electr. J. 
2018, 31, 33–41. https://doi.org/10.1016/j.tej.2017.12.001. 

35. Dreier, D.; Howells, M. Osemosys-pulp: A stochastic modeling framework for long-term energy systems modeling. Energies 
2019, 12, 1382. https://doi.org/10.3390/en12071382. 

36. Guevara, E.; Babonneau, F.; Homem-de-Mello, T.; Moret, S. A machine learning and distributionally robust optimization 
framework for strategic energy planning under uncertainty. Appl. Energy 2020, 271, 115005. 
https://doi.org/10.1016/j.apenergy.2020.115005. 

37. Gernaat, D.E.H.J.; de Boer, H.S.; Dammeier, L.C.; van Vuuren, D.P. The role of residential rooftop photovoltaic in long-term 
energy and climate scenarios. Appl. Energy 2020, 279, 115705. https://doi.org/10.1016/j.apenergy.2020.115705. 

38. Krause, J.; Thiel, C.; Tsokolis, D.; Samaras, Z.; Rota, C.; Ward, A.; Prenninger, P.; Coosemans, T.; Neugebauer, S.; Verhoeve, W. 
EU road vehicle energy consumption and CO2 emissions by 2050—Expert-based scenarios. Energy Policy 2020, 138, 111224. 
https://doi.org/10.1016/j.enpol.2019.111224. 

39. Howells, M.; Rogner, H.; Strachan, N.; Heaps, C.; Huntington, H.; Kypreos, S.; Hughes, A.; Silveira, S.; DeCarolis, J.; Bazillian, 
M.; et al. OSeMOSYS: The Open Source Energy Modeling System. An introduction to its ethos, structure and development. 
Energy Policy 2011, 39, 5850–5870. https://doi.org/10.1016/j.enpol.2011.06.033. 

40. Gardumi, F.; Welsch, M.; Howells, M.; Colombo, E. Representation of balancing options for variable renewables in long-term 
energy system models: An application to OSeMOSYS. Energies 2019, 12, 2366. https://doi.org/10.3390/en12122366. 

41. Welsch, M.; Howells, M.; Bazilian, M.; DeCarolis, J.F.; Hermann, S.; Rogner, H.H. Modelling elements of Smart Grids—
Enhancing the OSeMOSYS (Open Source Energy Modelling System) code. Energy 2012, 46, 337–350. 
https://doi.org/10.1016/j.energy.2012.08.017. 

42. International Energy Agency (IEA). Projected Costs of Generating Electricity—2015 Edition; IEA: Paris, France, 2015; p. 215. 
43. Delarue, E.; Morris, J.; Prinn, R.G.; Reilly, J.M. Renewables Intermittency: Operational Limits and Implications for Long-Term 

Energy System Models; MIT Joint Program on the Science and Policy of Global Change: Cambridge, MA, USA, 2015. 
44. GitHub—riccardonovo/OSeMOSYS_Pyomo. Available online: https://github.com/riccardonovo/OSeMOSYS_Pyomo. 
45. IBM ILOG CPLEX Optimization Studio | IBM. Available online: https://www.ibm.com/products/ilog-cplex-optimization-

studio (accessed on 23 November 2020). 
46. OpenStreetMap Contributors, https://www.openstreetmap.org/ (accessed on: 23/01/2022). 
47. Clean Energy for EU Islands; Energy Center Lab; Comune di Pantelleria; Parco Nazionale Isola di Pantelleria; S.MED.E. 

Pantelleria S.p.A.; SOFIP S.p.A.; APS Resilea; Cantina Basile. Agenda per la Transizione Energetica Isola di Pantelleria; Pantelleria 
Zero: Pantalleira, Italy, 2020. 

48. Virdis, M.R.; Gaeta, M. Impatti Energetici e Ambientali dei Combustibili nel Riscaldamento Residenziale; ENEA: Rome, Italy, 2017; 
ISBN 978-88-8286-350-0. 

49. Open Data—Analisi e Statistiche Energetiche e Minerarie—Ministero della Transizione Ecologica. Available online: 
https://dgsaie.mise.gov.it/open-data (accessed on 24 March 2021). 

50. Capacity4dev. Sustainable Energy Handbook. Available online: https://europa.eu/capacity4dev/public-
energy/wiki/sustainable-energy-handbook (accessed on 20 October 2020). 

51. Henke, H.; Howells, M.; Shivakumar, A. The Base for a European Engagement Model—An Open Source Electricity Model of 
Seven Countries around the Baltic Sea. In Proceedings of the 15 International Conference of Young Scientists on Energy Issues 
(CYSENI), Kaunas, Lithuania, 23–25 May 2018. 

52. European Centre for Medium Range Weather Forecasts. ERA5. Available online: 
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 (accessed on 20 October 2020). 

53. International Renewable Energy Agency (IRENA). Future of Solar Photovoltaic; IRENA: Abu Dhabi, United Arab Emirates, 2019; 
ISBN 978-92-9260-156-0. 

54. Pozzi, N.; Bracco, G.; Passione, B.; Sirigu, S.A.; Mattiazzo, G. PeWEC: Experimental validation of wave to PTO numerical model. 
Ocean Eng. 2018, 167, 114–129. https://doi.org/10.1016/j.oceaneng.2018.08.028. 

55. Sirigu, S.A.; Foglietta, L.; Giorgi, G.; Bonfanti, M.; Cervelli, G.; Bracco, G.; Mattiazzo, G. Techno-Economic Optimisation for a 
Wave Energy Converter via Genetic Algorithm. J. Mar. Sci. Eng. 2020, 8, 482. https://doi.org/10.3390/jmse8070482. 



Energies 2022, 15, 1103 27 of 27 
 

 

56. International Renewable Energy Agency (IRENA). Wave Energy—Technology Brief; IRENA: Abu Dhabi, United Arab Emirates. 
2014. 

57. Aeolos 60kW Wind Turbine—Aeolos Wind Energy. Available online: https://www.windturbinestar.com/60kw-wind-
turbine.html (accessed on 20 October 2020). 

58. International Electrotechnical Commission. IEC 61400-1:2019 RLV Wind Energy Generation Systems—Part 1: Design Requirements; 
International Electrotechnical Commission: Geneva, Switzerland, 2019.  

59. International Renewable Energy Agency. Future of Wind; IRENA: Abu Dhabi, United Arab Emirates, 2019; ISBN 978-92-9260-
155-3. 

60. Floatgen. Demonstration and Benchmarking of a Floating Wind Turbine System for Power Generation in Atlantic Deep Waters. 
Available online: https://floatgen.eu/en/demonstration-and-benchmarking-floating-wind-turbine-system-power-generation-
atlantic-deep-waters (accessed on 20 October 2020). 

61. Cole, W.; Frazier, A.W. Cost Projections for Utility-Scale Battery Storage Cost Projections for Utility-Scale Battery Storage; Technical 
Report NREL/TP-6A20-73222; NREL: Golden, CO, USA, 2019. 

62. Zakeri, B.; Cross, S.; Dodds, P.E.; Gissey, G.C. Policy options for enhancing economic profitability of residential solar 
photovoltaic with battery energy storage. Appl. Energy 2021, 290, 116697. https://doi.org/10.1016/j.apenergy.2021.116697. 

63. International Energy Agency (IEA). Global EV Outlook 2020: Entering the Decade of Electric Drive?; OECD Publishing: Paris, France, 
2020. https://doi.org/10.1787/d394399e-en. 

64. Automobile Club d’Italia ACI. Studi e Ricerche—Open Data. Available online: http://www.aci.it/laci/studi-e-ricerche/dati-e-
statistiche/open-data.html (accessed on 6 April 2021). 

65. Lerede, D.; Bustreo, C.; Gracceva, F.; Lechón, Y.; Savoldi, L. Analysis of the effects of electrification of the road transport sector 
on the possible penetration of nuclear fusion in the long-term european energy mix. Energies 2020, 13, 3634. 
https://doi.org/10.3390/en13143634. 

66. Eurostat Energy Balance Sheets—June 2021 Edition. Available online: https://ec.europa.eu/eurostat/web/energy/data/energy-
balances. 

67. Anand, P.; Cheong, D.; Sekhar, C.; Santamouris, M.; Kondepudi, S. Energy saving estimation for plug and lighting load using 
occupancy analysis. Renew. Energy 2019, 143, 1143–1161. https://doi.org/10.1016/j.renene.2019.05.089. 

68. Gabrielli, P.; Gazzani, M.; Martelli, E.; Mazzotti, M. Optimal design of multi-energy systems with seasonal storage. Appl. Energy 
2018, 219, 408–424. https://doi.org/10.1016/j.apenergy.2017.07.142. 

69. European Commission. Communication from the Commission—The European Green Deal. 2019. Available online: 
https://ec.europa.eu/info/publications/communication-european-green-deal_en (accesssed 6 April 2021) 

 


