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Abstract: Recent years have seen an unprecedented growth of data traffic driven by a continuous
increase of connected devices and new applications. This trend will tend to saturate transparent
optical networks that are the backbone of the whole telecommunication infrastructure. To
improve the capacity of already deployed network infrastructures and maximize operators
CAPEX returns, band-division multiplexing (BDM) has emerged as a promising solution to
expand the fiber bandwidth beyond the existing C-band. Along with this, the demand for flexible
and dynamically reconfigurable functionalities in each network layer is increasing. In this regard,
optical networking is fast evolving towards the applications of the software-defined networking
(SDN) paradigm down to the physical layer. The implementation of optical SDN requires the full
abstraction and virtualization of each network element in order to enable complete control by a
centralized network controller. To pursue this objective, photonics transmission components and
their transmission functionalities must be abstracted to allow the definition of the control states
and a real-time quality-of-transmission (QoT) evaluation of transparent lightpaths (LP). In this
work, we propose an SDN based model of a photonic switching fabric that allows determining
the control state and evaluating QoT degradation. Our investigations present a wideband optical
switch design based on photonic integrated circuits (PICs), where QoT degradation is abstracted
using a structure-agnostic approach based on machine learning (ML). The ML engine training
and testing datasets are generated synthetically by software simulation of the photonic switch
architecture. Results show the potential of the proposed technique to predict QoT impairments
with high accuracy, and we envision its application in a real-time control plane.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The continuous rise of global internet traffic and the latest evolving technologies such as 5G and
internet of things (IoT) will require an increase of optical network capacity together with a demand
for flexible and dynamic network functionalities at every layer. State-of-the-art optical transport
networks are based on wavelength-division multiplexing (WDM) in the standard spectral window
of ~4.8 THz defined as C-band. An increase in network capacity can be obtained by adopting one
of the two unique solutions; (i) exploiting the residual capacity of already installed infrastructure,
(ii) deploying new network infrastructures. The initial solution of exploiting the residual capacity
of already installed infrastructure is more valuable for network operators from a techno-economic
viewpoint. In this scenario, a technique like BDM appears as a promising technology to exploit
the residual capacity of existing WDM optical network infrastructure throughout the whole
low-loss spectrum of optical fibers (e.g., ~ 54 THz in ITU G.652.D fiber) [1].

The demand for flexible and dynamic network functionalities in each layer can be provided
by implementing the SDN paradigm down to the physical layer [2,3]. At this level, the SDN is
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based on a network controller that manages physical links and controls switching elements to
optimize performance, i.e., to maximize transmission capacity. SDN needs an open interface for
each transmission element with a model for its transmission impairment.

For physical channels, the SDN application requires the capability to summarize the QoT of
links in a unique QOT meter, given by the availability of a QoT estimator (QoT-E) to compute it.
The application of QoT-E to the WDM optical transport has been made easier by introducing
transceivers (TRXs) based on dual-polarization multilevel modulation formats exploiting DSP
technologies for spectral shaping and coherent detection. The advent of coherent TRXs has
been a game-changer in link design: it allowed the introduction of the uncompensated approach,
removing the need for dispersion compensating units that needed specific optimization. Exploiting
this transmission technology in transparent LP within the system simplifies the QoT evaluation
as the non-linear propagation impact can be easily modeled as an additive white Gaussian noise
(AWGN) [4]. This AWGN:-like approach defines the requested minimum optical-signal-to-noise
ratio (OSNR) of TRXSs in a back-to-back characterization and then uses it for determining LP
deployment and feasibility. This property enables the full abstraction of the optical transport
system through a QoT-E that computes the OSNR of each LP and compares it to the minimum
OSNR requested by the coherent TRX [5]. Each transparent LP can be dynamically set from
source to destination by setting the traversing switching elements. Consequently, models to
evaluate the QoT degradation of each crossed switching element are also needed to compute
the overall OSNR. Besides quantifying the QoT degradation due to the switching element, the
optical network controller must define the control state for them. To this end, we need models to
set operational modes minimizing the QoT degradation, defining the selected transparent LP by
properly configuring the switching elements.

Optical network elements currently exploit PICs to carry out most of the complex functions at
the photonic level; specifically, optical networks and data centers progressively utilize large-scale
photonic switches and wavelength selective switches due to their wide-band abilities together
with low latency and low power consumption. PIC-based photonic switches primarily work on
the principle that the flow of light can be maneuvered by 2 X 2 electrically controlled elements,
like mach-zehnder interferometers (MZI) [6] or optical micro-ring resonators (MRRs) [7].
Before the development of PIC technology, various switching machinery has been proposed,
such as 3D micro-electro-mechanical systems (MEMS) [8] and beam-steering techniques [9].
These technologies offer stable optical switching and a satisfactory level of scalability, but the
requirement to calibrate and install discrete components makes them considerably more costly
and massive. Cost and size make it challenging to implement these technologies in the future
UWRB system. Consequently, it boosts the trend of using PICs-based modules. Moreover, this
increased use of PICs-based switching systems creates a demand for a generic softwarized
management model for photonic switches enabling complete control in the optical SDN context.

In this work, we focus on the definition of an SDN model of a photonic switching fabric
for both control and QoT degradation as pictorially shown in Fig. 1. The principal aim of this
investigation is to present the design of a wideband optical switch based on PICs and then
model this NXN ultra-wideband (UWB) switching system at two different levels of abstraction:
the routing behavior and the QoT relation to the applied control signals. The routing problem
is solved by considering the black-box abstraction of the 2X2 cross-bar switching units on a
simplified version of the circuit, taking only into account the ideal link between the elements and
the binary control state of each fundamental switch. For the QoT, an ML-based framework is
proposed to predict the QoT degradation due to the real switching element. This method is a
topological and technological agnostic blind approach which exploits neural network methods to
model the QoT impairments of the NXN photonic switch. The introduced data-driven structure
is trained on a dataset obtained by considering a NXN photonic switch. The training dataset can
either be obtained experimentally or synthetically by using a software simulator for components.
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The trained ML model provides the QoT impairments in real-time as ML models only require
time during the initial training; once the model is substantially trained, it can provide results in
real-time for the given application.
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Fig. 1. Abstraction of the optical switching fabric for the control-plane of a SDN-controlled
photonic transmission system.

The remainder of the paper is organized as follows. In Section 2, we briefly describe the
background and the previous related investigations. Section 3, presents switching structures,
topologies and their related performances in a UWB system. In Section 4, the simulation model,
together with synthetic data generation and analysis, are reported. In Section 5, the orchestration
of the ML engine is presented. Then, in Section 6, we describe the results in detail. Finally,
conclusions and future research directions are presented in Section 7.

2. Background of the study

Research related to the softwarized management of photonic switching systems has been sparsely
performed and reported. The management model for optical switches is essential because of
their path-dependent nature [10] as compared to electronic switches, where the performance of
all routes is identical [11]. The variations in performance for optical switches are mainly due to
the photonic circuit topology, but they can also depend on mask-level design flaws. Usually, the
deterministic routing algorithms presented in literature can efficiently determine the control state
of internal switches for any given output permutations. The effectiveness of these algorithms
comes from their topology dependent nature, which enables a faster and efficient assessment of
the multiple-stage networks. On the contrary, these traditional deterministic routing algorithms
do not offer all the equivalent paths for a given channels permutation [12—14]. In contrast with
traditional routing algorithms, we propose a routing algorithm that produces all the equivalent
paths for a given output permutation. The provided routing scheme is then paired up with an
ML-based agent capable of predicting the QoT degradation of each calculated path due to the
switching and coupling units, thus allowing for the identification of the best control set.

The ML-based approach has already been explored in the area of PIC design and control for
different functionalities. An algorithm-driven by the artificial neural network is proposed in [15]
to regulate 2x2 dual-ring assisted-MZI switches. In [16] ML is used to assess QoT of PIC in
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order to reduce the system margin. In [17] ML module is used in SDN enabled optical network to
provide the full abstraction of a PIC. In [18], the authors experimentally demonstrated a complete
self-learning and reconfigurable photonic signal processor based on an optical neural network
chip. The proposed chip executes a variety of functions by self-learning, such as multi-channel
optical switching, optical multiple-input-multiple-output de-scrambling, and tunable optical
filtering. We proposed an ML-based model for modeling the elementary control states of the
PIC NxN switches in a structural agnostic way in [19,20]. Similarly, in [21] ML-based model
is used for the accurate prediction of QoT impairments of photonic switches in a SDN context.
In [22], the deep reinforcement learning (DRL) technique is used to reconfigure the silicon
photonic flexible low-latency interconnect optical network switch (Flex-LIONS) giving to the
traffic attributes in high-performance computing systems. Additionally, a novel reinforcement
ML-based framework called DeepConf is presented in [23], for automatically learning and
implementing a range of data center networking techniques.

3. Ultra-wideband switching system

The device under analysis consists of an electronically controlled integrated transparent photonic
switch, able to perform the routing operation without electro-optical conversion of the transmitted
signals. The two main characteristics of the system are related to the frequency range of operation,
allowing switching in the spectral range covering S+C+L bands, as well as the logical routing
requirement, as every permutation of the input signal must be achievable at the egress stage of
the device, referred as non-blocking switching.

Different solutions have been described in the literature, with NXN multistage switching
networks being one of the most widespread implementations. In this class of devices, the routing
operation is achieved by cascading various stages of elementary 2x2 switches, referred to as
optical switching elements (OSE), arranged in different topologies depending on the required
properties of the routing operation. Each OSE of the network can be controlled independently
through an electrical signal. In this work, we apply the proposed approach to an 8x8 switching
device, with MZI-based OSEs, analyzed in Section 3.1, interconnected through the BeneSnetwork
topology, described in Section 3.2. The switching network size N = 8 has been chosen as a trade-
off between realistic implementation sizes for photonic integrated circuits, circuit complexity and
data-set size. The chosen size acts as a reasonable simulation test-bed to verify the proposed
control scheme and abstraction, while providing a large enough component cascade to highlight
the physical devices behavior.

3.1. Optical switching element

The OSE is the fundamental block required for the switching action, introducing limitations on
the operating frequencies and imposing some QoT degradation. At the logical level, the OSE 2x2
cross-bar switch can be modelled as a black-box (see Fig. 2) with two available routing states: the
BAR configuration ([/;, I;] — [O1, O3]) and the CROSS configuration ([1, 2] — [0z, O1])
which can be appropriately toggled by a given binary control signal. The OSE can be implemented
with two main solutions described in the literature: the MRR filter and the MZI. Due to the
bandwidth limitations of the MRR solutions, we propose in this paper a device based on the MZI
principle.

The most straightforward MZI device is structured as shown in Fig. 2(b): the signal is divided
into the two waveguides by the first 3 dB coupling section and recombined in the egress 3 dB
coupler, with the thermally-controlled phase shift region acting as the control section for the
routing state. The routing state is controlled electrically by increasing the temperature of the
phase control waveguide in the MZI arms. This increase in temperature introduces a phase
shift in the propagating signal, changing the output recombination waveguide in the egress
coupler. The signal transmission is depicted in Fig. 2(c) and Fig. 2(d) as a function of the signal
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Fig. 2. 2x2 OSE (black-box model)

wavelength as well as the temperature shift between the MZI arms. In the OFF state (AT = 0°)
the bandwidth limitation of the device is clear, with the range of operation covering roughly half
of the S+C+L band. The bandwidth limitation is due to the 3 dB coupling regions where phase
velocity dispersion of the physical waveguides causes asymmetry in the signal propagation, with
uneven power splitting and recombination, leading to significant crosstalk with the incorrect
output port.

3.1.1. Higher order coupling regions

The critical component for achieving the UWB range of operation is the coupler region, required
before and after the thermal phase control section. While the coupler has a 3 dB power ratio for
the centre design frequency, the waveguide dispersion causes increasing asymmetry as the signal
frequency moves away from the center point. One of the simplest solutions to compensate for
this effect is cascading two identical couplers while introducing a constant phase shift between
the two waveguides (A¢ = 90°), as shown in Fig. 3. This solution reduces the dispersion effect
on the power ratio, leading to a larger and flatter bandwidth near the design frequency while
also reducing the overall asymmetry at the limits of the chosen bandwidth, depicted in Fig. 3(d).
More advanced solutions, like a complex waveguide, tapered structures or advanced 3D structure
[24] can still enlarge the bandwidth of the 3 dB coupling region. For the intended applications
of a multi-stage switching structure, the rapid increase in circuit complexity and production
requirements may become prohibitive as the scale of the overall network increases, which leads to
a trade-off between the cost and effectiveness of the solution. The analyzed device, implemented
through the second-order coupling structure, is depicted in Fig. 4: the bandwidth of operation
covers the target transmission windows, with increases in crosstalk and penalty observed only at
the edges of the operating region, as shown for both routing states in Fig. 4(b)-Fig. 4(c).
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3.2. Benes topology

After defining the fundamental 2x2 OSE, any generic N X N circuit can be modeled following
the topology of choice, for example, the Benes network. The Bene§ network has been chosen
here for various reasons, due to both the target application requirements and minimization of the
circuit footprint. Different classes of switching networks exist: topologies based on the Clos
network paradigm, like the Benes structure, allow both a reduction of the number of switching
elements, as well as guaranteeing non-blocking capabilities, avoiding routing conflict inside the
device mesh [25]. The non-blocking property is fundamental for our target application, as all
possible permutations of the N input signals must be achievable at the egress stage of the network,
allowing full control of the routing component for any given output request. The N X N Bene§
device is characterized by a recursive structure (see Fig. 5), described in details in [26], with a
number of OSE equal to Ny, = N X log, N — % distributed in 2log, N — 1 stages, as depicted for
an 8x8 Benes in Fig. 5(b). One important characteristic of this device is the solution multiplicity
for any given target output state: given that the Ny,, OSEs lead to several control configurations
Neon = 2w, larger than the number of unique output permutations Noy = N!, multiple solutions
must exist for each unique output permutation request, whose multiplicity depends on the specific
target output permutation. In Section 5. we propose a ML-based approach to determine the best
configuration between the nominally identical ones returned by the proposed routing algorithm.

I Control Signals M.

v
Signals Signals
Input v Output
Signals , Signals
H
v
'

(a) Generic Benes network recursive structure (b) 8x8 Benes network

Fig. 5. Generic Bene§ network recursive structure

4. Simulation environment and dataset generation

The device is modeled under two different levels of abstraction to characterize the dependence on
the control signals of both the routing behavior and the impact on QoT of the switching operation.

4.1. Routing model

Given the black-box abstraction of the 2X2 cross-bar OSEs, the routing problem can be solved on
a simplified version of the circuit, taking only into account the logical link between input-output
ports as a function of the binary control state of each fundamental switch. To this end, a
virtual topological structure was generated in MATLAB, in order to analyze the routing and
then to evaluate the logical output for the QoT transmission-level simulation. Given the simple
recursive structure of the network, coupled with the non-polynomial increase in the solution
space (Neont = O(2N1°2N) ' Ny, = O(N)), brute-force solution together with look-up tables are
not a scalable method to obtain the states configurations for the target output request. This
introduces the need for a scalable deterministic algorithm to tackle the problem complexity and
provide the equivalent paths routing the same output permutation. While it is fundamental to be
able to generate a single routing solution for a target output permutation, in order to minimize
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the penalties in a device-agnostic scenario a more general algorithm is needed to evaluate all
equivalent routing solutions for each required signal output permutation. The device-agnostic
scenario is introduced to generalize the analysis without the need of assuming the QoT behavior
to the physical and device-level structure: a simpler approach to the optimization of the QoT
could be to minimize the number of interconnecting crossings encountered by each signal, as
these elements are typically the leading cause of signal attenuation. However, this relies on a
device assumption which could not always be accurate, so to avoid the issue the problem is split
into two main sections, under a "divide and rule" paradigm: the routing model is tasked with
generating all equivalent routings for the target signal output, without introducing assumptions on
the underlying transmission penalty, while the ML agent proposed in the later sections handles
the QoT optimizations, selecting between the solution space the best-predicted solution.

Algorithm 1. Benes routing algorithm

Require: Number of input and output channels N, Input signals labels 1.y, Output signals labels Of.x)

Ensure: A control state, chosen randomly among all the control states giving the requested target output permutation
1: Number of switch per stage Ngw/st = %
2: Number of stages Ny; = log, N

3: for layer index [/ = 1 to % - 1do

4: Initialize to -1 the routing matrix M; € R Ix5

5: Initialize to O the label matrix 7 € R Sxs

6: for label index j = 1 to N do

7 swi < [4]

8: SWo « [%] with k such that Oy = 7;

9: if M;(SW;, SWp) is -1 then

10: if column SWyp of M; contains a 0 then

11: M(SWy, SWp) «— 1 %%% 1 i.e. bottom network routing
12: else if column SWyp of M; contains a 1 then

13: M(SWr, SWp) < 0 %%% 0 i.e. top network routing
14: else

15: set randomly M;(SW;, SWp) to O or 1

16: end if

17: T)/(SWy, SWo) « I;

18: else if M;(SW;, SWp) is not -1 then

19: M(SWy, SWp) « 2 %%% 2 i.e. same input-output couple request
20: T[(SW[, 1) — T](SW[, SWO)
21: Ti(SWy, 2) «— I;
22: end if
23: end for

24: check for conflict — Algorithm 2
25: update I;, O; for the evaluated routing
26: end for

The proposed solution represents a generalization of the matrix-based algorithm described
in [27]. Having defined an N X N Bene§, with number of switches per stage Ngwst = %’
and number of stages Ny = log, N, the proposed algorithm is divided in the following steps
(Algorithm 1-Algorithm 2):

* For each layer of the network up to the half-point stage, generate two empty matrices
M, T € R%X%, representing respectively the control states of the OSEs in the layer and
the rearranged signal order after the layer.

* By comparing the input signals order of the ingress layer with respect to the output signals
order of the egress layer, for every signal map, the relation between input switch and target
output switch. The ingress and egress layers are symmetrical with respect to the middle
stage Nmiddle = % (ingress: layer (i), egress: layer (Ng — i), for i € [1 : Npiddie])
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* Fill the matrix M with [0, 1] using the input-output switch relationship to select the
row-column pair respectively. The matrix 7~ contains the label of the signal corresponding
to that input-output switch pair.

* Once the matrix for the layer is compiled, verify that no repetitions occur both row-wise
and column-wise. Only one instance of "0" and "1" can occur in any given row or column.
If repetitions occur, flip the element column-wise until the conditions are solved.

o Iterate for all layers i € [1 : Npmiddiel)-

Algorithm 2. Routing conflict algorithm

Require: Routing matrix M
Ensure: Balanced conflict-avoiding routing
1: conflict=false
2: Conflicts=empty list
3: for row index r = 1 to N do
4 R=row r of M
S5: if R contains two Os or two s then
6 conflict=true
7 append r to Conflicts
8

: end if
9: end for
10: if conflict then
11: r*=randomly selected element in Conflicts
12: R*=row r* of M
13: ¢* = randomly selected position of any element of R* equal to O or 1

14: C*=column ¢* of M

15:  exchange 0 and 1 in C*

16: loop to 1

17: else

18: return — Algorithm 1 (update matrix M)
19: end if

In the described algorithm the "0" and "1" flags of the M matrices correspond to the propagation
direction of the signal in each switching element, relative to the following stages: considering the
recursive structure of the Benes topology, as well as its symmetry, at every stage, two equivalent
paths can be found in the respective top and bottom following sub-network. Two additional flags
values are used in the proposed algorithm: every matrix cell is initially set to "-1" to indicate
non-allocated requests or empty cells. An additional flag is required in the routing matrix in
order to account for equivalent routings in some specific cases: while typically the input signals
of an ingress switch must be routed to different egress switches when both input signals are
targeting the same output switch, only one single cell of the routing matrix can be targeted: to
this end, the flag "2" represents the path equivalence between the top and bottom network, with
the implied value of both ("1","0") and ("0","1").

Once the procedure is completed, the state of the switches can be obtained by comparing
the order of the signals of each layer, taking into account the interconnects and the top/down
direction provided by the compiled M; matrices. With a slight modification to the presented
algorithm, the evaluation of all equivalent paths in terms of permutation of the output signals
becomes trivial: once the output permutation is set, each valid matrix M; represents a different
equivalent routing possibility. For every routing of the previous layer, the process is iterated,
generating a recursive exploration of all switching states for the required output. Using the
proposed algorithm, the control unit can generate different solutions depending on the required
task: if all equivalent routing solutions are evaluated, the proposed ML agent can optimize the
QoT, finally choosing the path with minimum transmission penalty. Suppose a simpler control
unit is required; the algorithm can provide a single control configuration for the device, generating
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one random routing compatible with the required signal output permutation without exploring all
equivalent paths.

4.2. Transmission model

To evaluate the impact of the switching fabric on the QoT, numerical simulations have been
first carried out in the Synopsys OptSim™ Photonic Circuit simulation environment [28],
testing an 8x8 Benes switch base on an OSE implemented with the second order coupling
MZI previously described. Due to the relative low-loss flat-band behavior of the OSE, the
critical components in the device, especially concerning routing optimization, are the waveguide
crossings, which introduce path-dependent losses and attenuation in the propagating signals. It
must also be remarked that for strict-sense Benes$ structures (N = 2*, x € N) the number of
switches encountered by each signal is equal, independently from the OSE control signals, as
shown in Fig. 6, highlighting the critical task in characterizing the control states dependent QoT
impairments due to the stages interconnects.
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(a) 8x8 Benes switch schematic in OptSim Photonic Circuit. Crossings are indicated by blue blocks while OSEs are
shown as red blocks.
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Fig. 6. 8x8 Bene§ switch schematic in OptSim Photonic Circuit. Crossings are indicated
by blue blocks while OSEs are shown as red blocks.

The designed waveguide crossing introduces an average 0.2 dB—0.3 dB loss for each instance,
with a small spectral variance, as depicted in Fig. 6(b). While the crossings have been accounted
for the penalty evaluation, the interconnect waveguides and bent sections have not, due to their
generally negligible effect in a properly designed layout. The general schematic of the simulated
setup is depicted in Fig. 6(c). We assumed eight input signals spaced Af = 100 GhZ with a central
frequency of f, = 193 THz. The simulated signals consisted of PM-16-QAM modulated streams
at B, = 60 GBaud, which are then demodulated at the receiver side, extracting the Bit-Error
Rate (BER) as a function of the OSNR. These measurements are then expressed as Qol Penalty
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(in decibel), comparing to the trend of the back-to-back TX/RX system evaluated without the
switching fabric. Due to the previously discussed non-polynomial increase of the solution space,
the characterization of the full system through a look-up table solution is not feasible, especially
at the transmission level, due to the high computational costs of such simulations. In order to
train the proposed ML algorithm, it is necessary to build a dataset of simulated configurations,
measuring the QoT Penalty for a random sub-set of control signals.

The simulation dataset has been generated for Ny, = 5000 random control configurations,
allowing equivalent paths (output permutation) but enforcing individual control states to avoid
erroneous training by repeating the same OSE states. The general distribution of the OSNR
Penalties for the simulated dataset is shown in Fig. 7: as expected, the distribution has a relatively
uniform average value of y = 2 dB for every output port, with a comparable standard deviation.
To characterize the device in SDN controlled environment, it is important to highlight the
maximum value of the penalty: AOSNR,.x = 3.1 dB. Without a control unit capable of a reliable
prediction of the expected penalty in real-time, the impact of switching on QoI must always be
over-estimated to this maximum value, which represents an infrequent worst-case assumption.
To this end, the ML agent allows more flexible control of the device, highlighting the cases
where a higher transmission rate can be applied due to a lower penalty. Furthermore, in Fig. 7
every data-point corresponds to one of the different equivalent solutions, highlighting the average
penalty for all the output ports, as well as the minimum and maximum values. It is clear how a
real-time control strategy can be employed to optimize the performance of such a device. At the
same time, the average port penalties are identical between configurations; the lower variance
solutions offer a better alternative, as the QoT is more uniform between all the output ports of the
configuration.
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Fig. 7. Statistical analysis of OSNR Penalties for each output port.

5. Machine learning modeling for QoT impairment

This section illustrates the details of the proposed ML framework and explains the complete
workflow of training and testing phases. It also describes the architecture of the main cognitive
engine of the proposed ML module, along with the definition of features, labels, and additional
tuning and control parameters. The final ML module will be integrated as an application program
interface (API) inside the controller.

The proposed supervised ML-based framework works in a complete black-box manner,
requiring only substantial training data to develop a cognitive model without considering the
photonic circuit internal topology. Like all other supervised ML techniques, to complete the
training and prediction procedures, the proposed model requires defining the features and labels
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that represent the system inputs and outputs, respectively. The manipulated features include the
different permutations of the OSE control signals (Ctrly, Ctrly, Ctrls, - - - , Ctrly) at the control
ports of the photonic switch and utilize QoT Penalty of the k-th output port of the considered
photonic switch as labels shown in Fig. 8.

Control Plane ) ) 0% [mrAzN
Mulband Control Uit | U t ?:::1 - o]
=5
[ ]
pich

Parallel DNN architecture

Fig. 8. Schematic of the ML module with Parallel DNN architecture

A deep neural network (DNN) [29] is considered to develop the cognition in the ML engine
as it is the potential tool that is frequently used in different applications in various fields. The
proposed DNN is built by using a higher-level API of the open-source TensorFlow library [29],
which offers a variety of learning algorithms along with data processing functions to improve the
quality of the generated dataset. The core engine of DNN is configured by various optimized
hyper-parameters such as the training steps, set to 1000; the optimizer is loaded with the adaptive
gradient algorithm (ADAGRAD) Keras optimizer, with a default learning rate of 1072 and L,
regularization is set to 107> to acquire the computational advantage by avoiding the features with
zero coeflicients [30]. Additionally, numerous non-linear activation functions such as Relu, tanh,
sigmoid. have been tested during the model build-up. Later, Relu has been selected to feed in
DNN as it outperforms the others in terms of prediction and computational load [31].

Furthermore, another essential DNN hyper-parameter is the number of hidden-layers. The
proposed model core engine has been tuned on considerable numbers of hidden-layers and
neurons to reach the best trade-off between accuracy and computational time. Even though an
increase in the number of layers and neurons enhances the accuracy of the DNN up to a certain
level, a further increase in the values of these parameters introduces diminishing returns that
cause over-fitting of the model and, at the same time, increases the computational time. After
this complex trade-off assessment, we decided upon a DNN with three hidden-layers with ten
artificial neurons for each hidden layer optimized for the considered dimension N. To enhance
prediction performance, we propose to use a parallel architecture for the DNN as shown in
Fig. 8. In reality, we have an autonomous DNN to predict the QoT Penalty against each k-th
output port of the considered NxN photonic switch. The parallel architecture of DNN better
exploits the augmented information in the provided dataset for each output port, which gives
better cognition to the core DNN engine and consequently achieves high efficiency in terms of
prediction. Initially, the core DNN engine training is performed; after that, the trained model is
tested on a separate subset of the dataset: the conventional rule of thumb 70 % and 30 % have
been opted to split the generated dataset. The train set is 70 % while the test set is 30 % of the
total generated dataset reported subsection 4.2. Each of the individual DNN modules in the
parallel architecture is provided with the same set of features (Ctrly, Ctrly, Ctris, - - - , Ctrly), i.e.,
OSE control signals) as an input during training and retrieves OSNR Penalty, , for each port &
of the proposed UWB Benes switch as an output label. In order to prevent over-fitting of the
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DNN, the training step is considered as the stopping factor while the mean square error (MSE)
is applied as a loss function, given by

11 2
QoT MSE = D (ﬁ > (OSNR Penalty”, ~ OSNR Penalty;jk) ) (1
k=1

where n is the number of test realizations, N is the total number of input/output ports of the
specific NXN switching system and OSNR Penaltyf « — OSNR Penaltygk are the predicted and
actual OSNR Penalties of the k-th output port of the considered topology.

6. Results and discussion

This section demonstrates the accuracy of proposed ML modules in delivering QoT impairments
predictions for UWB photonics switching architectures. The ML module exploits the deterministic
switch control states to obtain the QJT impairments in terms of OSNR Penalty; , for each port
of the proposed UWB Benes switch. In addition to this, a complete case study is also analyzed to
reveal the effectiveness of the proposed ML-based QoT Penalty estimation model for the photonic
switching system.

The proposed ML cognitive engine manipulates the deterministic control states as input and
exploits the QoT Penalty as an output. The metric utilized to assess the accuracy of the ML
model is defined as:

AOSNR; = OSNR Penalty{, — OSNR Penalty”, 2)
where the parameters reported in Eq. (2) have the same meaning as in Eq. (1). The reliability of
the proposed ML-based QoT model is verified by analyzing its performance at each port of the
proposed 8x8 Bene§ switch. The distribution of AOSNRs of all the ports of the 8x8 Benes are
shown in Fig. 9, along with their mean (u) and standard deviation (o) statistics.
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Fig. 9. Probability density functions of AOSNR for each port of the 8x8 Bene§ switch.
Average values u and variances o indicated for the individual cases are expressed in decibel.

In Fig. 9, all the distributions of AOSNRs are split up into two slices by the red dotted line
(AOSNR = 0). The portion area where AOSNRs < 0 is not critical as OSNR Penaltyzk <
OSNR Penaltyﬁ ¢ S0, in this case we only waste some capacity but the system will never
turn into out-of-service. In contrast the section where AOSNRs>O0 is the critical one as
OSNR Penalty?! +>OSNR Penaltyp = In this case, it is required to deploy some margin on top of
the ML predlctlon to keep the system working all the time. The maximum required margins (dx)
for this case where AOSNRs>0 are shown as a green line for each port k of the 8x8 Benes.

Inspecting the required margin, we observe the high level of accuracy achieved operating ML
model for QoT impairments estimation. The proposed 8x8 Benes, the worst-case prediction
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performance is observed on port 5; the s is less than 0.12 dB. With the availability of such
accurate prediction, we can envision that in practical applications, the OSNR Penalty margin on
top of the ML prediction can be reduced to 0.12 dB for Benes 8x8. Furthermore, the prediction
asymmetry between the different port of the device, is due to the intrinsic randomness and limited
size of the provided data-set, leading to better training for the prediction of certain paths. Under
the envisioned case-study, a drastically smaller data-set has been provided by choice to the ML
agent with respect to the complete device configuration set. Even under this limited training
scenario, the asymmetry between the port predictions is still marginal with respect to the QoT
optimization available through this method deployment.

The effectiveness of the proposed ML-based QoTl impairments estimation model is further
demonstrated by considering the optimality routing issue: the ML agent can be used to optimize
the routing solution in conjunction with the previously described routing algorithm. Taking as
an example a target output request such as [1, 2, 3,4, 5,6,7,8] — [7, 6, 3,8, 5, 4, 1, 2], we
observe that 32 different combinations of the control states exist leading to the desired output
pattern. The designed routing algorithm is able to evaluate all these nominally equivalent routing
solutions, which have been tested in order to characterize their penalty and statistical distribution,
as shown in Fig. 10. The average penalty for every equivalent configuration is reasonably similar,
while the main difference is found between the standard deviation between the penalty of each
port. The ML agent could provide real-time control optimization for this application, minimizing
the overall penalty and avoiding high deviation solutions. This target goal allows for a similar
penalty factor between all the output signals, minimizing the overall deviation, although different
criteria could provide alternative solutions depending on the overall control goal. The choice
of the best control state depends on the selected metric: considering the results introduced in
Fig. 10, configuration number 18 provides the minimal deviation between the alternative routings,
while solution number 27 could be selected if only the minimum penalty is considered as the
optical metric.
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Fig. 10. OSNR Penalty distribution for 32 nominally equivalent control states generating
the output pattern [7, 6, 3, 8, 5, 4, 1, 2]. A label from 1 to 32 has been assigned to each
control state according to the order it is generated by the proposed algotithm.

7. Conclusions

Optical network elements currently exploit PICs to carry out most of the complex functions at
the photonic level; specifically, optical networks and data centers progressively utilize large-scale
photonic switches and wavelength selective switches due to their wide-band abilities together
with low latency and low power consumption. This increased use of photonic switching systems
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creates a massive demand for a generic management model that works in an entirely topological
and technological agnostic way.

This work introduced the concept of a softwarized and autonomous management of PIC-based
UWB optical switches for software-defined open optical networks. The proposed method can
model any NxN UWB switching system at two different levels of abstraction: the routing and
the QoT levels related to the applied control signals. The routing level problem is solved by
considering the black-box abstraction of the 2x2 cross-bar switching units. At the same time, for
the QoT, an ML-based framework is proposed to predict the QoI degradation due to the switching
element. The proposed model works in a topological and technological agnostic blind way,
exploiting neural network to model the QoT impairments of any NxN UWB photonic switch.

The operated data-driven technique is easily scalable to larger input dimensions N as a high
level of accuracy can be achieved with limited-size datasets. Besides this, the proposed two-level
abstraction scheme can be further expanded to evaluate the performance of any NXN optical
switch on the network layer metrics. Furthermore, the model achieved promising results in
predicting QoT degradation; the error in predicting QoT degradation is less than 0.12 dB. With
the availability of such accurate prediction, we can envision that in practical applications, the
required QoT margin on top of the ML prediction can be reduced to 0.12 dB for the considered
Benes 8x8 architecture.

Funding. H2020 Marie Sktodowska-Curie Actions (814276); Synopsys within the activities of a research MSA with
Politecnico di Torino.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

References

1. A. Ferrari, A. Napoli, J. K. Fischer, N. Costa, A. D’ Amico, J. Pedro, W. Forysiak, E. Pincemin, A. Lord, A. Stavdas, J.
P. F.-P. Gimenez, G. Roelkens, N. Calabretta, S. Abrate, B. Sommerkorn-Krombholz, and V. Curri, “Assessment on
the achievable throughput of multi-band ITU-T G.652.D fiber transmission systems,” J. Lightwave Technol. 38(16),
42794291 (2020).

2. C.-S.Liand W. Liao, “Software defined networks,” IEEE Commun. Mag. 51(2), 113 (2013).

3. M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, and M. Tomizawa, “Elastic and adaptive optical networks: possible
adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164-172 (2011).

4. V. Curri, A. Carena, A. Arduino, G. Bosco, P. Poggiolini, A. Nespola, and F. Forghieri, “Design strategies and
merit of system parameters for uniform uncompensated links supporting Nyquist-WDM transmission,” J. Lightwave
Technol. 33(18), 3921-3932 (2015).

5. V.Curri, “Software-defined wdm optical transport in disaggregated open optical networks,” in 2020 22nd International
Conference on Transparent Optical Networks (ICTON), (2020), pp. 1-4.

6. K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-
loss and power-efficient 32 x 32 silicon photonics switch with extremely high-¢ silica plc connector,” J. Lightwave
Technol. 37(1), 116-122 (2019).

7. Q. Cheng, L. Y. Dai, N. C. Abrams, Y.-H. Hung, P. E. Morrissey, M. Glick, P. O’Brien, and K. Bergman,
“Ultralow-crosstalk, strictly non-blocking microring-based optical switch,” Photon. Res. 7(2), 155-161 (2019).

8. J. Kim, C. Nuzman, B. Kumar, D. Lieuwen, J. Kraus, A. Weiss, C. Lichtenwalner, A. Papazian, R. Frahm, N.
Basavanhally, D. Ramsey, V. Aksyuk, F. Pardo, M. Simon, V. Lifton, H. Chan, M. Haueis, A. Gasparyan, H. Shea, S.
Arney, C. Bolle, P. Kolodner, R. Ryf, D. Neilson, and J. Gates, “1100 x 1100 port MEMS-based optical crossconnect
with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537-1539 (2003).

. A. N. Dames, “Beam steering optical switch,” (2008). US Patent 7, 389, 016.

10. Y. Huang, Q. Cheng, Y.-H. Hung, H. Guan, X. Meng, A. Novack, M. Streshinsky, M. Hochberg, and K. Bergman,
“Multi-stage 8 x 8 silicon photonic switch based on dual-microring switching elements,” J. Lightwave Technol. 38(2),
194-201 (2020).

11. D. Opferman and N. Tsao-Wu, “On a class of rearrangeable switching networks part I: Control algorithm,” The Bell
Syst. Tech. J. 50(5), 1579-1600 (1971).

12. M. Ding, Q. Cheng, A. Wonfor, R. V. Penty, and 1. H. White, “Routing algorithm to optimize loss and IPDR for
rearrangeably non-blocking integrated optical switches,” in 2015 Conference on Lasers and Electro-Optics (CLEO),
(2015), pp. 1-2.

13. Y. Qian, H. Mehrvar, H. Ma, X. Yang, K. Zhu, H. Fu, D. Geng, D. Goodwill, P. Dumais, and E. Bernier,Crosstalk
optimization in low extinction-ratio switch fabrics, in 2014 Optical Fiber Communication (OFC), (2014), pp. 1-3.


https://doi.org/10.1109/JLT.2020.2989620
https://doi.org/10.1109/MCOM.2013.6461194
https://doi.org/10.1109/MCOM.2011.6035831
https://doi.org/10.1109/JLT.2015.2447151
https://doi.org/10.1109/JLT.2015.2447151
https://doi.org/10.1109/JLT.2018.2867575
https://doi.org/10.1109/JLT.2018.2867575
https://doi.org/10.1364/PRJ.7.000155
https://doi.org/10.1109/LPT.2003.818653
https://doi.org/10.1109/JLT.2019.2945941
https://doi.org/10.1002/j.1538-7305.1971.tb02569.x
https://doi.org/10.1002/j.1538-7305.1971.tb02569.x

14.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.
30.

3

Optics EXPRESS

Q. Cheng, Y. Huang, H. Yang, M. Bahadori, N. Abrams, X. Meng, M. Glick, Y. Liu, M. Hochberg, and K. Bergman,
“Silicon photonic switch topologies and routing strategies for disaggregated data centers,” IEEE J. Sel. Top. Quantum
Electron. 26, 1-10 (2020).

. W. Gao, L. Lu, L. Zhou, and J. Chen, “Automatic calibration of silicon ring-based optical switch powered by machine

learning,” Opt. Express 28(7), 10438-10455 (2020).

. I. Khan, M. Chalony, E. Ghillino, M. U. Masood, J. Patel, D. Richards, P. Mena, P. Bardella, A. Carena, and V. Curri,

“Effectiveness of machine learning in assessing QoT impairments of photonics integrated circuits to reduce system
margin,” in 2020 IEEE Photonics Conference (IPC), (2020), pp. 1-2.

. I. Khan, M. Chalony, E. Ghillino, M. U. Masood, J. Patel, D. Richards, P. Mena, P. Bardella, A. Carena, and V.

Curri, “Machine learning assisted abstraction of photonic integrated circuits in fully disaggregated transparent optical
networks,” in 2020 22nd International Conference on Transparent Optical Networks (ICTON), (2020), pp. 1-4.

. H. Zhou, Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “Self-configuring and reconfigurable silicon photonic

signal processor,” ACS Photonics 7(3), 792-799 (2020).

. I. Khan, L. Tunesi, M. Chalony, E. Ghillino, M. U. Masood, J. Patel, P. Bardella, A. Carena, and V. Curri, “Machine-

learning-aided abstraction of photonic integrated circuits in software-defined optical transport,” in Next-Generation
Optical Communication: Components, Sub-Systems, and Systems X, vol. 11713 (SPIE, 2021), p. 117130Q.

I. Khan, L. Tunesi, M. U. Masood, E. Ghillino, P. Bardella, A. Carena, and V. Curri, “Automatic management of
NXxN photonic switch powered by machine learning in software-defined optical transport,” IEEE Open J. Commun.
Soc. 2, 1358-1365 (2021).

I. Khan, L. Tunesi, M. U. Masood, E. Ghillino, P. Bardella, A. Carena, and V. Curri, “Machine learning assisted
model of qot penalties for photonics switching systems,” in Photonics in Switching and Computing 2021, (Optical
Society of America, 2021), p. M2A.3.

R. Proietti, X. Chen, Y. Shang, and S. J. B. Yoo, “Self-driving reconfiguration of data center networks by deep
reinforcement learning and silicon photonic Flex-LION switches,” in 2020 IEEE Photonics Conference (IPC), (2020),
pp. 1-2.

S. Salman, C. Streiffer, H. Chen, T. Benson, and A. Kadav, “DeepConf: Automating data center network topologies
management with machine learning,” in Proceedings of the 2018 Workshop on Network Meets AI & ML, (Association
for Computing Machinery, New York, NY, USA, 2018), NetAI' 18, pp. 8—14.

R. Orta, G. Perrone, R. Tascone, A. Fincato, M. Lenzi, S. Lorenzotti, and P. Nugent, “Design technique for wideband
optical couplers,” in Fiber Optic Network Components, vol. 2449 (SPIE, 1995), pp. 375-383.

C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech. J. 32(2), 406—424 (1953).

C. Chang and R. Melhem, “Arbitrary size benes networks,” Parallel Process. Lett. 07(03), 279-284 (1997).

A. Chakrabarty, M. Collier, and S. Mukhopadhyay, “Matrix-based nonblocking routing algorithm for Benes networks,”
in Future computing 2009, (IEEE, 2009 ), pp. 551-556.

E. Ghillino, E. Virgillito, P. V. Mena, R. Scarmozzino, R. Stoffer, D. Richards, A. Ghiasi, A. Ferrari, M. Cantono, A.
Carena, and V. Curri, “The Synopsys software environment to design and simulate photonic integrated circuits: A
case study for 400G transmission,” in 2018 20th International Conference on Transparent Optical Networks (ICTON),
(2018), pp. 1-4.

https://www.tensorflow.org/.

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” J.
Mach. Learn. Res. 12, 2121-2159 (2011).

. C. Nwankpa, W. [jomah, A. Gachagan, and S. Marshall, “Activation functions: Comparison of trends in practice and

research for deep learning,” in 2nd International Conference on Computational Sciences and Technology, (2021), pp.
12-133.


https://doi.org/10.1109/JSTQE.2019.2960950
https://doi.org/10.1109/JSTQE.2019.2960950
https://doi.org/10.1364/OE.388931
https://doi.org/10.1021/acsphotonics.9b01673
https://doi.org/10.1109/OJCOMS.2021.3085678
https://doi.org/10.1109/OJCOMS.2021.3085678
https://doi.org/10.1002/j.1538-7305.1953.tb01433.x
https://doi.org/10.1142/S0129626497000292
https://www.tensorflow.org/
https://doi.org/10.5555/1953048.2021068
https://doi.org/10.5555/1953048.2021068

