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Abstract—The mammalian cortex contains a great variety of
neuronal cells. In particular, GABAergic interneurons, which
play a major role in neuronal circuit function, exhibit an
extraordinary diversity of cell types. In this regard, single-cell
RNA-seq analysis is crucial to study cellular heterogeneity. To
identify and analyze rare cell types, it is necessary to reliably
label cells through known markers. In this way, all the related
studies are dependent on the quality of the employed marker
genes. Therefore, in this work, we investigate how a set of chosen
inhibitory interneurons markers perform. The gene set consists of
both immunohistochemistry-derived genes and single-cell RNA-
seq taxonomy ones. We employed various human and mouse
datasets of the brain cortex, consequently processed with the
Monocle3 pipeline. We defined metrics based on the relations
between unsupervised cluster results and the marker expression.
Specifically, we calculated the specificity, the fraction of cells
expressing, and some metrics derived from decision tree analysis
like entropy gain and impurity reduction. The results highlighted
the strong reliability of some markers but also the low quality
of others. More interestingly, though, a correlation emerges
between the general performances of the genes set and the
experimental quality of the datasets. Therefore, the proposed
method allows evaluating the quality of a dataset in relation
to its reliability regarding the inhibitory interneurons cellular
heterogeneity study.

I. INTRODUCTION

The cerebral cortex is one of the most complex systems
in biology, with an extraordinary variety of specialized cells
forming the neuronal circuit at the base of the brain functions
[1]. It is composed primarily of neuronal and non-neuronal
cells. Neuronal cells are mainly divided into excitatory (or
glutamatergic) and inhibitory (or GABAergic) neurons. Excita-
tory neurons comprise the majority of cells and connect distal
areas of the cortex. Inhibitory neurons, primarily composed
of interneurons, connect locally to excitatory neurons and
inhibit the transmission in neuronal circuits. In particular,
GABAergic interneurons show several subtypes, which differ
in morphology, functionality, neurochemical and physiological
properties. The deep and complete understanding and taxon-
omy of inhibitory interneurons is still an open problem in
biology [2].

To help with this challenge, the employment of single-
cell RNA sequencing (scRNA-seq) data is important. ScRNA-
seq allows the investigation of the gene-expression profile
with single-cell resolution, enabling the study of cellular
heterogeneity at the transcriptional level [4][5]. The scRNA-
seq analysis typically involves unsupervised clustering algo-
rithms, which cluster cells of a dataset into groups based on
mathematical and topology-based algorithms. However, these
clusters, and more importantly, the cells they contain, have
no biological identities. To label them, one usually performs
differential expression analysis or investigates the expression
of cell-type-related marker genes. In both cases, the discrimi-
native ability and reliability of the selected marker genes are
crucial for heterogeneity studies, especially regarding the rare
cell types identification.

This paper focuses on GABAergic interneurons subtypes
identification. It aims at investigating the landscape of
biomarkers commonly employed for their analysis. One of
the main contributions is the analysis of the marker relia-
bility when applied to the scRNA-seq analysis. The analysis
takes into consideration literature-based markers from im-
munohistochemistry studies and single-cell taxonomy analysis.
Moreover, the paper defines metrics to highlight and evaluate
the marker’s performances to enable quantitative comparison.
These metrics have been defined to be general and easy
to apply, so one could employ them to investigate other
biomarkers for various cell type populations.

II. MATERIALS AND METHODS

A. Literature Markers study

We started with an extensive literature review to understand
how the state-of-the-art defines the subtypes of the cortical
GABAergic interneurons. We initially focused on various stud-
ies involving this type of cells, including immunohistochem-
istry (Figure 1a) and scRNA-seq (Figure 1b) analyses. The
result is an increasingly complicated landscape of markers and
subgroups. Here we give an overview of their classification,
considering different levels of hierarchy. First, all inhibitory



(a) (b)

Fig. 1. Cortical inhibitory interneurons biomarkers are derived from the analysis of the literature. (a) Biomarkers identified using immunohistochemistry
studies (adapted from [3]). (b) Taxonomy and related markers derived from scRNA-seq analysis studies.

neurons are characterized by using γ-aminobutyric acid as a
neurotransmitter strictly related to the enzyme glutamic acid
decarboxylase (GAD), encoded by the genes Gad1 and Gad2
[6]. These two genes are notoriously employed to identify
inhibitory neurons as a whole and are broadly accepted as
their markers. Then cortical interneurons are divided into
two categories, dependent on their anatomical origin in the
developmental cortex [3][7]. The first one is the medial
ganglionic eminence (MGE) derived cells from which the
majority (about 70% [8]) of the cortical interneurons derives.
The remaining cells are central ganglionic eminence (CGE)-
derived. Regarding, this subdivision, we identified, from im-
munohistochemistry the gene 5-Hydroxytryptamine Receptor
3A (Htr3a) linked to CGE-derived cells, and from scRNA-
seq studies the genes Adenosine Deaminase RNA Specific
B2 (Adrab2) and LIM Homeobox 6 (Lhx6) respectively for
MGE and CGE derived cells. These two subgroups give
then origin to a constellation of subtypes [8][1]. For this re-
search, we investigate them using gene expression. The MGE-
derived cells are classified into two non-overlapping subtypes,
the parvalbumin-expressing (PVALB), and the somatostatin-
expressing (SST) cells, named after their characterizing genes
Pvalb and Sst. Our investigation of the immunohistochem-
istry landscape and single-cell taxonomy leads to a complex
landscape of genes, whose expression defines subclasses of
interneurons overlapping with each other (Figure 1a) [8][3][9].
Therefore, after this preliminary analysis, we decided to divide
the remaining CGE-derived cells, into two subgroups. The
vasoactive intestinal peptide-expressing (VIP) cells related to
the Vip gene, and non-Vip-expressing(LAMP) cells with the
Lysosomal Associated Membrane Protein Family Member 5
(Lamp5) gene as a marker. Overall, Figure 1 recapitulates
the division and the related markers of the cortical inhibitory
interneurons. Based on this preliminary analysis, we decided
to consider a division into four subclasses, namely PVALB,
SST, VIP, and LAMP, based on the expression of the genes
Pvalb, Sst, Vip, Lamp5. Two classes (i.e., PVALB and SST)
are associated with CGE-derived cells, and two classes (i.e.,
VIP and LAMP) are associated with MGE-derived cells. We

considered a collection of 9 marker genes (i.e., Gad1, Gad2,
Adrb2, Htr3a, Lhx6, Pvalb, Sst, Vip, and Lamp5) for which we
accurately calculated the defined metrics to understand their
capability to discriminate different classes of cells reliably.

B. Data collection and availability

This work aims to study the overall performance of some
marker genes within the context of scRNA-seq analysis. There-
fore we need a collection of different datasets to perform
a significant meta-analysis able to characterize an average
single-cell experiment. Since the previous discussion on cor-
tical inhibitory interneuron diversity is valid for the general
mammalian brain cortex, we included datasets from Mus Mus-
culus and Homo Sapiens samples and examined homologous
markers between the two species. To account for possible
differences, we refer to the Hodge et al. study [10]. All the
samples are from comprehensive cortex studies or specific
anatomical and functional cortex regions. We collected and
processed a total of 9 datasets: three from Homo Sapiens
and six from Mus Musculus. The two main sources for the
acquisition were the Allen Brain Map database [11] of the
Allen Institute and the Single Cell Portal [12]. Specifically,
four datasets come from Allen (i.e., Allen Human ACC [13],
Allen Human MTG [14], Allen Human VISP [13], and Allen
Mouse Cortex [15]), four from the Single Cell Portal (i.e.,
SCP2 mouse AUD [16], SCP3 mouse ORB [17], SCP5 mouse
Visp [18], and SCP6 mouse MOP [19]), and a dataset from
a multimodal technique experiment (SNARE mouse cortex,
GEO accession number: GSE126074 [20]).

C. Datasets processing

To process the scRNA-seq datasets, we employed the well-
known pipeline Monocle3 [21] implemented in R [22]. In
this way, we guarantee to mimic the workflow typically
employed in single-cell data analysis [5]. For each dataset, we
followed the standard workflow illustrated in their vignette
[21]. In particular, one must pay attention to the clustering
resolution. Since we are working with four types of inhibitory
interneurons (i.e., PVALB, SST, VIP, and LAMP), we decided
to work with a final clustering division including four clusters.



This enabled us to qualitatively examine the expression of
the selected markers and their ability to identify the correct
clusters of inhibitory interneurons. This step is important since
it defines the cell type classification on which we measured the
performance of the related marker genes. Moreover, besides
Gad1 and Gad2 that are global markers whose metrics can
be computed taking into account all the cells in the datasets,
for the remaining markers, only cells labeled with a specific
group have been considered in the metric calculation.

The full set of R scripts required to reproduce
the proposed meta-analysis are deposited in an open
repository on GitHub: https://github.com/sysbio-polito/
cRNA-seq-interneurons-markers-analysis. Interested readers
can refer to the documentation available in the repository for
additional technical details.

D. Metrics definition

To evaluate the performance of the marker genes, we first
need to define a set of metrics designed for this task. Good
metrics should reflect how a gene is strictly related to a
particular group of cells and how good a feature is for the cell
classification. Regardless, we need a ground truth classification
to calculate the metrics. For this purpose, we considered the
unsupervised clusters obtained from the dataset processing.
Specifically, we labeled the clusters with the four defined
subtypes (i.e., PVALB, SST, VIP, and LAMP), qualitatively
assessing the overall expression of the related genes. With this
in mind, we defined four metrics.

First of all, we want to measure how much a marker is
associated with a cell type. The idea is that a perfect cell
type marker is expressed by all the cells it identifies and
only by them. For this purpose, we established two correlated
metrics: the fraction expressing and the specificity. The frac-
tion expressing is simply the percentage of cells expressing
the marker in the cluster. The specificity instead indicates
how much the marker expression is specific to a cluster. In
particular, an optimal marker is expressed only inside the
related cluster. We applied a method based on the Jensen-
Shannon divergence [23], also used in Monocle3 algorithms
to calculate the specificity during differential analysis [24]. Of
course, these two metrics are not optimal if employed alone,
but it is better to look at their correlation.

The other two metrics, instead, are an evaluation of the in-
formativeness of the markers. Specifically, we treat the cluster
classification problem like a decision tree problem, and we try
to understand how much the features are informative for the
clusters. Therefore, we initially take the cluster classification
as a training set, breaking it into subgroups based on some
features. In this case, the features are the expression levels
of the markers in each cell. Given the resulting partitioning,
one can evaluate the classification power of the marker with
some well-known metrics: the Information Gain [23] and
the Impurity Reduction [25]. The first is based on Shannon
Entropy (H), the second is based on Gini Index (G). The
Shannon Entropy (1) measures the amount of uncertainty of
a random variable with a probability distribution [23]. Its

value ranges between 0 in the case of a certain event (i.e.,
classification with all equal values) and 1 in the case of a
completely random event.

H(X) = −
N∑
i

p(xi)log(p(xi)) (1)

In our case, given a classification X (i.e., the list of all cells’
labels) with N possible classes (i.e., the number of subtypes
we are considering), p(xi) represents the probability of the
i-th class xi. Thus, the sum is over all the N classes. The Gini
Index (2) calculates the probability of a selected element to
be incorrectly classified when randomly labeled [25]. Like H,
it assumes values between 0 (i.e., purity of classification) and
1 (i.e., random distribution).

G(X) = 1−
N∑
i

p(xi)
2 (2)

p(xi) and xi have the same meaning as for the Shannon
Entropy. These two metrics are similar in what they estimate,
and one could employ only one of the two. However, it is
interesting to calculate both since we do not know which one
fits better our classification problem. Anyway, they are optimal
to evaluate the performance in a classification scenario, a
relevant task in labeling a scRNA-seq dataset. It is important
to highlight that all the metrics presented here are independent
of the particular cellular heterogeneity study but can be applied
to examine any set of markers.

Fig. 2. Schematic representation of the cell clustering for metrics calculation.
At first, for the markers Gad1 and Gad2, a heterogeneous population of cells
from the datasets (heterogeneity is depicted in an abstract way with different
colors) was considered. Cells are split into two clusters: interneurons and
other cells. Only interneurons are considered and analyzed at the second and
third levels, considering respectively two and four subgroups.

E. Metrics calculation

After the definition of the metrics, we explain how we
calculated them for each dataset. Given a processed dataset
with the interneurons clusters identified, we calculated the



four metrics for the list of genes on three different levels of
resolution as summarized in Figure 2.

We started with the genes Gad1 and Gad2, and we evaluated
their performance to discriminate the interneurons from all the
other cells (First Level in Figure 2). Therefore, we considered
all the identified interneurons as a single cluster. This result
represents the starting point for the following levels that aim to
split the interneurons’ population into different sets of clusters.

At the next level (Second Level in Figure 2), we evaluated
the metrics for the genes able to discriminate between MGE
and CGE derived cells starting from the set of interneuron
cells identified at the first level and dividing them into two
clusters labeled from the expression inspection. All the metrics
were calculated based on this partition. Finally, we applied the
same reasoning to the next level of classification (Third Level
in Figure 2), where we considered the cells grouped into four
clusters.

The fraction expressing is the fraction of cells in a given
cluster expressing the considered marker. It is determined by
counting the cells with a marker expression greater than zero.
One could introduce a minimum expression threshold to detect
the cells, but this would require a meaningful and reliable
way to set this level. The specificity, as previously mentioned,
is based on the Jensen-Shannon divergence. It measures how
specific the marker’s expression is to the cell group. The result-
ing value ranges between 0 and 1. While we measured these
two metrics, we also calculated the mean expression value
and the marker score. The marker score is just the product of
specificity and fraction expressing. Thus, it is a single value
that embeds the two metrics. However, due to its simple nature,
it could hide some relevant information if examined alone.
The mean expression is the average expression value of the
gene in the cluster. It is useful to shed light on the expression
levels in a cell type. Moreover, it adds an information layer to
the marker evaluation, meaning that there could be a relation
between the performance of a marker and its expression. Thus,
both the mean expression and the marker score are additional
information extending the marker performance evaluation.
Information Gain and Impurity Reduction calculations are
analogous, besides the actual mathematical formula employed.
We started by calculating the Entropy and Gini Index of the
cluster classification. Then, given a marker, we divided the
cells into two groups: those that do and do not express it.
For each subgroup, we calculated the two functions again. IG
and IR were therefore calculated as the subtraction between
the values of the metrics before and after the division. This
means that a good marker, which correctly classifies the cells,
has a high Information Gain. The same reasoning is also
valid for Impurity Reduction, which indicates how pure the
classification is after the split.

III. RESULTS

We present here the results of the proposed analysis applied
to the selected set of markers on all considered datasets.

We start with the analysis of the specificity and fraction ex-
pressing. As previously mentioned, individually investigating

the two metrics is not optimal since a single value does not
give a complete insight into the performance of a marker. For
example, a gene with very high specificity but low fraction
expressing implies that only a small population in a specific
cluster expresses it, which is not optimal when looking for a
good marker. For this reason, we look at them concurrently.
The best and easiest method is to visualize them on a plot
of specificity vs. fraction expressing, as reported in Figure 3.
All markers are labeled with their name and colored based on
the origin dataset. The size of the dots represents the mean
expression of the marker across the datasets. Uppercase genes
are from human datasets, while the others are from mouse
ones. The outcomes of this analysis are interesting. First of
all, it appears there is not a clear and coherent trend across
the different datasets. Some genes exhibit a coherent trend

Fig. 3. Specificity-Fraction expressing plot. Each dot is a marker from
a dataset indicated by the color. The size is directly dependent to the
mean expression. We can see that markers like Adarb2 have similar high
performance between datasets, indicating strong overall marker reliability. The
opposite case is Htr3a which always has low fraction expressing, meaning that
only a few cells express it.

across datasets, while others appear to be more scattered.
For example, the gene Adarb2 consistently appears in the top
right corner, indicating high specificity and fraction expression
(which is the most optimal case). This shows a high consis-
tency throughout the different datasets and organisms, with
an outstanding uniformity in the high values for both metrics.
Hence the Adarb2 gene is an optimal marker for the CGE-
derived interneurons. At the opposite end of the spectrum, we
have Htr3a, which is the only purely immunohistochemistry-
derived marker in our list. One can immediately notice how
this gene is grouped overall in the bottom right. This represents
a high specificity but a low fraction expression. It means
that only a few cells express it, despite being in the specific
cluster. With this example, we highlight a case where it is
clear that investigating only one of the two metrics could
be misleading. This analysis clearly shows that Htr3a is not
an optimal marker, despite being a CGE-derived cells marker
that the immunohistochemistry studies commonly propose. In
general, there are no other markers with particularly consistent



performances. Nonetheless, we can make some observations.
In Figure 4, we plot the average point for each marker across
the different datasets. First of all, the Sst and Vip genes
have an overall high performance. It is not as high and
consistent as in the Adarb2 case. However, it shows how these
genes are suitable for identifying the related cell types. Other
genes (like Pvalb, Lamp5, and Lhx6) appear to have more
variance in performance with an average behavior that is not
particularly strong as the previous ones. Interestingly Gad1
and Gad2 seem to have lower performances. Specifically,
they have a low specificity, even though in some samples,
they have very high fraction expressing (up to 1). This is
probably a consequence of how we computed the metrics
for them. We performed all the calculations considering all
datasets, while, for the remaining ones, we considered only
the interneurons. Consequently, it is more probable to have
other cells expressing these genes, lowering their specificity.
It is particularly true for Gad1, which from further analysis
appears to be frequently expressed by oligodendrocytes. This
also explains why Gad2 has consistently higher specificity.

Fig. 4. The plot of the mean performance value over datasets for each marker.

Moreover, looking at the general results, one can see how
the specificity is consistently over 0.6, meaning the chosen set
of markers is representative of the related cell types. However,
the fraction expressing does not often reach 0.5. Therefore, the
main problem is that these genes are not consistently expressed
in clusters or, at least, are not detected. It is particularly
problematic when one wants to label each cell by expression
inspection. This is essential for rare cell types identification
studies since it is crucial to label each cell correctly and not
rely only on unsupervised clustering results.

From a first analysis, it appears that IR and IG have similar
trends and, therefore we can use them interchangeably. For this
reason, we employ only the IG and plot it with the markers
score (as a medium of specificity and fraction expressing) to
better assess if the two sets of metrics agree (Figure 5). The
plot shows a more or less linear trend, meaning that the two
sets of metrics all agree on marker performance.

Concerning the possible differences within datasets, we
can highlight two things. First of all, it does not appear to
exist a particular relation between marker performances and

Fig. 5. Marker Score-Information Gain plot. Each dot is a marker from a
dataset indicated by the color. It shows the overall concordance of the two
sets of metrics.

the organism. This is expected since our considerations on
cortical cellular heterogeneity were based on the general mam-
malian cortex, and, in general, human, and mouse neuronal
populations are comparable [26][10]. The most prominent
observation is linked to the gene’s mean expression. If we
examine Figure 3, where the size of the dots is proportional
to the mean gene expression, we can notice that datasets with
higher mean expression values tend to have higher marker
performance. This is remarkably true for the Allen mouse
cortex dataset. This dataset has overwhelming higher mean
expression values than the other datasets, and also the metrics
for all the genes have higher values. What does it mean?
Higher quality scRNA-seq experiments tend to have better
catch rates, meaning they can detect and sequence more
RNA molecules, resulting in a higher resolution of the gene
expression inside each cell. We can appreciate it employing
the marker score again. We plot the markers on the Marker
Score-Mean Expression graph (Figure 6). Since the expression
values vary extensively within datasets, we plot the logarithmic
value of them. The resulted graph does not show a clear
relationship, but a general trend is evident. The points from
datasets with higher expression values tend to have also higher
marker scores. However, the markers we highlighted to have
better and worst performances do not seem to be influenced by
this parameter. In fact, it is clear how, for example, the Adarb2
(or Htr3a) marker score is high (respectively low) regardless of
expression values. This indicates that the markers have general
performances but have stronger reliability when employed on
more specific experimental datasets.

IV. DISCUSSION AND CONCLUSION

The results presented in the previous sections are non-trivial
to analyze. First of all, we see that the general performance
of the different markers is not all equal. For example, we
noticed the marker Adarb2, which has optimal performance
on all the metrics independently of the dataset. This shows



Fig. 6. Marker Score-Mean Expression plot showing the relation between
overall marker performance and the log value of the mean expression. One
can see two blocks. One where the markers with low mean expression also
have low marker scores, and vice versa a second one where markers with
higher expression values also have higher mean scores. This show that dataset
with higher mean expression result in markers with better performances.

the ability of the marker to discriminate the related cell type
from the other cells, highlighting in this way his marker
strength. Therefore this suggests his employment for similar
works. Generally, one can expect that a marker from taxonomy
studies performed on scRNA-seq experiments will perform
better on our datasets because data derive from the same
type of experimental analysis. The opposite case is Htr3a,
an immunohistochemistry-derived marker for the same cell
type as Adarb2. We observe a worrying trend with Htr3a that
cannot be considered an optimal marker, despite the literature
consistently proposes it as a CGE-derived cell marker. Im-
munohistochemistry and transcriptional analysis are different
points of view on the cell mechanisms, but there should be
some level of agreement. This highlights a common problem
of scRNA-seq analysis where the markers employed to label
the clusters come from the immunohistochemistry literature,
even if they are not always optimal for transcriptomic data.
Apart from the above-mentioned markers, which have high
consistency within datasets, the other genes appear to vary a
lot. Our analysis remarked a correlation between the marker
performance and its mean expression throughout the dataset.
This is particularly interesting since it indicates that datasets
with higher experimental mean expression influence the clas-
sification reliability of the markers. Therefore, we can say that
if one is interested in rare cell type investigation (or, more in
general, precise cell type labeling), he should employ datasets
with a higher average mean expression, which ensures higher
markers performances.

In conclusion, this work shows how the formal analysis of
markers’ consistency and reliability supports a well-informed
choice of markers for cellular heterogeneity studies. In our
view this should become a habitual practice in the common
single cell analysis workflow.
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