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Abstract— Automatic segmentation of the prostate on 

Magnetic Resonance Imaging (MRI) is one of the topics on which 

research has focused in recent years as it is a fundamental first 

step in the building process of a Computer aided diagnosis 

(CAD) system for cancer detection. Unfortunately, MRI 

acquired in different centers with different scanners lead to 

images with different characteristics. In this work we propose an 

automatic algorithm for prostate segmentation, based on a U-

Net applying transfer learning method in a multicenter setting. 

First, T2w images with and without endorectal coil from 80 

patients acquired at one center were used in this work as training 

set and internal validation set. Then, T2w images without 

endorectal coil from 20 patients acquired at a different 

institution were used as external validation. The reference 

standard for this study was manual segmentation of the prostate 

gland by an expert operator. The results showed a Dice 

similarity coefficient >85% in both internal and external 

validation datasets.  

 

Clinical Relevance— This segmentation algorithm could be 

integrated into a CAD system to optimize computational effort 

in prostate cancer detection. 

 

I. INTRODUCTION 

Prostate cancer (PCa) accounts for about 26% of all cancers 
diagnosed in men. It is the most common cancer in men and 
ranks second in mortality after lung cancer [1]. Early diagnosis 
and detection of PCa is crucial to ensure the best chance of 
cure [2]. Until publication of the last European and American 
Urological Guidelines [3][4], the standard diagnostic 
procedure for PCa diagnosis included prostate specific antigen 
(PSA) test, digital rectal exam (DRE) and transrectal 
ultrasound (TRUS) guided biopsy to confirm the presence of 
the tumor. This workup has shown limits in tumor detection 
and aggressiveness estimation [5]. In the last decade, 
multiparametric magnetic resonance imaging (mpMRI) has 
shown high accuracy in lesion detection and characterization 
[6] and Computer aided diagnosis (CAD) systems have been 
proposed to help radiologists to automatically detect PCa, 
further increasing their detection accuracy, reducing reading 
time and increasing inter-reader agreement [7].  

CAD systems are composed of different modules, including 
prostate segmentation. The latter is a crucial step for the 
subsequent recognition of the tumor and is a challenging task 
due to resolution, artifacts and general appearance of MRI, all 
of which are strongly influenced by the type of MRI scanner 
and protocols used for imaging acquisition. The result should 

 
D.B., G.N, A.D., S.M., V.G., M.G., R.F. and D.R. are with University of 

Turin, Department of Surgical Sciences, via Genova 3, 10126 Torino, Italy 
(corresponding author email: davide.barra@unito.it). 

be very accurate, to avoid excluding tumor areas from the 
prostate segmentation. 

Recent studies have demonstrated that deep learning 
methods to segment medical image has led to significant 
improvements with respect to other approaches, especially 
with the increasingly robust development of Convolutional 
Neural Networks (CNNs) and U-Net [8]–[12]. Most of 
previous studies validated their algorithms on internal datasets 
through cross validation or through images from the same 
center/centers used to train the nets.  These approaches have 
the limit of not considering the differences that may exist in 
the acquisition of images in different centers and with different 
MRI scanners. To the best of our knowledge, only Zavala-
Romero et al. [9] and Liu et al. [10] proposed a multi-MRI 
vendor and a multi-site network. They showed an average Dice 
similarity coefficient between 89% and 91.7%. 

In this work, we propose an automatic algorithm based on a 
U-Net to segment the whole prostate gland on T2w MRI 
acquired both with and without endorectal coil. The algorithm 
was trained with images from one center and validated using 
both images from the same center and from a different 
hospital.  

II. MATERIAL AND METHODS 

A. Dataset and reference standard 

T2w images at the Candiolo Cancer Institute (Center A) 
were acquired using a 1.5T scanner (Optima MR450w, GE 
Healthcare, 106 Milwaukee, WI, USA) and with either a single 
32-channel phased-array coil or with a 32-channel phased-
array coil combined with an endorectal coil (Medrad, 
Indianola, Pa). All T2w axial sequences have a field of view 
of 160mm x 160mm with voxel size of 0.31mm x 0.31mm x 
3mm. T2w images acquired at A.O.U Città della Salute e della 
Scienza (Center B) were acquired using a 1.5T scanner 
(Achieva, Philips Medical System, Eindhoven, The 
Netherlands) with field of view of 180mm x 180mm and voxel 
size of 0.47mm x 0.47mm x 3.3mm. An expert operator with 
five years of experience manually contoured the prostate gland 
in all acquired images. The local ethics committee approved 
this retrospective study. The training set used for developing 
the network consists of both T2w images with and without 
endorectal coil from the Center A. Patients from Center B were 
not used in the learning process and they were used as an 
external validation dataset.  
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B. Automatic Segmentation Algorithm 

The automatic segmentation algorithm was based on a U-
Net [13] that is a network characterized by two different paths: 
the descent one (encoder) and the ascent one (decoder). 
Differently from the standard convolutional neural network 
(CNN), where the original image is converted into a vector and 
the features maps are extracted, the features maps learned in 
the contraction phase (encoder) are used in the expansion 
phase (decoder) to get a new output image of the same size as 
the input image. Each pixel of the output image is 
characterized by a value that represents the probability of 
belonging to a class. For this particular purpose, we applied 
the transfer learning method building a U-Net where the 
encoder path is a known convolutional neural network called 
Residual neural network (ResNet) [14]. 

ResNet-18 is an 18-layers deep convolutional neural 
network made up of several residual blocks. The peculiarity 
that makes ResNet unique compared to other CNN is the 
presence of the skip connections that link the original input to 
the output of each convolutional block. This strategy helps to 
make deeper networking and reaching outstanding results in 
segmentation tasks [14]. 

Since our goal is to obtain a network that is able to segment 
images acquired in different modalities and from different 
centers, it is important to avoid overfitting. To this end, we 
exploited the concept of transfer learning. More specifically, 
we used the ResNet-18 with pretrained weights on the 
ImageNet database [15] which allows faster and better 
convergence. Each layer from which the encoding path is 
composed consists of two connections from the input. The first 
one goes through two 3x3 convolutional blocks followed by a 
batch normalization layer used to make artificial neural 
networks faster and more stable and followed by an activation 
function (ReLU, Rectified Linear Unit). The second one skips 
all these functions and is added to the first connection at the 
end of the layer. 

Each decoding path is characterized by a transposed 
convolutional function to up-sample feature maps followed by 
a batch normalization and a ReLU, concluding with several 
concatenations of feature maps from the encoding path 
performed at different level of the network. 

The training set used for network learning consists of both 
T2w images with and without endorectal coil coming from the 

Center A. Patients from Center B were kept out the learning 
process and used as an external validation dataset. All MRI 
slices were fed to the network, even those without the 
prostate, to allow the model to learn where the prostate 
bounds were located. The original image was resized to 256 
x 256 pixels to ease the network training and reduce 
computational cost. Furthermore, all slices of each patient 
were standardized with the z-score formula to obtain zero 
mean and unit standard deviation: 

     𝐼𝑚𝑔𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝐼𝑚𝑔− µ

𝜎
                           (1) 

 Where µ and 𝜎 are respectively the mean value and the 
standard deviation of each image slice. This normalization 
process was also applied to the T2w images of center B.  

Given the small size of the prostate gland compared to the 
whole image size, the dataset was unbalanced. To overcome 
this issue, a class-weighting process was performed. It consists 
of giving a different weight to both the most represented class 
and the least represented class. The aim is to give in the 
training phase a higher weight to the classification errors of the 
smallest class and at the same time reduce the weight of the 
elements of the largest class. This modification of the weights 
will affect the training process because the network learning is 
focused more on one class than the other. 

For the construction of the model Keras and Tensorflow 
libraries [16] were used. The network was trained for 40 
epochs with a batch size of 4 and using Adam optimizer with 
β1=0.9 and β2=0.999 and a learning rate of 0.001. Data 
augmentation in the training set was not performed to avoid 
image deformations, consequently losing the anatomical 
information about the prostate. 

C. Loss Function 

The loss function used to train this network is a 
combination of the Dice similarity coefficient-based loss 
function and the Focal loss function. 

𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 + 𝐵𝑖𝑛𝑎𝑟𝑦 𝐹𝑜𝑐𝑎𝑙 𝐿𝑜𝑠𝑠   (2) 

Where Dice Loss and Focal Loss are the following: 

      𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 = 1 − 𝐷𝑖𝑐𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡            (3) 

  𝐹𝑜𝑐𝑎𝑙 𝐿𝑜𝑠𝑠 (𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)𝛾  log (𝑝𝑡)                   (4)  

In particular, the Dice Loss is usually used for segmentation 
problems [17], since it evaluates overlap between two 
segmentations, regardless imbalance between the two classes. 
Focal loss function [18] is an improvement of the basic cross-
entropy function -log(𝑝𝑡) where 𝑝𝑡  is the probability score of 
the model for the class 𝑡. The Focal loss adds a factor to help 
the model handle misclassified errors and in general hard 
examples. It focuses training on hard negatives (samples 
misclassified as positive) and hard positives (samples 
misclassified as negative) reduces the priority on easy 
examples (samples correctly classified). In particular the 
higher 𝛾, the lower is the loss function for correctly classified 
examples. Instead 𝛼  adds different weights to the classes to 
change the importance between positive and negative 
examples. 

Figure 1. Composition of the dataset 



  

D. Evaluation Metrics 

Dice Similarity Coefficient (DSC), Precision (Pr) and 
Recall (Re) were used to evaluate the performance of the 
algorithm on prostate segmentation. The Dice similarity 
coefficient relates the elements in common between two 
groups with respect to the total number of elements. Precision 
is the portion of elements indicated as positive by the model 
that are truly positive. Recall is the portion of the truly positive 
elements that have been correctly identified by the model. 

𝐷𝑆𝐶 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                               (5)             

𝑃𝑟 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                  (6)                   

𝑅𝑒 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                        (7) 

Where TP, FP and FN are respectively the total number of true 
positives, false positives, and false negatives. 

These metrics were applied both on the entire prostate gland 
and on different prostate regions (base, middle and apex). 
These regions were automatically located as following: the 
first two slices segmented by the algorithm were considered as 
the base of the prostate, the last two as the apex and the 
remaining ones as the middle of the gland. 

III. RESULTS 

The composition of the training and the validation sets is 
shown in Fig.1. 

 
Table 1. Mean values of Dice Similarity Coefficient (DSC), Precision and 

Recall for the prostate segmentation in the training set and internal and 

external validation sets.  

The algorithm achieves DSC of 0.89 on average considering 
both internal and external validation sets. Differences between 
internal and external validation sets (Table 1) are not 
significantly different. In all cases Precision is higher than 
Recall, meaning that the net tends to include a lower number 
of false positive than false negative voxels. However, 
differences are not significant and precision is higher than 0.89 
in all datasets.  

When we considered the metrics obtained on the different 

prostate regions, we noticed a drop in performance in the 

apex. The mean DSC for the T2w images without endorectal 

coil from internal validation set is 0.71 with a very high 

standard deviation of 0.18. Similarly, for T2w with endorectal 

coil the mean DSC in the apex is 0.79 with standard deviation 

of 0.09. This reduction in performance near the apex also 

affects the external validation of Center B which shows a 

mean DSC of 0.73 with a standard deviation of 0.14. 

 
Table 2. Mean values of Dice Similarity Coefficient (DSC) and Standard 

deviation (std) for the prostate segmentation in the training and validation 

set. 

Fig. 3 shows three examples of automatic prostate 

segmentation on three different patients, one for each 

validation set. A slice is shown near the base, one in the 

middle and one in correspondence with the apex. 

 

Figure 2. Qualitative comparison between automatic segmentation (yellow 

line) and manual segmentation (red line) of the prostate. Three sample slices 

corresponding to the base, middle and apex of the prostate are shown for 
each data set evaluated. Row A shows T2w images of Centre A without 

endorectal coil, row B shows T2w images of Centre A with endorectal coil, 

row C shows T2w images without endorectal coil from Center B. 

The entire automatic algorithm takes approximately 3.4s 

per patient to segment the whole prostate, starting from the 

original image, not resized or normalized yet. The average 

processing time of a single slice is 0.17s. 

IV. DISCUSSIONS AND CONCLUSION 

In this study, an automatic algorithm able to work with 
multi-center T2w images with and without endorectal coil was 
developed. This algorithm shows performances comparable to 
previous works but has the advantage to segment the prostate 
on T2w images acquired both with and without endorectal coil. 

  Training set 
Internal Validation set 

(Center A) 

External 

Validation 
set  

(Center B) 

  
No 

endorectal 

coil 

Endorectal 

coil 

No 

endorectal 

coil 

Endorectal 

coil 

No 

endorectal 

coil 

DSC 0.91 0.95 0.90 0.89 0.87 

Precision 0.93 0.96 0.95 0.92 0.89 

Recall 0.91 0.94 0.89 0.87 0.86 

 

Base                       

(Dsc ± std) 

Middle                              

(Dsc ± std) 

Apex                       

(Dsc ± std) 

Internal validation set 
No endorectal coil 

(center A) 

0.78 ± 0.13 0.94 ± 0.14 0.71 ± 0.18 

Internal validation set 
endorectal coil (center 

A) 

0.86 ± 0.08 0.92 ± 0.06 0.79 ± 0.09 

External validation set 

No endorectal coil 
(center B) 

0.82 ± 0.08 0.91 ± 0.05 0.73 ± 0.14 

A 

B 

C 



  

These results shows an improvement compared to Tian et 
al. [8] which reached a mean DSC of 0.885 using a deep CNN 
model on 140 patients from two open-source prostate 
segmentation datasets, the PROMISE12 challenge [19] and 
the ISBI2013 [20]. Conversely, Zhu et al. [9] built a cascaded 
U-net to segment the prostate and the peripheral zone using 
diffusion-weighted images (DWIs) and T2w, while Nie and 
Shen [10] solved the blurry boundaries issues building a 
semantic guided strategy to learn discriminative features, 
obtained slightly better performances on the internal validation 
set reaching respectively a mean DSC of 0.92 and 0.932. 
However, our method has the advantage of being multi-centric 
while these studies worked on a singular dataset, performing 
training and validation of the network with images from the 
same center.  

The mean DSC value calculated on our external validation 
set (Center B) is comparable to those obtained by Zavala-
Romero et al. [11], who developed a 3D U-net using axial, 
coronal and sagittal T2-w images from different MRI centers 
and to Liu et al. [12] who implemented a Multi-site network 
that focuses on the heterogeneity of prostate MRIs from three 
different centers. They achieved mean DSC values of 0.89 and 
0.92, respectively showing higher results than ours, but 
without performing external validation. 

Our study has also some limitations. First, the algorithm 
showed lower segmentation results in both the base and the 
apex. Indeed, the model did not clearly identify the prostate 
boundaries, especially in the first and last slices of the volume. 
This might be due to the difficulty of manually segmenting the 
apex, even among experienced operators. This issue was also 
present at the prostate base, but with less consistency given the 
larger size of the gland. 

Future developments of this U-net segmentation algorithm 
will focus on the improvement of the segmentation in both 
base and apex of the prostate. Additional training will be 
performed on a larger number of patients. 

In conclusion, the presented algorithm can provide an 
important support in the identification of the prostate area to 
move on to the subsequent detection of PCa, also drastically 
reducing the segmentation times. 
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