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Abstract

In this work, we propose an extension of the mixed Virtual Element Method
(VEM) for bi-dimensional computational grids with curvilinear edge elements.
The approximation by means of rectilinear edges of a domain with curvilinear
geometrical feature, such as a portion of domain boundary or an internal in-
terface, may introduce a geometrical error that degrades the expected order of
convergence of the scheme. In the present work a suitable VEM approxima-
tion space is proposed to consistently handle curvilinear geometrical objects,
thus recovering optimal convergence rates. The resulting numerical scheme is
presented along with its theoretical analysis and several numerical test cases to
validate the proposed approach.

Keywords: Mixed VEM, Curved Edges, High Order Approximations

1. Introduction

The present work proposes an extension of the mixed virtual element meth-
od for meshes with elements having curved edges, for bi-dimensional elliptic
problems in mixed form. The method allows to handle domains with curved
boundaries, or domains with embedded curved interfaces, or even with mesh
elements having all curved edges.

Mixed methods are well suited for the discretization of vector field in H(div).
Classes of mixed methods, in addition to the here considered Mixed Virtual
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Element Methods (MVEM) [1] are the well known Raviart-Thomas (RT) [2, 3,
4, 5] and Brezzi-Douglas-Marini (BDM) [6, 7, 8, 5] finite element schemes.

Dealing with curved boundaries/interfaces for approximation degrees greater
than one has some pitfalls. Indeed, as the polynomial accuracy increases, the
geometrical error due to the approximation of curved boundaries or interfaces
via piece-wise linear edges dominates the numerical error of the scheme, thus
bounding the convergence rate.

Extension to curved edge discretizations have been recently investigated in
the context of polytopal methods. For Discontinuous Galerkin (DG) approaches
[9], different strategies have been suggested to handle meshes with curved edge
elements: in [10] basis functions for meshes with elements of general shapes are
obtained starting from a monomial basis written in the reference system of the
physical element and subsequently ortho-normalized to avoid ill conditioning of
the elemental mass matrices. In [11] a weight for the basis function depending
on the Jacobian of the transformation from the reference to the physical element
is introduced. Another approach is proposed in [12], where curvilinear meshes
are handled through the introduction of approximated weighted-adjusted inner
product. Inverse estimates, interpolation estimates and trace estimates for high
order DG discretizations on curved meshes are further available in [13]. The
extension of Hybrid High Order schemes [14] for mesh with curvilinear edge
elements is proposed in [15]. In this work, basis functions on mesh elements are
obtained following a procedure similar to [10], whereas face polynomial degree
is selected in order to ensure optimal convergence rates. Curved meshes have
been considered in the virtual element framework for the first time in [16] where
an elliptic bi-dimensional problem in primal formulation is considered. The pro-
posed approach is based on standard Virtual Element Method (VEM) and it
is well suited for problems where the computational domain is characterized by
fixed curved boundaries or interfaces. After this pioneering work, other strate-
gies have been proposed to extended VEM to curved edge elements. In [17], for
example, the authors keep the standard definition of VEM spaces and suggest
properly modified bi-linear forms to take into account elements with curved
boundaries. In [18] the virtual element space proposed by [16] is modified to
contain polynomials. Such extension is crucial to preserve convergence rates
when the mesh element diameter decreases while boundary curvature remains
fixed.

Other important classes of methods have been developed to handle curved
edges: isogeometric analysis [19, 20, 21], non-affine isoparametric elements [22,
23, 24] and also Mimetic Finite Differences [25].

VEM based approaches for curved edge elements allow to exactly reproduce
the curved interface or domain boundary without introducing any geometrical
approximation, provided a suitable parametric description of the curve is avail-
able. Local mass conservation is often of paramount importance for applications.
Among other approaches, [14], mixed VEM discretizations allows to obtain local
conservation, which, combined with the great flexibility of the VEM, makes the
proposed approach well suited for single or multi-phase flow problems in hetero-
geneous porous media, with or without the presence of fractures, for the analysis
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of absorbing materials, or composite materials, or materials with inclusions of
arbitrary shapes. Indeed, these applications are characterized by complex do-
mains with arbitrary shape interfaces, or multiple intersecting interfaces, and
coefficients with strong variations. Examples of applications of the MVEM with
rectilinear edge meshes can be found, e.g., in [26, 27, 28, 29, 30, 31, 32, 33, 34, 35].

Here the MVEM is extended to curved edge elements following the approach
proposed in [16]. Concerning the choice of the degrees of freedom, the proposed
scheme can be seen as a generalization of RT elements to order k ≥ 0 to curved
edges. Moreover, the new scheme is an extension to the curved case of the classi-
cal virtual mixed spaces. Indeed, when the domain has no curved boundaries or
interfaces, the proposed virtual spaces boil down to the spaces defined in [1, 26],
with a slightly different choice of the degrees of freedom, that is particularly
suited for curved elements.

The paper is organized as follows. In Section 2 we discuss some technical
details as notations, mathematical model and hypothesis on curved edges. In
Section 3 we present the mesh assumptions, introduce the discrete spaces, with
the associated set of degrees of freedom and we define the discrete bilinear forms,
then we present the discrete problem. In Section 4 we analyse the theoretical
properties of the proposed method: we introduce the Fortin operator, we es-
tablish the discrete inf-sup condition and provide the interpolation estimate for
the curved MVEM. Moreover, we prove the stability bounds for the associated
discrete bilinear form. At the end of this section we recover the optimal order of
convergence of the present method. In Section 5 we provide some experiments
to give numerical evidence of the behaviour of the proposed scheme. Finally,
Section 6 is devoted to conclusion.

2. Notations and Preliminaries

Throughout the paper, we will follow the usual notation for Sobolev spaces
and norms as in [36]. Hence, for a bounded domain ω, the norms in the spaces
W s
p (ω) and Lp(ω) are denoted by ‖·‖W s

p (ω)
and ‖·‖Lp(ω) respectively. Norm and

seminorm in Hs(ω) are denoted respectively by ‖·‖s,ω and |·|s,ω, while (·, ·)ω
and ‖ · ‖ω denote the L2-inner product and the L2-norm (the subscript ω may
be omitted when ω is the whole computational domain Ω). Moreover, with a
usual notation, the symbols ∇, ∆ denote the gradient and Laplacian for scalar
functions, while div denotes the divergence for vector fields. Furthermore, for a
scalar function ψ and a vector field v = (v1, v2) we set

rotψ :=

(
∂ψ

∂y
,−∂ψ

∂x

)>
, rotv :=

∂v2
∂x
− ∂v1

∂y
.

Furthermore we recall the following well-known functional spaces which will be
useful in the sequel

H(div, ω) := {v ∈ [L2(ω)]2 : div v ∈ L2(ω)} ,
H(rot, ω) := {v ∈ [L2(ω)]2 : rotv ∈ L2(ω)} .
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Finally we denote with x = (x1, x2)> the independent variable in 2D.

2.1. Mathematical model

We consider a (curved) domain Ω ⊂ R2 with Lipschitz continuous boundary
and external unit normal n. The boundary of Ω named ∂Ω is divided into
two parts ∂eΩ and ∂nΩ such that ∂Ω = ∂eΩ ∪ ∂nΩ and ˚∂eΩ ∩ ˚∂nΩ = ∅. For
simplicity, we assume that ˚∂nΩ 6= ∅.

For a positive definite tensor κ, a positive real number µ, and a scalar source
f , the following problem is set in Ω:

Problem 1 (Model problem). Find (q, p) such that{
µq + κ∇p = 0

div q + f = 0
in Ω, (1a)

supplied with the following boundary conditions{
p = p on ∂nΩ,

q · n = q on ∂eΩ.
(1b)

This problem describes, for example, the pressure p and the Darcy velocity
q of a single phase fluid in a porous medium, characterized by a permeability
tensor κ, a fluid dynamic viscosity µ, and fluid sinks/sources f . In the following
we assume null q, otherwise a lifting technique should be considered. Before
introducing the weak problem associated to Problem 1, we fix the following
notation

V := {v ∈ H(div, Ω) s.t. v · n = 0 on ∂eΩ} and Q := L2(Ω) ,

equipped with natural inner products and induced norms. The spaces V and
Q, with their structures, are thus Sobolev spaces. In the previous definition of
V the condition on the essential part of ∂Ω can be detailed as:

〈v · n, w〉 = 0 ∀w ∈ H
1
2
00(∂eΩ)

where 〈·, ·〉 is the duality pair from H−
1
2 (∂eΩ) to H

1
2
00(∂eΩ), see [5] for more

details.
We introduce now the weak formulation of Problem 1. The procedure is

rather standard and leads to the definition of the following forms

a(·, ·) : V × V → R a(u,v) := (µκ−1u,v)Ω ∀(u,v) ∈ V × V
b(·, ·) : V ×Q→ R b(u, v) := −(divu, v)Ω ∀(u, v) ∈ V ×Q.

(2)

We have furthermore assumed that κ ∈ [L∞(Ω)]2×2 and it exists κ0 > 0 such
that the minimal eigenvalue of κ is greater or equal to κ0, µ ∈ L∞(Ω) and it
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exists µ0 > 0 such that µ ≥ µ0. Linear functionals associated to given data are
defined as

G(·) : V → R G(v) := −(p,v · n)∂nΩ ∀v ∈ V
F (·) : Q→ R F (s) := (f, v)Ω ∀v ∈ Q,

(3)

where the data have regularity p ∈ H
1
2
00(∂nΩ), and f ∈ L2(Ω). We can finally

summarize the weak formulation of Problem 1 as the following.

Problem 2 (Weak problem). Find the couple Darcy velocity and pressure
(q, p) ∈ V × Q such that{

a(q,v) + b(v, p) = G(v) ∀v ∈ V
b(q, v) = F (v) ∀v ∈ Q.

(4)

The previous Problem is well posed, see for instance [5].

2.2. Assumptions on the curved domains

Following the approach in [16], we here detail the assumption on the (curved)
domain Ω. We consider a bounded Lipschitz domain Ω whose boundary ∂Ω is
made up of a finite number of smooth curves {Γi}i=1,...,N that fit the boundary
split into “essential” and “natural” part, i.e.,

Ne⋃
i=1

Γi = ∂eΩ and

N⋃
i=Ne+1

Γi = ∂nΩ.

We assume that:

Assumption 1 (Boundary regularity). We assume that each curve Γi of ∂Ω
is sufficiently smooth, for instance we require that Γi is of class Cm+1 with
m ≥ 0, i.e., there exists a given regular and invertible Cm+1-parametrization
γi : Ii → Γi for i = 1, . . . , N , where Ii := [ai, bi] ⊂ R is a closed interval.

Since all the parts Γi of ∂Ω will be treated in the same way, in the following
we will drop the index i from all the involved maps and parameters, in order to
obtain a lighter notation.

Remark 2.1 (Internal interfaces). It is important to note that the proposed
approach is also valid for internal curved interfaces. However, to keep the pre-
sentation simple we assume only curved elements on the boundary, being its
extension straightforward. Examples in Subsection 5.3 and 5.2 deal with inter-
nal interfaces.

3. Mixed Virtual Elements on curved polygons

In this section, we define the virtual formulation of Problem 2. We first dis-
cuss the assumptions for the meshes on the curved domain Ω, then we introduce
the space for the vector and scalar fields with the associated set of degrees of
freedom. We discuss the computability of the L2-projection onto the polynomial
space and define the approximated linear form.
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3.1. Mesh assumptions

From now on, we will denote with E a general polygon having `e edges e,
which may have any number of curved edges. For each polygon E and each edge
e of E we denote by |E|, hE , xE = (xE , yE) the measure, diameter and centroid
of E, respectively. By he, xe we denote the length and midpoint of an edge
e, respectively. Furthermore, neE denotes the unit outward normal vector to e
with respect to E, while nE is a generic outward normal of ∂E. We call ne a
fixed unit normal vector which is normal to the edge e and σE,e := neE ·ne = ±1
(notice that ne does not depend on E).

Let Ωh be a decomposition of Ω into general polygons E completed along
∂Ω by curved elements whose boundary contains an arc of ∂Ω, where we define
h := supE∈Ωh

hE , see [16]. We make two assumptions on the mesh elements:
there exists a positive uniform constant ρ such that

Assumption 2 (Star-shaped). Each element E in Ωh is star-shaped with re-
spect to a ball BE of radius ≥ ρ hE.

Assumption 3 (Edges comparable size). For each element E in Ωh, for any
(possibly curved) edge e of E, it holds he ≥ ρ hE.

We denote by Eh the set of all the mesh edges divided into internal E inth and

external Eexth edges; the latter is split into “essential edges” E∂eΩh and “natural

edges” E∂nΩh . For any E ∈ Ωh we denote by EEh the set of the edges of E.

Finally the total number of edges (excluding the “essential edges” E∂eΩh ) and
elements in the decomposition Ωh are denoted by Le and LE , respectively.

With a slight abuse of notation, we define the following maps to deal with
both straight and curved edges:

• for any curved edge e ∈ Eh, we call γ : e ⊂ I → e the restriction of
γ : I → ∂Ω having image e,

• for any straight edge e ∈ Eh with endpoints xe1 and xe2 , we denote by
γ : e := [0, he]→ e the standard affine map γ(t) = t

he
(xe2 − xe1) + xe1 .

Remark 3.1. We notice that, since the parametrization γ : I → ∂Ω is fixed once
and for all, under Assumption 1, it follows that for any curved edge e ∈ EEh ,
the length of the interval e is comparable with the diameter hE of the element
E, since he =

∫
e
‖γ′(s)‖ds and γ, γ−1 ∈ W 1,∞ are fixed. Moreover, since γ

is fixed, when h approaches zero the straight segment e′ whose endpoints are
vertexes of e approaches the curved edge e. Therefore by Assumption 3, for
sufficiently small h, the length he of the curved edge e is comparable with the
diameter hE.

In the following the symbol . will denote a bound up to a generic positive
constant, independent of the mesh size h, but which may depend on Ω, on the
“polynomial” order k, on the parametrization γ in Assumption 1 and on the
shape constant ρ in Assumptions 2 and 3.
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3.2. Polynomial and mapped polynomial spaces

Using standard VEM notations, for n ∈ N, s ∈ R+, and for any E ∈ Ωh, let
us introduce the spaces:

• Pn(E) the set of polynomials on E of degree ≤ n (with P−1(E) = {0}),

• Pn(Ωh) := {q ∈ L2(Ωh) : q|E ∈ Pn(E)∀E ∈ Ωh},

• Hs(Ωh) := {v ∈ L2(Ωh) : v|E ∈ Hs(E)∀E ∈ Ωh} equipped with the
broken norm and seminorm

‖v‖2s,Ωh
:=

∑
E∈Ωh

‖v‖2s,E , |v|2s,Ωh
:=

∑
E∈Ωh

|v|2s,E ,

and we define

πn := dim(Pn(E)) =
(n+ 1)(n+ 2)

2
.

Notice that we have the exactness of the following sequence [1]

R i−−−−−−→ Pn+1(E)
∇−−−−−→ [Pn(E)]2

rot−−−−−−→ Pn−1(E)
0−−−−−→ 0 (5)

where i denotes the mapping that to every real number r associates the constant
function identically equal to r and we recall that a sequence is exact if the range
of each operator coincides with the kernel of the following one. Furthermore,
the following useful polynomial decomposition holds [32]

[Pn(E)]2 = ∇Pn+1(E)⊕ (x− xE)⊥Pn−1(E) (6)

where for any v = (v1, v2)> we use the notation v⊥ := (v2,−v1)>.
A natural basis associated with the space Pn(E) is the set of normalized

monomials

Mn(E) :=

{(
x− xE
hE

)β
with |β| ≤ n

}
where β is a multi-index. Notice that ‖m‖L∞(E) ≤ 1 for any m ∈ Mn(E). We
extend the basis Mn(E) for vector valued polynomials [Pn(E)]2 defining

Mn(E) :=
{

(mr, 0)> , (0,ms)
> with mr,ms ∈Mn(E)

}
.

Let us now introduce the boundary space on the edge e ∈ Eh. Following the
same approach, for any interval e ⊂ R we denote by Pn(e) the set of polynomials
on e of degree ≤ n with the associated basis of normalized polynomials

Mn(e) :=

{
1,
x− xe
he

,

(
x− xe
he

)2

, . . . ,

(
x− xe
he

)n}
,

again we notice that ‖m‖L∞(e) ≤ 1 for any m ∈ Mn(e). For each edge e ∈ Eh
we consider the following mapped polynomial and scaled monomial spaces

P̃n(e) := {q̃ = q ◦ γ−1 : q ∈ Pn(e)} and

M̃n(e) := {m̃ = m ◦ γ−1 : m ∈Mn(e)} ,
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i.e., P̃n(e) is made of all functions that are polynomials with respect to the
parametrization γ. It is important to note that the following property holds:

Property 1. For any edge e ∈ EEh we have Pn(E)|e ⊂ P̃n(e) if e is straight, or

P0(E)|e ⊂ P̃n(e) and, in general, Pi(E)|e 6⊂ P̃n(e), for i > 0, if e is curved. The

same considerations apply to M̃n.

Finally the local L2-projection operator Πn
0 : [L2(E)]2 → [Pn(E)]2 is defined

as follows: given w ∈ [L2(E)]2 we have∫
E

Πn
0w ·m dE =

∫
E

w ·mdE ∀m ∈Mn(E). (7)

With a slight abuse of notation, we denote by Πn
0 : [L2(Ω)]2 → [Pn(Ωh)]2

the projection onto the space of piecewise polynomials defined element-wise
by (Πn

0w)|E := Πn
0 (w|E) for all E ∈ Ωh. Similarly the L2-edge projection

operator Π̃n
0 : L2(e)→ P̃n(e) is defined as follows: given w ∈ L2(e)∫

e

Π̃n
0 w m̃ de =

∫
e

w m̃ de ∀m̃ ∈ M̃n(e). (8)

3.3. Vector space

Let k ≥ 0 be the polynomial degree of accuracy of the method. We proceed
as in a standard virtual element fashion, i.e., we firstly define the virtual spaces
element-wise then we globally glue them. We introduce the local virtual space
on the curved element E ∈ Ωh:

Vk(E) := {v ∈ H(div, E) ∩H(rot, E) : v · ne ∈ P̃k(e)∀e ∈ EEh ,
div v ∈ Pk(E), rotv ∈ Pk−1(E)} .

(9)

The definition above extends to the curved elements the “straight” mixed VEM
space introduced in [1, 26] that is the VEM counterpart of the Raviart-Thomas
spaces to more general element geometries. An element v belonging to the space
Vk(E) but it is not a-priori specified in the internal part of E as done in the
standard finite elements.

We have the following choice for the degrees of freedom.

Degrees of freedom 1 (DoFs for Vk(E)). The set of scaled degrees of free-
dom associated to the space Vk(E) are given for all w ∈ Vk(E), by the linear
operators D split into three subsets:

• D1: the boundary moments

De,i
1 (w) :=

1

he

∫
e

w · nem̃i de ∀e ∈ EEh , ∀m̃i ∈ M̃k(e);
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• D2: the element moments of the divergence

Dj
2(w) :=

hE
|E|

∫
E

divwmj dE ∀mj ∈Mk(E) \M0(E);

• D3: the element moments

Dl
3(w) :=

1

|E|

∫
E

w ·m⊥ml dE ∀ml ∈Mk−1(E),

where m⊥ := 1
hE

(x− xE)⊥.

The dimension of Vk(E) is given by

dim(Vk(E)) = `e(k + 1) + (πk − 1) + πk−1 . (10)

Remark 3.2. The proof that the linear operators D1, D2 and D3 constitute
a set of DoFs for Vk(E) follows the same guidelines of Lemma 3.1, Lemma 3.2
and Theorem 3.1 in [1].

Remark 3.3. The set of DoFs D2 used in the present work is different from
the one suggested in [1], where, instead, the moments

hE
|E|

∫
E

w · ∇mk dE ∀mk ∈Mk(E) \M0(E).

are used. The choice proposed in the present work turns out to be particularly
suited for curved elements as explained in Remark 4.1.

Remark 3.4. When the element E presents at least one curved edge, we have
to deal with the issue of computing an integral over a curved domain. To achieve
this goal, we exploit the strategy proposed in [16]. More specifically, in Section
4 of [16] the authors give the guide-lines and formulas to integrate over curved
edges and inside of polygons characterized by curved edges.

The global space is defined by gluing together all local spaces, which is thus
set as

Vk(Ωh) := {v ∈ V : v|E ∈ Vk(E)∀E ∈ Ωh}. (11)

More specifically, we require that for any internal edge e ∈ EEh ∩ EE
′

h

v|E · nEe + v|E′ · nE
′

e = 0 ∀v ∈ Vk(Ωh),

that is in accordance with the DoFs definition D1. The dimension of Vk(Ωh) is
thus given by

dim(Vk(Ωh)) = Le(k + 1) + (πk − 1)LE + πk−1LE , (12)

where Le and LE are the number of edges and polygons in Ωh, respectively.
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3.4. Scalar space

The approximation of the continuous space Q is made of piecewise discon-
tinuous polynomials in each element. The space Qk(Ωh) ⊂ Q belongs to the
standard finite elements and its elements can be easily handled. Namely for
k ≥ 0, we have

Qk(E) := {v ∈ L2(E) : v ∈ Pk(E)}.

For this space we consider the following DoFs

Degrees of freedom 2 (DoFs for Qk(E)). The internal scaled moments are
the DoFs for Qk(E), i.e., for any v ∈ Qk(E) we consider

• DQ: the element moments

Dr
Q(v) :=

1

|E|

∫
E

vmr dE ∀mr ∈Mk(E).

We define the global discrete space as

Qk(Ωh) := {v ∈ Q : v|E ∈ Qk(E)}. (13)

Notice that by construction we have div(Vk(Ωh)) ⊆ Qk(Ωh).

3.5. Polynomial projector and discrete forms

As for the straight virtual spaces, a function w ∈ Vk(E) is not known in
closed form, however exploiting the DoFs values of w we can compute some
fundamental informations.

The polynomial w · ne is computable. We start by noticing that the normal
componentw·ne is explicitly known for all e ∈ EEh . Indeed, beingw·ne ∈ P̃k(e),
there exist c1, . . . , ck+1 ∈ R such that

w ·ne=

k+1∑
ρ=1

cρm̃ρ=

k+1∑
ρ=1

cρmρ ◦ γ−1 with m̃ρ ∈ M̃k(e) and mρ ∈Mk(e). (14)

In order to compute the coefficients cρ we exploit the DoFs D1:

De,i
1 (w) =

1

he

∫
e

w · ne m̃i de =

k+1∑
ρ=1

cρ
he

∫
e

m̃ρ m̃i de =

k+1∑
ρ=1

cρ
he

∫
e

mρmi ‖γ′‖dt

for i = 1, . . . , k + 1. Then it is possible to compute the coefficients cρ and thus
the explicit expression of w · ne for any edge e ∈ EEh .
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The polynomial divw is computable. In such framework we can explicitly com-
pute divw viaD1 andD2. Indeed, being divw ∈ Pk(E), there exist d1, . . . , dπk

∈
R such that

divw =

πk∑
θ=1

dθmθ with mθ ∈Mk(E), (15)

then it follows that

hE
|E|

∫
E

divwmj dE =
hE
|E|

πk∑
θ=1

dθ

∫
E

mθmj dE ∀mj ∈Mk(E).

As before the right-hand side matrix is computable, whereas the left-hand side
corresponds to the DoFs Dj

2(w) if mj ∈Mk(E) \M0(E), for j = 1 we exploit
the boundary information:

hE
|E|

∫
E

divw dE =
hE
|E|

∫
∂E

w · nE de =
∑
e∈EEh

σE,e
hEhe
|E|

1

he

∫
e

w · ne de

that, recalling Property 1, is a linear combination of DoFs De,1
1 (w).

The projection Πk
0 is computable. The computations above allow us to evaluate

the projection Πk
0w for allw ∈ Vk(E). We consider first the following expansion

on vector monomials

Πk
0w =

2πk∑
ξ=1

wξmξ with mξ ∈Mk(E)

and then we use definition (7) to obtain∫
E

w ·ms dE =

∫
E

Πk
0w ·ms dE =

2πk∑
ξ=1

wξ

∫
E

mξ ·ms dE

for all ms ∈ Mk(E). Unfortunately, the first term involves a virtual func-
tion w which makes it not computable as it is. To proceed, we can use the
decomposition (6) of ms obtaining

ms = ∇pk+1 +

πk−1∑
l=1

glm
⊥ml

for a suitable polynomial pk+1 ∈ Pk+1(E) \ P0(E) and suitable coefficients
g1, . . . , gπk−1

∈ R, the explicit formula of such decomposition can be found
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in Proposition 2.1 of [32]. Therefore integrating by parts, (14) and (15) yield∫
E

w ·ms dE =

∫
E

w · ∇pk+1 dE +

πk−1∑
l=1

gl

∫
E

w ·m⊥ml dE

=

∫
∂E

w · nEpk+1 de−
∫
E

divw pk+1 dE +

πk−1∑
l=1

gl

∫
E

w ·m⊥ml dE

=
∑
e∈EEh

σE,e

k+1∑
ρ=1

cρ

∫
e

m̃ρpk+1 de−
πk∑
θ=1

dθ

∫
E

mθpk+1 dE + |E|
πk−1∑
l=1

glD
l
3(w)

that is a computable expression. Following a standard procedure, we define the

computable discrete local form aEk (·, ·) : VVVk(E) × VVVk(E) → R, with VVVk(E) :=
Vk(E) + [Pk(E)]2, given by

aEk (uh,vh) :=

∫
E

µκ−1Πk
0uh·Πk

0 vh dE+ν(E)SE((I−Πk
0 )uh, (I−Πk

0 )vh) (16)

for all uh,vh ∈ VVVk(E). In the previous definition the term ν(E) ∈ R is a cell-
wise approximation of the physical parameters µk−1 and the stabilization form
SE(·, ·) : VVVk(E)× VVVk(E)→ R is defined by

SE(uh,vh) := |E|
Ndof (E)∑
s=1

Ds(uh)Ds(vh)

that is

SE(uh,vh) := |E|
∑
e∈EEh

k+1∑
i=1

De,i
1 (uh)De,i

1 (vh)+

+ |E|
πk∑
j=2

Dj
2(uh)Dj

2(vh) + |E|
πk−1∑
l=1

Dl
3(uh)Dl

3(vh) (17)

for all uh,vh ∈ VVVk(E), being Ndof(E) the total number of DoFs on E. Since the
global form is the sum of the local counterparts, we obtain ak(·, ·) : VVVk(Ωh) ×
VVVk(Ωh)→ R defined by

ak(uh,vh) :=
∑
E∈Ωh

aEk (uh,vh) ∀uh,vh ∈ VVVk(Ωh) (18)

Remark 3.5 (On the space VVVk). In the definition of the local discrete form aEk
(16), we have considered the sum space VVVk(E) for both of its entries. Indeed,
as reported in Property 1, the space Vk(E) may not contain all the polynomials
up to degree k. However, in order to have the optimal rate of convergence for
the proposed scheme, we need to verify the continuity of aEk on the sum space
VVVk(E) (cfr. Proposition 4.3).
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3.6. The discrete problem

Referring to the discrete spaces (11) and (13), the discrete form (18), the
virtual element approximation of the Darcy equation is given by

Problem 3 (VEM problem). Find the couple Darcy velocity and pressure
(qh, ph) ∈ Vk(Ωh)×Qk(Ωh) such that{

ak(qh,vh) + b(vh, ph) = G(vh) ∀vh ∈ Vk(Ωh)

b(qh, vh) = F (vh) ∀vh ∈ Qk(Ωh).
(19)

Notice that since for any function vh ∈ Vk(Ωh) its divergence and its boundary
values are explicitly known, we do not need to introduce any approximation for
the form b(·, ·) and for the linear function G(·).

4. Theoretical analysis

In this section, we introduce an interpolation operator that allows us to show
the inf-sup stability of the proposed scheme and, at the end of this section, we
study stabilization term.

4.1. Interpolation and Inf-sup stability

We start by reviewing a classical approximation result for polynomials on
star-shaped domains, see for instance [37].

Lemma 4.1 (Bramble-Hilbert). Referring to (7), let 0 ≤ s ≤ k + 1, under
Assumption 2 for all v ∈ V ∩Hs(Ωh) it holds

‖v −Πk
0 v‖Ωh,0 . hs |v|Ωh,s .

Let us introduce the linear Fortin operator Πk
F : [H1(Ω)]2 → Vk(Ωh): for

w ∈ [H1(Ω)]2 and for all e ∈ Eh and E ∈ Ωh, we require the following three
conditions ∫

e

(w −Πk
Fw) · nem̃i de = 0 ∀m̃i ∈ M̃k(e); (20)∫

E

div(w −Πk
Fw)mj dE = 0 ∀mj ∈Mk(E) \M0(E); (21)∫

E

rot(w −Πk
Fw)ml dE = 0 ∀ml ∈Mk−1(E). (22)

The definition above easily implies that the following diagram is commutative

[H1(Ω)]2
div−−−−→ Q

0−−−−→ 0

Πk
F

y Πk
0

y
Vk(Ωh)

div−−−−→ Qk(Ωh)
0−−−−→ 0

(23)
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where the right arrows in this diagram indicate that the divergence operator is
surjective. In particular, we have the following property:

div(Πk
Fw) = Πk

0 divw ∀w ∈ [H1(Ω)]2. (24)

Indeed, since div(Πk
Fw) ∈ Qk(Ωh), by definition of Πk

0 , we need to verify that
for all E ∈ Ωh ∫

E

div(w −Πk
Fw)mj dE = 0 ∀mj ∈Mk(E).

If mj ∈Mk(E) \M0(E) it follows by (21), whereas if j = 1 by Property 1 and
(20) we have∫

E

div(w −Πk
Fw) dE =

∫
∂E

(w −Πk
Fw) · nE de

=
∑
e∈EEh

σE,e

∫
e

(w −Πk
Fw) · ne de = 0.

Remark 4.1. Notice that property (24) is strictly related to the DoFs D1 as well
as D2 and the associated Fortin operator. With the choice of DoFs of Remark
3.3 and adopted for the “straight” MVEM [1] with the associated Fortin operator
we have instead∫

E

div(w −Πk
Fw)mk dE = −

∫
E

(w −Πk
Fw) · ∇mk dE+

+
∑
e∈Eh

σE,e

∫
e

(w −Πk
Fw) · nemk de .

For a curved polygon E, the second term is not zero any more since, as observed
in Property 1, the restriction of mk on a curved edge e in general does not belong
to P̃k(e). Therefore the choice of D1 and D2 is particularly suited for curved
polygons.

As a consequence of the above arguments we have the following results: the
first one deals with the approximation property of the space (11), the second
one is associated with the exactness of the sequence (23) and deals with the
inf-sup stability of the method [5].

Proposition 4.1. Let w ∈ V ∩ [Hk+1(Ωh)]2 with divw ∈ Hk+1(Ωh) and let
Πk

F be the linear Fortin operator. Then, under Assumption 2, the following
estimates hold

‖ divw − divΠk
Fw‖0,Ω . hk+1 |divw|k+1,Ωh

, (25)

‖w −Πk
Fw‖0,Ω . hk+1 ‖w‖k+1,Ωh

. (26)
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Proof. The estimate (25) is a direct consequence of (24) and Lemma 4.1. Con-
cerning the L2 estimate, we recall (see [38, Theorem 3.2]) that any function
v ∈ H(div, E) ∩H(rot, E) can be decomposed as

v = ∇φ− rotψ (27)

where φ and ψ are defined by{
∆φ = div v in E,

∇φ · nE = v · nE on ∂E,
and

{
∆ψ = rotv in E,

ψ = 0 on ∂E,
(28)

and φ is zero averaged. Moreover the decomposition (27) is L2-orthogonal, i.e.,

‖v‖20,E = ‖∇φ‖20,E + ‖ rotψ‖20,E . (29)

Let w ∈ [Hk+1(Ωh)] and let Πk
Fw ∈ Vk(Ωh) be its interpolant function de-

fined by (20), (21) and (22). Then on each E ∈ Ωh we have the orthogonal
decomposition

w −Πk
Fw = ∇δh − rotµh (30)

where (the zero averaged function) δh and µh are defined by{
∆δh = (I −Πk

0 ) divw in E,

∇δh · nE = (I − Π̃k
0 )w · nE on ∂E,

{
∆µh = (I −Πk−1

0 ) rotw in E,

µh = 0 on ∂E.

(31)
We now estimate each term in (30). For the first term, (31) implies

‖∇δh‖20,E = −
∫
E

(I −Πk
0 ) divw δh dE +

∫
∂E

(I − Π̃k
0 )w · nE δh de

≤ ‖(I −Πk
0 ) divw‖0,E‖δh‖0,E + ‖(I − Π̃k

0 )w · nE‖0,∂E‖δh‖0,∂E
=: η1 + η2 .

Employing Lemma 4.1 and a scaled Poincaré inequality for the zero averaged
function δh we infer

η1 = ‖(I −Πk
0 ) divw‖0,E‖δh‖0,E . hk+2

E |divw|k+1,E ‖∇δh‖0,E .

For the boundary term η2, applying a scaled trace inequality and again a scaled
Poincaré inequality we obtain

η2 = ‖δh‖0,∂E‖(I − Π̃k
0 )w · nE‖0,∂E

. (h
−1/2
E ‖δh‖0,E + h

1/2
E ‖∇δh‖0,E)

∑
e∈EEh

‖(I − Π̃k
0 )w · ne‖0,e

. h
1/2
E ‖∇δh‖0,E

∑
e∈EEh

‖(I − Π̃k
0 )w · ne‖0,e .
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Now employing the same argument in the proof of Lemma 3.2 in [16], from the
previous bound we get

η2 . h
1/2
E ‖∇δh‖0,E

∑
e∈EEh

h
k+1/2
E ‖w · ne‖k+1/2,e

. hk+1
E ‖∇δh‖0,E‖w‖k+1/2,∂E . hk+1

E ‖∇δh‖0,E‖w‖k+1,E .

Therefore we obtain the following estimate

‖∇δh‖0,E . hk+1
E ‖w‖k+1,E . (32)

Using similar argument, the term rotµh in (30) can be bounded as follows

‖∇µh‖20,E = −
∫
E

(I −Πk−1
0 ) rotw µh dE

≤ ‖(I −Πk−1
0 ) rotw‖0,E‖µh‖0,E . hkE | rotw|k,E hE‖∇µh‖0,E

then we conclude

‖ rotµh‖0,E = ‖∇µh‖0,E . hk+1
E |w|k+1,E . (33)

The thesis now follows by collecting (32) and (33) in (30).

Proposition 4.2. Under Assumption 2, there exists β > 0 such that

inf
v∈Qk(Ωh)

sup
w∈Vk(Ωh)

b(w, v)

‖v‖Q‖w‖V
≥ β .

4.2. Stability analysis

The aim of the section is to prove the stability bounds for the approximated
bilinear form (16) and in particular for the stabilization term SE . We want to
prove that

SE(w,w) & ‖w‖20,E ∀w ∈ Vk(E),

SE(w,w) . ‖w‖20,E ∀w ∈ VVVk(E).

We start the analysis with the following useful lemmas.

Lemma 4.2. We assume (2) and we fix an integer n ∈ N. Let w ∈ H(div, E)
such that divw ∈ Pn(E) then

‖divw‖0,E . h−1E ‖w‖0,E . (34)

Let w ∈ H(rot, E) such that rotw ∈ Pn(E) then

‖ rotw‖0,E . h−1E ‖w‖0,E . (35)
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Proof. Under Assumption 2, let TE ⊂ E be an equilateral triangle inscribed
in the ball BE . Then for any pn ∈ Pn(E) it holds ‖pn‖0,E . ‖pn‖0,TE

. Let
b3 ∈ P3(TE) be the cubic bubble with ‖b3‖L∞(TE) = 1. Then, applying a
polynomial inverse estimate on TE we get

‖divw‖20,E . ‖ divw‖20,TE

.
∫
TE

b3 divw divw dE = −
∫
TE

∇(b3 divw)w dE

. ‖∇(b3 divw)‖0,TE
‖w‖0,TE

. h−1E ‖b3 divw‖0,TE
‖w‖0,TE

. h−1E ‖divw‖0,TE
‖w‖0,TE

. h−1E ‖ divw‖0,E‖w‖0,E ,

from which follows (34). The same argument applies to (35).

Let us now introduce the following H1/2(∂E) scaled norm

|||q|||1/2,∂E := h
−1/2
E ‖q‖0,∂E + |q|1/2,∂E ,

and the associated H−1/2(∂E) scaled norm

|||v|||−1/2,∂E := sup
q∈H1/2(∂E)

∫
∂E

q v de

|||q|||1/2,∂E
,

then we have the following H(div) trace inequality.

Lemma 4.3. Let E ∈ Ωh, then for all w ∈ H(div, E) the following trace
inequality holds

|||w · nE |||−1/2,∂E . ‖w‖0,E + hE‖ divw‖0,E .

Proof. We preliminary observe that under Assumptions 2 and 3, employing
Lemma 6.1 in [39], for all q ∈ H1/2(∂E) the following holds: there exists an
extension q̃ ∈ H1(E) of q such that

h−1E ‖q̃‖0,E + ‖∇q̃‖0,E . |||q|||1/2,∂E . (36)

Then from (36), an integration by parts and the Cauchy-Schwarz inequality we
infer

|||w · nE |||−1/2,∂E = sup
q∈H1/2(∂E)

∫
∂E

qw · nE de

|||q|||1/2,∂E

. sup
q̃∈H1(E)

∫
∂E

q̃w · nE de

h−1E ‖q̃‖0,E + ‖∇q̃‖0,E

. sup
q̃∈H1(E)

∫
E
∇q̃ ·w dE +

∫
E
q̃ divw dE

h−1E ‖q̃‖0,E + ‖∇q̃‖0,E
. ‖w‖0,E + hE‖divw‖0,E .
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We finally mention the following result.

Lemma 4.4. Let E ∈ Ωh, then for all w ∈ VVVk(E) the following holds

‖w · nE‖0,∂E . h
−1/2
E |||w · nE |||−1/2,∂E .

Proof. This result was already proven in [40] for polygons with straight edges.
Since we suppose that each curved edge is uniformly Lipschitz-equivalent to flat
reference edge, and such functions are polynomials on this parameter space, the
proof such result follows the same arguments of Lemma 2.3 [40].

Proposition 4.3. Let E ∈ Ωh. Under Assumptions 1, 2 and 3 the following
holds

SE(w,w) . ‖w‖20,E ∀w ∈ VVVk(E).

Proof. By definition (17), for w ∈ VVVk(E) we need to prove that

SE(w,w) =
∑
e∈EEh

k+1∑
i=1

|E|De,i
1 (w)2+

πk∑
j=2

|E|Dj
2(w)2+

πk−1∑
l=1

|E|Dl
3(w)2 . ‖w‖20,E .

(37)
We start analysing the first term in the left-hand side. Employing Lemma 4.4,
Lemma 4.3 and Lemma 4.2 for all w ∈ VVVk(E) it holds that

hE‖w·nE‖20,∂E . |||w·nE |||2−1/2,∂E . ‖w‖20,E+h2E‖ divw‖20,E . ‖w‖20,E . (38)

Then, since ‖mi‖20,e . he and he ≈ hE (cfr. Remark 3.1), from (38) it follows
that

∑
e∈EEh

k+1∑
i=1

|E|De,i
1 (w)2 =

∑
e∈EEh

k+1∑
i=1

|E|
h2e

(∫
e

w · nem̃i de

)2

.
∑
e∈EEh

k+1∑
i=1

‖w · ne‖20,e‖m̃i‖20,e .
∑
e∈EEh

‖w · ne‖20,e
k+1∑
i=1

‖mi‖20,e

.
∑
e∈EEh

hE‖w · ne‖20,e . hE‖w · nE‖20,∂E . ‖w‖20,E .

(39)

Consider the second term of (37), we apply Lemma 4.2 and, since ‖mi‖L∞(E) ≤ 1,
we infer

πk∑
j=2

|E|Dj
2(w)2 =

πk∑
j=2

|E|
(
hE
|E|

∫
E

divwmj dE

)2

.
h2E
|E|

πk∑
j=2

‖ divw‖20,E‖mj‖20,E .
πk∑
j=2

h2E‖ divw‖20,E . ‖w‖20,E .

(40)
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Finally for the last term in (37), using again

‖m⊥‖L∞(E) ≤ 1, and ‖ml‖L∞(E) ≤ 1,

we get:

πk−1∑
l=1

|E|Dl
3(w)2 =

πk−1∑
l=1

|E|
(

1

|E|

∫
E

w ·m⊥ml dE

)2

.
1

|E|
‖w‖20,E‖m⊥ml‖20,E . ‖w‖20,E .

(41)

Collecting (39), (40) and (41) in (37) we obtain the thesis.

The next step is to prove the coercivity of the bilinear form SE with respect
to the L2-norm. We mention the following lemma dealing with a norm equiva-
lence of polynomial spaces on curved polygons. We refer to [42, Lemma 4.1] for
the proof (the extension to the curved edge case follows the same guidelines).

Lemma 4.5. Let E ∈ Ωh and let n ∈ N a fixed integer. Under Assumptions 1, 2
and 3, let g := (gr)

πn
r=1 be a vector of real numbers and g :=

∑πn

r grmr ∈ Pn(E),
where mr ∈Mn(E). Then, we have the following norm equivalence

h2E ‖g‖2l2 . ‖g‖20,E . h2E ‖g‖2l2 .

Moreover let g := (gs)
n+1
s=1 be a vector of real numbers and g̃ :=

∑n+1
s gs m̃s ∈

P̃n(e), where m̃s ∈ M̃n(e). Then, we have the following norm equivalence

hE ‖g‖2l2 . ‖g‖20,e . hE ‖g‖2l2 .

Proposition 4.4. Let E ∈ Ωh. Under Assumptions 1, 2 and 3 the following
holds

‖w‖20,E . SE(w,w) ∀w ∈ Vk(E).

Proof. Let w ∈ Vk(E) and, referring to the L2-orthogonal decomposition (27),
let us set

w = ∇φ− rotψ , (42)

therefore we need to prove that

‖∇φ‖20,E . SE(w,w) and ‖ rotψ‖20,E . SE(w,w) . (43)

We start with the first bound in (43) and we infer

‖∇φ‖20,E =

∫
E

w · ∇φdE = −
∫
E

divw φdE +
∑
E∈EEh

σE,e

∫
e

w · neφde

= −
∫
E

divwΠk
0φ dE +

∑
E∈EEh

σE,e

∫
e

w · neΠ̃k
0φ de

(44)
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where in the last equation we use the fact that divw ∈ Pk(E) and w ·ne ∈ P̃k(e)
and definitions (7) and (8), respectively. Let us set

Πk
0φ =

πk∑
j=1

cjmj with mj ∈Mk(E), Π̃k
0φ =

k+1∑
i=1

dim̃i with m̃i ∈ M̃k(e).

Then from (44) we infer

‖∇φ‖20,E = −
πk∑
j=2

cj

∫
E

divwmj dE − c1
∫
∂E

w · nEmj de+

+
∑
E∈EEh

σE,e

k+1∑
i=1

di

∫
e

w · nem̃i de

that is

‖∇φ‖20,E = −
πk∑
j=2

cj

∫
E

divwmj dE +
∑
E∈EEh

σE,e

k+1∑
i=1

d̂i

∫
e

w · nem̃i de (45)

where d̂i = di − ci if i = 1, d̂i = di otherwise.
Using Lemma 4.5, the continuity of Πk

0 with respect to the L2-norm and a
scaled Poincaré inequality for the zero averaged function φ, the bulk integral in
(45) can be bounded as follows:

−
πk∑
j=2

cj

∫
E

divwmj dE = −
πk∑
j=2

cj
|E|
hE

Dj
2(w)

.

( πk∑
j=1

c2j

)1/2(
|E|

πk∑
j=2

Di
2(w)2

)1/2

. h−1E ‖Π
k
0φ‖0,E SE(w,w)1/2

. h−1E ‖φ‖0,E S
E(w,w)1/2 . ‖∇φ‖0,E SE(w,w)1/2 .

(46)

For the boundary integral in (45), employing Lemma 4.5, we infer

∑
e∈EEh

σE,e

k+1∑
i=1

d̂i

∫
e

w · nem̃i de .
∑
e∈EEh

σE,e

k+1∑
i=1

d̂iheD
e,i
1 (w)

.
∑
e∈EEh

(k+1∑
i=1

d̂2i

)1/2(
|E|

k+1∑
i=1

De,i
1 (w)

)1/2

.
∑
e∈EEh

(
c21 +

k+1∑
i=1

d2i

)1/2(
|E|

k+1∑
i=1

De,i
1 (w)

)1/2

.
∑
e∈EEh

(
h−1E ‖Π

k
0φ‖0,E + h

−1/2
E ‖Π̃k

0φ‖0,e
)(
|E|

k+1∑
i=1

De,i
1 (w)2

)1/2

.
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Then, using the continuity of Π̃k
0 with respect to the L2-norm and the H1 trace

inequality for the zero averaged function φ, from previous bound we get

∑
e∈EEh

σE,e

k+1∑
i=1

d̂i

∫
e

w · nem̃i de

.

(
h−2E ‖Π

k
0φ‖20,E + h−1E

∑
e∈EEh

‖Π̃k
0φ‖20,e

)1/2(
|E|

∑
e∈EEh

k+1∑
i=1

De,i
1 (w)2

)1/2

.

(
h−2E ‖φ‖

2
0,E + h−1E

∑
e∈EEh

‖φ‖20,e
)1/2

SE(w,w)1/2

.

(
h−2E ‖φ‖

2
0,E + h−1E ‖φ‖

2
0,∂E

)1/2

SE(w,w)1/2 . ‖∇φ‖0,E SE(w,w)1/2 .

(47)

Collecting (47) and (46) in (45), we obtain the first bound in (43).
Concerning the second bound in (43), we preliminary observe that since

rotw = qk−1 ∈ Pk−1(E), employing Remark 2 and Lemma 46 in [43], there
exists pk−1 ∈ Pk−1(E) such that

div((x− xE)pk−1) = rotw and ‖(x− xE)pk−1‖0,E . hE‖ rotw‖0,E . (48)

Furthermore simple computations yield

rot((x− xE)⊥pk−1) = −div((x− xE)pk−1) = − rotw . (49)

Therefore from bound (48), decomposition (42) and Lemma 4.2 we infer

‖(x− xE)⊥pk−1‖0,E = ‖(x− xE)pk−1‖0,E . hE‖ rotw‖0,E . ‖ rotψ‖0,E .
(50)

Let us now estimate the term ‖ rotψ‖0,E . From (28), (49) and (42) we obtain

‖ rotψ‖20,E =

∫
E

rotψ · rotψ dE =

∫
E

∆ψψ dE =

∫
E

rotwψ dE

= −
∫
E

rot((x− xE)⊥pk−1)ψ dE = −
∫
E

(x− xE)⊥pk−1 · rotψ dE

=

∫
E

(x− xE)⊥pk−1 ·w dE −
∫
E

(x− xE)⊥pk−1 · ∇φ dE .

(51)

Let us write (x − xE)⊥pk−1 in the monomial basis: it exists gl ∈ R, for l =
1, . . . , πk−1, such that

(x− xE)⊥pk−1 :=

πk−1∑
l=1

glm
⊥ml ,
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and let us analyse the two adds in the right-hand side of (51). For the first one,
using Lemma 4.5 and (50), we infer∫

E

(x− xE)⊥pk−1 ·w dE =

πk−1∑
l=1

gl

∫
E

m⊥ml ·w dE =

πk−1∑
l=1

|E|glDl
3(w)

. hE

(πk−1∑
l=1

g2l

)1/2(
|E|

πk−1∑
l=1

Dl
3(w)2

)1/2

. ‖(x− xE)⊥pk−1‖0,E SE(w,w)1/2 . ‖ rotψ‖0,E SE(w,w)1/2 .

(52)

For the second term in (51), using the first bound in (43) and (50), we get

−
∫
E

(x− xE)⊥pk−1 · ∇φ dE . ‖(x− xE)⊥pk−1‖0,E‖∇φ‖0,E

. ‖(x− xE)⊥pk−1‖0,E SE(w,w)1/2 . ‖ rotψ‖0,E SE(w,w)1/2 .

(53)

Collecting (52) and (53) in (51) we obtain the second bound in (43). The thesis
now follows from (29).

As a direct consequence of Propositions 4.1 4.2 4.3 and 4.4 we have the
following result [44, 26].

Proposition 4.5. Under Assumptions 1, 2 and 3, the virtual element problem
(3) has a unique solution (qh, ph) ∈ Vk(Ωh) × Qk(Ωh). Moreover, let (q, p) ∈
V × Q be the solution of problem (2) and assume that q ∈ [Hk+1(Ωh)]2 with
div q ∈ Hk+1(Ωh), p, f ∈ Hk+1(Ωh), then the following error estimates hold:

‖q − qh‖V . hk+1(|q|k+1,Ωh
+ |f |k+1,Ωh

) ,

‖p− ph‖Q . hk+1(|q|k+1,Ωh
+ |p|k+1,Ωh

) .

Remark 4.2. In order to compute the VEM error between the velocity compo-
nent of the exact solution q and the VEM solution qh (that is not known in closed
form), we consider the computable L2-like error quantity ‖q−Πk

0 qh‖0,Ωh
. Em-

ploying the triangular inequality, Lemma 4.1, the continuity of the L2-projection
with respect to the L2-norm and Proposition 4.5 we infer

‖q −Πk
0 qh‖0,Ωh

. ‖(I −Πk
0 )q‖0,Ωh

+ ‖Πk
0 (q − qh)‖0,Ωh

. hk+1|q|k+1,Ωh
+ ‖q − qh‖0,Ωh

. hk+1(|q|k+1,Ωh
+ |f |k+1,Ωh

) .

5. Numerical tests

In this section some numerical examples are provided to describe the be-
haviour of the method and give numerical evidence of the theoretical results
derived in the previous sections. More specifically, we propose a comparison of
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the method with standard mixed virtual elements, in which the curved bound-
aries or interfaces of the domain are approximated by a straight edge interpolant.
For brevity we will label the present approach which honours domain geometry
as withGeo, and the standard approach as noGeo.

The geometries considered in the following academic test cases are described
by simple curves for the purpose of manufacturing exact solutions. In the case
of general geometries a possible workflow consists in the parametrization by
means of freeform curves, which are widely used in CAD software and have the
advantage of a fixed polynomial equation.

For a given exact solution (q, p) of Problem 1, we compute the following
error indicators:

• velocity L2 error:

e2q :=
∑
E∈Ωh

‖q −Πk
0 qh‖2E ,

here we exploit the projection operators introduced in (7) since the velocity
is a virtual function,

• pressure L2 error:

e2p :=
∑
E∈Ωh

‖p− ph‖2E .

Moreover, to proceed with the convergence analysis, we define the mesh-size
parameter

h =
1

LE

∑
E∈Ωh

hE ,

For each test we build a sequence of four meshes with decreasing mesh size
parameter h and the trend of each error indicator is computed and compared to
the expected convergence trend, which, for sufficiently regular data is O

(
hk+1

)
in accordance to Proposition 4.5.

5.1. Curved boundary

Problem description. In this subsection we consider Problem 1 on the domain
Ω shown in Figure 1. Such domain is obtained from the unit square (0, 1)2

deforming the top and the bottom edges to make them curvilinear, i.e., they
are the graph of the following cubic functions:

g1(x) =
1

2
x2(x− 1) + 1 and g2(x) =

1

2
x2(x− 1) .

We set the right hand side and the boundary conditions in such a way that the
exact solution of Problem 1 is the couple:

q(x, y) =

(
π cos(π x) cos(π y)
−π sin(π x) sin(π y)

)
and p(x, y) = sin(πx) cos(πy) .

In this first example we take µ = 1. and we consider a constant tensor κ = I,
where I is the identity matrix.
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Figure 1: Curved boundary: domain Ω considered in such example, curved boundaries are
highlighted in red.

Meshes. Computational meshes are obtained starting from polygonal meshes
defined on the unit square (0, 1)2 and subsequently modified, following the idea
proposed in [16]. In the present case, only the y-component of a generic point
P is modified, i.e., the point P (xP , yP ) becomes P ′(x′P , y

′
P ) where

x′P = xP and y′P =

yP + g2(xP )(1− 2yP ) if yP ≤ 0.5

1− yP + g1(xP ) (2yP − 1) if yP > 0.5
.

The curved part of the boundary is further exactly reproduced for the withGeo

case. As initial meshes we consider the following types of discretization of the
unit square: i) quad, a uniform mesh composed by squares; ii) hexR, a mesh
composed by hexagons; iii) hexD, a mesh composed by distorted hexagons; iv)
voro, a centroidal Voronoi tessellation. The last two types of meshes have
some interesting features which challenge the robustness of the virtual element
approach: in particular hexD meshes have distorted elements, whereas voro

meshes have tiny edges, see Figure 2.

quad hexR hexD voro

Figure 2: Curved boundary: types of discretization used to proceed with the convergence
analysis.

Results. In Figures 3, 4, 5 and 6, we collect the results for the various types of
meshes. The reported convergence lines of the withGeo and noGeo approaches
coincide for polynomial degrees k = 0 and 1. They have the expected conver-
gence rate of O

(
h1
)

and O
(
h2
)
, respectively. On the contrary, for polynomial
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degree k > 1 the trend of both velocity and pressure L2 errors is different
between the two strategies.

More specifically, the convergence trends of the noGeo case is bounded by
the geometrical representation error to O

(
h2
)
, as this error dominates the ac-

curacy of the approximation with mixed virtual elements. On the contrary the
proposed approximation scheme withGeo behaves as expected for both velocity
and pressure variables and for each approximation degree, showing the optimal
convergence trend for the used polynomial degree. Such behaviour is in line to
what observed in [16] for a Laplace problem.
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Figure 3: Curved boundary (test case 5.1): convergence lines for quad meshes for each VEM
approximation degrees.

5.2. Double internal curved interfaces

Problem description. In this example we consider two internal boundaries which
identify three regions, Ω1, Ω2 and Ω3, inside the square (−1, 1)2, see Figure 7a.
Both internal boundaries are curved, i.e., Γ1 and Γ2 are defined as

g1(x) = a sin(πx) + b and g2(x) = a sin(πx)− b ,

respectively. For this example we set a = 0.2 and b = 0.31. Then, we set the
right hand side of Problem 1 in such a way that the pressure solution is

p1(x, y) = a sin(πx) ,

p2(x, y) = a sin
{ π

2b
[y − a sin(πx)]

}
sin(π x) ,

p3(x, y) = −a sin(πx) ,

and the velocity qi(x, y) = −∇pi(x, y) on each subdomain Ωi for i = 1, 2 and
3. Both velocity and pressure functions are chosen in such a way that we have
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Figure 4: Curved boundary (test case 5.1): convergence lines for hexR meshes for each VEM
approximation degrees.
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Figure 5: Curved boundary (test case 5.1): convergence lines for hexD meshes for each VEM
approximation degrees.

a C0 continuity for the pressure and for the normal component of the velocity
on the curves Γ1 and Γ2, i.e.,

p1 = p2 and q1 · n1 + q2 · n1 = 0 on Γ1 ,

p2 = p3 and q2 · n2 + q3 · n2 = 0 on Γ2 ,

where n1 is the normal of Γ1 pointing from Ω1 to Ω2 and n2 is the normal of
Γ2 pointing from Ω2 to Ω3.
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Figure 6: Curved boundary (test case 5.1): convergence lines for voro meshes for each VEM
approximation degrees.

(a) Domain (b) Mesh

Figure 7: Double internal curved interfaces. On the left, domain Ω considered in such example,
curved boundaries are highlighted in red. On the right, the whole mesh with the internal
curved boundaries. We show zooms of the yellow and red regions in Figure 8.

Meshes. We build a background mesh composed by squares and then we insert
the curved internal interfaces, as shown in Figure 7b. This is done, as previously,
independently from the background mesh, and thus the resulting meshes are
composed by elements with arbitrary size and shape, see Figure 8. Mesh element
edges lying on the curvilinear interfaces exactly match the interface for the
withGeo approach, whereas they are approximated by straight edges in the
noGeo case.

Results. In Figure 9 we show convergence lines for both the withGeo and noGeo

for values of k = 0, . . . , 4. The behaviour of error decay is again as expected: in
the noGeo case error decay follows the expected trend for the used polynomial
accuracy only for k ≤ 1, being, for k > 1, always O

(
h2
)

for the prevailing effect
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Figure 8: Double internal curved interfaces: zooms of the yellow and red regions of Figure 7b,
where we highlight tiny triangles with a curved edge.

of the geometrical error. On the contrary, since appropriate basis functions are
included in the definition of the approximation space in the proposed withGeo

approach, optimal error decay is observed for the used polynomial accuracy
level.
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Figure 9: Double internal curved interfaces (test case 5.2): convergence lines for each VEM
approximation degrees.

5.3. Internal interface with permeability contrast

Problem description. In this subsection we consider again Problem 1 defined on
a different domain with respect to the previous example. The domain Ω is shown
in Figure 10a and consists of a unit square Ω = (−1, 1)2, Ω = Ω1 ∪ Ω2, being
Ω2 a circular inclusion with radius R = 0.45 and Ω1 := Ω\Ω2 a circular crown.
Two different values of the tensor κ = kI are prescribed on each subdomain:
k1 = 1 and k2 = 0.0001 for the subdomain Ω1 and Ω2, respectively, while µ = 1.
on each subdomain. We set the right hand side and the boundary conditions in
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such a way that the exact solution for the pressure is

p1(x, y) = k2 cos
(√

x2 + y2
)

+ cos(R) (1− k2)

and
p2(x, y) = cos

(√
x2 + y2

)
,

for the subdomains Ω1 and Ω2, respectively. Then, the exact solution for the
velocity variable is given by

qi(x, y) = −ki(x, y)∇pi(x, y) , for i = 1, 2 .

The pressure solution is chosen in such a way that we have a C0 continuity on
∂Ω2, and the velocity field has a C0 continuity of the normal component across
∂Ω2, i.e.,

p1 = p2 and q1 · nι + q2 · nι = 0 on ∂Ω2 ,

where nι is the normal of ∂Ω2 pointing from Ω1 to Ω2.

(a) Domain (b) Mesh

Figure 10: Internal curved interface. On the left, domain Ω considered in such example,
curved boundaries are highlighted in red. On the right, the whole mesh with the internal
curved boundary. We show zooms of the yellow and red regions in Figure 11.

Meshes. To generate the grid, we start again from a structured mesh composed
of square elements of the whole domain Ω, independently of the internal inter-
face ∂Ω2, and then we cut the mesh elements into sub-elements according to
∂Ω2. The geometry of the internal interface is exactly reproduced in the pro-
posed withGeo approach, whereas it is replaced by straight edges in the noGeo

approach. In both cases, thanks to the ability of virtual elements in dealing with
arbitrary shaped elements the mesh generation process is straightforward, as we
do not need to re-mesh elements crossed by the circle, but we simply cut each
intersected quadrilateral element into two new elements with one new (curved)
edge, without taking care the resulting shape and size of the two cut elements.

In Figure 11 we show a detail of some cut elements. Here we better appreciate
that elements crossed by the interface are simply split in two parts and there is
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Figure 11: Internal curved interface: zooms of the yellow and red regions of Figure 10b, where
we highlight tiny triangles with a curved edge.

no any further subdivision. Moreover, we notice that such meshing procedure
might results in really tiny elements adjacent to big ones. This kind of poor
mesh configurations often arises in applications where a large number of possibly
intersecting interfaces might be present in the computational domain, such that
a robust and easy meshing process is of paramount importance. The proposed
test shows that the VEM approach for curved meshes appears to be robust to
poor mesh configurations, as, in each mesh of the following convergence analysis
there are many elongated elements and elements with small edges and we will
see that the convergence trend of the method is not affected by them.

As a final remark, we would like to underline another interesting property
of the proposed approach. The proposed curved spaces are compatible with
standard finite element discretizations. For instance it is possible to simply glue
a standard Raviart-Thomas element with an element with curved edges along a
straight edges, thus exploiting the proposed virtual element spaces only on the
elements with curvilinear edges and standard Raviart-Thomas discretization on
elements with straight edges.

Results. In Figure 12 we show the convergence lines for the withGeo and noGeo

approaches as h is reduced, for values of k ranging between 0 and 4. The
behaviour of the error is similar to the ones shown in the previous examples.
Indeed, in the noGeo case the convergence is the optimal one for polynomial
accuracy values k = 0 and 1, while for k > 1 the geometrical error dominates
the VEM approximation error and the trend remains bounded by O

(
h2
)
. On

the contrary, when we consider the virtual element spaces for curvilinear edges,
optimal error decay O

(
hk+1

)
is obtained for both velocity and pressure L2

errors, for the used polynomial accuracy k. A pre-asymptotic behaviour is
observed for the withGeo approach for values of k = 2, 3 and 4, which however
terminates in the considered range of h values for almost all cases.

6. Conclusions

In this work we have performed a first analysis on the extension of the mixed
virtual element method to grids where elements might have curved edges, for el-
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Figure 12: Internal curved interface (test case 5.3): convergence lines for each VEM approxi-
mation degrees.

liptic problems in 2D. A theoretical analysis is proposed to show well-posedness
of the discrete problem. A choice for the degrees of freedom particularly well
suited for discretizations on curvilinear edge elements is highlighted, and a nu-
merical scheme is proposed that handles in a coherent and consistent way the
geometry, thus exhibiting optimal error decay in accordance to the polynomial
accuracy level of the approximation. This is particularly suited for real applica-
tions where the geometrical error might dominate and limit the accuracy of the
numerical solution. The numerical examples are in accordance with the theo-
retical findings and showed the optimal error decay for a domain with curved
boundary and a domain with internal interfaces in contrast with the standard
mixed virtual element method where the geometrical error jeopardizes the per-
formances. Natural extension of the current work are the introduction of the
mixed virtual element method for three-dimensional problems with curved faces
and for more general problems.
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fracture network simulations, Finite Elem. Anal. Des. 134 (2017) 55–67.
doi:10.1016/j.finel.2017.05.011.

[31] A. Fumagalli, E. Keilegavlen, Dual Virtual Element Methods for Discrete
Fracture Matrix Models, Oil & Gas Science and Technology - Revue d’IFP
Energies nouvelles 74 (41) (2019) 1–17. doi:10.2516/ogst/2019008.

[32] F. Dassi, G. Vacca, Bricks for the mixed high-order virtual element method:
Projectors and differential operators, Appl. Numer. Math. 155 (2020) 140–
159. doi:10.1016/j.apnum.2019.03.014.

[33] F. Dassi, J. Gedicke, L. Mascotto, Adaptive virtual elements with equili-
brated fluxes, ArXiv preprint (2020). doi:arXiv:2004.11220.

[34] L. Beirão da Veiga, A. Pichler, G. Vacca, A virtual element method for
the miscible displacement of incompressible fluids in porous media, Com-
put. Methods Appl. Mech. Engrg. 375 (2021) Article number 113649.
doi:10.1016/j.cma.2020.113649.

[35] A. Fumagalli, A. Scotti, L. Formaggia, Performances of the mixed virtual
element method on complex grids for underground flow, ArXiv preprint-
Accepted in SEMA SIMAI Springer Series (2020). doi:arXiv:2002.11974.

[36] R. A. Adams, Sobolev spaces, Vol. 65 of Pure and Applied Mathematics,
Academic Press, New York-London, 1975.

[37] S. C. Brenner, L. R. Scott, The Mathematical Theory of Finite Element
Methods, 3rd Edition, Vol. 15 of Texts in Applied Mathematics, Springer,
New York, 2008. doi:10.1007/978-0-387-75934-0.

[38] V. Girault, P.-A. Raviart, Finite Element Methods and Navier-Stokes
Equations, Vol. 5 of Springer Series in Computational Mathematics,
Springer-Verlag Berlin Heidelberg, 1986. doi:10.1007/978-3-642-61623-5.

[39] L. Beirão da Veiga, C. Lovadina, A. Russo, Stability analysis for the virtual
element method, Math. Mod.and Meth. in Appl. Sci. 27 (13) (2017) 2557–
2594.

34



[40] L. Beirão da Veiga, L. Mascotto, Interpolation and stability properties of
low order face and edge virtual element spaces, ArXiv preprint (2020).
doi:arXiv:2004.11220.

[41] P. Monk, Finite element methods for Maxwell’s equations, Oxford Univer-
sity Press, 2003. doi:10.1093/acprof:oso/9780198508885.001.0001.

[42] L. Chen, J. Huang, Some error analysis on virtual element methods, Calcolo
55 (5) (2018) 1–23. doi:10.1007/s10092-018-0249-4.

[43] D. A. Di Pietro, J. Droniou, An arbitrary-order discrete de Rham complex
on polyhedral meshes: Exactness, Poincaré inequalities, and consistency,
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