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Unscented Kalman Filter and Control on TSE(3)
with Application to Spacecraft Dynamics

Gennaro Mangiacapra · Matthew Wittal · Elisa Capello · Morad Nazari

Abstract This paper presents a novel rigid-body
navigation and control architecture within the fra-
mework of special Euclidean group SE(3) and its
tangent bundle TSE(3) while considering stochas-
tic processes in the system. The proposed frame-
work combines the orbit-attitude motions of the
rigid body into a single, compact set. The stochas-
tic state filter is designed based on the unscented
Kalman filter (UKF) which uses a special retrac-
tion function to encode the sigma points onto the
manifold. The navigation system is then integrated
and evaluated with two different control techniques
on TSE(3): An almost globally asymptotically sta-
bilizing Morse-Lyapunov-based control system with
backstepping and a robust sliding mode-based con-
trol system. Also, the performance of the UKF in
TSE(3) proposed here is compared with similar fil-
ters in the literature to demonstrate the robustness
and accuracy of the proposed filter in a realistic
setting. Numerical simulations are conducted to
demonstrate the effectiveness of the proposed nav-
igation filter for the full state estimation. In addi-
tion, the navigation and control systems are tested
in the nonlinear gravity field of a small celestial
body with an irregular shape. In particular, the
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performance of the closed-loop systems are stud-
ied in a tracking problem of spacecraft motion near
the asteroid Bennu based on OSIRIS-REx mission
data.

1 Introduction

Rigid body translational motion can be formulated
and propagated using several types of formulation
such as Cowell, Encke, Clohessy-Wilthsire, equinoc-
tial elements, or a unified state model [1–3]. Rota-
tional kinematics are often modeled using attitude
parameterization sets. Minimal parameterization
sets (such as principal rotation angles, Euler an-
gles, and classical and modified Rodrigues param-
eters) are defined in 3-dimensional Euclidean space
R3 and can exhibit singularities. Quaternions are
redundant and are defined on the 3-sphere S3 [4,5]
and hence they do not have the singularity is-
sue. However, due to their non-uniqueness, they
can result in an undesired phenomenon called un-
winding [6] for large rotations such as rigid body
initial tumbling, although this can be avoided by
using discontinuous feedback or nonlinear control
laws [7].

Attitude estimation has been performed using
quaternions and a three-parameter set for the lo-
cal error representation in the literature, including
[8,9]. Alternatively, rigid body attitude can be ex-
pressed using the rotation or direction cosine ma-
trix defined on the special orthogonal group SO(3).
Formalism of the attitude using rotation matrices
helps to avoid the problems of singularity and non-
uniqueness [10–13].

Conventionally, the analysis of rigid body trans-
lational and rotational dynamics are conducted sep-
arately, resulting in separate control laws for each.
However, as clearly discussed in several references
such as [14–16], there are good reasons that the
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coupling between the translational and rotational
dynamics of a rigid body should be considered in
dynamics analysis and control design. In the case
of spacecraft navigation and control, the simulta-
neous modeling of orbital-attitude dynamics using
special Euclidean group SE(3) and their tangent
bundle TSE(3) is especially advantageous due to
its consideration of that coupling. Such coupling
can be due to several effects such as nonlinear
gravity fields or attitude-dependent forces due to
drag and solar radiation pressure, and it occurs in
missions such as spacecraft rendezvous, proximity
operations, and docking, or in spacecraft hover-
ing around small bodies. The consideration of this
coupling results in accurate dynamic analysis and
control design of rigid bodies, as shown in [17–21].

When considering real-world applications, the
inclusion of stochastic processes is a crucial part
of any navigation and control system. The navi-
gation system includes the sensors and the filter,
while the control system is composed of the control
algorithm and the actuators. The navigation filter
enables the correct estimation of the states based
on the sensor measurements. The on-board instru-
ments, such as the inertial measurement unit, gy-
roscopes, accelerometers, and star trackers, have
limited accuracy and are usually characterized by
a degree of uncertainty. These uncertainties can
arise not only due to the noise in the instruments,
but also from electrical components, communica-
tion systems, or external disturbances, and result
in inaccuracies and loss of precision. In addition,
some states might not be observable, as is the case
when considering gyroscope biases. For the reasons
mentioned above, there is a need for using state fil-
ters, such as the Kalman filters, that are capable
of handling stochastic processes and can fuse the
measurements from different sources optimally to
estimate unobservable states [13,22,23].

Although the control problem on TSE(3) for
space applications has been extensively studied [24–
26], the navigation problem on TSE(3) still re-
quires further research. State filter design on SE(3),
with application to robotics, has been of growing
interest in the literature. Extended Kalman filter
(EKF) on SE(3) [27,28], discrete-EKF (D-EKF) on
SE(3) [29,30], and unscented Kalman filter (UKF)
on SE(3) [31–33] are some examples. According
to the literature, these estimators are more accu-
rate than their counterparts designed in Euclidean
space, although formulation development of the fil-
ter design on SE(3) is more complex than that in
Euclidean space. The aforementioned publications
exploit the geometrical mechanics framework by
using the associated maps and operators in the
state update step, where the measurements are de-

fined in the Lie algebra but the filter is designed
on the Lie group SE(3).

In this paper, a novel rigid body navigation
and control system on Lie groups SE(3) and their
tangent bundles TSE(3) is developed. The naviga-
tion filter is designed by advancing the unscented
transform (UT) based UKF introduced in [34] us-
ing retraction to address the fact that the system
states are on TSE(3). The stochasticity is treated
on SE(3) and its tangent bundle TSE(3) as dis-
cussed in [27, 31, 35] and a retraction function be-
tween the manifold and the Euclidean space [36,
37], the inverse of which is used to encode the UT
sigma points onto the manifold and decode them
from the manifold, respectively. The performance
of the proposed filter is compared in terms of ro-
bustness and accuracy with three other Kalman
filters on SE(3) in the literature. Furthermore, the
regulation controller in [18] is extended to the case
of tracking problem to design an almost globally
asymptotically stable Morse-Lyapunov backstep-
ping (MLBS) tracking control on TSE(3). In ad-
dition, a tracking sliding mode control (SMC) is
designed on TSE(3) to verify the results of the
MLBS tracking control. The integrated stochas-
tic estimation and tracking control on Lie groups
and their tangent bundles proposed in this paper
results in a precise, asymptotically stable naviga-
tion and control system that considers the orbit-
attitude coupling in the presence of stochasticity.
The efficacy of this navigation and control system
is demonstrated in the problem of spacecraft mo-
tion around a small irregular central body which
can be considered as a pre-landing phase that fo-
cuses on navigating to a specific point of interest.
The properties of asteroid Bennu are used for the
central body and the gravitational interaction be-
tween the spacecraft and Bennu is modeled accord-
ing to that in [38]. The accuracy of the estimator
in the presence of stochasticity and stability and
convergence of the closed loop are validated in the
numerical simulation results. Note that the exten-
sive contribution and revisions made in this paper
as compared to the authors’ previous work [39] in-
cluding, but certainly not limited to, the tracking
SMC and comparison of the filters provided here,
makes this work distinct from the previous work.

2 Preliminaries and Problem Statement

2.1 Lie group SE(3) and its Lie algebra se(3)

The rigid body configuration may be defined by
six degrees of freedom, three of which are related
to the location of its center of mass and the other
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three are related to its rotation. The pose (configu-
ration) of a rigid body, also known as the Denavit-
Hartenberg representation within the robotics com-
munity, can be expressed as

g =

[
R r

01×3 1

]
∈ SE(3) (1)

where SE(3) is defined as the semi-direct prod-
uct of R3 and SO(3), i.e. SE(3) = R3 ⋉ SO(3),
R ∈ SO(3) is the rotation matrix from the body
frame to the inertial frame such that det(R) = 1
and RTR = I3 (I3 is the 3 × 3 identity matrix),
and r ∈ R3 is the position vector from the origin of
the inertial frame to the center of mass of the rigid
body expressed in the inertial frame. According
to [40, 41], the Lie group SE(3) is a smooth mani-
fold obeying group properties (closure under multi-
plication, identity, associativity, and invertability)
and its associated group operations are differen-
tiable. The smoothness of the matrix Lie group
implies the existence of a single tangent space at
each point. The tangent space at the identity ele-
ment of the group, i.e. g = I4 (when R = I3 and
r = [0, 0, 0]T ), is referred to as Lie algebra [42] and
is denoted as

se(3) =

{
V̄∨ =

[
$× v̄
01×3 0

]
, $× ∈ so(3), v̄ ∈ R3

}
(2)

where (·)∨ denotes the wedge map (·)∨ : R6 −→
se(3), V̄ = [$T , v̄T ]T ∈ R6 is a vector comprised
of v̄ ∈ R3 and $ ∈ R3, so(3) is the set of 3 × 3
skew symmetric matrices such that for the vector
$ = [$1, $2, $3]T ∈ R3, the cross map (·)× :
R3 −→ so(3) is defined as

$× =

 0 −$3 $2

$3 0 −$1

−$2 $1 0

∈ so(3) (3)

From the definitions of Lie group SE(3) and its Lie
algebra se(3) above, the geometric link between
the two formulations can be understood. The Lie
algebra can be considered a linearization of the
Lie group, near the identity element [43]. Due to
the complexity of the nonlinear structure of the
Lie group, it is difficult to study with conventional
mathematical tools. The important feature of the
Lie algebra is that it is a linear vector space and
thus it can be studied using the tools developed in
linear algebra.

The exponential map exp : se(3) −→ SE(3) al-
lows the transfer of Lie algebra elements to the
Lie group which can intuitively be interpreted as
a wrapping operation from the tangent plane onto
the manifold. Formally, it is a local diffeomorphism

from a neighborhood of zero in se(3) onto a neigh-
borhood of the identity element in SE(3) [44]. The
exponential coordinates are defined as

ξ =

[
Θ
p̄

]
∈ R6 (4)

where Θ ∈ R3 represents the principal rotation
vector. This is the product of eigenaxis (principal
axis) and eigenangle (principal angle) of rotation,
i.e. Θ = θe, θ = ‖Θ‖, p̄ ∈ R3 represents the trans-
lational vector. Hence, the configuration g is ob-
tained via exponential map as

g = exp(ξ∨) =
∞∑
n=0

1

n!
(ξ∨)n (5)

which can be written as [45]

g =

[
R(Θ) S(Θ)p̄

0 1

]
∈ SE(3) (6)

where R(Θ) ∈ SO(3) is the rotation matrix from
body frame to the inertial frame. The rotation ma-
trix is obtained via the Rodrigues formula as

R(Θ) = exp(Θ×) = I +
sin θ

θ
Θ× +

1− cos θ

θ2
(Θ×)2

(7)

and

S(Θ) = I +
1− cos θ

θ2
Θ× +

θ − sin θ

θ3
(Θ×)2 (8)

Note that the inverse of the exponential map is
the logarithmic map log : SE(3) −→ se(3) which
can be interpreted as an unwrapping operation.
The exponential coordinates can be obtained via
logarithmic map as

ξ∨ = logSE(3)(g)∈ se(3) (9)

2.2 Rigid body motion formulation on SE(3)

The rigid body kinematic and kinetic equations of
motion are given as

ġ = gV∨

V̇ = I−1ad∗VIV + I−1u (10)

where g ∈ SE(3) represents the rigid body config-
uration as defined in Eq. (1), V = [ωT , vT ]T ∈ R6

is the augmented velocity vector comprised of the
angular velocity vector ω ∈ R3 of the body and the
translational velocity v ∈ R3 of the center of mass
with respect to the inertial frame, expressed in the
body frame. In Eq. (10), u = ue + uc ∈ R6 is the
input, ue ∈ R6 denotes the total external inputs
(consisting of the external moments and external
forces) and uc ∈ R6 is the control input produced
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by the control system (consisting of the control
moment and control force). Also, in Eq. (10), the
inertia tensor is given as

I =

[
J 03×3

03×3 mI3

]
∈ R6×6 (11)

where J ∈ R3×3 is the moment of inertia about
the center of mass, and m is the mass of the body.
Moreover, the co-adjoint operator is defined as

ad∗V = adTV =

[
−ω× −v×
03×3 −ω×

]
∈ R6×6 (12)

where the adjoint operator adV is

adV =

[
ω× 03×3

−v× −ω×
]
∈ R6×6 (13)

This operator allows the transformation of a tan-
gent vector from the tangent space around one el-
ement to the tangent space around another. The
states are thus represented by x = (g,V) ∈ SE(3)×
R6 = TSE(3), the tangent bundle of SE(3). In this
framework, both the attitude and the translational
displacement are considered simultaneously. This
allows to design an estimation algorithm and a
control system in TSE(3), which is more versatile
and more accurate than the standard decoupled
procedures.

3 Stochastic Processes, Filter, and Control
Design on Lie Group and its Tangent
Bundle

3.1 Stochastic processes on Lie groups and
system formulation

The mathematical model employed for the con-
trol and state estimation is usually developed in
Euclidean space, which is an affine space and, by
definition, is a geometric structure based on the
vectorial space [42]. When the mathematical mod-
eling is performed in Euclidean space, it is com-
mon to deal with uncertainties simply by using
an additive approach. Basically, an additive white
Gaussian noise can be considered as representa-
tive of the many random processes that occur in
nature. However, when the model is developed in
SE(3) and its tangent bundle TSE(3), uncertain-
ties and stochastic processes cannot be formulated
using the conventional mathematical models that
are commonly used in the Euclidean space. This is
due to the fact that SE(3) is a nonlinear manifold
and not a vectorial space [35]. In this paper, the
formulation covered in [27,31] is used to accommo-
date a stochastic process in the model. Since the
source of noise is assumed to be in vector space,

the exponential map exp(·) is used to map it into
SE(3) as

ĝ = g exp(η∨g ) ηg ∼ N (0p×1, Qg) (14)

where ĝ ∈ SE(3) is the noisy, estimated pose, g ∈
SE(3) is the true pose, and ηg ∈ Rp (p = 6) denotes
the pose process noise in Euclidean space with a
zero mean Gaussian distribution and covariance
matrixQg ∈ Rp×p. Note that the exponential map-
ping of ηg onto the estimated pose ĝ is multiplica-
tive, as shown in Eq. (14). Also note that calcu-
lation of the maximum likelihood estimate (MLE)
should be performed within the Euclidean space
in which the noise is defined, not in the Lie group
or Lie algebra. The calculation of MLE is outside
the scope of this paper, and thus the relationships
among the MLE of group elements versus those of
the algebra are not discussed here. For a gener-
alized approach to determine the maximum likeli-
hood estimates on manifolds, the reader is referred
to [46]. Also, specific approaches to Lie groups and
the exponential-logarithm mappings of Gaussian
distributions can be found in [47] and [48].

The conventional stochastic system formulation
which best accommodates the application of Kal-
man filter theory considers an additive approach
for both process and measurement noise. The pro-
cess noise is added to the state derivative equation
and the measurement noise is added to the system
output equation. In this work, the aforementioned
approach cannot be adopted, since the state of the
system x = (g,V) is on TSE(3). Although the ve-
locity, expressed in R6, allows the simple addition
of the noise, the pose requires the notation given
in Eq. (14), since it is defined on SE(3). Despite
the fact that different estimation techniques can
be found in the literature, none of them account
for a state vector that is defined on TSE(3). There-
fore a novel, augmented formulation is introduced.

It is assumed that the rigid body pose and aug-
mented velocity are measurable and the output
of the system, z ∈ R2q (q = 6) consists of the
principal angles of rotation Θ, the translational
vector components r, the angular velocity ω, and
the translational velocity v. It must be emphasized
that principal rotation angles are only used to rep-
resent the attitude in the simulation results, while
they are obtained based on the rotation matrix.
In addition, using the principal angle of rotation
allows one to take advantage of the maps and op-
erators defined in Section 2, thus producing a com-
pact, stochastic system formulation on TSE(3) as

˙̂x :

{
˙̂g = gV∨ exp(η∨g )
˙̂V = I−1ad∗V+ηV

I(V + ηV) + I−1u
(15)
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z = [(logSE(3)(exp(ζg)g)|)T , VT + ζTV ]T∈ R2q (16)

where (·)| is the inverse of the wedge map. The
dependence on time is omitted for the readabil-
ity of the equations. The state process noise η =
[ηTg , η

T
V ]T ∈ R2p is assumed to be a Gaussian white

noise with zero mean and covariance matrix Q ∈
R2p×2p, i.e. η ∼ N (02p×1, Q), and the measure-
ment noise ζ = [ζTg , ζ

T
V ]T ∈ R2q is assumed to be

a Gaussian white noise with zero mean and co-
variance matrix T ∈ R2q×2q, i.e. ζ ∼ N (02q×1, T ).
Furthermore, the process noise and measurement
noise are assumed to be uncorrelated. The pro-
cess noise given in Eq. (14) includes components
for both ˙̂g and ˙̂V in the form of the process noise
η. The stochastic system formulation in Eqs. (15)
and (16) is written in the following compact form,
which will be employed in the description of the
UKF steps described in the subsequent section:

˙̂x = f (x, u, η)

z = h (x, ζ)
(17)

where f (·) ∈ TSE(3) represents the nonlinear state
function that depends on the state, input, process
noise, and time and h (·) ∈ R2q represents the mea-
surement function that depends on the state, the
measurement noise, and time. Note that the time
dependence is omitted.

3.2 Unscented Kalman filter design on Lie groups
and their tangent bundles

Starting from the stochastic system formulation
introduced in Eq. (15) and (16), the state estima-
tion is performed using a UKF. This type of filter
belongs to a family of sigma-point Kalman filters
called linear regression Kalman filters, which use
a statistical linearization technique. In the EKF-
based approaches, the state distribution is gen-
erally propagated analytically through the first-
order linearization of the nonlinear system. Due
to the linearization used in EKF, it is only ca-
pable of achieving first-order accuracy [34]. This
procedure can lead to large errors or corrupted es-
timates [33]. The UKF instead handles the prob-
lem with a deterministic sampling approach. The
Gaussian state distribution is represented by a set
of sample points that completely capture the mean
and covariance of the distribution. These points
are known as sigma points and are propagated
through the nonlinear dynamics with the purpose
of capturing the a posteriori mean and covariance
with high accuracy [37]. The UKF is based on the
leading intuition that it is harder to approximate

an arbitrary nonlinear function than to approxi-
mate a probability distribution [49]. This idea re-
sults in a filter which is able to achieve good per-
formance even with pronounced nonlinearities or
non-Gaussian distributions [50]. However, this al-
gorithm has a higher computational cost than con-
ventional EKF filters, even if the computation of
the Jacobian is spared [51].

Generally, Kalman filter techniques consists of
two main steps: 1) The prediction step where the
state and its error covariance are predicted on the
basis of the filter’s dynamical model. Usually, this
phase is called the a priori estimate of the system
and leads to the estimated states x̂k+1|k and state
error covariance Pk+1|k, where the integer k de-
notes the current time step. 2) The measurement
update step is where the a priori state is corrected
with an external measure. This procedure allows
one to improve the state estimate and is called the
the a posteriori estimate of the system, leading
to x̂k+1|k+1 and Pk+1|k+1. The UKF has an addi-
tional preliminary step consisting of the UT during
which the sigma points are computed.

3.2.1 Sigma points selection step

The number of the sigma points depends on the
number of dimensions in the system. Given the
current error covariance matrix Pk|k∈ R2q×2q and
process noise matrixQk∈ R2p×2p, two different sets
of sigma points are computed. The UT requires
4p + 1 points for the first set and 4q + 1 for the
second one, where the additional point in each set
refers to the mean of the corresponding distribu-
tion. Therefore, the matrix χp ∈ R2p×(4p+1) is re-
lated to the error covariance matrix and is con-
structed from 2p rows of 4p+ 1 sigma points, and
the matrix χq ∈ R2q×(4q+1) is related to the pro-
cess noise and is constructed of 2q rows of 4q + 1
sigma points. The matrix χp ∈ R2p×(4p+1) of 4p+1
sigma column vectors χp,i is formed according to

χp,0 = 0 ∈ R2p

χp,i = χp,0 +
(√

(p+ λp)Pk|k

)
i
∈ R2p

(i = 1, · · · , 2p)

χp,i = χp,0 −
(√

(p+ λp)Pk|k

)
i−p
∈ R2p

(i = 2p+ 1, · · · , 4p) (18)

where χp,0 represents the mean of the distribution
at time step k, the other 4p points (i.e. χp,i, i =

1, 2, · · · , 4p) denote the dispersion around χp,0, and
λp = (α2−1)p∈ R is a scaling parameter. The con-
stant α determines the spread of the sigma points
around their mean and is usually set to a small,
positive value, e.g. 10−4 ≤ α ≤ 1. (

√
(p+ λp)Pk|k )i
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is the ith column of the matrix square root (i.e.
lower triangular Cholesky factorization). Moreover
the sigma points are defined along with their weights
as follows

W
(m)
p,0 =

λp
λp + p

, W
(c)
p,0 =

λp
λp + p

+ (1− α2 + β)

W
(m)
p,i = W

(c)
p,i =

1

2(λp + p)
(i = 1, · · · , 4p) (19)

where the superscripts (c) and (m) refer to the co-
variance and the mean, respectively. The first ones
will be used to compute the sigma points mean af-
ter they are passed through the nonlinear system,
while the latter ones are used for the computa-
tion of the sigma points covariances. In addition,
the subscript zero refers to the mean of the dis-
tribution. The constant β is used to incorporate
prior knowledge of the distribution of the state.
The value β is optimal for Gaussian distribution
and is commonly selected as β = 2. In other words,
the weights are constructed as

W (m)
p = [W

(m)
p,0 , W

(m)
p,1 , · · · , W (m)

p,4p]

W (c)
p = [W

(c)
p,0 , W

(c)
p,1 , · · · , W

(c)
p,4p] (20)

The same procedure applies to the set χq related to
the process noise matrix. In particular, the matrix
χq ∈ R2q×(4q+1) of 4q + 1 sigma column vectors
χq,i is formed according to

χq,0 = 0 ∈ R2q

χq,i = χq,0 +

(√
(q + λq)Q

)
i

∈ R2q

(i = 1, . . . , 2q)

χq,i = χq,0 −
(√

(q + λq)Q

)
i−q
∈ R2q

(i = 2q + 1, . . . , 4q) (21)

and their weights

W
(m)
q,0 =

λq
λq + q

W
(c)
q,0 =

λq
λq + q

+ (1− α2 + β)

W
(m)
q,i = W

(c)
q,i =

1

2(λq + q)
(i = 1, · · · , 4q) (22)

That is, the matrix χq and the weights W (m)
q and

W
(c)
q can be defined via methodology identical to

that defined in Eqs. (19) and (20) where p is re-
placed by q. In the update step, a third set of
sigma points χu will be generated with the one-
step-ahead state prediction x̂k+1|k. In principle, a
third set of weights may be defined, however in this
case we choose to use the same of the χp set.

3.2.2 Prediction step

The a priori state estimate xk+1|k and the state
error state covariance matrix Pk+1|k are predicted

using the current estimates x̂k|k, Pk|k and the sigma
points vectors χi,q, χi,p. It is clear that the UKF
needs to be initialized with the initial state esti-
mate x̂p = E{x0} and the initial covariance state
matrix P0 = E{(x0 − x̂0)(x0 − x̂0)T }. Since the
system states are on TSE(3), a retraction function
ϕ(·) : R2p → TSE(3) is introduced [36,37], which is
a smooth, arbitrarily-chosen function that encodes
the mean and covariance noise on the Lie group
and its tangent bundle. The retraction function is
given as

ϕ(x, χi) :

{
ϕg = g exp(χ∨g,i )

ϕV = V + χV,i
(23)

where χg,i indicates the first p elements of the
sigma points vector χi, and χV,i the last p. Note
that when χi = 0 then ϕ(x, 0) = x. The inverse re-
traction function ϕ−1 : TSE(3) → R2p makes use
of the Lie algebra and is given as

ϕ−1(x̂, x) :

{
ϕ−1
g = logSE(3)(ĝ

−1g)

ϕ−1
V = V̂− V

(24)

It is emphasized that the retraction function is
used to encode the sigma points onto the manifold
and its inverse is used to decode the sigma points
from the manifold. Given the current optimal esti-
mated state x̂k|k, the first set of sigma points are
retracted into the manifold and then used to prop-
agate the system dynamics starting from x̂k|k, i.e.

xk(χp,i) = f
(
ϕ
(
x̂k|k, χp,i

)
, ûk, 0

)
(i = 0, . . . , 2p)

(25)

where the current input vector ûk ∈ Rp is assumed
not measurable, and hence it is estimated using the
current state x̂k|k. The sigma points which rep-
resent the mean of the distribution, i.e. χp,0, re-
turn the mean state which is used, along with the
properties of the retraction function, to obtain the
a priori state prediction, i.e.

x̂k+1|k = f(ϕ
(
x̂k|k, χp,0

)
, ûk, 0)

= f(x̂k|k, ûk, 0)
(26)

In order to compute the covariance matrix with
respect to the state uncertainty, the obtained states
are retracted back into R2p with the inverse retrac-
tion function. The retracted sigma points matrix
χrp ∈ R2p×(4p+1) is then obtained as

χrp,i = ϕ−1(x̂k+1|k, x(χp,i)) (i = 0, . . . , 2p) (27)

and since xχp,0 = x̂k+1|k, the first column of the
matrix is χrp,0 = 0. The covariance matrix with
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respect to the state uncertainty can then be com-
puted as

P
(1)
k+1|k =

4p∑
i=0

W
(c)
p,i (χrp − χrp)(χrp − χrp)T (28)

where χrp ∈ R2p is the weighted mean of the re-
tracted sigma points withW (m)

p . This matrix needs
to be corrected with the contribute which comes
from the process noise. Hence, the second set of
sigma points, χq,i, is used similarly to the first one.
The main important difference is that these points
are not used as initial condition for the propaga-
tion, since they are not related to the state. In-
stead, they are introduced in the propagation as
process noise, i.e.

xχq,i
= f

(
x̂k|k, ûk, χq,i

)
(i = 0, . . . , 2q) (29)

It is clear that the first the sigma points which
represents the mean of the distribution, χq,0 re-
turns x̂k+1|k, according to Eq. (26). The results
are retracted back into R2q with the inverse retrac-
tion function. The retracted sigma points matrix
χrq ∈ Rq×(2q+1) is then obtained as

χrq,i = ϕ−1(x̂k+1|k, xχq,i
) (i = 0, . . . , 2q) (30)

and since xχq,0
= x̂k+1|k, the first column of the

matrix is χrq,0 = 0. The covariance matrix with
respect to the noise can be finally computed as

P
(2)
k+1|k =

4q∑
i=1

W
(c)
q,i (χrq − χrq)(χrq − χrq)T (31)

where χrq ∈ R2q is the weighted mean of the re-
tracted sigma points with W (m)

q . Finally, the one-
step-ahead state error covariance matrix is com-
puted correcting Eq. (28) as

Pk+1|k = P
(1)
k+1|k + P

(2)
k+1|k (32)

where P (1)
k+1|k and P

(2)
k+1|k are given in Eqs. (28) and

(31), respectively. Note that the second term, i.e.
P

(2)
k+1|k, is weighted on the basis of the process noise

covariance matrix Q, as can be seen in Eq. (21). If
the knowledge of the true model is poor, then Q
has large elements and then the a priori covariance
state error matrix estimate has a large dispersion.

3.2.3 Measurement update step

Once x̂k+1|k and Pk+1|k are computed and the
measurement zk∈ Rn is known, the correction can
be performed. As mentioned, the third set of sigma
points with the predicted state error covariance

matrix are computed. The matrix χu∈ R2p×(4p+1)

is formed according to

χu,0 = 0,

χu,i = χu,0 +
(√

(p+ λp)Pk+1|k

)
i

(i = 1, . . . , p)

χu,i = χu,0 −
(√

(p+ λp)Pk+1|k

)
i−p

(i = p+ 1, . . . , 2p) (33)

Each point is retracted into the manifold and then
passed through the measurement function. The ma-
trix zk+1 ∈ Rp×(2p+1) is constructed such that each
column is in the form of

zk+1,i = h(ϕ(x̂k+1|k, χu,i)),

(i = 0, . . . , 4p)
(34)

where the first column is zk+1,0 = 0 due to the
retraction function properties. Since the ith mea-
surement vector is part of R12 and not of TSE(3),
there is no need to use the inverse of the retraction
function. Therefore, the measurement covariance
matrix Pzz,k+1 and the cross-covariance Pxz,k+1

can be obtained as

Pzz,k+1 =

4p∑
i=1

W
(c)
p,i (zk+1 − zk+1)(zk+1 − zk+1)T

+T

Pxz,k+1 =

4q∑
i=1

W
(c)
p,i χu(zk+1 − zk+1)T (35)

where zk+1 is the weighted mean with W (m)
p,i . The

Kalman gain is the factor which allows to minimize
the state covariance matrix P and is computed by

Kk+1 = Pxz,k+1P
−1
zz,k+1 (36)

Note that if a noisy sensor is used, the measure-
ment covariance matrix has high elements and its
inverse will produce a low Kalman gain. Finally,
the a posteriori state estimate is

x̂k+1|k+1 = ϕ(x̂k+1|k,Kk+1rk+1) (37)

where r is the residual, i.e. the discrepancy, be-
tween the estimated measurement zk+1 from the
a priori predictions and the actual measurement
zk+1. It is clear that the Kalman gain Kk+1 acts
as a weighing factor for the residual. Particularly,
when the measurement is corrupted and T assumes
large values, then the Kalman gain and the resid-
ual weight are low. Therefore, this gain allows to
have an optimal estimate weighting the received
measurement on the basis of its reliability. This
degree of reliability is achieved by comparing the
covariance of the estimated measurement and the
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covariance of the real measurement. Finally, the a
posteriori error covariance matrix is computed as

Pk+1|k+1=Pk+1|k −Kk+1Pzz,k+1K
T
k+1 (38)

3.3 Tracking control design on Lie groups and
their tangent bundles

In this section, two different control techniques are
designed on TSE(3) to integrate with the naviga-
tion system: A MLBS control and a SMC.

3.3.1 Morse-Lyapunov Backstepping Control
(MLBS)

In this section, a MLBS control is introduced to
address tracking problem of reaching and main-
taining a desired rotational and translational mo-
tion in the presence of stochastic processes. The
control design in the TSE(3) framework enables
one to treat both rotational and translational mo-
tions simultaneously. The feedback loop allows the
computation of the difference between the desired
and the measured configuration, which is affected
by the measurements errors. The controller should
be able to nullify the error between the actual and
desired states. The desired states are computed by
a guidance system, while the actual states are ob-
tained from the navigation filter which filters out
the measurement noise. Once the state configura-
tion error is defined, the controller can command
the rigid body translational and rotational motion
through the actuators.

The guidance algorithm assigns the desired po-
sition rref in the inertial frame, velocity Vref in the
body frame, and attitude Rref along with the ac-
tual states, to the control system. The UKF filter
is used to obtain the estimated states r̂, V̂ and R̂
from noisy measurements. The tracking errors can
then be computed as

δgtrack = g−1
ref ĝ =

[
δRtrack δrtrack

0 1

]
=

[
RTref(Θref)R̂(Θ̂) RTref(Θref) (r̂ − rref)

0 1

]
δVtrack = V̂− Vref (39)

The error dynamics in terms of position and ve-
locity should tend to zero, and the rotation ma-
trix to the identity matrix. Since the state is on
TSE(3) and the control input is in R6, different
functions are introduced to allow the retraction
from the manifold into Euclidean space. The non-
linear function of the velocity and configuration is
defined as

ψ(δgtrack, δVtrack) = δVtrack +K1l(δgtrack) (40)

where K1 = blkdiag(k11, k12) ∈ R6×6 is a positive
definite control gain matrix. The following vector
function of the configuration is then introduced:

l(δgtrack) =
[
sT (δRtrack), δrTtrack

]T
(41)

with its derivative

l̇(δgtrack) =
[
ṡT (δRtrack), δvTtrack

]T
(42)

The s(·) : SO(3)→ R3 and ṡ(·) : SO(3)→ R3 are

s(δRtrack) =
3∑
i=1

ai
(
δRTtrackei

)×
ei

=
3∑
i=1

(
δRTtrackA

T ei
)×
ei

ṡ(δRtrack, δωtrack) = (tr(AδRtrack)I3 −
δRTtrackA)δωtrack (43)

where ei, i = 1, 2, 3, are the elements of the natural
basis in R3, and A = [diag (a1, a2, a3)] with the
scalars a1, a2, and a3 selected such that a1 > a2 >

a3 ≥ 1. The control law developed for rigid body
regulation control on TSE(3) in [18] is revised here
to account for a tracking problem:

uc = −IK1 l̇ − ad∗ψ−K1l I (ψ −K1l)− IK2ψ

−Iκ
[
01×3, δr

T
trackδR

T
track

]T − ue (44)

where K2 = blkdiag(k21, k22) ∈ R6×6 is a positive
definite control gain matrix, and k21 and k22 can
be tuned suitably to adjust rotation and transla-
tion performance of the rigid body. Thus, the total
augmented control input is uc = [FTc ,M

T
c ]T , as de-

fined in Eq. (10).
The proof for almost global asymptotic stabil-

ity of the tracking problem studied is similar to
that given in [18] for the rigid body regulation
problem using an attitude-dependent Morse- Lya-
punov function and a backstepping state feedback
control law of the form δVtrack = −l(δgtrack). Ac-
cording to [52], the separation principle allows the
design of the controller and the observer (filter al-
gorithm) separately. Particularly, if the observer
and the controller are both stable, then the closed-
loop dynamics obtained using the augmented form
is also stable. In many applications, this technique
has proved to be a successful and stable design
method. In order to highlight the different type of
errors, the total error on each state can be rewrit-
ten as

δR = RTref(Θref)R̂(Θ̂)R̂T (Θ̂)R(Θ) = δRtrackδRest

δr = R̂(Θ̂)(r − r̂) +RTref(Θref)(r̂ − rref)
= δrest + δrtrack

δV = V− V̂ + V̂− Vref = δVest + δVtrack (45)
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where δ(·)est and δ(·)track denote the estimation
error and the tracking error, respectively. Accord-
ing to Eq. (45), when the estimation error and
tracking error go to zero, the total error goes to
zero, meaning that both the estimator and con-
troller are asymptotically stable (in addition, the
controller is almost globally asymptotically sta-
ble [18]). The convergence of the controller results
in a zero tracking error and the convergence of the
filter results in a bounded estimation error with
zero mean white noise. From Eq. (45), the cou-
pling effect of the nonlinear dynamics is clear. The
total position error is not able to converge to zero
if the attitude total error does not converge.

Note that an alternative asset could be the im-
plementation of a controller robust to the uncer-
tainties, i.e. a stochastic robust controller analo-
gous to that in [53] for robust pose control, without
the use of a navigation system. However, for sys-
tems affected by different sources of high-magnitude
noise, the states can easily diverge if the stochastic-
ity is not filtered out unless the control inputs are
selected to be large enough to compensate those
stochasticities. The estimator-based controller pro-
posed here is continuously updated with the sys-
tem dynamics and, as a result, it avoids high con-
trol inputs.

3.3.2 Sliding Mode Control

In this section, an SMC is designed on TSE(3) to
address some tracking control problem as in Sec-
tion 3.3.1. In the SMC approach, a so-called sliding
surface σ is defined, which is a subset of the state
space on which the trajectory of the rigid body
is desired to lie. A feedback law is realized such
that this surface will be attractive and invariant,
i.e. the rigid body trajectory evolves towards this
surface and, once there, it stays close to it. The
sliding surface σ is defined as a function of pose
and velocity, i.e.

σ = c1 δVtrack + c2 l(δgtrack) + c3 λ ∈ R6 (46)

where c1 = blkdiag(c11I3, c12I3), c2 = blkdiag(c21I3,
c22I3), c3 = blkdiag(c31I3, c32I3) are positive def-
inite diagonal matrices, l(·) is defined Eq. (41),
λ =

∫ t
0
ψ(δgtrack, δVtrack)dτ , and ψ(·, ·) is defined

in Eq. (40). The third integral term is added since
it meaningfully reduces the steady state error. The
addition of an integral action to define the sliding
surface has been shown to lead to good results in
literature [54–56]. The SMC control force and mo-
ment inputs are defined as

uc = ueq + ud (47a)

with

ueq = −ad∗δVtrack
IδVtrack − Ic−1

1 c2 l̇(δgtrack)

− Ic−1
1 c3 ψ(δgtrack, δVtrack)− ue (47b)

and

ud = −Kσsgn(σ) (47c)

where sgn(·) denotes the vector sign function and
Kσ = Ic−1

1 c4 = blkdiag(Kσ,MI3,Kσ,F I3) is a posi-
tive definite diagonal matrix which must be prop-
erly selected in order to have the sliding mode op-
erate correctly while considering unmodeled dy-
namics. The first part (i.e. ueq) is known as equiv-
alent control and it represents the control func-
tion which needs to be applied to the system af-
ter reaching the sliding surface to ensure that the
system trajectory thereafter stays on this surface.
This feature is known as the invariant property
and the control input guarantees the solution of
the problem σ̇ = 0. The second part (i.e. ud) is
known as discontinuous control and it ensures that
the system trajectory evolves towards the sliding
surface. This feature is known as the attractive
property and the switching control action allows
the system trajectory to reach the surface. In or-
der to achieve the asymptotic convergence of l(·)
and ψ(·, ·) to zero (i.e. limt→∞ l(·) = 0 and limt→∞
ψ(·, ·) = 0) with a desired convergence rate and
in the presence of bounded disturbance, the con-
trol input in Eq. (47) must drive the variable σ in
Eq. (46) to zero within a finite time. This feature
can be guaranteed to hold by applying the Lya-
punov stability theory. The Lyapunov candidate
function is selected as

V =
1

2
σTσ (48)

Taking the time derivative of the Lyapunov func-
tion above gives

V̇ = σ̇Tσ (49)

Substituting Eq. (46) and its time derivative in
Eq. (49), using the tracking-problem version of Eq.
(10) (i.e. replacing g and V in that equation with
δgtrack and δVtrack, respectively), and simplifica-
tion yields

V̇ = −c4 sgnT (σ) σ = −c4 ‖σ‖1 (50)

Since V̇ < 0 for σ 6= 0, the stability of the equilibria
is proved. In Eq. (47a), ‖·‖1 denotes the 1−norm
of the sliding surface, i.e. ‖σ‖1=

∑6
1|σi|. Note that

this proof only guarantees the local stability of the
equilibrium (δgtrack, δVtrack) = (I4, 0) since, other
than at equilibrium above, σ can also be zero for
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some linear combination of δVtrack, l(·), and λ in
Eq. (46).

Although, in contrast to the MLBS control, the
SMC does not guarantee global asymptotic stabil-
ity, it is independent of the knowledge of the math-
ematical model of the rigid body. However, the dis-
continuous nature of the control law might lead
to a phenomenon called chattering, where high-
frequency oscillations occur around the sliding sur-
face. This phenomenon is undesirable in practical
situations since it can cause high control activity
and may excite high-frequency dynamics neglected
in the model. One way to attenuate the chatter-
ing is to replace the discontinuous sgn(·) function
in Eq. (47c) with an approximate smooth func-
tion such as a hyperbolic tangent function of the
form tanh (b σ) or a sigmoid function of the form
σ/(‖σ‖+b) with the scalar b selected properly.

3.4 Variational integrator

In the numerical simulations provided in Section 5,
the dynamics are propagated using a variational
integrator in order to preserve geometric proper-
ties of the system. This integrator is applied di-
rectly on the nonlinear manifold SE(3), where the
discretized Hamiltonian is used. The details of the
variational integrator formalism are not shown here
for brevity, but they can be found in [41, 57, 58],
for instance.

4 Case Study: Dynamics of spacecraft
hovering near small bodies

For proximity operations near small bodies, the
asymmetric distribution of mass of those bodies
becomes a more significant element in the dynam-
ics than in their larger counterparts such as Earth,
Jupiter, or their major moons. That in mind, the
torque induced on a spacecraft modeled as a rigid
body and caused by that asymmetry must be con-
sidered. The gravity force exerted by the aster-
oid on the spacecraft is described using a second
degree and order spherical harmonic gravity field.
Assuming the origin of the asteroid body-centered
inertial frame (BCI) coincides with the center of
mass of the body, the first degree and order grav-
ity terms are C11 = C10 = S11 = 0. The aster-
oid is modeled as a constant density triaxial el-
lipsoid with major axes l1, l2, and l3. This as-
sumption makes the second degree and order terms
C21, S21, S22 identically zero. The celestial body’s
gravity potential second degree and order terms

are given in [59] and can be revisited as

U =
µ

‖ρ‖

(
1 +

1

‖ρ‖2

(
C20

(
−1

2
+

3

2
(ρ̂ · K̂)2

)
+3C22

(
1− (ρ̂ · K̂)2 − 2(ρ̂ · Ĵ)2

)))
where ρ = ‖ρ‖ρ̂ ∈ R3 is the position vector of an
arbitrary point on the spacecraft expressed in the
BCI frame such that r = 1

m

∫
B ρ dm, (Î , Ĵ , K̂) is

the unit basis of the BCI frame, and the second
degree and order coefficients are [60–62]

C20 = −J2 =
1

5
(γ2 − α2 + β2

2
),

C22 =
1

20
(α2 − β2) (51)

where α = 1, β = l2
l1
, and γ = l3

l1
are normalized

axes of the ellipsoid. The presented gravitational
potential is an effective way to study the orbit-
attitude coupled spacecraft dynamics in proxim-
ity of small, irregular bodies]red [38]. By taking
the partial derivative of the gravity potential U
in Eq. (51) with respect to ρ, integrating over the
body of the spacecraft, and keeping only the terms
up to order 1/ρ4, the gravity gradient force applied
to the spacecraft expressed in the spacecraft body
fixed frame (SBF) can be approximated as

Fg = RT
∫
B

∂U

∂ρ
dm = RT (Fg1

+ Fg2
) (52)

where R is the rotation matrix from the SBF frame
to the BCI frame,

Fg1 = −m µ

‖r‖2

(
1 +

3

m‖r‖2

[
J +

1

2
(tr(J)

−5 r̂TR J RT r̂
)
I3
])
r̂ (53)

r̂ = r/‖r‖, and

Fg2 =
mµ

‖r‖4



(

3
2C20 − 9C22

) (
r̂ · Î

)
(

3
2C20 − 21C22

) (
r̂ · Ĵ

)
(

9
2C20 − 15C22

) (
r̂ · K̂

)


+
15

‖r‖

((
−C20

2
+ C22

)
r̂ · K̂ + 2C22r̂ · Ĵ

)
r̂

)(54)

which is an alternative representation to that given
in [63]. The gravity gradient torque on the space-
craft due to the gravitational field of the central
body is expressed in the SBF frame as

Mg =
3µ

‖r‖3
(RT r̂)×JRT r̂ (55)

Therefore, the total augmented external effect in
Eq. (10) is ue = [FTg ,M

T
g ]T , where the gravita-

tional force and moment are given in Eqs. (52)-
(55), respectively.

In this case study, the tracking orbit is cho-
sen based on the mission timeline. Just before the
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Table 1 Spacecraft and Bennu properties [63–67]

Parameter Values
Spacecraft mass [kg] m = 850
Spacecraft dimension [m] d1 = 2.0, d2, d3 = 2.3
Spacecraft inertia [kg m2] J = m

12
diag [d21 + d22, d

2
2 + d23, d

2
3 + d21]

Bennu gravitational parameter [m3 s−2] µ = 5.2060
Bennu dimension [m] l1 = 535, l2 = 508, l3 = 365
Bennu coefficients C20 = −0.097070, C22 = 0.004919
Bennu rotation period [hr] TB = 4.297

Table 2 Values used for the navigation and control systems

Parameter Values
Measurement std [deg,m,deg,m/s] σζΘ

= 6, σζr = 100, σζω = 0.2, σζv = 2

Measurement cov matrix T = blkdiag
[
σ2
ζΘ

I3, σ2
ζr
I3, σ2

ζω
I3, σ2

ζv
/10I3

]

Process cov matrix Q = blkdiag [10−10I3, 10−10I3, 10−10I3, 10−10I3]
State cov matrix P0 = blkdiag [10−10I3, 10−10I3, 10−10I3, 10−10I3]
Control moment saturation per axis [N m] Mc,i = 24 (i = 1, 2, 3)
Control force saturation per axis [N] Fc,i = 366 (i = 1, 2, 3)
MLBS control gains:
κ 1× 10−6

K1 blkdiag [5× 10−4I3, 1× 10−3I3]
K2 blkdiag [2× 10−2I3, 1× 10−2I3]

A [1.2, 1.1, 1]T

SMC gains:
c1 blkdiag[1× 10−9I3, 0.002I3]
c2 blkdiag[1× 10−11I3, 3× 10−5I3]
c3 blkdiag[03×3, 1× 10−10I3]
Kσ blkdiag[100I3, 100I3]
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Fig. 1 LVLH and BCI reference frames representation

touch-and-go operation, the spacecraft navigates
to a closed orbit with a radius of 1 km around
Bennu. This phase is also important for the sci-
entific return of the mission, since the spacecraft
collects asteroid topography data to map its sur-
face. For this reason, it is assumed to have a desired
(reference) orbit that is circular with a nonzero in-
clination, and a nadir-pointing attitude such that
a face of the satellite always points to the surface
of the asteroid. The orbit is parameterized through
trigonometric functions of time such that, at each
time step, the reference position in BCI frame is

rref(t) = R0 [ρ0 sin (n0 t), ρ0 cos (n0 t), 0]
T

(56)

where ρ0 denotes the radius of the desired circular
orbit, n0 is the orbital mean motion, R0 represents
the transformation matrix from the perifocal frame
to the BCI frame, and the orbital mean motion
is obtained from n0 = 2π

T0
, where the period of

the orbit is computed with the third Kepler law

T0 = 2π
√

ρ3
0

µ . The reference translational velocity
vref(t) is obtained by taking the time derivative of
the position vector in Eq. (56).

In order to discuss attitude in this case study,
the local vertical local horizontal (LVLH) reference
frame is introduced, whose representation is given
in Fig. 1. Particularly, r represents the position
vector from BCI to the satellite, v is the satel-
lite’s orbital velocity, and h = r × v the orbital
angular momentum. The first axis is oriented in
the vref(t) direction, ê1,LVLH(t) = vref(t)/‖vref(t)‖,
the second axis is normal to the orbit plane in the
opposite direction of angular momentum h, and
the third axis is oriented in the −rref(t) direction,
ê3,LVLH(t) = −rref(t)/‖rref(t)‖ such that the axes
obey the right-hand rule. The reference angular ve-
locity is simply defined as ωref(t) = −n0 ê2,LVLH [68,
69]. The guidance system computes the reference
attitude at each instant of time as

Θref(t) = logSO(3)

(
RT

LV LH (t)
)

(57)
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where RLV LH is the rotation matrix from BCI to
LVLH reference frame

RLVLH(t)=

ê1,LVLH(t)·Î ê1,LVLH(t)·Ĵ ê1,LVLH(t)·K̂
ê2,LVLH(t)·Î ê2,LVLH(t)·Ĵ ê2,LVLH(t)·K̂
ê3,LVLH(t)·Î ê3,LVLH(t)·Ĵ ê3,LVLH(t)·K̂


(58)

with unit vectors FBCI = [Î , Ĵ , K̂] for the BCI
frame and FLV LH = [ê1,LV LH , ê2,LV LH , ê3,LV LH ]
for the LVLH frame.

5 Numerical Simulations and Discussion

In the numerical simulations presented here, the
spacecraft initial conditions are chosen to be sig-
nificantly different from the reference orbit and
nadir-pointing attitude. All the states are selected
randomly from Gaussian distributions with a stan-
dard deviations of 90 deg, 1000 m, 5 deg/s and 1 m/s
for attitude, position, and velocities respectively.
On the other hand, the UKF initial conditions are
selected with an error of 10% for attitude and po-
sition and 20% for velocities, with respect to the
spacecraft initial conditions.

5.1 Filter verification

In Eq. (57), the following values are chosen: ρ0 =

1 km, R0 = R([0, π/4, 0]). In order to investi-
gate the performance of the proposed navigation
and control system, a scenario with a high level of
orbit-attitude coupling is studied here. The OSIRIS-
REx mission is of specific interest as it involved
visiting the small, irregular asteroid, Bennu. Pub-
licly available data for this mission (Table 1) are
used to define the properties of the spacecraft and
the asteroid. The details of the spacecraft control
system are used to define the saturation limits for
the control moment and force. The control gains
are tuned arbitrarily, but in such a way that the
closed-loop dynamics become stable. The sensors
employed in the navigation system are assumed to
be characterized by worse statistics than one would
expect to find in a real-world scenario, i.e., the
standard deviations are assumed to be relatively
large in order to verify the robustness of the pro-
posed navigation and control system. The process
noise covariance matrix is chosen with relatively
small elements with respect to R, such that the
UKF relies on the predictions and the noise can
be efficiently filtered. The details of the navigation
and control system can be found in Table 2.

The performance of the proposed UKF is com-
pared to those of other state filters designed on

SE(3) that can be found in literature. In particular,
the algorithms selected for the comparison are i)
the EKF on Lie group introduced in [27] (EKF), ii)
the UKF on Lie group introduced in [31] (UKF),
and iii) the discrete EKF on Lie group (DEKF)
described in [29]. The performance analysis is con-
ducted on the basis of position and attitude es-
timation results. The case study consists of the
propagation of the open-loop spacecraft dynamics
around the asteroid Bennu, where the data previ-
ously introduced are used. As in [30, 31], the re-
sults are shown in Fig. 2 in terms of the root mean
square of the pose estimation error (RMSE). The
first and second rows show the position and at-
titude RMSEs εr and εΘ, respectively, as a func-
tion of sample period ∆t with ζr = 0.1 km, ζΘ =
0.1 deg, χr = 0 km, and χΘ = 0 km (left), ini-
tial condition inaccuracies χr and χΘ with ζr =
0.1 km, ζΘ = 0.1 deg, and ∆t = 1 s (center), and
measurement noise standard deviations ζr km (with
ζΘ = 0.1 deg) and ζΘ deg (with ζr = 0.1 km), and
∆t = 1 s (right).

In the left column of Fig. 2, the RMSE(s) for
the position and attitude error are shown along
with the sample period ∆t from 0.1 to 20 seconds.
It can be seen that the proposed filter (solid) and
the UKF (dash) are more robust to changes in the
sampling frequency than the EKF and DEKF. Par-
ticularly, the EKF (dot) and DEKF (dash-dot).
For smaller time steps, the difference among dif-
ferent filters reduces. Then the UKF on TSE(3)

and the UKF proposed in [31] behave almost the
same, achieving an higher accuracy with respect
to EKF and DEKF even for large ∆t.

The center column of Fig. 2 shows the RMSE(s)
for the position and attitude error along with the
percentage of uncertainty on the filter initial pose
estimate with respect to the true pose. Particu-
larly, let the true values be r0 and Θ0, the filters
initial guesses are parametrized as r0(1+χr/100) ,
R(Θ0(1 + χΘ/100)). As expected, the best perfor-
mance are achieved for small values of uncertain-
ties. The UKF filters outperform the EKF filters
for all the range of χr, χΘ since the EKF are partic-
ularly influenced by the initial condition accuracy.

Finally, in the right column of Fig. 2, the
RMSE(s) are given as functions of the standard
deviation of the measurement noise, for the po-
sition and attitude measurements. Note that the
proposed UKF filter on TSE(3) achieves the low-
est accuracy in terms of attitude O(10−1) deg even
with the smallest noise standard deviation. This
can be explained by the fact that the UKF on
TSE(3) also estimates the velocities which are as-
sumed to be provided by noisy sensors, while the
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Fig. 2 Attitude and position RMSE as a function of sample period, initial condition inaccuracies and measurement noise
standard deviations.

filter on SE(3) uses un-noisy velocities and only
updates on position and attitude measurements.

As shown in the figure, the proposed UKF on
TSE(3) and standard UKF generally perform bet-
ter than others. Even if the DEKF seems to be ro-
bust to noisy measurements, it is dependent on the
initial condition accuracy and sample frequency.
According Fig. 2, the EKF on SE(3) [27] is able to
achieve an higher accuracy of DEKF on SE(3) [29]
and lower accuracy than the UKF on SE(3) [31]
and the proposed UKF on TSE(3). The latter has
proved to be particularly robust even with noisy
measurements, inaccurate initial conditions, and
low sampling frequency.

5.2 Performance of the closed-loop system

This section presents the results obtained via the
implementation of the proposed TSE(3) filter and
control designs in Section 3. In Figs. 3 and 4, the
time histories of attitude, position and velocities
in the BCI frame are provided. Particularly, three
different quantities are analyzed: (i) The measured
states which represent the state variables measured
by noisy sensors, (ii) the estimated (filtered) states,
which are the outputs of the navigation system,
and (iii) the ideal states, which are the noise-free
states obtained with ideal and perfect sensors. More-
over, for each state variable a magnified portion of
the figure is also shown to provide the reader with
an approximation of the convergence times. It can

be seen that the estimated states start from a dif-
ferent point with respect to the measured and ideal
states due to the different initial conditions in the
UKF. However, the state filter is able to converge
to the ideal states in less than a hundredth of the
orbit period even when considering the saturation
limits on the control input. It is worth noting that
the navigation scheme is also able to handle an at-
titude variation from −180 deg to 180 deg with no
issues.

Fig. 3 Measured (grey), estimated (black), and ideal (red)
states.

Figure 5 shows the trajectory of the spacecraft
center of mass, the desired orbit, and the space-
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Fig. 4 Measured (grey), estimated (black), and ideal (red)
states.

craft’s position and attitude at different points in
the orbit. The spacecraft starts with a completely
different state relative to the desired, and is ini-
tially tumbling. The spacecraft transient response
is highlighted in the magnified window in the right
panel of Fig. 5. The convergence of the filter and
controller proposed here result in the convergence
of the estimated states (both trajectory and atti-
tude) to the actual and desired state, as can be
seen in the figure. It can be seen that as the space-
craft orbits around the asteroid, its attitude changes
such that one side always faces Bennu.

In each panel of Fig. 6, the norms of the dif-
ferences between the spacecraft estimated states
and their corresponding desired states are shown,
where the noisy measurements after initial conver-
gence can be seen. The attitude error has a peak
in correspondence of the Θ1 discontinuity (Fig. 3)
and a rapid convergence. The magnitude of the
steady-state errors are acceptably small compared
to the magnitude of the reference variables and
large sources of noise. For instance, the proposed
navigation and control system allows the simula-
tion to reach a position error on the order of 1

m in an orbit with a 1000 m radius and with a
position noise standard deviation of 100 m. The
same rationale applies to the attitude, where an
accuracy of 0.0001 deg is reached. The mean and
the RMSE are reported for each state error. The
results improve as the numerical values of mean
and RMSE decrease, as also indicated in [70]. Note
that both the mean and the RMSE would reduce
with time, since the number of samples with small
steady state error would increase. In fact, these
two indices are influenced by the large state errors
that exist before the convergence is achieved.

In Fig. 7, the estimated state error between
the estimated and the ideal states are shown along

Fig. 5 SBF orientation, and spacecraft attitude and tra-
jectory around Bennu in BCI frame obtained via the imple-
mentation of the navigation and control systems.
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Fig. 6 Norm of the difference between the estimated states
and reference states, for MLBS and SMC control systems.
The spike near 0.75 is due to a singularity.

with the estimated confidence bounds of 3σ. The
optimal performance of the estimator is generally
indicated by the bounded estimation errors within
the estimated standard deviation bounds [71, 72].
In other words, the UKF acts as an unbiased es-
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timator, meaning that the expectation of the esti-
mated state errors is zero [73]. From a statistical
point of view, it is expected that about 99% of the
samples remain bounded inside the two envelopes.
Additionally, the performance of the UKF confirms
the fact that the state errors are approximately
zero mean white noise. Note that the attitude com-
ponents exhibit a peak, which corresponds to the
discontinuity of the Θ1 when it goes from −180

deg to 180 deg, as shown in Fig. 3.

Fig. 7 State estimation error components between the es-
timated states and the ideal noise-free states.

The spacecraft can reach and maintain the de-
sired orbit-attitude through the control system which
produces the necessary control force and moment,
that are shown in Fig. 8. In addition, the force con-
trol effort is quantified with the total integrated
control force per unit mass that is computed as
∆V = 1

m

∫ t

0
‖Fc(τ)‖dτ . While the moment control

effort is quantified with the integrated moment,
i.e. ∆τ =

∫ t

0
‖Mc(τ)‖dτ . It can be seen that the

proposed navigation and control system is able to
guarantee the orbit and attitude tracking with a
low amount of control moment and force, consider-
ing the initial conditions, the large saturation lim-
its and noise statistics in Table 2. In fact, both Fc

and Mc are well below the boundaries of 24 Nm
and 366 N respectively. The total ∆V is less than
those obtained in [74], where an adaptive controller
was used for the orbital control. As a result of the
UKF filtering action, they both appear without
any residual noise, which would have introduced
an extra control effort. Note that the control mo-

ment converges before the control force, in agree-
ment with the magnified portions of Figs. 3 and
4. Moreover, as discussed in Section 3.3, since the
orbit-attitude coupling is considered, the tracking
position error can converge only if the tracking at-
titude error has converged. Therefore, the observed
behavior is expected.

Fig. 8 Control inputs in terms of force and moment pro-
vided by the tracking controller, for MLBS and SMC control
systems

6 Conclusions

In this paper, a novel rigid body navigation and
control system has been introduced in the Lie group
SE(3) and its tangent bundle in the presence of
stochastic processes in the system. In the mathe-
matical framework presented here, the geometrical
characteristics of the system are well preserved and
the translational and attitude motions are treated
simultaneously. Hence, this formalism allows for
the coupling between orbital and attitude motions
of a rigid body to be considered in the control de-
sign. A special retraction function is used to allow
the unscented Kalman filter (UKF) to encode the
sigma points onto the manifold, and the inverse
of that retraction function is used to decode the
sigma points from the manifold. The performance
achieved with the implementation of the proposed
UKF on TSE(3) is compared in terms of robust-
ness and accuracy to those of filters on SE(3) in
the literature. In particular, the performance is
studied under different sampling frequencies, ini-
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tial condition uncertainty, and magnitude of mea-
surement noise standard deviations. It is shown
that the UKF on TSE(3) proposed in this work is
in general a highly robust filter, while it also con-
siders noise in the velocity measurement data (in
addition to the noise in the pose data only, which
is what is assumed in other filters).

Furthermore, the estimated states obtained us-
ing the proposed UKF on TSE(3) are used along
with two different control techniques on TSE(3): A
Morse-Lyapunov-based feedback tracking control
with backstepping (MLBS) and a sliding mode-
based control (SMC) for navigation and control of
the system with noisy measurements. Finally, the
robustness of the proposed stochastic navigation
and control system is verified for the OSIRIS-REx
mission parameters, where the results obtained by
MLBS and SMC control techniques are compared,
and various filters are implemented and weighed
against the proposed UKF. It is shown that the the
proposed UKF on TSE(3) is capable of directing
the spacecraft towards a desired orbit while main-
taining the principal axis of the spacecraft along
the nadir direction, despite the presence of exag-
gerated noisy measurements. It is also shown that
the MLBS controller on TSE(3) results in higher
accuracy and less control input than its analogue
SMC on TSE(3). Note that the orbit-attitude in
scenarios such as spacecraft motion around irreg-
ular celestial bodies coupling cannot be neglected
due to the highly perturbed environment.

Future work may consider further details in the
modeling of the navigation system. Further ac-
curacy in the model of the measurement sensors
may be obtained via extending their noise charac-
teristics to introduce biases, scale-factor errors, or
mounting alignment errors. Also, realistic dynam-
ics of the actuators can be considered in the design
of the control system. The robustness of the pro-
posed navigation and control system can also be
verified in problems such as orbit transfers, and
spacecraft rendezvous, proximity operations, and
docking. In addition, the stochastic estimation and
control scheme presented here can be extended to
the problem of multibody dynamics and multia-
gent systems.
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Rebuttal:

Unscented Kalman Filter and Control on TSE(3) with

Application to Spacecraft Dynamics

The authors would like to thank the reviewers for their very important feedback that helped improve the
quality of the manuscript. The paper has been modified and updated according to the reviewers’ comments
and a point-by-point reply to these comments is included below. All other changes from the initial submission
are indicated in red in the revised version of the manuscript. All of the equation numbers, figure numbers,
and table numbers are based on the revised version. Note that if a figure, a table, or its caption is updated,
only the caption is indicated in red.

Reviewer 2

A rigid-body spacecraft navigation and control architecture within the framework TSE(3) while considering
stochastic processes in the system. This paper combines the ideas from several paper and have implemented
to spacecraft dynamics. I appreciate the author’s effort to bring all the ideas in a meticulous way for
addressing the tracking problem of spacecraft near the asteroid Bennu. However, the same idea has been
published as a conference paper titled “Stochastic Spacecraft Navigation And Control in Lie Group Se(3)
Around Small Irregular Bodies” in AAS 20. I am not able to find any valuable research addition when
compared to the conference paper. Hence, the article can be considered for publication as a good application
oriented contribution with additional novel research addition.
The authors have improved the contribution of this manuscript, and have provided clarifications on how this
manuscript is distinct from the conference paper by the authors. The contribution of this manuscript as
compared to the author’s conference paper in Ref. [39] follows:

a) A new subsection (Section 5.1) has already been included in the numerical simulations section in this
manuscript to verify the performance of the proposed filter via providing a detailed comparison among
the unscented Kalman filter (UKF) on tangent bundle of special Euclidean space TSE(3) proposed in
this work and three other filters (extended Kalman filter on special Eulidean space SE(3) in Ref. [28],
UKF on SE(3) in Ref. [31], and discrete EKF on SE(3) in Ref. [29]). According to the results provided
in Fig. 2 of the manuscript and the discussion in that section, the controller on TSE(3) using a UKF
proposed in this work is, in general, a highly robust filter. It also considers noise in the velocity
measurement data (in addition to the noise in the pose data, which is what only what is assumed in
other filters).

Furthermore, and in order to improve the visibility, Fig. 2 has been expanded to span both columns,
and the font size has been adjusted accordingly. For the convenience of the reviewer, that figure is also
provided in this rebuttal.

b) A new section (Section 3.3.2) has been added in the revised version of the manuscript to study sliding
mode control (SMC) on TSE(3), and to provide a tool for validating the Morse-Lyapunov backstepping
(MLBS) control in TSE(3) used in this manuscript. For the reviewer’s convenience, the contents of
that new section are also provided below:

“In this section, an SMC is designed on TSE(3) to address some tracking control problem as in
Section 3.3.1. In the SMC approach, a so-called sliding surface σ is defined, which is a subset of the
state space on which the trajectory of the rigid body is desired to lie. A feedback law is realized such
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Figure 2: Attitude and position RMSE as a function of sample period, initial condition inaccuracies and
measurement noise standard deviations.

that this surface will be attractive and invariant, i.e. the rigid body trajectory evolves towards this
surface and, once there, it stays close to it. The sliding surface σ is defined as a function of pose and
velocity, i.e.

σ = c1 δVtrack + c2 l(δgtrack) + c3 λ ∈ R6 (46)

where c1 = blkdiag(c11I3, c12I3), c2 = blkdiag(c21I3, c22I3), c3 = blkdiag(c31I3, c32I3) are positive

definite diagonal matrices, l(·) is defined Eq. (41) λ =
∫ t
0
ψ(δgtrack, δVtrack)dτ , and ψ(·, ·) is defined in

Eq. (40). The third integral term is added since it meaningfully reduces the steady state error. The
addition of an integral action to define the sliding surface has been shown to lead to good results in
literature [54-56]. The SMC control force and moment inputs are defined as

uc = ueq + ud (47a)

with
ueq = −ad∗δVtrack

IδVtrack − Ic−11 c2 l̇(δgtrack)− Ic−11 c3 ψ(δgtrack, δVtrack)− ue (47b)

and
ud = −Kσsgn(σ) (47c)

where sgn(·) denotes the vector sign function and Kσ = Ic−11 c4 = blkdiag(Kσ,MI3,Kσ,F I3) is a positive
definite diagonal matrix which must be properly selected in order to have the sliding mode operate
correctly while considering unmodeled dynamics. The first part (i.e. ueq) is known as equivalent
control and it represents the control function which needs to be applied to the system after reaching
the sliding surface to ensure that the system trajectory thereafter stays on this surface. This feature is
known as the invariant property and the control input guarantees the solution of the problem σ̇ = 0.
The second part (i.e. ud) is known as discontinuous control and it ensures that the system trajectory
evolves towards the sliding surface. This feature is known as the attractive property and the switching
control action allows the system trajectory to reach the surface. In order to achieve the asymptotic
convergence of l(·) and ψ(·, ·) to zero (i.e. limt→∞ l(·) = 0 and limt→∞ ψ(·, ·) = 0) with a desired
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convergence rate and in the presence of bounded disturbance, the control input in Eq. (47) must drive
the variable σ in Eq. (46) to zero within a finite time. This feature can be guaranteed to hold by
applying the Lyapunov stability theory. The Lyapunov candidate function is selected as

V =
1

2
σTσ (48)

Taking the time derivative of the Lyapunov function above gives

V̇ = σ̇Tσ (49)

Substituting Eq. (46) and its time derivative in Eq. (49), using the tracking-problem version of Eq.
(10) (i.e. replacing g and V in that equation with δgtrack and δVtrack, respectively), and simplification
yields

V̇ = −c4 sgnT (σ) σ = −c4 ‖σ‖1 (50)

Since V̇ < 0 for σ 6= 0, the stability of the equilibria is proved. In Eq. (47a), ‖ · ‖1 denotes the 1−norm

of the sliding surface, i.e. ‖σ‖1 =
∑6

1 |σi|. Note that this proof only guarantees the local stability of
the equilibrium (δgtrack, δVtrack) = (I4, 0) since, other than at equilibrium above, σ can also be zero
for some linear combination of δVtrack, l(·), and λ in Eq. (46).”

“Although, in contrast to the MLBS control, the SMC does not guarantee global asymptotic sta-
bility, it is independent of the knowledge of the mathematical model of the rigid body. However, the
discontinuous nature of the control law might lead to a phenomenon called chattering, where high-
frequency oscillations occur around the sliding surface. This phenomenon is undesirable in practical
situations since it can cause high control activity and may excite high-frequency dynamics neglected
in the model. One way to attenuate the chattering is to replace the discontinuous sgn(·) function in
Eq. (47c) with an approximate smooth function such as a hyperbolic tangent function of the form
tanh (b σ) or a sigmoid function of the form σ/(‖σ‖+ b) with the scalar b selected properly.”

Also, in order to support the discussion above, the following references have been added to the
reference list in the revised version of the manuscript:

[54 ] K. Ghasemi, J. Ghaisari, and F. Abdollahi, “Robust formation control of multiagent systems on
the Lie group SE(3),” International Journal of Robust and Nonlinear Control, vol. 30, pp. 1–33,
2019, doi: 10.1002/rnc.4806.

[55 ] A. Chalanga, S. Kamal, L. M. Fridman, B. Bandyopadhyay, and J. A. Moreno, “Implementation
of Super-Twisting Control: Super-Twisting and Higher Order Sliding-Mode Observer-Based Ap-
proaches,” IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3677–3685, 2016, doi:
10.1109/TIE.2016.2523913.

[56 ] İ. Eker, “Sliding mode control with PID sliding surface and experimental application to an
electromechanical plant,” ISA Transactions, vol. 45, no. 1, pp. 109–118, 2006, doi: 10.1016/S0019-
0578(07)60070-6.

Furthermore, a new discussion has been added in the numerical simulation section. Figure 6, included
below for the convenience of the reviewer, has also been updated to include the results obtained using
the SMC on TSE(3) and to provide a comparison between the two controllers (MLBS on TSE(3) and
SMC on TSE(3)) in terms of the normalized errors and control accelerations.

c) Revisions have been made throughout the entire manuscript, in terms of the discussions and notations
used, to provide a clear understanding of the problem and to provide clear mathematical formulation
conforming to standardized notation in the field, such as that used in [29, 32]. This includes the
changes performed in Section 2 and 3 for further clarity.

d) Discussions of the contributions above have been added in the Abstract, the last paragraph of the
Introduction (Section 1), and in different locations in the Conclusions (Section 6). For the convenience
of the reviewer, those discussions are also provided in this rebuttal below:
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Figure 6: Norm of the difference between the estimated states and reference states, for MLBS and SMC
control systems. The spike near 0.75 is due to a singularity.

i) in the Abstract:

“The navigation system is then integrated and evaluated with two different control techniques
on TSE(3): An almost globally asymptotically stabilizing Morse-Lyapunov-based control system
with backstepping and a robust sliding mode-based control system. Also, the performance of the
UKF in TSE(3) proposed here is compared with similar filters in the literature to demonstrate
the robustness and accuracy of the proposed filter in a realistic setting.”

ii) in the last paragraph of the Introduction (Section 1):

“... by advancing the unscented transform (UT) based UKF introduced in [34] using retraction
to address the fact that the system states are on TSE(3).”

“The performance of the proposed filter is compared in terms of robustness and accuracy with
three other Kalman filters on SE(3) in the literature. Furthermore, the regulation controller in
[18] is extended to the case of tracking problem to design an almost globally asymptotically stable
Morse-Lyapunov backstepping (MLBS) tracking control on TSE(3). In addition, a tracking sliding
mode control (SMC) is designed on TSE(3) to verify the results of the MLBS tracking control.”

“Note that the extensive contribution and revisions made in this paper as compared to the authors’
previous work [39] including, but certainly not limited to, the tracking SMC and comparison of
the filters provided here, makes this work distinct from the previous work.”

iii) and in different locations in the Conclusions (Section 6):

“It is shown that the UKF on TSE(3) proposed in this work is in general a highly robust filter,
while it also considers noise in the velocity measurement data (in addition to the noise in the pose
data only, which is what is assumed in other filters).”

“Furthermore, the estimated states obtained using the proposed UKF on TSE(3) are used along
with two different control techniques on TSE(3): A Morse-Lyapunov-based feedback tracking
control with backstepping (MLBS) and a sliding mode-based control (SMC) for ...”

“... where the results obtained by MLBS and SMC control techniques are compared, and various
filters are implemented and weighed against the proposed UKF. It is shown that the the proposed
UKF on TSE(3) is capable of ...”

“... despite the presence of exaggerated noisy measurements. It is also shown that the MLBS
controller on TSE(3) results in higher accuracy and less control input than its analogue SMC on
TSE(3). Note that ...”

The authors believe that the contributions and revisions made in this manuscript including, but not
limited to, SMC, comparison of filters, and revisions made to provide clear discussions and mathematical
formulation, as mentioned above, make this work distinct from the authors’ previous work.
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Reviewer 3

The authors treat a control problem with noise for a space navigation and apply sophisticated methods to
construct a reliable control regime. Unfortunately I cannot recommend the publication in its current state,
due to the following reasons: For convenience of the reviewer, and in order to ensure all the reviewer’s
comments are addressed, the authors have split the reviewer’s comments into different parts and provided a
response for each part, as follows.

1. The explanation of the applied method, especially of the UKF for the nonlinear problem is quite hard
to read: It contains fragments of Lie group theory, which are certainly well known to people working in
that field, but might be hard to understand for others. It might improve the article, if the underlying
mathematics would be elaborated more clearly.

Revisions have been carried out throughout the entire manuscript to make the content easier to un-
derstand for the reader. In particular, the following changes have been made to address this comment:

a) In order to address the reviewer’s concern regarding the comprehensibility of Lie group theory,
the following changes have been made in the revised version of the manuscript:

i) Section 2 has been revised such that Lie group theory is discussed separately from the stochas-
tic processes on Lie groups for the benefit of novices in the field. The first paragraph of Sec-
tion 2.1 and the paragraph below Eq. (10) now contain clearer explanations of the definition
of special Euclidean group SE(3), the states, and the control input:

The first paragraph of Section 2.1: “The pose (configuration) of a rigid body, also known
as the Denavit-Hartenberg representation within the robotics community ... i.e. SE(3) =
R3 n SO(3), R ∈ SO(3) is the rotation matrix from the body frame to the inertial frame such
that det(R) = 1 and RTR = I3 (I3 is the 3 × 3 identity matrix), and ... The tangent space
at the identity element of the group, i.e. g = I4 (when R = I3 and r = [0, 0, 0]T ), ...”

The paragraph below Eq. (10): “V = [ωT , vT ]T ∈ R6 is the augmented velocity vector
comprised of the angular velocity vector ω ∈ R3 of the body and the translational velocity
v ∈ R3 of the center of mass with respect to the inertial frame, expressed in the body frame. In
Eq. (10), u = ue + uc ∈ R6 is the input, ue ∈ R6 denotes the total external inputs (consisting
of the external moments and external forces) and uc ∈ R6 is the control input produced by
the control system (consisting of the control moment and control force). Also, in Eq. (10),
the inertia tensor is given as ...”

Also, notations used in the wedge map in Eqs. (2) and (3) and the text describing them
has been changed to be distinct from terms used elsewhere in the manuscript. The rigid
body configuration on SE(3) following its definition in Eq. (10) has been reworded for further
clarity. Some of the notations used in Section 3.1 have been edited to be consistent with those
used in Section 3.2 and throughout the manuscript.

ii) Changes have been made in Sections 3.1 and 3.2 including some of the notation used in the
equations in those sections. Specifically, the noise contribution on SE(3) has been consistently
shown as a post-multiplication operation, and noisy measurements are denoted with a hat
throughout the revised version of the manuscript. The dimensions of noise vectors η and ζ
have been clarified and made consistent with the covariance and sigma points throughout
Section 3.

b) In order to address the reviewer’s comment about formulation legibility and clarity, the following
changes have been made to the manuscript:

i) The UKF formulation has likewise been simplified. The notation x[k|k−1] has been changed
to xk|k−1, starting from the second paragraph of Section 3.2 and continuing to the end of
Section 3.2.3, in order for it to be consistent with some of the notations used in the literature
such as those in Refs. [29, 32]. All of the updated subscripts in that section are shown in red
in the revised version of the manuscript.

ii) The explicit time dependence for the sigma points in the revised version of the manuscript has
been suppressed as it was deemed to be unnecessary. Note that although they are computed
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at each time step, they are computed independently of one another and in no case does the
sigma points of one time step depend on the sigma points of another. Thus, explicit notation
such as χp,0[k] has been changed to simply χp,0 and the assembled sigma points vectors χp[k]
and χq[k] are now expressed as χp and χq, respectively (Section 3.2.2); see, for instance,
Eq. (27) of the revised manuscript as compared to Eq. (37) of the previous version of the
paper. All the changes have been shown in red in that section and subscripts have been
revised.

iii) Eqs. (28), (31), (32), and (35) in Section 3.2.2 have been updated to include a summation to
correctly reflect the operation being performed and to ensure consistent dimensionality.

P
(1)
k+1|k =

4p∑
i=0

W
(c)
p,i (χrp − χrp)(χrp − χrp)T (28)

P
(2)
k+1|k =

4q∑
i=1

W
(c)
q,i (χrq − χrq)(χrq − χrq)T (31)

Pk+1|k = P
(1)
k+1|k + P

(2)
k+1|k (32)

Pzz,k+1 =

4p∑
i=1

W
(c)
p,i (zk+1 − zk+1)(zk+1 − zk+1)T + T

Pxz,k+1 =

4q∑
i=1

W
(c)
p,i χu(zk+1 − zk+1)T

(35)

2. It should be made clear, in which spaces (in the algebra or in the group or in some larger tangent
space) the different objects (noise input, observer noise, ...) live.

All variables have been defined in terms of their dimensions and in which space they reside. Specifi-
cally, spaces have been defined in Eqs. (3), (9), (12-14), (16), (18), and (21), and throughout the text in
Sections 3.1 and 3.2. Dimensions of many terms within the filter and sigma points section have likewise
been revised or updated for clarity and consistency. This includes the clarifications about the dimen-
sions of the sigma points, the fully assembled sigma point vector χq and χp, and the compiled weight

matrices W
(m)
p ,W

(c)
p ,W

(m)
q , and W

(c)
q . Careful attention has been made to use consistent notation

and dimensionality throughout the entire manuscript.

3. If there is a Gaussian distribution in the algebra, what is the corresponding distribution in the group?
The maximum likelihood estimate for the group elements will not be the exponentials for the estimates
in the algebra.

A Gaussian distribution in the Lie algebra is mapped, through the wedge map, to the Lie group, and
then through the exponential mapping to the Lie algebra. A generalized approach to determining
the maximum likelihood estimates on manifolds was discussed in detail in Ref. [46], and specific ap-
proaches to Lie groups and the exponential-logarithm mapping of Gaussian distributions were explored
in Refs. [47] and [48] demonstrated that any arbitrary Lie Group may have its distribution reparam-
eterized to be optimized using standard stochastic gradient methods. This work does not explicitly
discuss or use the maximum likelihood estimation (MLE), and thus the relationship between the MLE
of group elements vs. that of the algebra is not explicitly defined. To address this, the following
discussion has been added at the end of the second paragraph of Section 3.1 of the revised version of
the manuscript:

“... Qg ∈ Rp×p. Note that the exponential mapping of ηg onto the estimated pose ĝ is multiplicative,
as shown in Eq. (14). Also note that calculation of the maximum likelihood estimate (MLE) should be
performed within the Euclidean space in which the noise is defined, not in the Lie group or Lie algebra.
The calculation of MLE is outside the scope of this paper, and thus the relationships among the MLE
of group elements versus those of the algebra are not discussed here. For a generalized approach to
determine the maximum likelihood estimates on manifolds, the reader is referred to [46]. Also, specific

6



approaches to Lie groups and the exponential-logarithm mappings of Gaussian distributions can be
found in [47] and [48].”

Also, in order to support the discussion above, the following references have been added to the
reference list in the revised version of the manuscript:

[46 ] H. Hajri, S. Said, and Y. Berthoumieu, “Maximum likelihood estimators on manifolds,” in
Geometric Science of Information, pp. 692–700, 2017, doi: 10.1007/978-3-319-68445-1 80.

[47 ] P. T. Fletcher, S. Joshi, C. Lu, and S. Pizer, “Gaussian distributions on Lie groups and their ap-
plication to statistical shape analysis,” in Information Processing in Medical Imaging, pp. 450–462,
2003, doi: 10.1007/978-3-540-45087-0 38.

[48 ] L. Falorsi, P. de Haan, T. R. Davidson, and P. Forré, “Reparameterizing distributions on Lie
groups,” in Proceedings of the Twenty-Second International Conference on Artificial Intelligence
and Statistics (K. Chaudhuri and M. Sugiyama, ed.), vol. 89 of Proceedings of Machine Learning
Research, pp. 3244–3253, 2019.

4. There exists also a proceedings contribution by quite the same authors on a very similar problem,
which contains a lot of identical explanations and derivations. The authors must make clear how their
new article differs from the other one, which scientific results are new. And they should avoid any
self-plagiarism.

The authors would like to refer the reviewer to the response provided to the comment of Reviewer 2,
where the details of the contribution of this work as compared to the authors’ conference paper in
Ref. [39] are provided.

5. The article should also be carefully cross-read by a native speaker, it contains quite a lot of grammatical
mistakes and typos.

The manuscript has been thoroughly and carefully revisited by the authors, including a native En-
glish speaker, to improve the flow, grammar, and overall readability. All changes, both technical and
grammatical, are shown in red within the revised version of the manuscript.

6. Also the tiny figures are sometimes hard to understand.

To improve clarity and legibility of the figures, the following changes have been made in the revised
manuscript: Figure 2 has been expanded to span both columns, and the font size has been adjusted
accordingly. Also, the figure panels in Figs. 3 and 4 have been enlarged by adjusting those two figures
from a 2×3 configuration to a 3×2 configuration, and font sizes have been adjusted for further clarity.
Furthermore, Fig. 5 has been rearranged from a horizontal configuration to a vertical configuration
with lines indicating the magnified portion for clarity. Finally, the figure panels in Fig. 7 have been
enlarged by rearranging that figure from a 4 × 3 configuration to a 6 × 2 configuration. The revised
versions of the figures above are also provided below (in this rebuttal) for the reviewer’s convenience.

Additional actions taken by the authors for further clarity of the manuscript: In addition to
the changes mentioned above, and for the sake of clarity and generality, the following changes have been
made in the revised version of the manuscript:

i) The term “spacecraft” has been changed to “rigid body” in all parts of the revised manuscript except
in Sections 4 and 5.

ii) Discussion and formulation associated with dynamics of spacecraft hovering near small bodies have been
moved from Section 2.3 in the previous version to Section 4 of the revised version of the manuscript,
as a case study, in order to make it clear that the formalism provided in this manuscript is generic and
can be implemented in different applications.

iii) Reference [44] in the previous version of the manuscript has been removed from the revised version since
the discussion related to that reference was not required in this paper. However, as mentioned before,
Refs. [6, 46-48, 54-56] have been added to the reference list in the revised version of the manuscript
to support the additional discussions (also see Part (b) of the authors’ response to the comment of
Reviewer 2 and the authors’ response to Comment 3 of Reviewer 3).

7



Figure 3: Measured (grey), estimated (black), and
ideal (red) states.

Figure 4: Measured (grey), estimated (black), and
ideal (red) states.
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Figure 5: SBF orientation, and spacecraft attitude and trajectory around Bennu in BCI frame obtained via
the implementation of the navigation and control systems.
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Figure 7: State estimation error components between the estimated states and the ideal noise-free states.
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Abstract This paper presents a novel rigid-body
spacecraft navigation and control architecture within
the framework of special Euclidean group SE(3)
and its tangent bundle TSE(3) while considering
stochastic processes in the system. The proposed
framework combines the orbit-attitude motions of
the spacecraft into a single, compact set. The stochas-
tic state filter is designed based on the unscented
Kalman filter which uses a special retraction func-
tion to encode the sigma points onto the manifold.
The navigation system is then integrated to an
almost globally asymptotically stabilizing Morse-
Lyapunov-based control system with backstepping.
Numerical simulations are conducted to demon-
strate the effectiveness of the proposed navigation
filter for the full state estimation. In addition, the
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1 Introduction

Spacecraft translational motion can be formulated
and propagated using several types of formulation
such as Cowell, Encke, Clohessy-Wilthsire, equinoc-
tial elements, or unified state model [1–3]. Space-
craft rotational kinematics are often modeled using
attitude parameterization sets. Minimal parame-
terization sets (principal rotation, Euler angles,
and classical and modified Rodrigues parameters)
are defined in 3-dimensional Euclidean space R3

and can exhibit singularity. Quaternions are re-
dundant and are defined on the 3-sphere S3 [4, 5]
and hence they do not have the singularity issue.
However, due to the non-uniqueness of the quater-
nions, they can result in an undesired phenomenon
called unwinding for large rotations, such as rigid
body initial tumbling, although this can be avoided
by using discontinuous feedback or nonlinear con-
trol laws [6]. The spacecraft attitude estimation
has been performed using quaternions and a three-
parameter set for the local error representation in
the literature, including [7, 8]. Alternatively, rigid
body attitude can be expressed using the rotation
or direction cosine matrix defined on the special
orthogonal group SO(3). Formalism of attitude us-
ing rotation matrices helps avoid the problems of
singularity and non-uniqueness [9–12].

Conventionally, the analysis of the orbital and
attitude dynamics of the spacecraft are conducted
separately, resulting in separate control laws for at-
titude and translational motion. However, as clearly
discussed in several references such as [13–15], the
coupling between the translational and rotational
dynamics of the spacecraft should be considered in
spacecraft dynamics analysis and control design.
The simultaneous modeling of spacecraft orbital-
attitude dynamics using special Euclidean group
SE(3) and their tangent bundle TSE(3) is espe-
cially advantageous due to its consideration of the
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coupling between translational and rotational dy-
namics. Such coupling can be due to several ef-
fects such as nonlinear gravity fields or attitude-
dependent forces due to drag and solar radiation
pressure, and it occurs in missions such as space-
craft rendezvous, proximity operations and dock-
ing, or spacecraft hovering over small bodies. The
consideration of this coupling results in accurate
dynamic analysis and control design of the rigid
body motion, as shown in [16–20], for example.

In real-world applications, the consideration of
stochastic processes is a crucial part of any navi-
gation and control system. The navigation system
includes the sensors and the filter, while the con-
trol system is composed of the control algorithm
and the actuators. The navigation filter enables
the correct estimation of the states based on the
sensor measurements. The on-board instruments,
such as the inertial measurement unit, gyroscopes,
accelerometers, and star trackers, have limited ac-
curacy and are usually characterized by a degree of
uncertainty. These uncertainties can arise not only
due to the noise in the instruments, but also from
electrical components, communication systems, or
external disturbances, and result in inaccuracies
and loss of precision in the measurements. In ad-
dition, some states might not be observable, as is
the case with gyroscope biases. For the reasons
mentioned above, there is a need for using state
filters, such as the Kalman filters, that are capa-
ble of handling stochastic sources and can fuse the
measurements from different sources optimally to
estimate unobservable states [12,21,22].

Although the control problem on TSE(3) for
space applications has been extensively studied [23–
25], the navigation problem on TSE(3) still re-
quires further research. State filter design on SE(3),
with application to robotics, has been of growing
interest in the literature. Extended Kalman filter
(EKF) on SE(3) [26,27], discrete-EKF (D-EKF) on
SE(3) [28,29], and unscented Kalman filter (UKF)
on SE(3) [30–32] are some examples. According
to the literature, these estimators are more accu-
rate than their counterparts designed in Euclidean
space, although formulation development of the fil-
ter design on SE(3) is more complex than that
in Euclidean space. The aforementioned work ex-
ploit the geometrical mechanics frameworks by us-
ing the associated maps and operators in the state
update step, where the measurements are defined
in the Lie algebra but the filter is designed on the
Lie group SE(3).

In this paper, a novel spacecraft navigation and
control system on Lie groups SE(3) and their tan-
gent bundles TSE(3) is developed. The navigation
filter is designed through a direct UKF based on

the unscented transform (UT) described in [33],
and the mathematical formalism in [34] is revised
to describe the dynamic system characterized by
stochastic processes in a compact form on TSE(3).
The stochasticity is treated on SE(3) and its tan-
gent bundle TSE(3) as discussed in [26,30,35] and
a retraction function between the manifold and
the Euclidean space [36, 37], the inverse of which
is used to encode the UT sigma points onto the
manifold and decode them from the manifold, re-
spectively. The regulation controller in [17] is ex-
tended to design an almost globally asymptotically
stable Morse-Lyapunov based tracking control al-
gorithm. The integrated stochastic estimation and
tracking control on Lie groups and their tangent
bundles in this paper results in a precise, asymp-
totically stable navigation and control system that
considers the orbit-attitude coupling in the pres-
ence of stochasticity. The efficacy of this naviga-
tion and control system is demonstrated in the
problem of spacecraft motion around a small ir-
regular central body which can be considered as a
pre-landing phase that focuses on navigating to a
specific point of interest. The properties of asteroid
Bennu are used for the central body and the gravi-
tational interaction between the rigid-body space-
craft and Bennu is modeled according to that in
[38]. The accuracy of the estimator in the pres-
ence of stochasticity and stability and convergence
of the closed loop are validated in the numerical
simulation results.

2 Preliminaries and Problem Statement

2.1 Lie group SE(3) and its Lie algebra se(3)

The spacecraft configuration is defined by six de-
grees of freedom, three of which are related to
the location of its center of mass and the other
three are related to its attitude. According to [39,
40], the configuration space of a rigid-body space-
craft is a member of the Lie group SE(3) which is
a smooth manifold obeying the group properties
(closure under multiplication, identity, associativ-
ity, and invertability) and that the group opera-
tions are differentiable. The configuration of a rigid
body can be expressed as

g =

[
R r

01×3 1

]
∈ SE(3) (1)

where SE(3) is defined as the semi-direct prod-
uct of R3 and SO(3), i.e. SE(3) = R3 × SO(3),
R ∈ SO(3) is the rotation matrix from the body
frame to the inertial frame, r ∈ R3 is the posi-
tion vector from the origin of the inertial frame
to the center of mass of the rigid body expressed
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in the inertial frame, and I3 is the 3 × 3 identity
matrix. The smoothness of the matrix Lie group
implies the existence of a single tangent space at
each point. The tangent space at the identity ele-
ment of the group is referred to as Lie algebra [41]
and is denoted as

se(3) =

{
V∨ =

[
ω× v

01×3 0

]
, ω× ∈ so(3), v ∈ R3

}
(2)

where (·)∨ indicates the wedge map, i.e. (·)∨ :
R6 −→ se(3) applied to the vector V = [ωT , vT ]T

which is the augmented velocity vector, defined
through the translational velocity v ∈ R3 and the
angular velocity ω ∈ R3; so(3) is the set of 3 by
3 skew symmetric matrices such that ω× can be
defined in terms of the components of the angular
velocity vector. According to [42], given the vector
ω = [ω1, ω2, ω3]T , the cross map (·)× : R3 −→ so(3)
is defined as

ω× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (3)

From the definition of Lie group SE(3) and its
Lie algebra se(3), the geometric link between the
two formulations can be understood. The Lie al-
gebra can be considered as a linearization of the
Lie group, near the identity element [43]. Due to
the complexity of the nonlinear structure of the
Lie group, it is difficult to study with conventional
mathematical tools. The important feature of the
Lie algebra is that it is a linear vector space and
thus it can be studied using the tools developed
in linear algebra. However, the extraction of the
SE(3) properties from its Lie algebra opens the
possibility to several scientific applications [44].
The exponential map exp : se(3) −→ SE(3) allows
to transfer elements of the Lie algebra to the Lie
group which, intuitively, can be interpreted as a
wrapping operation, from the tangent plane onto
the manifold. Formally, it is a local diffeomorphism
from a neighborhood of zero in se(3) onto a neigh-
borhood of the identity element in SE(3) [42]. The
exponential coordinates are defined as

ξ =

[
Θ
p

]
∈ R6, (4)

where Θ ∈ R3 represents rotational vector. This is
the product of eigenaxis (principal axis) and eige-
nangle (principal angle) of rotation, i.e. Θ = θe,
θ = ‖Θ‖; p ∈ R3 represents the translational vec-
tor. Hence, the configuration g is obtained via ex-
ponential map exp : se(3)→ SE(3) as

g = exp(ξ∨) =

∞∑
n=0

1

n!
(ξ∨)n, (5)

which, according to [45], can be written as

g =

[
R(Θ) S(Θ)p

0 1

]
∈ SE(3), (6)

where R(Θ) ∈ SO(3) is the rotation matrix from
body frame to the inertial frame. The rotation ma-
trix is obtained via the Rodrigues formula as

R(Θ) = exp(Θ×) = I+
sin θ

θ
Θ×+

1− cos θ

θ2
(Θ×)2,

(7)

and

S(Θ) = I +
1− cos θ

θ2
Θ× +

θ − sin θ

θ3
(Θ×)2 (8)

Note that the inverse of the exponential map is
the logarithmic map log : SE(3) −→ se(3) which
can be interpreted as an unwrapping operation.
The exponential coordinates can be obtained via
logarithmic map as

ξ∨ = logSE(3)(g) (9)

2.2 Rigid body motion formulation on SE(3)

The rigid body kinematic and kinetic equations of
motion are given as

ġ = gV∨, (10)

V̇ = I−1ad∗VIV + I−1 (ug + uc) ,

where g ∈ SE(3) represents the rigid body con-
figuration as defined in Eq. (1), V = [ωT , vT ]T

denotes the rigid body augmented velocity vector
expressed in the body frame, ug ∈ R6 denotes the
total external inputs due to gravitational effect,
and uc ∈ R6 is the control input produced by
the control system (control moment and control
force). The complete state is thus represented by
(g,V) ∈ SE(3)×R6 = TSE(3), the tangent bundle
of SE(3). In this framework, both the attitude and
the translational displacement are considered si-
multaneously. This allows to design an estimation
algorithm and a control system in TSE(3), which
is more versatile and more accurate than the stan-
dard decoupled procedures. In Eq. (10), the inertia
tensor in SE(3) is given as

I =

[
J 03×3

03×3 mI3

]
∈ R6 (11)

where J ∈ R3×3 is the moment of inertia about the
center of mass, and m is the mass of the system.
Moreover, the co-adjoint operator is defined as

ad∗V = adTV =

[
−ω× −v×
03×3 −ω×

]
, (12)
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where the adjoint operator adV is

adV =

[
ω× 03×3

−v× −ω×
]
. (13)

From an intuitive point of view, this operator al-
lows to transform a tangent vector from the tan-
gent space around one element to the tangent space
around another one.

2.3 Dynamics of spacecraft hovering near small
bodies

For many small bodies, the asymmetric distribu-
tion of mass becomes a more significant element
in the dynamics than in their larger counterparts
such as Earth, Jupiter, or their major moons. For
rigid body dynamics, the torque on the spacecraft
body caused by the asymmetry must be consid-
ered. The gravity force exerted by the asteroid on
the spacecraft is described using a second degree
and order spherical harmonic gravity field. Assum-
ing the origin of the asteroid body-centered inertial
frame (BCI) coinciding with the center of mass of
the body, the first degree and order gravity terms
are C11 = C10 = S11 = 0. The asteroid is modeled
as a constant density triaxial ellipsoid with ma-
jor axes l1, l2, and l3. This assumption makes the
second degree and order terms C21, S21, S22 iden-
tically zero. The gravity potential of second degree
and order of the celestial body given in [46] can be
revisited as

U =
µ

‖ρ‖

(
1 +

1

‖ρ‖2

(
C20

(
−1

2
+

3

2
(ρ̂ · K̂)2

)
+3C22

(
1− (ρ̂ · K̂)2 − 2(ρ̂ · Ĵ)2

)))
,

where ρ = ‖ρ‖ρ̂ ∈ R3 is the position vector of an
arbitrary point on the spacecraft expressed in the
BCI frame such that r = 1

m

∫
B ρ dm, (Î , Ĵ , K̂) is

the unit basis of the BCI frame, and the second
degree and order coefficients are [47–49]

C20 = −J2 =
1

5
(γ2 − α2 + β2

2
),

C22 =
1

20
(α2 − β2) (14)

where α = 1, β = l2
l1
, and γ = l3

l1
are normalized

semi major axes of the ellipsoid. According to [38],
the presented gravitational potential is effective
to study the orbit-attitude coupled spacecraft dy-
namics in proximity of small irregular bodies. Tak-
ing the partial derivative of the gravity potential
U in Eq. (14) with respect to ρ, integrating over
the body of the spacecraft, and keeping only the
terms up to order 1/ρ4, the gravity gradient force

applied to the spacecraft expressed in spacecraft
body fixed (SBF) coordinates is approximated as

Fg = RT
∫
B

∂U

∂ρ
dm = RT (Fg1 + Fg2) , (15)

where R is the rotation matrix from the SBF frame
to the BCI frame,

Fg1 = −m µ

‖r‖2

(
1 +

3

m‖r‖2

[
J +

1

2
(tr(J)

−5 r̂TR J RT r̂
)
I3
])
r̂, (16)

r̂ = r/‖r‖, and

Fg2
=

mµ

‖r‖4



(

3
2C20 − 9C22

) (
r̂ · Î

)
(

3
2C20 − 21C22

) (
r̂ · Ĵ

)
(

9
2C20 − 15C22

) (
r̂ · K̂

)


+
15

‖r‖

((
−C20

2
+ C22

)
r̂ · K̂ + 2C22r̂ · Ĵ

)
r̂

(17)

which is an alternative representation to that given
in [50]. The gravity gradient torque on the rigid-
body spacecraft due to the gravitational field of
the central body is expressed in the SBF frame as

Mg =
3µ

‖r‖3
(RT r̂)×JRT r̂ (18)

Therefore, the total augmented external effect in
Eq. (10) is ug = [FTg ,M

T
g ]T , where the gravita-

tional force and moment are given in Eqs. (15)-
(18), respectively.

3 Stochastic Processes, Filter, and Control
Design on Lie Group and its Tangent
Bundle

3.1 Stochastic processes on Lie groups and
system formulation

The mathematical model employed for the con-
trol and state estimation is usually developed in
Euclidean space, which is an affine space and, by
definition, is a geometric structure based on the
vectorial space [41]. When the mathematical mod-
eling is performed in Euclidean space, it is com-
mon to deal with uncertainties simply by using
an additive approach. Basically, an additive white
Gaussian noise can be considered as representa-
tive of the many random processes that occur in
nature. However, when the model is developed in
SE(3) and its tangent bundle TSE(3), uncertain-
ties and stochastic processes cannot be formulated
using the conventional mathematical models that
are commonly used in the Euclidean space. This is
due to the fact that SE(3) is a nonlinear manifold
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and not a vectorial space [35]. In this paper, the
formulation covered in [26,30] is used to accommo-
date a stochastic process in the model. Since the
source of noise is assumed to be in vector space,
the exponential map exp(·) is used to map it into
SE(3) as

χη = χ̄η exp(η∨) η ∼ N (0, N) (19)

where χη is the noise in SE(3) andN (0, N) denotes
the Gaussian distribution in Euclidean space with
zero mean and covariance matrix N ∈ R6×6. In
Eq. (19), pre multiplication by χ̄η ∈ SE(3) causes
the original Gaussian η ∈ R6 of the Lie algebra
to center at χ̄η ∈ SE(3). The symbols χη and χ̄η
represent a small perturbation with covariance P
and a large source of noise, respectively.

The stochastic system formulation which best
accommodates the application of Kalman filter the-
ory considers an additive approach for both the
process and the measurement noise. The process
noise is added to the state derivative equation and
the measurement noise is added to the system out-
put equation. In this work, the aforementioned ap-
proach cannot be adopted, because the state of the
system x = (g,V) is on TSE(3). Although the ve-
locity, expressed in R6, allows the simple addition
of the noise, the pose requires the notation given
in Eq. (19), since it is defined on SE(3). Despite
the fact that different estimation techniques can be
found in the literature, none of them account for a
state vector that is defined on TSE(3). Therefore,
a novel, augmented formulation is introduced.

It is assumed that the spacecraft pose and ve-
locity are measurable and the output of the sys-
tem, z ∈ R12, consists of the principal angles of
rotation Θ, the translational vector components r,
the angular velocity ω, and the translational veloc-
ity v. It must be emphasized that principal rota-
tion angles are only used to represent the attitude
in the simulation results, while they are obtained
based on the rotation matrix. Instead Θ is just
used to represent the rotation matrix as output
of the system. In addition, using the principal an-
gle of rotation allows us to take advantage of the
SE(3) maps and operator previously defined, thus
having a compact stochastic system formulation.
Particularly, the stochastic system can be written
on TSE(3) as

ẋ(t) :

{
ġ = χηg gV∨

V̇ = I−1ad∗V+�V
I(V + ηV) + I−1u

(20)

z(t) = [(logSE(3)(χζgg)|)T , VT + ζTV ]T (21)

where (·)| is the inverse of the wedge map. The
dependence on time is omitted in the right sides

for the readability of the equations. The measure-
ment noise ζ = [ζTg , ζ

T
V ]T ∈ R12 and the process

noise η = [ηTg , η
T
V ]T ∈ R12 are assumed to be Gaus-

sian white-noise processes. In addition, they are
assumed to be uncorrelated and thus the second
order joint central moment, i.e. the covariance, is
zero. The aforementioned assumption yields

E {η (t)} = Bη

E
{
η (t) η(t)T (t+ τ)

}
= Q

η ∼ N (Bη, Q)

(22)

E {ζ (t)} = Bζ

E
{
ζ (t) ζT (t+ τ)

}
= T

ζ ∼ N (0, T )

(23)

E
{
ζ(t)ηT (t+ τ)

}
= 0 (24)

where Q ∈ R12×12 is the process noise covariance
matrix, T ∈ R12×12 is the measurement noise co-
variance matrix and Bη ∈ R12×12 contain the mea-
surement noise biases. The process noise is zero
mean since the bias is encoded through the post
multiplication in SE(3). In fact, the pose state equa-
tion can be revised as

ġ = χ̄ηg exp(η∨g )gV∨ (25)

where the noise biases are represented by χ̂ζg ∈
SE(3). The stochastic system formulation in Eq. (20)-
(21) is written in the following compact form, which
will be employed in the description of the UKF
steps described in the subsequent section:

ẋ(t) = f (x (t) , u (t) , η (t))

z(t) = h (x (t) , ζ (t))
(26)

where f (·) ∈ TSE(3) represents the nonlinear state
function, which depends on the state, input, pro-
cess noise, and time and h (·) ∈ R12 represents
the measurement function which depends on the
state, the measurement noise, and time. Note that
the time dependence is omitted.

3.2 Unscented Kalman filter design on Lie group
and its tangent bundle

Starting from the stochastic system formulation
introduced in with Eq. (20)-(21), the state esti-
mation is performed using a UKF, which was se-
lected from among the different Kalman filters be-
cause it is a reliable solution for nonlinear systems.
This type of Kalman filter belongs to the family
of sigma-point Kalman filters or linear regression
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Kalman filters, which use the a statistical lineariza-
tion technique. In general, in the EKF-based ap-
proaches, the state distribution is propagated an-
alytically through the first-order linearization of
the nonlinear system. This procedure can lead to
large errors or corrupted estimates [32]. The UKF,
instead, handles the problem with a deterministic
sampling approach. The Gaussian state distribu-
tion is represented by a set of sample points that
completely capture the mean and covariance of
the distribution. These points are known as sigma
points and are propagated through the nonlinear
dynamics with the purpose of capturing the a pos-
teriori mean and covariance with high accuracy [37].
As opposed to the UKF method, the EKF ap-
proach is only capable of achieving a first-order
accuracy due to the linearization [33]. The UKF is
based on the leading intuition that it is harder to
approximate an arbitrary nonlinear function than
to approximate a probability distribution [51]. This
idea results in a filter which is able to achieve good
performances even with pronounced nonlinearities
or non-Gaussian distributions [52]. However, this
algorithm has a higher computational cost than
conventional EKF filters, even if the computation
of the Jacobian is spared [53]. The UKF algorithm
is sub optimal, as are nonlinear filters in general.

Generally, the Kalman filter techniques con-
sists of two main steps: 1) The prediction step
where the state and its error covariance are pre-
dicted on the basis of the system mathematical
model. Usually this phase takes the name of a pri-
ori estimate of the system and leads to the esti-
mated state and state error covariance x̂ [k + 1|k],
P [k + 1|k]. 2) the measurement update step where
the a priori state is corrected with an external
measure. This procedure allows to obtain a bet-
ter state estimate, defined as a posteriori estimate
of the system, x̂ [k + 1|k + 1] , P [k + 1|k + 1]. The
UKF has an additional preliminary step, which
consists in the UT and hence the computation of
the sigma points.

3.2.1 Sigma points selection step

The number of the sigma points clearly depends
on the number of dimensions in the system. From
now on, the letter p will indicate the number of di-
mensions in the state and the quantities related to
it, and the letter q will refer to the process noise.
Given the current state covariance matrix P [k|k]

and process noise matrix Q, two different sets of
sigma points are computed. The UT requires 2p+1
points for the first set and 2q + 1 for the second
one, where the additional point refers to the mean
of the distribution. Therefore, 2p+ 1 sigma points

in χp are related to the state error covariance ma-
trix and 2q + 1 sigma points in χq are related to
the process noise matrix are defined. The matrix
χp[k] ∈ Rp×2p+1 of 2p sigma column vectors χp,i[k]
is formed according to

χp,0[k] = 0

χp,i[k] = χp,0[k] +

(√
(p+ λp)P [k|k]

)
i

(i = 1, · · · , p)

χp,i[k] = χp,0[k]−
(√

(p+ λp)P [k|k]

)
i−p

(i = p+ 1, · · · , 2p) (27)

where χp,0[k] represents the mean of the distribu-
tion, and the other 2p points the dispersion around
it. [k] indicates the current kth step and λp =
(α2 − 1)p is a scaling parameter. The constants α
determines the spread of the sigma points around
their mean and is usually set to a small positive
value, e.g. 10−4 ≤ α ≤ 1. (

√
(p+ λp)P [k|k] )i is

the ith column of the matrix square root (e.g. lower
triangular Cholesky factorization). Moreover the
sigma points are defined along with their weights

W
(m)
p,0 =

λp
λp + p

, W
(c)
p,0 =

λp
λp + p

+ (1− α2 + β)

W
(m)
p,i = W

(c)
p,i =

1

2(d+ λd)
(i = 1, ..., 2p) (28)

where the superscripts (c) and (m) refer to the co-
variance and the mean, respectively. The first ones
will be used to compute the sigma points mean af-
ter they are passed through the nonlinear system,
while the latter ones are used for the computation
of the sigma points covariances. In addition the
subscript 0 refers to the mean of the distribution.
The constant β is used to incorporate prior knowl-
edge of the distribution of the state. The value
β = 2 is optimal for Gaussian distribution and is
commonly selected as value. In other words, the
matrix χp[k] and its weights are constructed as

χp[k] =

[
χp,0[k], χp,0[k] +

√
(p+ λp)P [k|k],

χp,0[k]−
√

(p+ λp)P [k|k]

]
(29)

W (m)
p =

[
W

(m)
p,0 W

(m)
p,1 · · · W

(m)
2p,1

]
W (c)
p =

[
W

(c)
p,0 W

(c)
p,1 · · · W

(c)
2p,1

]
(30)

The same procedure applies to the set χq[k] related
to the process noise matrix. In particular the ma-
trix χq[k] ∈ Rq×(2q+1) of 2q sigma column vectors
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χq,i[k] is formed according to

χq,0[k] = 0,

χq,i[k] = χq,0[k] +

(√
(q + λq)Q

)
i

(i = 1, . . . , q)

χq,i[k] = χq,0[k]−
(√

(q + λq)Q

)
i−q

(i = q + 1, . . . , 2q) (31)

and their weights

W
(m)
q,0 =

λq
q + λq

, W
(c)
q,0 =

λq
q + λp

+ (1− α2 + β)

W
(m)
q,i = W

(c)
q,i =

1

2(q + λq)
(i = 1, ..., 2q) (32)

In other words, the matrix χq[k] and the weights
W

(m)
q andW (c)

q can be defined. In the update step,
a third set of sigma points χu[k] will be generated
with the one-step-ahead state prediction x̂[k+1|k].
In principle a third set of weights may be defined,
however the same of the χp[k] set will be used.

3.2.2 Prediction step

The a priori state estimate x[k+1|k] and the state
error state covariance matrix P [k + 1|k] are pre-
dicted using the current estimates x̂[k|k], P [k|k]

and the sigma points vectors χi,q, χi,p. It is clear
that the UKF needs to be initialized with the ini-
tial state estimate x̂0 = E{x0} and the initial co-
variance state matrix P0 = E{(x0−x̂0)(x0−x̂0)T }.
Since the system states are on TSE(3), a retraction
function ϕ(·) : R12 → TSE(3) is introduced [36,37],
which is a smooth, arbitrarily-chosen function that
encodes the mean and covariance noise on the Lie
group and its tangent bundle. The retraction func-
tion is

ϕ(x, χi) :

{
ϕg = g exp(χ∨g,i) )

ϕV = V + χV,i
(33)

where χg,i indicates the first p/2 elements of the
sigma points vector χi, and χV,i the latest p/2.
Note that when χi = 0 then ϕ(x, 0) = x. The
inverse retraction function ϕ−1 : TSE(3) → R12

makes use of the Lie algebra and is

ϕ−1(x̂, x) :

{
ϕ−1
g = logSE(3)(ĝ

−1g)

ϕ−1
V = V̂− V

(34)

where x̂ = (ĝ, V̂) and x = (g,V). It is emphasized
that the retraction function is used to encode the
sigma points onto the manifold and its inverse is
used to decode the sigma points from the manifold.
Given the current optimal estimated state x̂[k|k],
the first set of sigma points are retracted into the

manifold and then used to propagate the system
dynamics starting from x̂[k|k]

xχp,i [k] = f (ϕ (x̂[k|k], χp,i[k]) , û[k], 0)

(i = 0, . . . , 2p)
(35)

where the current input vector û[k] is assumed not
measurable, and hence it is estimated using the
current state x̂[k|k]. The sigma points which repre-
sents the mean of the distribution, χp,0[k] returns
the mean state which is used as one-step-ahead
state prediction

x̂[k + 1|k] = f(ϕ (x̂[k|k], χp,0[k]) , û[k], 0)

= f(x̂[k|k], û[k], 0)
(36)

using the properties of the retraction function.
In order to compute the covariance matrix with

respect to the state uncertainty, the obtained states
are retracted back into R12 with the inverse retrac-
tion function. The retracted sigma points matrix
χrp[k] ∈ Rp×(2p+1) is then obtained as

χrp,i[k] = ϕ−1(x̂[k + 1|k], xχp,i [k]) (i = 0, . . . , 2p)

(37)

and since xχp,0
[k] = x̂[k + 1|k], the first column of

the matrix is χrp,0[k] = 0. The covariance matrix
with respect to the state uncertainty can be finally
computed as

P [k + 1|k] = W (c)
p (χrp[k]− χrp[k])(χrp[k]− χrp[k])T

(38)

where χrp[k] ∈ R2p is the weighted mean of the
retracted sigma points with W

(m)
p . This matrix

needs to be corrected with the contribute which
comes from the process noise. Hence, the second
set of sigma points, χq,i[k], is used similarly to the
first one. The main important difference is that
these points are not used as initial condition for
the propagation, since they are not related to the
state. Instead, they are introduced in the propaga-
tion as process noise

xχq,i
[k] = f (x̂[k|k], û[k], χq,i[k]) (i = 0, . . . , 2q)

(39)

It is clear that the first the sigma points which
represents the mean of the distribution, χq,0[k] re-
turns x̂[k + 1|k], according to Eq. (36). The ob-
tained states are retracted back into R12 with the
inverse retraction function. The retracted sigma
points matrix χrq[k] ∈ Rq×(2q+1) is then obtained
as

χrq,i[k] = ϕ−1(x̂[k+1|k], xχq,i
[k]) (i = 0, . . . , 2q)
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(40)

and since xχq,0 [k] = x̂[k + 1|k], the first column of
the matrix is χrq,0[k] = 0. The covariance matrix
with respect to the noise can be finally computed
as

Q[k + 1|k] = W (c)
q (χrq[k]− χrq[k])(χrq[k]− χrq[k])T

(41)

where χrq[k] ∈ R2q is the weighted mean of the re-
tracted sigma points with W (m)

q . Finally, the one-
step-ahead state error covariance matrix is com-
puted correcting Eq. (38) as

P [k + 1|k] = P [k + 1|k] +Q[k + 1|k]

= W (c)
p (χrp[k]− χrp[k])(χrp[k]− χrp[k])T

+W (c)
q (χrq[k]− χrq[k])(χrq[k]− χrq[k])T

(42)

Note that the second contribute is weighted on the
basis of the process noise covariance matrix Q. If
the knowledge of the true model is poor, then Q
has large elements and then the a priori covariance
state error matrix estimate has a large dispersion.

3.2.3 Measurement update step

Once x̂[k + 1|k] and P [k + 1|k] are computed and
the measurement z[k] is known, the correction can
be performed. As mentioned, the third set of sigma
points with the predicted state error covariance
matrix are computed. The matrix χu[k] ∈ Rp×(2p+1)

of 2p sigma column vectors χu,i[k] is formed ac-
cording to

χu,0[k+1]=0,

χu,i[k+1]=χu,0[k+1]+
(√

(p+λd)P [k+1|k]
)
i

(i = 1, . . . , p)

χu,i[k+1]=χu,0[k+1]−
(√

(p+ λd)P [k+1|k]
)
i−p

(i = p+ 1, . . . , 2p) (43)

or equivalently expressed through χu[k + 1]. Each
point is retracted into the manifold and then passed
through the measurement function. The matrix
zu ∈ Rp×(2p+1) is constructed such that each col-
umn is

zu,i[k + 1] = h(ϕ(x̂[k + 1|k], χu,i[k + 1])),

(i = 0, . . . , 2p)
(44)

where the first column is zu,0[k] = 0 due to the
retraction function properties. Since the ith mea-
surement vector is part of R12 and not of TSE(3),

there is no need to use the inverse of the retrac-
tion function. Therefore, the measurement covari-
ance matrix Pzz[k + 1] and the cross-covariance
Pxz[k + 1] can then be obtained

Pzz[k + 1] = W (c)
p (zu[k + 1]− z[k + 1])(zu[k + 1]

−z[k + 1])T + T (45)
Pxz[k + 1] = W (c)

p χu[k + 1](zu[k + 1]− z[k + 1])T

(46)

where z[k + 1] is the weighted mean with W
(m)
p,i .

The Kalman gain is the factor which allows to min-
imize the state covariance matrix P and is com-
puted by

K[k + 1] = Pxz[k + 1]Pzz[k + 1]−1 (47)

Note that if a noisy sensor is used, the measure-
ment covariance matrix has high elements and its
inverse will produce a low Kalman gain. Finally,
the a posteriori state estimate is

x̂[k+1|k+1] = ϕ(x̂[k+1|k],K[k+1]r[k+1]) (48)

where r is the residual, i.e. the discrepancy, be-
tween the estimated measurement z[k+1] from the
a priori predictions and the actual measurement
z[k+ 1]. It is clear that the Kalman gain K[k+ 1]

acts as a weighing factor for the residual. Partic-
ularly, when the measurement is corrupted and T
assumes large values, then the Kalman gain and
the residual weight are low. Therefore, this gain
allows to have an optimal estimate weighting the
received measurement on the basis of its reliability.
This degree of reliability is achieved by comparing
the covariance of the estimated measurement and
the covariance of the real measurement. Finally,
the a posteriori state error covariance matrix is
computed as

P [k+1|k+1]=P [k+1|k]−K[k+1]Pzz[k+1]K[k+1]T

(49)

3.3 Tracking control design on Lie groups and
their tangent bundles

The control design in the TSE(3) framework en-
ables one to treat both rotational and translational
motions simultaneously. The feedback loop allows
the computation of the difference between the de-
sired and the measured configuration, which is af-
fected by the measurements errors. The controller
should be able to nullify the error between the ac-
tual and desired state. The latter is computed by
a guidance system, while the actual states are ob-
tained from the navigation filter which filters out
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the measurement noise. Once the state configura-
tion error is defined, the controller can command
the spacecraft translational and rotational motion
through the actuators.

Here, the tracking problem of reaching and main-
taining a desired orbit around a small body is con-
sidered. The guidance algorithm assigns the de-
sired position rref in BCI frame, velocity Vref in
SBF frame, and attitude Θref in combination with
the actual states, to the control system. The UKF
filter is used to obtain the estimated states r̂, V̂ and
Θ̂ from noisy measurements. Finally, the tracking
errors can then be computed as

δgtrack = g−1
ref ĝ =

[
δRtrack δrtrack

0 1

]
=

[
RTref(Θref)R(Θ̂) RTref(Θref) (r̂ − rref)

0 1

]
δVtrack = V̂− Vref (50)

The error dynamics in terms of position and ve-
locity should tend to zero, and the rotation ma-
trix to the identity matrix. Since the state is on
TSE(3) and the control input is in R6, different
functions are introduced to allow the retraction
from the manifold into Euclidean space. The non-
linear function of the velocity and configuration is
defined as

ψ(δgtrack, δVtrack) = δVtrack +K1l(δgtrack) (51)

where K1 = blkdiag(k11, k12) ∈ R6×6 is a positive
definite control gain matrix. The following vector
function of the configuration is then introduced:

l(δgtrack) =
[
sT (δRtrack), δrTtrack

]T
(52)

with its derivative

l̇(δgtrack) =
[
ṡT (δRtrack), δvTtrack

]T
(53)

The s(·) : SO(3)→ R3 and ṡ(·) : SO(3)→ R3 are

s(δRtrack) =
3∑
i=1

ai
(
δRTtrackei

)×
ei

=
3∑
i=1

(
δRTtrackA

T ei
)×
ei

ṡ(δRtrack, δωtrack) = (tr(AδRtrack)I3 −
δRTtrackA)δωtrack (54)

where ei, i = 1, 2, 3, are the elements of the natural
basis in R3, and A = [diag (a1, a2, a3)] with the
scalars a1, a2, and a3 selected such that a1 > a2 >
a3 ≥ 1. The control law developed for rigid body
regulation control on TSE(3) in [17] is revised here
to account for a tracking problem as

uc = −IK1 l̇ − ad∗ψ−K1l I (ψ −K1l)− IK2ψ

−Iκ
[
01×3, δr

T
trackδR

T
track

]T
(55)

where K2 = blkdiag(k21, k22) ∈ R6×6 is a positive
definite control gain matrix, and k21 and k22 can
be tuned suitably to adjust rotation and transla-
tion performance of the spacecraft. Thus, the total
augmented control input is uc = [FTc ,M

T
c ]T , as de-

fined in Eq. (10).
The proof for almost global asymptotic stabil-

ity of the tracking problem studied is similar to
that given in [17] for the rigid body regulation
problem using an attitude-dependent
Morse-Lyapunov function and a backstepping state
feedback control law of the form

δVtrack = −l(δgtrack)

According to [54], the separation principle allows
the design of the controller and the observer (filter
algorithm) separately. Particularly, if the observer
and the controller are both stable, then the closed-
loop dynamics obtained using the augmented form
is also stable. In many applications, this technique
has proved to be a successful and stable design
method. In order to highlight the different type of
errors, the total error on each state can be rewrit-
ten as

δR = RTref(Θref)R̂(Θ̂)R̂T (Θ̂)R(Θ) = δRtrackδRest

δr = R̂(Θ̂)(r − r̂) +RTref(Θref)(r̂ − rref)
= δrest + δrtrack

δV = V− V̂ + V̂− Vref = δVest + δVtrack (56)

where δ(·)est and δ(·)track denote the estimation
error and the tracking error, respectively. Accord-
ing to Eq. (56), when the estimation error and
tracking error go to zero, the total error goes to
zero, meaning that both the estimator and con-
troller are asymptotically stable (in addition, the
controller is almost globally asymptotically sta-
ble [17]). The convergence of the controller results
in a zero tracking error and the convergence of the
filter results in a bounded estimation error with
zero mean white noise. From Eq. (56), the cou-
pling effect of the nonlinear dynamics is clear. The
total position error is not able to converge to zero
if the attitude total error does not converge.

Note that an alternative asset could be the im-
plementation of a controller robust to the uncer-
tainties, i.e. a stochastic robust controller analo-
gous to that in [55] for robust pose control, without
the use of a navigation system. However, for sys-
tems affected by different sources of high-magnitude
noise, the states can easily diverge if the stochastic-
ity is not filtered out unless the control inputs are
selected to be large enough to compensate those
stochasticities. The estimator-based controller pro-
posed in this manuscript is continuously updated
with the system dynamics which, as a result, avoids
high control inputs.
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3.4 Variational integrator

In the numerical simulations provided in Section 4,
the dynamics are propagated using a variational
integrator in order to preserve geometric proper-
ties of the system. This integrator is applied di-
rectly on the nonlinear manifold SE(3), where the
discretized Hamiltonian is used. The details of the
variational integrator formalism are not shown here
for brevity, but they can be found in [40, 56, 57],
for instance.

4 Numerical Simulations and Discussion

In order to investigate the performance of the pro-
posed navigation and control system, a scenario
with high orbit-attitude coupling is studied here.
Particularly, the NASA’s asteroid-study and sample-
return mission, OSIRIS-REx, is considered. The
publicly available data of this mission (Table 1)
are used to define the properties of the spacecraft
and the small irregular asteroid Bennu.

The details of the spacecraft control system are
used to define the saturation limits for the control
moment and force. The control gains are tuned ar-
bitrarily but such that they satisfy stability of the
closed-loop dynamics. The sensors employed in the
navigation system are assumed to be characterized
by a worse statistics than the real-world scenario;
i.e., the standard deviations are assumed to be rel-
atively large in order to verify the robustness of
the proposed navigation and control system. The
process noise covariance matrix is chosen with rel-
atively small element with respect to R, such that
the UKF relies on the predictions and the noise
can be efficiently filtered. The details of naviga-
tion and control systems are reported in Table 2.

The tracking orbit is chosen based on the mis-
sion timeline. Just before the touch and go opera-
tion, the spacecraft flies a closed orbit with a radius
of 0.6 miles (1 km) around Bennu. This phase is
also important for the scientific return of the mis-
sion, since the spacecraft collects asteroid’s data
to map its surface. For this reason, it is assumed a
desired (reference) circular orbit with a nonzero in-
clination, and a nadir-pointing attitude such that
a face of the satellite always points to the surface
of the asteroid. The orbit is parameterized through
trigonometric functions of time such that, at each
time step, the reference position in BCI frame is

rref(t) = Ro [ρo sin (no t), ρ cos (no t), 0]
T (57)

where ρo denotes the radius of the desired circular
orbit, no is the orbital mean motion, and Ro rep-

resents the transformation matrix from the peri-
focal frame to the BCI frame. The orbital mean
motion is obtained from Kepler’s third law. The
reference translational velocity vref(t) is obtained
by taking the time derivative of the position vec-
tor in Eq. (57). The following values are chosen:
ρo = 1 km, Ro = R([0, π/4, 0]), no = 2π

To
, where

the period of the orbit is computed with the third
Kepler law To = 2π

√
ρ3

µ . In order to guarantee
the nadir pointing attitude, the local vertical local
horizontal (LVLH) reference frame is introduced,
whose representation is given in Fig. 1. Particu-
larly, r represents the position vector from BCI to
the satellite, v the satellite’s orbital velocity and
h = r×v the orbital angular momentum. The first
axis is oriented in the vref(t) direction, ê1,LVLH(t) =
vref(t)/‖vref(t)‖; the third axis is is oriented in the
−rref(t) direction, ê3,LVLH(t) = −rref(t)/‖rref(t)‖;
the second axis is normal to the orbit plane and in
the direction of angular momentum h with oppo-
site sign, ê2,LVLH(t) = ê2,LVLH(t) × ê1,LVLH(t). The
reference angular velocity is simply defined as
ωref(t) = −no ê2,LVLH [62,63]. The guidance system
computes the reference attitude at each instant of
time as

Θref(t) = logSO(3)

(
RTLV LH (t)

)
(58)

where RLV LH is the rotation matrix from BCI to
LVLH reference frame

RLVLH(t)=

ê1,LVLH(t)·Î ê1,LVLH(t)·Ĵ ê1,LVLH(t)·K̂
ê2,LVLH(t)·Î ê2,LVLH(t)·Ĵ ê2,LVLH(t)·K̂
ê3,LVLH(t)·Î ê3,LVLH(t)·Ĵ ê3,LVLH(t)·K̂


(59)

with unit vectors FBCI = [Î , Ĵ , K̂] for the BCI
frame and FLV LH = [ê1,LV LH , ê2,LV LH , ê3,LV LH ]

for the LVLH frame. The spacecraft initial con-
ditions are chosen reasonably different from the
desired ones, i.e. the reference orbit and nadir-
pointing attitude. All the states are selected ran-
domly from Gaussian distributions with a stan-
dard deviations of 90 deg, 1000 m, 5 deg/s and 1
m/s for attitude, position, and velocities respec-
tively. On the other hand, the UKF initial condi-
tions are selected with an error of 10% for attitude
and position and 20% for velocities, with respect
to the spacecraft initial conditions.

4.1 Filter verification

The performance of the proposed UKF is com-
pared to those of other state filters designed on
SE(3) that can be found in literature. In particular,
the algorithms selected for the comparison are i)
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Table 1 Spacecraft and Bennu properties [50, 58,59].

Parameter Values
Spacecraft mass [kg] m = 850
Spacecraft dimension [m] d1 = 2.0, d2, d3 = 2.3
Spacecraft inertia [kg m2] J = m

12
diag [(d21 + d22) , (d

2
2 + d23) , (d

2
1 + d32)]

Bennu gravitational parameter [m3 s−2] µ = 5.2060
Bennu dimension [m] l1 = 535, l2 = 508, l3 = 365
Bennu coefficients C20 = −0.097070, C22 = 0.004919
Bennu rotation period [hr] TB = 4.297

Table 2 Values used for the navigation and control systems [60,61].

Parameter Values
Measurement std [deg,m,deg,m/s] σζΘ

= 6, σζr = 100, σζω = 0.2, σζv = 2

Measurement cov matrix [deg,m,deg,m/s] T = blkdiag
[
σ2
ζΘ

I3, σ2
ζr
I3, σ2

ζω
I3, σ2

ζv
/10I3

]

Process cov matrix [deg,m,deg,m/s] Q = blkdiag [10−10I3, 10−10I3, 10−10I3, 10−10I3]
State cov matrix [deg,m,deg,m/s] P0 = blkdiag [10−10I3, 10−10I3, 10−10I3, 10−10I3]
Control Moment Saturation per axis [N m] Mc,i = 24
Control Force Saturation per axis [N] Fc,i = 366
κ [km s−2] 1× 10−6

K1 [s−1] blkdiag [5× 10−4I3, 1× 10−3I3]
K2 [s−1] blkdiag [2× 10−2I3, 1× 10−2I3]

a [1.2, 1.1, 1.0]T
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Fig. 1 Local vertical local horizontal (LVLH) and body-
centered inertial (BCI) reference frames representation.

the EKF on Lie group introduced in [26] (EKF), ii)
the UKF on Lie group introduced in [30] (UKF),
and iii) the discrete EKF on Lie group (DEKF)
described in [28]. The performance analysis is con-
ducted on the basis of position and attitude es-
timation results. The case study consists of the
propagation of the open loop spacecraft dynamics
around the asteroid Bennu, where the data previ-
ously introduced are used. As in [29, 30], the re-
sults are shown in Fig. 2 in terms of the root mean
square of the pose estimation error (RMSE). The
first and second rows show the position and atti-
tude RMSEs, respectively, as a function of sample
period ∆t (left) with ζr = 10−1 km, ζΘ = 10−1

deg, and χr = 0 km, χΘ = 0 km (left); initial
condition inaccuracies χr, χΘ with ζr = 10−1 km,
ζΘ = 10−1 deg, and ∆t = 1 s (center); and mea-
surement noise standard deviations ζr km, ζΘ deg

with ζr = 10−1 km, ζΘ = 10−1 deg, and ∆t = 1 s
(right).
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Fig. 2 Attitude and position RMSE as a function of sam-
ple period, initial condition inaccuracies and measurement
noise standard deviations.

In the left column of Fig. 2, the RMSE(s) for
the position and attitude error are shown along
with the sample period ∆t from 0.1 to 20 seconds.
It can be seen that the proposed filter (solid) and
the UKF (dash) are more robust to changes in the
sampling frequency than the EKF and DEKF. Par-
ticularly, the EKF (dot) and DEKF (dash-dot).
For smaller time steps, the difference among dif-
ferent filters reduces. Then the UKF on TSE(3)
and the UKF proposed in [30] behave almost the
same, achieving an higher accuracy with respect
to EKF and DEKF even for large ∆t.

The center column of Fig. 2 shows the RMSE(s)
for the position and attitude error along with the
percentage of uncertainty on the filter initial pose
estimate with respect to the true pose. Particu-
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larly, let the true values be r0 and Θ0, the filters
initial guesses are parametrized as r0(1+χr/100) ,
R(Θ0(1 + χΘ/100)). As expected, the best perfor-
mance are achieved for small values of uncertain-
ties. The UKF filters outperform the EKF filters
for all the range of χr, χΘ since the EKF are partic-
ularly influenced by the initial condition accuracy.

Finally, in the right column of Fig. 2, the
RMSE(s) are given as functions of the standard
deviation of the measurement noise, for the po-
sition and attitude measurements. Note that the
proposed UKF filter on TSE(3) achieves the low-
est accuracy in terms of attitude O(10−1) deg even
with the smallest noise standard deviation. It can
be explained by the fact that the UKF on TSE(3)
also estimates the velocities which are assumed to
be provided by noisy sensors, while the filter on
SE(3) uses un-noisy velocities and only updates on
position and attitude measurements.

Generally, as shown in the figure, the proposed
UKF on TSE(3) and standard UKF perform better
than others. Even if the DEKF seems to be robust
to noisy measurements, it is dependent on the ini-
tial condition accuracy and sample frequency. Ac-
cording Fig. 2, the EKF on SE(3) [26] is able to
achieve an higher accuracy of DEKF on SE(3) [28]
and lower accuracy than the UKF on SE(3) [30]
and the proposed UKF on TSE(3). The latter one
has proved to be particularly robust even with
noisy measurements, inaccurate initial conditions,
and low sampling frequency.

4.2 Performance of the closed-loop system

This section presents the results obtained via the
implementation of the proposed TSE(3) filter and
control designs in Section 3. In Figs. 3-4 the time
histories of attitude, position and velocities in the
BCI frame are provided. Particularly, three dif-
ferent quantities are analyzed: (i) The measured
states which represent the state variables measured
by sensors and hence are affected by noise, (ii) the
estimated (filtered) states, which are the outputs
of the navigation system, and (iii) the ideal states,
which are the noise-free states obtained with ideal
and perfect sensors. Moreover, for each state vari-
able, a magnified portion of the figure is also shown
to provide an approximation of the convergence
times. It can be seen in the figures that the es-
timated states start from a different point with
respect to the measured and ideal states, due to
the different UKF initial conditions. However, the
state filter is able to converge to the ideal states
in less than a hundredth of the orbit period. Also,
note that the attitude varies from −180 deg to 180

deg and the navigation scheme is able to handle
this large variation with no issues.
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states.
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Fig. 4 Measured (grey), estimated (black), and ideal (red)
states.

Figure 5 shows the trajectory of the spacecraft
center of mass, the desired orbit, and the space-
craft’s position and attitude at different points in
the orbit. The spacecraft starts with a completely
different attitude with respect to the desired ones,
and in addition has an initial tumbling. The space-
craft transient response is highlighted in the mag-
nified window in the right panel of Fig. 5. The
convergence of the filter and controller proposed
here results in the convergence of the estimated
states (including trajectory and attitude) to the
actual states and desired states, as can be seen in
the figure. It can be seen that as the spacecraft or-
bits around the asteroid, its attitude changes such
that its bottom always faces towards Bennu.

In each panel of Fig. 6, the norms of the dif-
ferences between the spacecraft estimated states
and their corresponding desired states are shown,
where a noisy behavior of the aforementioned er-
rors after the initial convergence can be seen. The
attitude error has a peak in correspondence of the
Θ1 discontinuity (Fig. 3) and a rapid convergence.
The order of magnitude of the stead state errors
are satisfactorily small compared to the order of
magnitude of the reference variables and the large
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Fig. 5 SBF orientation, and spacecraft attitude and tra-
jectory around Bennu in BCI frame obtained via the imple-
mentation of the navigation and control systems.

sources of noise. For instance, the proposed naviga-
tion and control system allows to reach a position
error in the order of 1 m in the orbit with 1000 m
of radius and with a position noise standard de-
viation of 100 m. The same rationale applies to
the attitude, where an accuracy of 0.0001 deg is
reached. The mean and the RMSE are reported
for each state error. The results improve as the
numerical values of mean and RMSE decrease, as
also indicated in [64]. Note that both the mean
and the RMSE would reduce with time, since the
number of samples with small steady state error
would increase. In fact, these two indices are in-
fluenced by the large state errors that exist before
the convergence is achieved.
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Fig. 6 Norm of the difference between the estimated states
and reference states

In Fig. 7, the estimated state error between
the estimated and the ideal states are shown along
with the estimated confidence bounds of 3σ. The
optimal performance of the estimator is generally
indicated by the bounded estimation errors within
the estimated standard deviation bounds [65, 66].
In other words, the UKF acts as an unbiased es-
timator, meaning that the expectation of the esti-
mated state errors is zero [67]. From a statistical
point of view, it is expected that about 99% of the
samples remain bounded inside the two envelopes.
Additionally, the performance of the UKF confirms

the fact that the state errors are approximately
zero mean white noise. Note that the attitude com-
ponents are characterized by a peak, which corre-
sponds to the discontinuity of the Θ1 when it goes
from −180 deg to 180 deg, as shown in Fig. 3.
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Fig. 7 State estimation error components between the es-
timated states and the ideal noise-free states.

The spacecraft can reach and maintain the de-
sired orbit-attitude through the control system which
produces the necessary control force and moment,
that are shown in Fig. 8. In addition, the force con-
trol effort in quantified with the total integrated
control force per unit mass that is computed as
∆V = 1

m

∫ t
0
‖Fc(τ)‖dτ . While the moment control

effort is quantified with the integrated moment,
i.e. ∆τ =

∫ t
0
‖Mc(τ)‖dτ . It can be seen that the

proposed navigation and control system is able to
guarantee the orbit and attitude tracking with a
low amount of control moment and force, consider-
ing the initial conditions, the large saturation lim-
its and noise statistics in Tab. 2. In fact, both Fc
and Mc are well below the boundaries of 24 Nm
and 366 N respectively. The total ∆V is less than
those obtained in [68], where an adaptive controller
was used for the orbital control. As a result of the
UKF filtering action, they both appear without
any residual noise, which would have introduced an
extra control effort. Note that the control moment
converges before the control force, in agreement
with the magnified portions of Fig. 3-4. Moreover,
as discussed in Section 3.3, since the orbit-attitude
coupling is considered, the tracking position error
can converge only if the tracking attitude error has
converged. Therefore, the observed behavior is ex-
pected. It is emphasized that the gain selection is
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the results of a compromise between convergence
time, steady state accuracy and control effort.
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Fig. 8 Control inputs in terms of force and moment pro-
vided by the tracking controller

5 Conclusions

In this paper, a novel spacecraft navigation and
control system has been introduced in the Lie group
SE(3) and its tangent bundle in the presence of
stochastic processes in the system. In the math-
ematical framework presented here, the geomet-
rical characteristics of the system are well pre-
served and the translational and attitude motions
are treated simultaneously. Hence, this formalism
allows for the coupling between orbital and atti-
tude motions of the spacecraft to be considered
in the control design. The orbit-attitude coupling
cannot be neglected in scenarios such as space-
craft motion around irregular celestial bodies due
to their highly perturbed environments. The es-
timated states obtained using the proposed un-
scented Kalman filter (UKF) on TSE(3) are used
along with a Lyapunov-Morse-based feedback track-
ing control with backstepping for navigation and
control of the system with noisy measurements.
A special retraction function is used to allow the
UKF to encode the sigma points onto the mani-
fold, and the inverse of that retraction function is
used to decode the sigma points from the manifold.
The performance achieved with the implementa-
tion of the proposed UKF on TSE(3) is compared
to that of filters on SE(3) in the literature. In par-
ticular, the performance is studied under different
sampling frequencies, initial condition uncertainty,
and magnitude of measurement noise standard de-
viations. Finally, the robustness of the proposed
stochastic navigation and control system is verified
for the OSIRIS-REx mission parameters, where it
is shown that it is capable of directing the space-
craft towards a desired orbit while maintaining the

principal axis of the spacecraft along the nadir di-
rection, despite the noisy measurements.

Future work may consider further details in the
modeling of the navigation system. Further ac-
curacy in the model of the measurement sensors
may be obtained via extending their noise charac-
teristics to introduce biases, scale-factor errors, or
mounting alignment errors. Also, realistic dynam-
ics of the actuators can be considered in the design
of the control system. The robustness of the pro-
posed navigation and control system can also be
verified in problems such as orbit transfers, and
spacecraft rendezvous, proximity operations, and
docking. In addition, the stochastic estimation and
control scheme presented here can be extended to
the problem of multibody dynamics and multia-
gent systems.
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