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Abstract—Among the multiphase solutions, multi-three-
phase drives are experiencing significant industrial 
development since they can be configured as multiple three-
phase units operating in parallel. The literature reports several 
control approaches to perform the torque regulation of multi-
three-phase machines. Most of such solutions use the vector 
space decomposition (VSD) approach since it allows the control 
of a multi-three-phase machine using the conventional control 
schemes of three-phase drives, reducing the complexity of the 
control algorithm. However, this advantage is practically lost in 
the case of open-three-phase faults. Indeed, the post-fault 
operation of the VSD-based drive schemes requires the 
implementation of additional control modules, often specifically 
designed for the machine under consideration. Therefore, this 
paper aims at proposing a novel control approach that allows 
using any control scheme developed for three-phase motors to 
perform the torque regulation of a multi-three-phase machine 
both in healthy and faulty operation. In this way, the previously 
mentioned drawbacks of the VSD-based control schemes in 
dealing with the machine's faulty operation are avoided. 
Moreover, the simplicity of the control algorithm is always 
preserved regardless of the machine operating condition. The 
proposed solution has been experimentally validated through a 
12-phase induction motor, rated 10 kW at 6000 r/min, which 
uses a quadruple-three-phase configuration of the stator 
winding. 

Keywords—direct flux vector control, fault-tolerant torque 
control, induction motor drives, multiphase electrical machines. 

I. INTRODUCTION 

Following the current electrification processes involving 
energy production and transports, multiphase solutions are 
becoming a competitive alternative to the conventional three-
phase motor drives [1], [2]. Indeed, multiphase machines 
allow a significant reduction of the current levels for a given 
electric power, making it possible using today’s fast power 
electronics devices. Hence, getting significant advantages in 
terms of efficiency and power density [3], [4]. 

Among the multiphase solutions, multi-three-phase motor 
drives are experiencing significant interest from the industry. 
Indeed, such systems allow configuring a multiphase machine 
as multiple three-phase units operating in parallel [1]. In this 
way, several advantages can be obtained. The first advantage 
is a straightforward machine design since the stator consists of 
multiple three-phase winding sets having isolated neutral 
points. The second advantage consists of using three-phase 
inverter power modules, reducing cost and design time. 
Indeed, three-phase inverter modules are used to fed each 
winding set, as shown in Fig. 1. Therefore, the fault-tolerance 
capability is implemented in agreement with the three-phase 
modularity [1].  

 
Fig. 1. Multi-three-phase drive topology. 

In the case of a fault reported by one power module, this 
is turned off, and therefore the corresponding unit, i.e., 
winding set plus inverter, is disconnected from the dc-link [5]. 
Hence, getting a straightforward post-fault drive 
reconfiguration. Finally, the third advantage consists of 
implementing power-sharing strategies among the three-phase 
winding sets [5], [6]. Such strategies help the series-parallel 
systems [6], [7], i.e., series or parallel connection of the dc-
links belonging to the three-phase inverter units. Application 
examples of such systems can be found in wind energy 
production [6]. However, it is highlighted that most of the 
multi-three-phase drives for high-power applications (e.g., oil 
and gas [8]) usually operate with balanced operation among 
the units, optimizing the overall machine efficiency [6].  

Regardless of the drive operation, most of the control 
solutions implemented for multi-three-phase machines are 
undoubtedly based on the vector space decomposition (VSD) 
approach [9]. The VSD approach decomposes the multiphase 
machine model as multiple time-harmonic subspaces. If a 
sinusoidal distribution of the stator windings is considered, 
one main subspace performs the electromechanical energy 
conversion. Conversely, the other subspaces have the meaning 
of time-harmonic and zero-sequence patterns of the machine 
[10]. The main advantage of such an approach is evident since, 
in healthy operation and by considering a balanced operation 
among the units, the torque control scheme should actively 
manage only the main subspace. Thus, allowing the use of 
most of the control schemes developed for three-phase motors 
[11], e.g., field-oriented control. 

Unfortunately, the VSD approach can deal only with 
machines having a symmetrical or asymmetrical configuration 
of the stator winding [12]. Besides, if an open-three-phase 
fault occurs, the VSD-based algorithms must actively control 
the time-harmonic subspaces to keep the machine waveforms 
(e.g., phase-currents) balanced and within their boundaries. 
Hence, they require the implementation of specific control 
modules supported by dedicated fault-tolerant strategies [4], 



and both often must be explicitly designed for the machine 
under consideration. 

A viable alternative to the VSD-based control schemes is 
modular algorithms like those based on the multi-stator (MS) 
approach [1], [13]. In this case, the machine stator is 
considered as multiple three-phase winding sets interacting 
with each other and with an equivalent three-phase rotor. In 
this way, the flux and torque contributions of each winding set 
are highlighted. Therefore, the MS approach is suitable for 
implementing modular control schemes [5], [14]. Thus,  
performing both power-sharing strategies among the units and 
post-fault machine operation straightforwardly. Unlike the 
VSD approach, the MS can also deal with stator winding 
configurations different from the symmetrical or 
asymmetrical ones. However, the MS-based drive solutions 
require specific control schemes. Also, specific decoupling 
algorithms need to be implemented to prevent instability 
phenomena since the winding sets are coupled [1], [13], [15]. 

Recently, some attempts to combine the advantages of the 
VSD and MS approaches have been proposed [16]. In [17], 
[18], general solutions that consider a generic number of 
winding sets have been developed, leading to the definition of 
the decoupled MS (DMS) approach. According to [17], a 
DMS-based control scheme is structured like a VSD-based 
one but keeping the modularity features. Nevertheless, like the 
VSD-based schemes, the solution proposed in [17] requires 
implementing additional control modules to perform the post-
fault drive operation.  

Therefore, this paper aims at proposing a DMS-based 
control scheme that can perform the torque regulation of a 
multi-three-phase machine both in healthy and faulty 
operating conditions by using any of the conventional control 
algorithms for three-phase drives. According to the DMS 
approach [17], [18], the machine torque production is 
expressed using common- and differential- mode subspaces. 
Nevertheless, unlike [17], the torque regulation is obtained by 
actively controlling only the common-mode subspace, 
regardless of the machine operating condition (healthy or 
faulty). Therefore, compared to the control schemes based on 
VSD or DMS, the proposed control approach brings the 
following advantages and contributions: 

1) The drive scheme does not require additional control 
modules to regulate the machine torque after an open-
three-phase fault event. Hence, the simplicity of the 
control structure is preserved in any operating condition. 

2) The control approach can be applied to any multi-three-
phase machine, thus overcoming the VSD restrictions in 
terms of the symmetrical or asymmetrical stator winding 
configurations. 

The proposed control approach has been used to 
implement a three-phase direct flux vector control (DFVC) 
scheme [19] for the regulation of the stator flux and torque of 
a multi-three-phase induction machine (IM). A 12-phase IM 
prototype with a quadruple-three-phase stator winding 
configuration, rated 10 kW at 6000 r/min, has been used to 
validate the proposed method. 

 The paper is organized as follows. Machine modeling is 
described in Section II, while the proposed control scheme is 
shown in Section III. Experimental results are illustrated in 
Section IV. Finally, Section V provides the paper conclusions. 

II. MACHINE MODELING 

In the following, the DMS approach is applied to a multi-
three-phase squirrel-cage IM with p pole pairs and n winding 
sets. A sinusoidal distribution of the stator windings is 
assumed, i.e., they interact with each other and with the rotor 
only through the airgap field's fundamental spatial component. 
Mutual leakage fluxes and iron losses are not considered. The 
DMS model of a generic multi-three-phase IM is reported 
with more details in [17]. Therefore, the main results of [17] 
are summarized in the following to aid the understanding of 
the proposed control solution. 

A. MS model of a multi-three-phase IM 

The DMS approach is defined starting from the MS model 
of a generic multi-three-phase machine. According to [5], 
[17], the MS model of a multi-three-phase IM in stationary 
coordinates is obtained by applying the Clarke transformation 
to the electromagnetic equation system of each winding set 
[1]. The stationary equations are subsequently computed in 
rotating coordinates (xy) using the well-known rotational 
transformation [11]. In summary, the equation system of a 
generic winding set k (k=1,...,n) is computed as: 
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where 𝑧̅sk,xy=[zsk,x zsk,y]t and 𝑧̅sl,xy=[zsk,x zsk,y]t are generic stator 
vectors defined for the winding sets k (k=1,...,n) and l 
(l=1,...,n), respectively, both expressed in rotating coordinates 
(xy); 𝑧̅ r,xy=[zr,x zr,y]t is a generic rotor vector expressed in 
rotating coordinates (xy); ωxy and ωslip are synchronous and 
slip speeds, respectively; v, i, and λ have the meaning of 
voltage, current, and flux linkage, respectively; Rs, Lls, Rr, Llr, 
kr, and τr are the stator resistance, stator leakage inductance, 
rotor resistance, rotor leakage inductance, rotor coupling 
factor, and the rotor time-constant, respectively. Finally, j is 
the complex vector operator in matrix form, while 0ത=[0  0]t.  

By performing the machine power balance [5], the overall 
electromagnetic torque T is computed as: 
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where Tk is the k-set torque contribution, while × is the outer 
product operator. Based on (1), (2), it is noted how the MS 
approach highlights the stator flux and torque contribution of 
each winding set, resulting in suitable for implementing 
modular torque control schemes [5]. Further proof of the MS 
modularity is given in Fig. 2, showing the machine's 
equivalent circuit in stationary coordinates (Lm is the 
magnetizing inductance). 

Nevertheless, from (1), it is noted how the winding sets are 
magnetically coupled with each other. Hence, demonstrating 
how it is necessary to implement dedicated decoupling 
algorithms in the MS-based control schemes [5], [20]. In this 
way, underdamped or even instability phenomena [15] are 
prevented. 

 



 
Fig. 2. Equivalent MS circuit of a multi-three-phase squirrel cage IM in 
stationary coordinates. 

B. DMS model of a multi-three-phase IM 

According to [17], the DMS approach aims at removing 
the MS couplings between the winding sets, thus obtaining a 
machine model quite similar to that of the VSD approach but 
keeping the modularity. In detail, a decoupling transformation 
is applied to the MS model (1), leading to the definition of 
common- and differential mode subspaces. According to [17], 
the decoupling method consists of applying the following 
decoupling transformation: 
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It is noted how each MS stator variable (v,i,λ), defined for each 
winding set, in turn, is decomposed in terms of one common-
mode vector 𝑧̅scm,xy=[zscm,x zscm,y]t and (n–1) differential mode 
vectors 𝑧̅sdm-u,xy=[zsdm-u,x zsdm-u,y]t (u = 1,..,n–1). Concerning the 
decoupling transformation [Td], it is defined as: 
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where: 
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Therefore, the decoupling transformation consists of a 
sparse matrix, characterized by the amplitude invariant 
propriety with a power coefficient equal to n. For example, if 
considering a quadruple-three-phase machine (n=4), (4) is 
computed as: 
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where it is noted how the matrix coefficients are conventional 
numbers often used in three-phase motor drives. 

In summary, by merging (1) for all sets (k=1,...,n), and by 
applying (4), the DMS machine model is computed. Starting 
from the common-mode subspace, the following equation 
system is obtained [17]: 
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while the equation system of each differential-mode subspace 
u (u = 1,..,n–1) is computed as: 

 , , , ,

, ,

sdm u xy s sdm u xy sdm u xy xy sdm u xy

sdm u xy ls sdm u xy

d
v R i j

dt
L i

   

 

       

  

  (8) 

Finally, the overall electromagnetic torque is computed as: 

  , ,1.5 scm xy scm xyT n p i       (9) 

It is noted that the DMS machine model is similar to that 
obtained by using the VSD approach. Indeed, the 
electromagnetic- and torque- equations that rule the common-
mode subspace (7), (9) are formally identical to those of the 
VSD main subspace. Concerning the VSD modeling, more 
details are reported in [17], as well as in the literature 
concerning the multiphase machines [9], [10]. Further proof 
of the similarity between the VSD and DMS modeling 
approaches is given in Fig. 3, showing the DMS machine's 
equivalent circuit in stationary coordinates. 

Concerning the differential-mode subspaces, it is noted 
how they do not participate in the electromechanical energy 
conversion. Indeed, their meaning represents the unbalance 
between the winding sets in terms of currents, flux, or both. 
This propriety is also encountered in the VSD time-harmonic 
subspaces. However, the meaning of such subspaces is 
different from that of the DMS differential-mode ones. The 
VSD time-harmonic subspaces represent specific time-
harmonic patterns of the machine. Conversely, the DMS 
differential-mode subspaces are obtained as linear 
combinations of the fundamental-time models of the 
machine’s winding sets. Further proof of this is given in [18], 
where it is shown how the DMS differential-mode subspaces 
do not possess the same proprieties of the VSD time-harmonic 
ones in terms of time-harmonic decoupling [12], [18]. 

 
Fig. 3. Equivalent DMS circuit of a multi-three-phase squirrel cage IM in 
stationary coordinates. 
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In summary, the application of the DMS approach allows 
removing the MS couplings among the machine’s winding 
sets. Nevertheless, compared to the VSD modeling, the 
modularity is preserved. Indeed, according to (3)-(5), the 
common- and differential- mode vectors are directly 
computed as numeric linear combinations of the MS variables 
belonging to the winding sets. 

C. Adaptive DMS modeling 

Compared to the VSD modeling, the DMS approach 
presents the following features: 
 The decoupling transformation [Td] is defined 

regardless of the stator winding configuration since it 
is applied directly to the MS machine model. 
Therefore, the VSD limitation in terms of symmetrical 
or asymmetrical winding configurations is analytically 
overcome without using numerical approaches [21].  

 No constraints exist on applying the decoupling 
transformation on a specific group of machine winding 
sets. Thus, modeling in terms of common- and 
differential- mode subspaces only the equation systems 
associated with such a group. 

Such features become useful for control solutions that 
have to manage the operation of a multi-three-phase machine 
after an open-three-phase fault event. Indeed, if considering a 
balanced operation among the units under machine healthy 
conditions, both the VSD- and DMS- based control solutions 
perform the torque regulation by actively manage only their 
principal subspace, i.e., the main subspace for the VSD 
solutions, while common-mode subspace for the DMS ones. 
This allows the control implementation of a multi-three-phase 
machine using the control structures for three-phase motor 
drives [11]. 

Nevertheless, if an open three-phase fault event occurs, the 
VSD- and DMS- based control schemes need the active 
control of the secondary subspaces to keep the machine 
currents balanced and within their boundaries, as well as the 
continuity of the torque production. In other words, the 
implementation of additional control modules supported by 
dedicated fault-tolerant strategies to manage the time-
harmonic subspaces for the VSD solutions [4], while the 
differential-mode subspaces for the DMS ones [17]. As a 
result, the simplicity that characterizes the VSD-based and 
DMS-based control schemes to the MS-based ones is lost. 

The only solution to avoid the scenario mentioned above 
is to adapt the machine modeling by considering a stator 
winding configuration composed of the only healthy/active 
winding sets. According to the literature, such a solution is not 
viable for the VSD modeling since the post-fault configuration 
of the stator winding hardly ever satisfies the constraint of 
being symmetrical or asymmetrical [12], making not possible 
the definition of a dedicated VSD transformation unless using 
numerical methods [21]. 

Conversely, thanks to the aforementioned proprieties, the 
DMS-based control schemes always allow changing on-the-
fly the decoupling transformation, i.e., adapting it to the post-
fault configuration of the stator winding. Thus, defining a so-
called adaptive DMS (A-DMS) modeling is possible. In the 
following, a practical example is reported to help the 
understanding. 

Let’s assume that the winding set 3 of an asymmetrical 
quadruple-three-phase machine becomes faulty. The post-
fault configuration of the stator winding is shown in Fig. 4. 

 
Fig. 4. Asymmetrical quadruple-three-phase winding configuration with 
winding set 3 faulty (dashed green windings). 

According to the literature, a VSD transformation cannot 
be defined for this configuration since the latter is neither 
symmetrical nor asymmetrical. Conversely, if considering the 
DMS modeling, the decoupling transformation (4) can be 
easily adapted by setting the overall number of winding sets 
as n = 3, i.e.: 
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The adapted decoupling transformation is thus applied only to 
the healthy/active winding sets (1, 2, and 4) as: 
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Therefore, the resulting A-DMS machine model corresponds 
to (7)-(9) but considering three winding sets (n = 3) and two 
differential-mode subspaces instead of the original three ones. 

As a general rule, to each winding set that becomes faulty, 
a differential-mode subspace is removed. In parallel, the 
definition of the common-mode subspace and the remaining 
differential-mode ones is adapted according to (4), but by 
considering the number of healthy/active sets na instead of the 
effective/rated machine ones n. In practical terms, the A-DMS 
machine model is obtained by considering only the 
healthy/active sets in (3) and by setting n = na in (4), (5), and 
(7)-(9). The application scheme of the adaptive decoupling 
transformation to a generic variable z (v,i,λ) is shown in  
Fig. 5, for better understanding.  

 
Fig. 5. Application scheme of the adaptive decoupling transformation. 
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The variable xfk stands for the status (0=faulty,1=healthy) 
of the generic winding set k (k=1,...,n). It is noted that if the 
generic winding set k is faulty, the related MS variables are 
automatically ruled out from the computation of the common- 
and differential-mode vectors. The advantages of the A-DMS 
approach are thus evident if it is always assumed a balanced 
operation among the healthy winding sets, regardless of the 
machine operating conditions (healthy or faulty). This 
scenario is typical of high-power applications (e.g., oil and gas 
[8]). For such cases, only the common-mode subspace is 
permanently active. Conversely, the differential-mode 
currents are always zero, regardless of the machine operating 
conditions (healthy or faulty) and the effective number of 
healthy/active sets. 

In summary, an A-DMS-based drive solution can perform 
the torque control of a multi-three-phase machine both in 
healthy and faulty operation by actively controlling only the 
common-mode subspace, allowing the use of any control 
schemes for the three-phase drives without the need for 
additional control modules or specific fault-tolerant control 
strategies. In this way, the simplicity of the control structure 
is preserved in any operating condition. The only constraint is 
to operate the healthy winding sets always balanced with each 
other; this scenario usually happens in practice since the 
machine efficiency is maximized [6]. 

III. CONTROL SCHEME 

In this paper, the A-DMS approach is proposed to 
implement the three-phase direct flux vector control (DFVC) 
scheme [19] to regulate the stator flux and torque of a multi-
three-phase IM.  

According to [19], the three-phase DFVC scheme is 
implemented in rotating stator flux coordinates (dqs). 
Therefore, the ds-axis position ϑs corresponds with that of the 
stator flux vector, as schematically shown in Fig. 6. Since the 
(dqs) frame is adopted, the synchronous speed ωs is thus 
defined as the angular speed of the stator flux vector to the 
stationary α-axis. Finally, the machine load-angle δ is defined 
as the ds-axis position to the rotor flux vector (see Fig. 6).  

For a multi-three-phase IM, n stator flux vectors are 
defined (one for each winding set). Therefore, a three-phase 
DFVC scheme should be implemented to control each unit. 
This solution is mandatory if power-sharing strategies among 
the units are performed since significant unbalances between 
the winding sets in terms of flux, currents, or both are 
potentially introduced [5], [6]. Thus, the machine presents n 
different stator flux frames in these operating conditions, 
making the modular control schemes like the MS-based 
DFVC the only viable solution [5]. 

 
Fig. 6. Rotating stator flux frame (dqs) for a three-phase IM. 

Since both DMS and A-DMS modeling approaches can 
perform their decoupling action only if a single reference 
frame is adopted, the A-DMS-based DFVC scheme proposed 
in this paper can manage only a balanced operation among the 
healthy units. In other terms, the healthy units must operate by 
sharing the same values of stator flux amplitude and torque 
contribution. Indeed, as demonstrated in [5], the stator flux 
vectors of the healthy units are overlapped in these operating 
conditions [17], allowing the definition of a unique active 
frame (dqs), i.e., an equivalent three-phase machine. 

A. Flux and torque equations 

Based on the A-DMS model, the flux and torque 
productions are performed in the common-mode subspace. 
Therefore, by considering (7) in the active frame (dqs), i.e., 
λതscm,dqs=[λscm 0]t, the ds-axis voltage equation is computed as: 

 , ,scm ds s scm ds scm

d
v R i

dt
     (12) 

It is noted that the flux amplitude of the healthy winding sets 
is regulated by acting on the ds-axis common-mode voltage 
vscm,ds. The machine torque can be directly regulated by acting 
on the qs-axis common-mode current iscm,qs since it has the 
meaning of the machine’s torque-producing current. The 
proof of this is given by computing (9) in the active frame 
(dqs), leading to as follows: 

 ,1.5 a scm scm qsT n p i       (13) 

 Finally, the qs-axis common-mode current iscm,qs is 
regulated by acting on the qs-axis common-mode voltage 
vscm,qs, as for the conventional three-phase DFVC scheme [19]. 

B. Stator flux and torque-producing current references 

The control solution proposed in this paper is similar to 
that reported in [17], where a DMS-based DFVC is presented. 
The main difference consists in how the post-fault operation 
of the machine is performed. In [17], the decoupling 
transformation [Td] has been kept invariant regardless of the 
machine operating condition (healthy or faulty). Thus, the 
common- and differential- mode vectors are expressed as a 
function of the variables belonging to both the healthy and 
faulty winding sets. Therefore, to perform the machine's post-
fault operation, the computation of both the reference- and 
observed- value of the flux amplitude belonging to each faulty 
winding set is necessary [17]. Also, such values must be 
computed in the reference frame of the active units (dqs). 
Finally, since both the references of flux amplitude and 
torque-producing current belonging to the faulty winding sets 
differ from those of the healthy ones, the active control of the 
differential-mode subspaces is automatically performed after 
applying the decoupling transformation [17]. In this way, the 
phase-currents of the healthy sets are kept balanced and within 
their boundaries. In summary, it is evident how the DMS-
based DFVC scheme requires implementing specific control 
modules to perform the machine’s post-fault operation 
properly. More details are reported in [17]. 

Unlike the DMS-based DFVC scheme, the proposed 
solution is based on A-DMS modeling. Therefore, if an open-
three-phase fault occurs, the definition of the common- and 
differential- mode subspaces is adapted to consider the stator 
winding's post-fault configuration. In this way, the common-
mode references of flux amplitude and torque-producing 
current are computed easily. If the machine is operated below 
the base speed, the reference of the common-mode flux λ௦௖௠∗  
(corresponding to that of each healthy winding set) is usually 
set equal to the rated value, as in (14). 

r

-axis

-axis

s

-axisds

-axisqs
s

s

s



 *
,scm s rated    (14) 

 It is highlighted that the flux reference can be optimized 
by following the maximum-torque per ampere profile of the 
machine [22]. In this way, the overload capability of the drive 
is maximized both in healthy and faulty operation, as the 
overall Joule losses are minimized. 

Since a balanced operation among the units is considered, 
the torque contributions of the healthy winding sets are 
identical to each other. Hence, the reference of the common-
mode torque-producing current 𝑖௦௖௠,௤௦∗  (corresponding to that 
of each healthy winding set) is computed according to (13) as: 

  * * *
, 1.5scm qs a scmi T n p     (15) 

where T* is the machine torque reference. Finally, according 
to the A-DMS approach, the references of flux amplitude and 
qs-axis current of each differential-mode subspace u 
(u=1,...,na) are permanently set to zero regardless of the 
machine operating conditions (healthy or faulty): 

 * *
,0 , 0 1,...,sdm u sdm u qs ai u n       (16) 

C. Stator flux observer 

 As for the DMS-based DFVS scheme, the proposed 
solution needs to implement a flux observer to estimate the 
stator flux vectors of all winding sets in terms of amplitude 
and angular position. In this way, the common- and 
differential- mode values of the stator fluxes amplitudes can 
be computed, as well as the active stator frame (dqs) is 
obtained. In summary, the proposed flux observer is the same 
as that implemented for both the MS-based and DMS-based 
DFVC schemes [5], [17]. More details concerning its design 
are thus reported in [5]. 

D. Adaptive decoupling transformation 

The proposed drive scheme regulates the machine torque 
through the direct control of the common-mode values of flux 
amplitude and torque-producing current. In parallel, the flux 
amplitude and qs-axis current of each differential-mode 
subspace are controlled at zero. Therefore, the adaptive 
decoupling transformation is applied to the flux amplitudes 
and torque-producing currents of the healthy winding sets,  
leading to the computation of the corresponding values of 
common- and differential- mode. The application of the 
adaptive decoupling transformation on the estimated stator 
flux amplitudes (superscript ^) and measured torque-
producing currents is shown in Fig. 7. For the sake of 
simplicity, this paper assumes that the units’ states xfk 
(k=1,...,n) are input signals of the control scheme. 

 
Fig. 7. Adaptive computation of the common- and differential modes of 
flux amplitudes and torque-producing currents. 

E. Flux and torque control 

The flux and torque control of the machine is performed 
by actively controlling the common-mode subspace, i.e., 
common-mode values of flux amplitude and torque-producing 
current. In this paper, the use of conventional proportional-
integral (PI) controllers is proposed (see Fig. 8) since the 
common-mode variables are dc quantities in steady-state 
conditions [17]. The number of PI regulators performing the 
control of the differential-mode subspaces depends on the 
machine operating conditions. Indeed, according to the A-
DMS modeling, the number of existing differential-mode 
subspaces corresponds to that of healthy winding sets na. 
Therefore, in the extreme case in which only one winding set 
is healthy, the machine control is performed only through the 
common-mode regulators since the differential-mode 
subspaces do not exist anymore. In other words, the operation 
of the multi-three-phase machine collapse in its simplest case, 
an actual three-phase motor. Thus, only two PI regulators to 
perform the torque control are required. 

The outputs of the PI controllers correspond with the 
common- 𝑣̅௦௖௠,ௗ௤௦

∗  and differential- 𝑣̅௦ௗ௠ି௨,ௗ௤௦
∗   

(u=1,...,na-1) mode reference voltages (see Fig. 8). Hence, the 
inverse decoupling transformation is applied to get the healthy 
units' reference voltages in the active (dqs) frame 𝑣̅௦௞,ௗ௤௦

∗  
(k=1,...,n), as shown in Fig. 9. Finally, according to [5], the 
computation of each unit's inverter commands is performed. 

 

Fig. 8. Adaptive regulation of the common- and differential- modes of 
fluxes amplitudes and torque-producing currents using PI controllers. 

 
Fig. 9. Computation of the reference voltages of the healthy units by using 
the inverse adaptive decoupling transformation. 

1 1,
ˆ |s s qsi

1 0fx 

1 1fx 

2 0fx 

2 1fx 

0fkx 

1fkx 

0fnx 

1fnx 

Decoupling 
Transformation

1

n

a fk
k

n x


 

,
ˆ |scm scm qsi

1 1,
ˆ |sdm sdm qsi 

2 2,
ˆ |sdm sdm qsi 

 1
ˆ

asdm n 

2 2,
ˆ |s s qsi

,
ˆ |sk sk qsi

,
ˆ |sn sn qsi

 1 ,asdm n qsi  

*
scm

ˆ
scm

*
,scm dsvStator Flux Amplitude

Common-Mode
PI-Controller

*
sdm u

ˆ
sdm u

*
,sdm u dsv Stator Flux Amplitude

Differential-Mode u
PI-Controller  1 1au n  

*
,scm qsi

Torque-prod. Current
Common-Mode

PI-Controller
,scm qsi

*
,scm qsv

*
,sdm u qsi 

,sdm u qsi 

Torque-prod. Current
Differential-Mode u

PI-Controller

*
,sdm u qsv 

 1 1au n  

*
1,s dqsv

1 0fx 

1 1fx 

2 0fx 

2 1fx 

0fkx 

1fkx 

0fnx 

1fnx 

Inverse
Decoupling 

Transformation

1

n

a fk
k

n x


 

*
,scm dqsv

*
1,sdm dqsv 

*
2,sdm dqsv 

 
*

1 ,asdm n dqsv  

*
2,s dqsv

*
,sk dqsv

*
,sn dqsv



IV. EXPERIMENTAL VALIDATION 

The validation of the proposed control solution has been 
carried out on a 12-phase asymmetrical IM with four three-
phase winding sets shifted by 15 electrical degrees (full-pitch 
windings with one slot/pole/phase). A schematic view of the 
stator winding’s configuration is shown in Fig. 10, while 
Table I reports the primary machine data.  

A. Test rig 

The IM under test has been mounted on a test rig for 
validation purposes. The rotor shaft has been coupled to a 
driving machine acting as prime mover, as shown in Fig. 11. 

The power converter consists of four independent three-
phase inverter power modules (100 A, 1200 V) fed at 270 V 
by a bidirectional dc source. Both the switching- and 
sampling- frequencies have been set at 5 kHz to provide a 
compatible scenario with the industrial implementations. 
Finally, the digital controller is the dSPACE® DS1103 fast 
prototyping board, while the control algorithm has been 
developed in the C-code environment. 

TABLE I.  MACHINE PRIMARY DATA 

Electrical Data 

Phase Number 12 (4×3-phase) 

Pole number 4 

Rated power 10 kW 

Rated speed 6000 r/min 

Rated phase-voltage 115 Vrms 

Rated phase current 10 Arms 

Machine Parameters 

Stator resistance Rs 145 mΩ 

Stator leakage inductance Lls 0.94 mH 

Magnetizing inductance Lm 4.3 mH 

Rotor resistance Rr 45 mΩ 

Rotor leakage inductance Llr 0.235 mH 

Rated stator flux amplitude λs,rated 115 mVs 

 
Fig. 10. Asymmetrical 12-phase IM using a quadruple-three-phase stator 
winding configuration. 

 
Fig. 11. View of the IM under test (right) and the driving machine (left). 

B. Experimental results 

The IM has been tested as a generator in the torque control 
mode. The validation of the proposed control scheme has been 
carried out by testing the fault-tolerance capability of the 
drive. Starting from rated generating conditions (-6000 r/min, 
16 Nm), the inverter power module 3 has suddenly been 
turned off. The fault of a power module may produce this 
event. The experimental results are shown in Figs. 12 – 15. 

Fig. 12 shows the first phase-current ‘a’ of each of the four 
three-phase sets before and after the fault. It is noted that the 
currents of the healthy units must increase to preserve the 
torque and machine flux. However, according to Figs. 14 – 15, 
only the common-mode subspace is actively controlled before 
and after the fault event. According to (4), it is pointed out that 
the physical meaning of each common-mode variable consists 
of the average value of the respective components belonging 
to the healthy winding sets. Therefore, referring to Figs. 13 – 
14, it is noted that the flux amplitude of the healthy sets (1,2,4) 
is kept at the rated value (115 mVs), while the common-mode 
torque-producing current increases from 13.2 to 17.7 A to 
satisfy the torque request (see Fig. 15). 

Due to machine asymmetries related to the winding set 2 
(see Fig. 13), it is noted that slight disturbances characterize 
the torque-producing current component belonging to the 
second differential-mode subspace (see Fig. 15).  

 
Fig. 12. Inverter 3 shut-off in generation mode (-6000 r/min, 16 Nm). Ch1: 
ias1 (10 A/div), Ch2: ias2 (10 A/div), Ch3: ias3 (10 A/div), Ch4: ias4 (10 A/div). 
Time resolution: 5 ms/div. 

 
Fig. 13. Inverter 3 shut-off in generation mode (-6000 r/min, 16 Nm). Time 
profiles of the MS variables in terms of torque (Nm), flux amplitudes (mVs), 
and torque-producing currents (A). 
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Fig. 14. Inverter 3 shut-off in generation mode (-6000 r/min, 16 Nm). 
Common- and differential- mode control of the fluxes amplitudes. 

 
Fig. 15. Inverter 3 shut-off in generation mode (-6000 r/min, 16 Nm). 
Common- and differential- mode control of the torque-producing currents. 

However, the phase-currents of the healthy units are not 
affected by these machine asymmetries since they exhibit a 
sinusoidal waveform (see Fig. 12). In summary, thanks to the 
A-DMS control approach, an open-three-phase fault event 
simply leads to a change in the reference of the common-mode 
torque-producing current. The adaptive decoupling 
transformation automatically performs such a change without 
implementing any control strategies or additional control 
modules involving the differential-mode subspaces.  

V. CONCLUSION 

The paper proposes an innovative control approach to 
perform the torque regulation of a multi-three-phase induction 
machine (IM) both in healthy and faulty operation (fault of 
one or more three-phase inverter modules) using any of the 
control schemes normally employed for three-phase drives. 

A novel reference transformation, based on the common- 
and differential- mode modeling, has been used to implement 
the three-phase direct flux vector control scheme to regulate 
both the stator flux and torque of a multi-three-phase IM. 

The experimental validation has been carried out on a 12-
phase IM that uses a quadruple-three-phase stator winding 
configuration. Experimental results validate the proposed 
control solution both in healthy and faulty machine operation. 
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