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CHARACTERIZATION OF SMOOTH SYMBOL CLASSES BY
GABOR MATRIX DECAY

FEDERICO BASTIANONI AND ELENA CORDERO

Abstract. For m ∈ R we consider the symbol classes Sm, m ∈ R, consisting
of smooth functions σ on R2d such that |∂ασ(z)| ≤ Cα(1 + |z|2)m/2, z ∈ R2d,
and we show that can be characterized by an intersection of different types of
modulation spaces. In the case m = 0 we recapture the Hörmander class S0

0,0

that can be obtained by intersection of suitable Besov spaces as well. Such
spaces contain the Shubin classes Γmρ , 0 < ρ ≤ 1, and can be viewed as their
limit case ρ = 0. We exhibit almost diagonalization properties for the Gabor
matrix of τ -pseudodifferential operators with symbols in such classes, extending
the characterization proved by Gröchenig and Rzeszotnik in [24]. Finally, we
compute the Gabor matrix of a Born-Jordan operator, which allows to prove
new boundedness results for such operators.

1. Introduction and results

Modulation spaces were originally introduced by Feichtinger [17] in 1983 and have
revealed to be very useful in many different frameworks, which include harmonic
analysis, quantum mechanics, pseudodifferential and Fourier integral operators,
partial differential equations (we refer the reader to Section 2 for their definitions
and main properties).

Several authors have studied inclusion relations of such spaces with other classical
function spaces such as Besov, Triebel-Lizorkin Gelfand-Shilov spaces [25, 35, 39,
44]. In particular, when they are considered as symbol classes for pseudodifferential
or Fourier integral operators, their relationship with classical symbol spaces such
as the Hörmander classes or the Shubin-Sobolev spaces has been investigated in
many contributions (see e.g., [4, 11, 29, 40] and the references therein).

In 1994 Sjöstrand [33] introduced the first symbol class via time-frequency con-
centration on the phase-space, the Sjöstrand class, which later revealed to be a
type of modulation space. This rough symbol class have been inspired many
works on pseudodifferential operators with symbols in modulation spaces (see, e.g.,
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[2, 3, 11, 22, 23, 36, 37, 30, 38, 39] and the book [11]). The contributions are so
many that it is not possible to cite them all.

In [34] Sjöstrand continued his study on pseudodifferential operators with rough
symbols and he also considered the symbol class object of our study. Namely, for
m ∈ R, let us define

(1) Sm(R2d) = {σ ∈ C∞(R2d) : |∂ασ(z)| ≤ Cα〈z〉m, α ∈ N2d, z ∈ R2d},
for the definition of 〈z〉m see (12). Notice that this is a special instance of the class
S(w) introduced in [34, Formula (3.2)].

There were several papers/books in the seventies and eighties where this symbol
class were considered. For example, the whole theory of the Weyl calculus, e.g. in
[6] can be applied on this class.

Another work on pseudodifferential operators with symbols of the type above is
due to Rochberg and K. Tachizawa [31]. Later, these classes were considered as
spaces for symbols of Fourier integral operators [12, Remark 3.2].

For m = 0 we recapture the standard Hörmander class S0
0,0(R2d): pseudodiffe-

rential operators with these symbols are an algebra which is closed under inversion.
This claim was originally proved by Beals in [1] and later recaptured by Gröchenig
and Rzeszotnik in [24], using time-frequency analysis; key tool was the almost
diagonalization property of the related Gabor matrix.

We continue this spirit of investigation and present a characterization of pseu-
dodifferential operators with symbols in Sm(R2d) in terms of the decay properties
of the related Gabor matrix. Let us introduce the main features of this work.

For τ ∈ [0, 1], the (cross-)τ -Wigner distribution is the time-frequency represen-
tation defined by

(2) Wτ (f, g)(x, ω) =

∫
Rd
e−2πiyωf(x+ τy)g(x− (1− τ)y) dy, f, g ∈ S(Rd),

cf. [27]. Given any tempered distribution σ ∈ S ′(R2d), the τ -pseudodifferential
operator Opτ (σ) can be introduced weakly as

(3) 〈Opτ (σ)f, g〉 = 〈σ,Wτ (g, f)〉, f, g ∈ S(Rd).

The Weyl form OpW(σ) of a pseudodifferential operator can be recaptured when
τ = 1/2, the Kohn-Nirenberg case OpKN(σ) corresponds to τ = 0.

Given z = (x, ω) ∈ R2d, we define the related time-frequency shift acting on a
function or distribution f on Rd as

(4) π(z)f(t) = e2πiωtf(t− x), t ∈ Rd.

Let us recall the definition of a Gabor frame. Given a lattice Λ = AZ2d, with
A ∈ GL(2d,R), and a non-zero window function g ∈ L2(Rd), we define the Gabor
system:

G(g,Λ) = {π(λ)g : λ ∈ Λ}.
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The Gabor system G(g,Λ) is called a Gabor frame, if there exist constants A,B > 0
such that

(5) A‖f‖2
2 ≤

∑
λ∈Λ

|〈f, π(λ)g〉|2 ≤ B‖f‖2
2, ∀f ∈ L2(Rd).

Fix g ∈ S(Rd) \ {0}. The Gabor matrix of a linear continuous operator T from
S(Rd) to S ′(Rd) is defined to be

(6) 〈Tπ(z)g, π(u)g〉, z, u ∈ R2d.

This Gabor matrix can be viewed as the kernel of an integral operator, cf. Section
2 for details.

For τ ∈ [0, 1], define the change of variables

(7) Tτ (z, u) = ((1− τ)z1 + τu1, τz2 + (1− τ)u2), z = (z1, z2), u = (u1, u2) ∈ R2d.

We possess all the instruments for the characterization of Sm(R2d):

Theorem 1.1. Consider g ∈ S(Rd) \ {0} and a lattice Λ such that G (g,Λ) is a
Gabor frame for L2

(
Rd
)
. Fix m ∈ R. For any τ ∈ [0, 1], the following properties

are equivalent:

(i) σ ∈ Sm
(
R2d
)
.

(ii) σ ∈ S ′
(
R2d
)

and for every s ≥ 0, 0 < q ≤ ∞, there exists a function

Hτ ∈ Lq〈·〉s(R2d), with

(8) ‖Hτ‖Lq〈·〉s ≤ C, ∀τ ∈ [0, 1],

such that

(9) |〈Opτ (σ) π (z) g, π (u) g〉| ≤ Hτ (u− z)〈Tτ (z, u)〉m, ∀u, z ∈ R2d.

(iii) σ ∈ S ′
(
R2d
)

and for every s ≥ 0 there exists a sequence hτ ∈ `q〈·〉s(Λ) with

‖hτ‖`q〈·〉s ≤ C for every τ ∈ [0, 1], such that

(10) |〈Opτ (σ)π (µ) g, π (λ) g〉| ≤ hτ (λ− µ)〈Tτ (µ, λ)〉m, ∀λ, µ ∈ Λ.

For the Hörmander class S0(R2d) = S0
0,0(R2d), the Gabor matrix characterization

for Weyl operators was shown by Gröchenig and Rzeszotnik in [24, Theorem 6.2]
(see also [31]) in the case q = ∞. So this result can be viewed as an extension to
any 0 < q ≤ ∞ and τ ∈ [0, 1].

The central role in the proof of the result above is the characterization of the class
Sm(R2d) by an intersection of weighted modulation spaces (in particular, weighted
Sjöstrand classes): for 0 < q ≤ ∞,

Sm(R2d) =
⋂
s≥0

M∞,q
〈·〉−m⊗〈·〉s(R

2d),

cf. Lemma 2.2.
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For the special case m = 0, the Hörmander class S0(R2d) = S0
0,0(R2d) can also

be represented as the intersection of Besov spaces and Hölder-Zygmund classes:

S0
0,0(R2d) =

⋂
s≥0

Cs(R2d) =
⋂
s≥0

B∞,qs (R2d) =
⋂
s≥0

M∞,q
1⊗〈·〉s(R

2d),

cf. Lemma 2.3, which extends the characterization in [24].
Observe that Sm contains the Shubin classes Γmρ , 0 < ρ ≤ 1, defined as [32]

Γmρ (R2d) = {σ ∈ C∞(R2d) : |∂ασ(z)| ≤ Cα〈z〉m−ρ|α|, α ∈ N2d, z ∈ R2d},
and can be viewed as their limit case ρ = 0. The Shubin classes enjoy a symbolic
calculus very useful when dealing with the corresponding pseudodifferential opera-
tors. This is not the case of Sm(R2d). Hence, the characterization in Theorem 1.1
might be an instrument to infer boundedness, composition, inversion properties of
the corresponding operators in suitable function spaces, such as the modulation
ones.

As a byproduct, Theorem 1.1 allows to compute the Gabor matrix decay of
a Born-Jordan operator. We present some continuity properties of the latter on
weighted modulation spaces, extending the work [8].

This study paves the way to other possible investigations. For instance, when
the symbol σ on R2d satisfies a Geverey-type regularity of order s > 0:

(11) |∂ασ(z)| .M(z)C |α|(α!)s, α ∈ N2d, z ∈ R2d,

with M any possible v-moderate weight (see Section 2 for its definition). These
symbols were applied in [13] to investigate the sparsity of the Gabor-matrix rep-
resentation of Fourier integral operators. In this case we conjecture that the right
modulation spaces to be considered are of the type M∞,q

M⊗e−ε|·|1/s
(R2d).

Eventually, one might extend the characterization exhibited in Theorem 1.1 to
Fourier integral operators of Schrödinger-type with symbols in Sm and suitable
phases as in [10]. This will be the object of a further work.

The paper is organized as follows. In Section 2 we present the function spaces
object of our study. In particular, we focus on modulation spaces and present the
properties needed for our results. We then prove the characterization of the classes
Sm(R2d) and in particular of the Hörmander classes S0

0,0(R2d). Section 3 is devoted
to the study of the Gabor matrix for τ -operators and Born-Jordan operators. As
an application, boundedness results on modulation spaces are exhibited.

2. Function spaces and preliminaries

In this manuscript ↪→ denotes the continuous embeddings of function spaces.
Recall that the conjugate exponent p′ of p ∈ [1,∞] is defined by 1/p+ 1/p′ = 1.

The notation yω means the inner product y ·ω, |x| stands for the Euclidean norm
of x and x2 means |x|2.
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We denote by v a continuous, positive, submultiplicative weight function on Rd,
i.e., v(z1 + z2) ≤ v(z1)v(z2), for all z1, z2 ∈ Rd. We say that w ∈ Mv(Rd) if w is a
positive, continuous weight function on Rd v-moderate: w(z1 + z2) ≤ Cv(z1)w(z2)
for all z1, z2 ∈ Rd (or for all z1, z2 ∈ Zd). We will mainly work with polynomial
weights of the type

(12) vs(z) = 〈z〉s = (1 + |z|2)s/2, s ∈ R, z ∈ Rd (orZd).

Moreover, we limit to weights w with at most polynomial growth, that is there
exist C > 0 and s > 0 such that

(13) w(z) ≤ C〈z〉s, z ∈ Rd.

We shall work mostly with weights on R2d or Z2d; we define (w1 ⊗ w2)(x, ω) :=
w1(x)w2(ω), for w1, w2 weights on Rd.

Spaces of sequences. For 0 < p ≤ ∞, w ∈Mv(Zd), the space `pw(Zd) consists
of all sequences a = (ak)k∈Zd for which the (quasi-)norm

‖a‖`pw =

(∑
k∈Zd
|ak|pw(k)p

) 1
p

(with obvious modification for p =∞) is finite.
We are going to use the following inclusion relations for w(k) = 〈k〉s, s ≥ 0: If

0 < p1, p2 ≤ ∞, with

s2 ≤ s1,
1

p2

+
s2

d
<

1

p1

+
s1

d
,

then

(14) `p2

〈k〉s2 (Zd) ↪→ `p1

〈k〉s1 (Zd).

The so-called translation and modulation operators are defined by Txg(y) =
g(y − x) and Mωg(y) = e2πiωyg(y), respectively. Let S(Rd) be the Schwartz class
and consider g ∈ S(Rd) a non-zero window function. The the short-time Fourier
transform (STFT) Vgf of a function/tempered distribution f in S ′(Rd) with respect
to the the window g is defined by

Vgf(x, ω) = 〈f,MωTxg〉 =

∫
e−2πiωyf(y)g(y − x) dy,

(i.e., the Fourier transform F applied to fTxg).
Modulation Spaces. For 1 ≤ p, q ≤ ∞ such spaces were introduced by H.

Feichtinger in [17], then extended to 0 < p, q ≤ ∞ by Y.V. Galperin and S.
Samarah in [20]. Their main properties and applications are now available in
several textbooks, see for instance [11].
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Definition 2.1. Fix a non-zero window g ∈ S(Rd), a weight w ∈ Mv(R2d) and
0 < p, q ≤ ∞. The modulation space Mp,q

w (Rd) consists of all tempered distributions
f ∈ S ′(Rd) such that the (quasi-)norm

(15) ‖f‖Mp,q
w

= ‖Vgf‖Lp,qw =

(∫
Rd

(∫
Rd
|Vgf(x, ω)|pw(x, ω)pdx

) q
p

dω

) 1
q

(obvious changes with p =∞ or q =∞) is finite.

They are quasi-Banach spaces (Banach spaces whenever 1 ≤ p, q ≤ ∞), whose
(quasi-)norm does not depend on the window g, in the sense that different non-zero
window functions in S(Rd) yield equivalent (quasi-)norms. Moreover, if 1 ≤ p, q ≤
∞, the window class S(Rd) can be extended to the modulation space M1,1

v (Rd)
(so-called Feichtinger algebra).

To be short, we write Mp
w(Rd) in place of Mp,p

w (Rd) and Mp,q(Rd) if w ≡ 1.
We recall the inversion formula for the STFT: assume g ∈ M1

v (Rd) \ {0}, f ∈
Mp,q

w (Rd), with w ∈Mv(R2d), then

(16) f =
1

‖g‖2
2

∫
R2d

Vgf(z)π(z)g dz ,

and the equality holds in Mp,q
w (Rd). The adjoint operator of Vg, defined by

V ∗g F (t) =

∫
R2d

F (z)π(z)gdz ,

maps the mixed-norm space Lp,qw (R2d) into Mp,q
w (Rd). In particular, if F = Vgf the

inversion formula (16) can be rephrased as

(17) IdMp,q
w

=
1

‖g‖2
2

V ∗g Vg.

We need to introduce an alternative definition of modulation spaces we shall use
in the sequel. For k ∈ Zd, we denote by Qk the unit closed cube centred at k. The
family {Qk}k∈Zd is a covering of Rd. We define |ξ|∞ := maxi=1,...,d |ξi|, for ξ ∈ Rd.
Consider now a smooth function ρ : Rd → [0, 1] satisfying ρ(ξ) = 1 for |ξ|∞ ≤ 1/2
and ρ(ξ) = 0 for |ξ|∞ ≥ 3/4. Define

(18) ρk(ξ) = Tkρ(ξ) = ρ(ξ − k), k ∈ Zd,

that is, ρk is the translation of ρ at k. By the assumption on ρ, we infer that
ρk(ξ) = 1 for ξ ∈ Qk and ∑

k∈Zd
ρk(ξ) ≥ 1, ∀ ξ ∈ Rd.
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Denote by

(19) σk(ξ) =
ρk(ξ)∑
l∈Zd ρl(ξ)

, ξ ∈ Rd, k ∈ Zd.

Observe that σk(ξ) = σ0(ξ − k) ∈ D(Rd) and the sequence {σk}k∈Zd is a smooth
partition of unity ∑

k∈Zd
σk(ξ) = 1, ∀ξ ∈ Rd.

For k ∈ Zd, we define the frequency-uniform decomposition operator by

(20) �k := F−1σkF .

The previous operators allow to introduce an alternative (quasi-)norm on the
weighted modulation spaces Mp,q

h⊗w(Rd) inspired by [43] as follows.

Proposition 2.2. For 0 < p, q ≤ ∞, h,w ∈Mv(Rd) have

(21) ‖f‖Mp,q
h⊗w(Rd) �

(∑
k∈Zd
‖�kf‖qLphw(k)q

) 1
q

, f ∈ S ′(Rd),

with obvious modification for q =∞.

Proof. The case p, q ≥ 1 is well known, see for example [11, Proposition 2.3.25].
The cases 0 < p < 1 or 0 < q < 1 are an easy modification of that proof. Namely,
let us point out the main changes. If 0 < p ≤ 1, we consider

�kf = F−1σkFf = F−1σkTξ
¯̂
φFf, for ξ ∈ Qk,

since Tξ
¯̂
φ = 1 in supp σk for ξ ∈ Qk. Using Young’s inequality for distributions

compactly supported in the frequencies (see [28, Lemma 2.6], which holds also for
Lph, 0 < p ≤ 1, with h being v-moderate), for ξ ∈ Qk, we obtain

‖�kf‖Lph . ‖F
−1σk‖Lpv‖F

−1Tξ
¯̂
φFf‖Lph . ‖F

−1Tξ
¯̂
φFf‖Lph .

The rest of the proof is analogous to the Banach case and we leave the details to
the interested reader.

An useful embedding is contained in what follows.

Proposition 2.3. Given 0 < p1, p2, q1, q2 ≤ ∞, with m, s1, s2 in R, one has

(22) Mp1,q1
〈·〉m⊗〈·〉s1 (Rd) ↪→Mp2,q2

〈·〉m⊗〈·〉s2 (Rd)

if and only if

(23) p1 ≤ p2
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and

(24) q1 ≤ q2, s1 ≥ s2 or q1 > q2,
s1

d
+

1

q1

>
s2

d
+

1

q2

.

Proof. The Banach case when m = 0 was originally shown by H. Feichtinger in
[17]. We use similar arguments as in that proof. The discrete modulation norm
defined in (21) is given by

‖f‖Mp,q
〈·〉m⊗〈·〉s

�

(∑
k∈Zd
‖�kf‖qLp〈·〉m 〈k〉

sq

) 1
q

.

The necessity of (23) follows from the fact that FLp1 is locally contained in FLp2

if and only if p1 ≤ p2 (with strict inclusion if p1 < p2), cf. [5, 18, 28, 42]. The set
of conditions in (24) in turn describes the inclusions between weighted `q spaces:
`q1〈·〉s1 ⊂ `q2〈·〉s2 if and only if the indices’ relations in (24) are satisfied, cf. for instance

[25, Lemma 2.10]. This concludes the proof.

We also recall the following inclusion relations, see e.g. [11, Theorem 2.4.17] or
[20, Theorem 3.4]: If p1 ≤ p2, q1 ≤ q2 and w2 . w1, then

(25) Mp1,q1
w1

(Rd) ↪→Mp2,q2
w2

(Rd).

Corollary 2.4. For 0 < q1 ≤ q2 ≤ ∞, d ∈ N+, m, s, r ∈ R, r > s+d(1/q1−1/q2),
we have the following continuous embeddings:

(26) M∞,q1
〈·〉m⊗〈·〉r(R

d) ↪→M∞,q2
〈·〉m⊗〈·〉r(R

d) ↪→M∞,q1
〈·〉m⊗〈·〉s(R

d).

Proof. The first embedding is a straightforward application of the inclusion rela-
tions in (25). The second one follows by the embedding in Proposition 2.3.

Besov Spaces. The Besov spaces are denoted by Bp,q
s (Rd), 0 < p, q ≤ ∞, s ∈ R,

and defined as follows. Suppose that ψ0, ψ ∈ S(Rd) satisfy supp ψ0 ⊂ {ω ∈ Rd :
|ω| ≤ 2}, supp ψ ⊂ {ω ∈ Rd : 1/2 ≤ |ω| ≤ 2} and ψ0(ω) +

∑∞
j=1 ψ(2−jω) = 1

for every ω ∈ Rd. Set ψj(ω) := ψ(2−jω), ω ∈ Rd. Then the Besov space Bp,q
s (Rd)

consists of all tempered distributions f ∈ S ′(Rd) such that the (quasi-)norm

(27) ‖f‖Bp,qs =

(
∞∑
j=0

2jsq‖F−1(ψjFf)‖qp

)1/q

<∞

(with usual modifications when q = ∞). Besov spaces are generalizations of both
Hölder-Zygmund and Sobolev spaces, see e.g. [42]. Precisely, we recapture the
Sobolev spaces when p = q = 2, s ∈ R: B2,2

s (Rd) = Hs(Rd). For s > 0,
B∞,∞s (Rd) = Cs(Rd), the Hölder-Zygmund classes, whose definition is as follows.
For s > 0, we can write s = n+ ε, with n ∈ N and ε < 1. Then Cs(Rd) is the space
of functions f ∈ Cn(Rd) such that for each multi-index α ∈ Nd, with |α| = n, the
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derivative ∂αf satisfies the Hölder condition |∂αf(x)− ∂αf(y)| ≤ K|x− y|ε, for a
suitable K > 0.

Inclusion relations between modulation and Besov spaces B∞,qs were first ob-
tained for 1 ≤ q ≤ ∞ (the Banach setting) in [39, Theorem 2.10] and then for
0 < q ≤ ∞ in [43]: for 0 < q ≤ ∞, set θ(q) = min{0, 1/q − 1}, then

(28) B∞,qs+d/q(R
d) ↪→M∞,q

1⊗〈·〉s(R
d) ↪→ B∞,qs+dθ(q)(R

d), s ∈ R.

2.1. Gabor analysis of τ-pseudodifferential operators. For any fixed m ∈ R,
the class Sm(R2d) in (1) is a Fréchet space when endowed with the sequence of
norms {| · |N,m}N∈N,

(29) |σ|N,m := sup
|α|≤N

sup
z∈R2d

|∂ασ(z)|〈z〉−m, N ∈ N.

For n ∈ N, m ∈ R \ {0}, we define by Cnm(R2d) the space of functions having n
derivatives and satisfying (29) for N = n, whereas Cn(R2d) is the space of functions
with n bounded derivatives. Clearly we have the equalities

Sm(R2d) =
⋂
n≥0

Cnm(R2d), m ∈ R \ {0}, S0(R2d) =
⋂
n≥0

Cn(R2d).

A characterization of the class S0(R2d) = S0
0,0(R2d) with modulation spaces was

announced by Toft in [41, Remark 3.1] and proved in [24, Lemma 6.1].

Lemma 2.1. We have the equalities

(30)
⋂
n≥0

Cn(Rd) =
⋂
s≥0

M∞
1⊗〈·〉s(Rd) =

⋂
s≥0

M∞,1
1⊗〈·〉s(R

d).

Hence S0(R2d) =
⋂
s≥0M

∞
1⊗〈·〉s(R2d) =

⋂
s≥0M

∞,1
1⊗〈·〉s(R

2d).

In what follows we extend the previous outcome to all the classes Sm(R2d),
m ∈ R.

Lemma 2.2. For m ∈ R, 0 < q ≤ ∞, n ∈ N, s ∈ (0,+∞), we have the equalities
of Fréchet spaces

(31) Sm(R2d) =
⋂
n≥0

Cnm(R2d) =
⋂
n≥0

M∞,q
〈·〉−m⊗〈·〉n(R2d) =

⋂
s≥0

M∞,q
〈·〉−m⊗〈·〉s(R

d)

with equivalent families of (quasi-)norms

(32) {| · |n,m}n∈N, {‖ · ‖M∞,q
〈·〉−m⊗〈·〉n

}n∈N, {‖ · ‖M∞,q
〈·〉−m⊗〈·〉s

}s≥0.

In particular, for every n ∈ N,

(33) ‖f‖M∞
〈·〉−m⊗〈·〉n

≤ C(n,m)|f |n,m.
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Proof. The equality Sm(R2d) =
⋂
n≥0M

∞,1
〈·〉−m⊗〈·〉n(R2d) was proved in [26, Remark

2.18]. The embeddings in (26) then give the equalities in (31) with the equivalent
families of (quasi-)norms in (32).

Let us show the estimate (33). For f ∈ Cnm(Rd) (Cn(Rd) if m = 0) and any
multi-index α ∈ Nd with |α| ≤ n, we consider the function ∂α(fTxḡ). Taking its
Fourier transform we get

(34) F(∂α(fTxḡ))(ω) = (2πiω)αF(fTxḡ)(ω) = (2πiω)αVgf(x, ω).

In what follows we use the boundedness of F : L1(Rd)→ C0(Rd), Peetre’s inequality
〈x〉−m ≤ 2−m〈x− t〉|m|〈t〉−m, and Leibniz’ formula:

〈x〉−m‖F(∂α(fTxḡ))‖∞ ≤ 〈x〉−m‖∂α(fTxḡ)‖1

=

∥∥∥∥∥〈x〉−m∑
β≤α

(
α

β

)
∂βf Tx∂

α−β ḡ

∥∥∥∥∥
1

≤ 2−m
∑
β≤α

(
α

β

)
‖(∂βf)〈·〉−m‖∞‖(∂α−β ḡ)〈·〉|m|‖1

≤ 2−m sup
|β|≤n
‖(∂βf)〈·〉−m‖∞Mα max

β≤α

(
α

β

)
‖(∂α−β ḡ)〈·〉|m|‖1

= Cα,g,m|f |n,m,

where Cg,α,m = 2−mMα maxβ≤α
(
α
β

)
‖(∂α−β ḡ)〈·〉|m|‖1 with Mα = #{β ∈ Nd, β ≤ α}.

The estimate above and formula (34) yield

(35) sup
x∈Rd
|Vgf(x, ω)|〈x〉−m ≤ Cg,α,m|f |n,m|ωα|−1, |ω| 6= 0, ∀|α| ≤ n.

Now if f ∈
⋂
n≥0 Cnm(Rd) then for every α ∈ Nd there exists C = Cα > 0 such that

the estimate in (35) holds true. Since 〈ω〉n ≤
∑
|α|≤n cα|ωα| for suitable cα ≥ 0, we

obtain

sup
x,ω∈Rd

|Vgf(x, ω)|〈x〉−m〈ω〉n ≤ C|f |n,m, ∀n ≥ 0

for a suitable C = C(n,m) > 0 that is (33).

In particular, for m = 0 we recapture the outcome of Lemma 2.1.
For the case m = 0 we can characterize the Hörmander class S0(R2d) = S0

0,0(R2d)

by Hölder-Zygmund classes Cs(R2d) = B∞,∞s (R2d) and by Besov spaces.

Lemma 2.3. For 0 < q ≤ ∞, we have the equalities

(36) S0
0,0(R2d) =

⋂
s≥0

Cs(R2d) =
⋂
s≥0

B∞,qs (R2d) =
⋂
s≥0

M∞,q
1⊗〈·〉s(R

2d),
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with equivalent families of (quasi-)norms

(37) {‖ · ‖B∞,∞s
}s≥0, {‖ · ‖B∞,qs

}s≥0, {‖ · ‖M∞,q
1⊗〈·〉s
}s≥0.

Proof. It is a straightforward consequence of Lemma 2.2 and the inclusion relations
in (28).

3. Gabor matrix decay

Let us first represent the Gabor matrix as a kernel of an integral operator.
Consider a linear and bounded operator T from S(Rd) into S ′(Rd). The inversion
formula (17) for g ∈ M1

v (Rd), ‖g‖2 = 1 is simply V ∗g Vg = Id. The operator T can
be written as

(38) T = V ∗g VgTV
∗
g Vg.

The linear transformation VgTV
∗
g is an integral operator with kernel KT given by

the Gabor matrix of T :

KT (u, z) = 〈Tπ(z)g, π(u)g〉, u, z ∈ R2d .

By definition and the inversion formula, Vg is bounded from Mp,q
w (Rd) to Lp,qw (R2d)

and V ∗g from Lp,qw (R2d) to Mp,q
w (Rd). Hence the continuity properties of T on mod-

ulation spaces can be obtained by the corresponding ones of the operator VgTV
∗
g

on mixed-norm Lp,qw spaces. These issues will be studied in Proposition 3.5 and
Corollary 3.10 and can be achieved by studying the Gabor matrix decay of T .

First, we focus on the characterization of the Gabor matrix of Opτ (σ).

Proposition 3.1. Consider 0 < p, q ≤ ∞, τ ∈ [0, 1], w ∈ Mv(R4d) satisfying
(13), G ∈ S(R2d) \ {0}, g ∈ S(Rd) \ {0} and define Φτ := Wτ (g, g). Then there
exist A = A(v, g,G) > 0, B = B(v, g,G) > 0 such that

(39) A‖VGσ‖Lp,qw ≤ ‖VΦτσ‖Lp,qw ≤ B‖VGσ‖Lp,qw ,

for every τ ∈ [0, 1] and σ ∈Mp,q
w (R2d).

Proof. By Proposition 2.2 and Remark 2.3 in [16] the mapping

(τ, f, g) 7→ Wτ (f, g)

is continuous from R × S(Rd) × S(Rd) to S(R2d) and locally uniformly bounded.
Since Φτ for τ ∈ [0, 1] belongs to a bounded set in S(R2d), the result follows
immediately from [21, Theorem 11.3.7] for p, q ≥ 1 and [20, Theorem 3.1] for
0 < p, q ≤ ∞.

Finally, we need the following result for τ -pseudodifferential operators [14, Lemma
4.1].
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Lemma 3.1. Fix a window g ∈ S(Rd)\{0} and define Φτ = Wτ (g, g) for τ ∈ [0, 1].
Then, for σ ∈ S ′

(
R2d
)
,

(40) |〈Opτ (σ)π (z) g, π (u) g〉| = |VΦτσ (Tτ (z, u) , J (u− z))| .
where z = (z1, z2), u = (u1, u2), the operator Tτ is defined in (7) and J is given by

J(z) = (z2,−z1).

We are ready to state the characterization of τ -operators with symbols inM∞,q
〈·〉−m⊗〈·〉s(R

2d).

Theorem 3.2. Consider g ∈ S(Rd)\{0} and a lattice Λ ⊂ R2d such that G (g,Λ) is
a Gabor frame for L2

(
Rd
)
. For τ ∈ [0, 1], let Tτ be the linear transformation defined

in (7). For any s,m ∈ R, 0 < q ≤ ∞, the following properties are equivalent:

(i) σ ∈M∞,q
〈·〉−m⊗〈·〉s

(
R2d
)
.

(ii) σ ∈ S ′
(
R2d
)

and there exists a function Hτ ∈ Lq〈·〉s(R2d) satisfying (8) such

that

(41) |〈Opτ (σ) π (z) g, π (u) g〉| ≤ Hτ (u− z)〈Tτ (z, u)〉m, ∀u, z ∈ R2d.

(iii) σ ∈ S ′
(
R2d
)

and there exists a sequence hτ ∈ `q〈·〉s(Λ) with ‖hτ‖`q〈·〉s ≤ C,

for every τ ∈ [0, 1] such that

(42) |〈Opτ (σ) π (µ) g, π (λ) g〉| ≤ Chτ (λ− µ)〈Tτ (µ, λ)〉m, ∀λ, µ ∈ Λ.

Proof. The proof follows the pattern of the corresponding one for Weyl operators
with symbols in weighted Sjöstrand’s classes [22, Theorem 3.2].
(i)⇒ (ii) This implication comes easily from the characterization (40). In details,
observing that 〈Ju〉 = 〈u〉,
|〈Opτ (σ) π (z) g, π (u) g〉| = |VΦτσ (Tτ (z, u) , J (u− z))|

≤ sup
w∈R2d

(
|VΦτσ|(w, J (u− z) |〈w〉−m

)
〈Tτ (z, u)〉m

= Hτ (u− z)〈Tτ (z, u)〉m,
where

Hτ (u) := sup
w∈R2d

(
|VΦτσ|(w, Ju)|〈w〉−m

)
.

For 0 < q <∞,

‖Hτ‖Lq〈·〉s =

(∫
R2d

[
sup
w∈R2d

(
|VΦτσ|(w, Ju)|〈w〉−m

)]q
〈u〉qsdu

) 1
q

� ‖σ‖M∞,q
〈·〉−m⊗〈·〉s

,

Hence by Proposition 3.1 we obtain the estimate (8). The case q =∞ is analogous.
(ii)⇒ (i) Consider the change of variables y = Tτ (z, u) and t = J(u− z), so that

(43)

{
z(y, t) = y − UτJ−1t

u(y, t) = y + (I2d − Uτ )J−1t
, Uτz :=

[
τId 0
0 (1− τ)Id

]
z = Tτ (0, z)
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and u(y, t)− z(y, t) = J−1t. For 0 < q <∞, using (40) and (41),

‖σ‖M∞,q
〈·〉−m⊗〈·〉s

�

(∫
R2d

(
sup
y∈R2d

|VΦτσ (y, t)| 〈y〉−m
)q

〈t〉qsdt

) 1
q

=

(∫
R2d

(
sup
y∈R2d

|〈Opτ (σ) π (z(y, t)) g, π (u(y, t)) g〉| 〈Tτ (z, u)〉−m
)q

〈t〉qsdt

) 1
q

≤
(∫

R2d

∣∣Hτ (J
−1t)

∣∣q 〈t〉qsdt) 1
q

≤ C,

where we used (8). The case q =∞ is analogous.
(ii)⇔ (iii) The argument requires that G (g,Λ) is a Gabor frame for L2

(
Rd
)
. Then

the equivalence can be proved similarly to [10, Theorem 3.1] and [22, Theorem 3.2].

The proof of the characterization of the symbol classes Sm(R2d) claimed in The-
orem 1.1, can be inferred easily from the result above.

Proof of Theorem 1.1. The proof is a direct application of the characterization of
the classes Sm(R2d) presented in (31) and Theorem 3.2.

The following issue is an improvement of [7, Theorem 2.4] and relies on the new
characterization of Sm(R2d) proved in Lemma 2.2.

Proposition 3.3. Consider g ∈ S(Rd) \ {0}, m ∈ R and σ ∈ Sm
(
R2d
)
. For any

n ∈ N there exists C = C(n) > 0, which does not depend on σ or τ , such that
(44)

|〈Opτ (σ)π (z) g, π (u) g〉| ≤ C|σ|n,m
〈Tτ (z, u)〉m

〈u− z〉n
, ∀τ ∈ [0, 1], ∀u, z ∈ R2d.

Proof. Using the characterization of the Hörmander classes Sm(R2d) in (31) we
infer that σ ∈M∞

〈·〉−m⊗〈·〉n(R2d) and, for any n ∈ N, the norm estimate in (33) says

that there exists C = C(n,m) such that

(45) ‖σ‖M∞
〈·〉−m⊗〈·〉n

≤ C(n,m)|σ|n,m,

where C(n,m) > 0 is independent of σ. For z, w ∈ R2d we use Lemma 3.1 and the
norm estimate in (45) which yield

|〈Opτ (σ) π (z) g, π (u) g〉| = |VΦτσ (Tτ (z, u) , J (u− z))|

≤ C|σ|n,m
〈Tτ (z, u)〉m

〈u− z〉n
,
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that is the desired result.

For s ∈ [0,+∞) \ N, the estimate reads as follows.

Proposition 3.4. Consider g ∈ S(Rd) \ {0}, τ ∈ [0, 1], m ∈ R and σ ∈ Sm
(
R2d
)
.

For any s ∈ [0,+∞) \ N there exists C = C(s,m) > 0, which does not depend on
σ or τ , such that

(46) |〈Opτ (σ) π (z) g, π (u) g〉| ≤ C|σ|n+1,m
〈Tτ (z, u)〉m

〈u− z〉s
, ∀u, z ∈ R2d,

where n = [s] is the integer part of s.

Proof. The result is attained by the the same argument as Proposition 3.3 and the
inclusion relations between modulation spaces in (25).

3.1. Boundedness results. The characterization of the class Sm in Lemma 2.2
and Theorem 3.1 are the key tool for boundedness properties of τ -operators on
weighted modulation spaces.

Proposition 3.5. Consider τ ∈ [0, 1], m ∈ R, σ ∈ Sm(R2d), 0 < p, q ≤ ∞. Then
Opτ (σ), from S(Rd) to S ′(Rd), extends uniquely to a bounded operator

Opτ (σ) : Mp,q
〈·〉r+m(Rd)→Mp,q

〈·〉r(R
d),

for every r ∈ R.

Proof. Choose g ∈ S(Rd) and a lattice Λ such that G(g,Λ) is a Gabor frame for
L2(Rd). Define t := min{1, p, q} and choose s > (2d+ |r|)/t. Using the equivalent
discrete (quasi-)norm for the modulation space, see e.g. [40, Proposition 1.5], the
estimate in (42) and Young’s convolution inequality in [19, Theorem 3.1], we obtain
the result. Namely,

‖Opτ (σ)f‖Mp,q
〈·〉r
� ‖Vg(Opτ (σ)f)‖`p,q〈·〉r (Λ) ≤

∥∥hτ ∗ |Vgf |〈·〉|m|∥∥`p,q〈·〉r (Λ)

≤ ‖hτ‖`t〈·〉s(Λ)
‖Vgf〈·〉m‖`p,q〈·〉r(Λ)

≤ C ‖f‖Mp,q

〈·〉r+m
.

Alternatively, since σ ∈ Sm =
⋂
s≥0M

∞,q
〈·〉−m⊗〈·〉s(R

2d) by Lemma 2.2, one can use

[40, Theorem 3.1] with p =∞ and q ≤ 1 small enough to yield the claim.

Remark 3.6. (i) For σ ∈ S0(R2d) = S0
0,0(R2d) and we recapture the continuity of

Opτ (σ) : Mp,q
〈·〉r(R

d)→Mp,q
〈·〉r(R

d).

This was already shown in [39] for p, q ≥ 1, for the quasi-Banach cases see [40].
(ii) For p = q = 2 we have the continuity between the Shubin-Sobolev spaces
Qr+m(Rd) and Qr(Rd).
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Corollary 3.7. Consider τ ∈ [0, 1], m, r ∈ R, σ ∈ Sm(R2d), 0 < p, q ≤ ∞. Let
‖Opτ (σ)‖ denote the norm of Opτ (σ) in B(Mp,q

〈·〉r+m(Rd),Mp,q
〈·〉r(R

d)). Then there

exists a constant C > 0 such that

(47) ‖Opτ (σ)‖ ≤ C, ∀τ ∈ [0, 1].

Proof. The claim is evident from proof of Proposition 3.5.

3.2. Born-Jordan operators. The Born-Jordan operator with symbol σ ∈ S ′(Rd)
can be defined as

〈OpBJ(σ)f, g〉 = 〈σ,WBJ(g, f)〉, f, g ∈ S(Rd),

where the Born-Jordan distribution WBJ(g, f) is

WBJ(g, f) =

∫ 1

0

Wτ (g, f) dτ,

see, e.g., the textbook [15]. In what follows we study the Gabor matrix decay for
Born-Jordan operators.

Theorem 3.8. Consider g ∈ S(Rd) \ {0}. For m ∈ R consider σ ∈ Sm
(
R2d
)
.

Then for every s ≥ 0, 0 < q ≤ ∞, τ ∈ [0, 1] there exists a function Hτ ∈ Lq〈·〉s(R2d)

which satisfies (8) and such that

(48) |〈OpBJ (σ) π (z) g, π (u) g〉| ≤ 〈z〉m
∫ 1

0

Hτ (u− z) dτ, ∀u, z ∈ R2d.

Proof. For σ ∈ S ′(R2d), OpBJ(σ) is linear and continuous from S(Rd) into S ′(Rd),
see [16]. For z, u ∈ R2d, σ ∈ Sm(R2d) and g ∈ S(Rd) we compute

〈OpBJ(σ)π(z)g, π(u)g〉 = 〈σ,WBJ(π(u)g, π(z)g)〉

=

∫
R2d

σ(y)

∫ 1

0

Wτ (π(u)g, π(z)g)(y) dτdy =: I.

From [16, Proposition 2.2, Remark 2.3] we have that the mapping

R× S(Rd)× S(Rd)→ S(R2d), (t, ϕ, ψ) 7→ Wt(ϕ, ψ)

is continuous and locally uniformly bounded. Thus WBJ(ϕ, ψ) ∈ S(R2d) and the
integral I is absolutely convergent, so that

I =

∫ 1

0

∫
R2d

σ(y)Wτ (π(u)g, π(z)g)(y) dydτ =

∫ 1

0

〈Opτ (σ)π (z) g, π (u) g〉 dτ.

By Peetre’s inequality:

〈Tτ (z, u)〉m = 〈z1 + τ(u1 − z1), z2 + (1− τ)(u2 − z2)〉m

. 〈z〉m〈u− z〉|m|,
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for every u = (u1, u2), z = (z1, z2) ∈ R2d. Hence, using Theorem 1.1,

|I| ≤
∫ 1

0

|〈Opτ (σ) π (z) g, π (u) g〉| dτ .
∫ 1

0

Hτ (u− z) 〈u− z〉|m| dτ 〈z〉m.

Then the function Hτ (z) 〈z〉|m| satisfies condition (8).

Remark 3.9. (i) For q ≥ 1, we can define H(z) :=
∫ 1

0
Hτ (z)dτ . Using Minkowski’s

integral inequality we infer H ∈ Lq〈·〉s(R2d) and the estimate (48) becomes

|〈OpBJ (σ) π (z) g, π (u) g〉| ≤ H(u− z) 〈z〉m, ∀u, z ∈ R2d.

Notice that for 0 < q < 1 Minkowski’s integral inequality is not true in general.
(ii) Arguing as in Theorem 3.8, we may discretize the Gabor matrix decay in (48)
as follows: consider g ∈ S(Rd) \ {0} and a lattice Λ in R2d such that G (g,Λ) is a
Gabor frame for L2

(
Rd
)
. If σ ∈ Sm

(
R2d
)

then for every s ≥ 0, 0 < q ≤ ∞, there
exists a sequence hτ ∈ `q〈·〉s(Λ) with ‖hτ‖`q〈·〉s ≤ C for every τ ∈ [0, 1] such that

|〈OpBJ (σ)π (µ) g, π (λ) g〉| ≤ 〈µ〉m
∫ 1

0

hτ (λ− µ)dτ, ∀λ, µ ∈ Λ.

Corollary 3.10. Consider m ∈ R, σ ∈ Sm(R2d), 0 < p, q ≤ ∞. Then OpBJ(σ),
from S(Rd) to S ′(Rd), extends uniquely to a bounded operator

OpBJ(σ) : Mp,q
〈·〉r+m(Rd)→Mp,q

〈·〉r(R
d),

for every r ∈ R.

Proof. The proof is similar to the one of Proposition 3.5, using the decay for Gabor
matrix of OpBJ(σ) found in Theorem 3.8, with hτ replaced by

∫ 1

0
hτ (·)dτ . Then,

for t ≥ 1 we use Minkowski’s inequality to write∥∥∥∥∫ 1

0

hτ (·)dτ
∥∥∥∥
`t〈·〉s

≤
∫ 1

0

‖hτ‖`t〈·〉sdτ ≤ C.

For t < 1 we use the inclusion relations (14) and majorize∥∥∥∥∫ 1

0

hτ (·)dτ
∥∥∥∥
`t〈·〉s

.

∥∥∥∥∫ 1

0

hτ (·)dτ
∥∥∥∥
`1
〈·〉s̃

,

with s̃ ≥ 0 such that 1/t+ s/(2d) < 1 + s̃/(2d), that is

s̃ >
2d

t
(1− t),

and we proceed as above.
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[33] J. Sjöstrand. An algebra of pseudodifferential operators. Math. Res. Lett., 1(2):185–192, 1994.
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