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The widespread incidence of cardiovascular diseases and associated mortality and
morbidity, along with the advent of powerful computational resources, have fostered
an extensive research in computational modeling of vascular pathophysiology field and
promoted in-silico models as a support for biomedical research. Given the multiscale
nature of biological systems, the integration of phenomena at different spatial and temporal
scales has emerged to be essential in capturing mechanobiological mechanisms
underlying vascular adaptation processes. In this regard, agent-based models have
demonstrated to successfully embed the systems biology principles and capture the
emergent behavior of cellular systems under different pathophysiological conditions.
Furthermore, through their modular structure, agent-based models are suitable to be
integrated with continuum-based models within a multiscale framework that can link the
molecular pathways to the cell and tissue levels. This can allow improving existing
therapies and/or developing new therapeutic strategies. The present review examines
the multiscale computational frameworks of vascular adaptation with an emphasis on the
integration of agent-based approaches with continuum models to describe vascular
pathophysiology in a systems biology perspective. The state-of-the-art highlights the
current gaps and limitations in the field, thus shedding light on new areas to be explored
that may become the future research focus. The inclusion of molecular intracellular
pathways (e.g., genomics or proteomics) within the multiscale agent-based modeling
frameworks will certainly provide a great contribution to the promising personalized
medicine. Efforts will be also needed to address the challenges encountered for the
verification, uncertainty quantification, calibration and validation of these multiscale
frameworks.

Keywords: cardiovascular system, vascular remodeling, computer models and simulations, multiscale models,
agent-based models (ABMs), continuum-based models, equation-based modeling

Edited by:
Stephane Avril,

Centre Ingénierie et Santé, France

Reviewed by:
Estefania Peña,

University of Zaragoza, Spain
T. Christian Gasser,

Royal Institute of Technology, Sweden

*Correspondence:
Claudio Chiastra

claudio.chiastra@polito.it

Specialty section:
This article was submitted to

Biomechanics,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 20 July 2021
Accepted: 04 October 2021

Published: 02 November 2021

Citation:
Corti A, Colombo M, Migliavacca F,
Rodriguez Matas JF, Casarin S and

Chiastra C (2021) Multiscale
Computational Modeling of Vascular

Adaptation: A Systems Biology
Approach Using Agent-BasedModels.
Front. Bioeng. Biotechnol. 9:744560.

doi: 10.3389/fbioe.2021.744560

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org November 2021 | Volume 9 | Article 7445601

REVIEW
published: 02 November 2021

doi: 10.3389/fbioe.2021.744560

http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2021.744560&domain=pdf&date_stamp=2021-11-02
https://www.frontiersin.org/articles/10.3389/fbioe.2021.744560/full
https://www.frontiersin.org/articles/10.3389/fbioe.2021.744560/full
https://www.frontiersin.org/articles/10.3389/fbioe.2021.744560/full
https://www.frontiersin.org/articles/10.3389/fbioe.2021.744560/full
http://creativecommons.org/licenses/by/4.0/
mailto:claudio.chiastra@polito.it
https://doi.org/10.3389/fbioe.2021.744560
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2021.744560


INTRODUCTION

In the past two decades the widespread incidence of
cardiovascular diseases and associated mortality and morbidity
(Virani et al., 2021), together with the increase in computer
resources, promoted an extensive research in the field of
vascular pathophysiology computational modeling. The
vascular system lays on a hierarchical and multiscale structure
(Qu et al., 2011) with different spatial and time scales involved in
the pathophysiological processes (Figure 1): the molecular scale
typically spans from nanoseconds to microseconds, the cellular
one from seconds to hours, while the tissue/organ one from days
to months (Walpole et al., 2013; Gosak et al., 2018). Processes at
different scales influence each other through a complex network
that includes heterogeneous mechanisms (e.g.,
mechanotransduction, gene pattern alteration) and ultimately
leads to tissue and organ response (Kholodenko, 2006; Gosak
et al., 2018). In vascular medicine, a thorough understanding of
the complex network underlying vascular pathologies and the
maladaptive healing processes in response to endovascular or
surgical interventions is lacking. The analysis of the inter-scale
interaction, from molecular pathways to pathological phenotype,
is deemed crucial towards the delivery of personalized therapies
and therefore it is receiving great interest (Kramer et al., 2018).
Furthermore, since the shifting from reductionist to “systems
biology” approach (beginning of the 21st century), a biological
system is seen as a complex network involving environmental
conditions, feedback mechanisms and mutual interactions across
different scales, rather than as the mere sum of its components
(Kohl et al., 2010; Mazzocchi, 2012; Kesić, 2016). Multiscale
computational models are perfect tools for investigating these
complex systems since they potentially embed the systems
biology principles, making them suitable to bridge in-vitro
models of single-scale phenomena to in-vivo models of a
whole system of interest (Qu et al., 2011; Walpole et al.,
2013). A systems biology approach allows tracking the
propagation of a physical quantity across the multiscale
network and quantifying its effect at tissue/organ level. This is

fundamental to elucidate intracellular patterns, feedback
mechanisms and cause-effect relations that are difficult to
discern from in-vitro or in-vivo experiments, as well as from
single-scale in-silicomodels (Qu et al., 2011). Such a level of detail
offers a powerful instrument in the optic of personalized
medicine, which is thought to revolutionize the therapeutic/
diagnostic approach (Vogenberg et al., 2010). Accordingly, in-
silicomodels are establishing to drive the biomedical research in a
more robust fashion. This is supported by the progresses in
biomedical technologies (e.g., imaging, high-throughput
genomic sequencing) and the availability of high-performance
computational resources, which allow elaborating huge quantity
of data and integrating them in well-established computational
infrastructures (Schadt et al., 2010; Hoekstra et al., 2019).

Two main modeling classes are adopted in the field of
computational modeling of vascular pathophysiology, namely
equation-based models and agent-based models (ABMs).
Equation-based models are continuum models based on
systems of ordinary differential equations (ODEs) or partial
differential equations (PDEs). ODEs are used to describe the
temporal variation of system state variables, while PDEs capture
both temporal and spatial-related evolution of said variables. At
the molecular level, PDE systems (e.g., advection-diffusion-
reaction equations) are broadly implemented in the vascular
field to describe the transport of molecular species (e.g., low
density lipoproteins, inflammatory cytokines and other pro-
atherogenic species (Silva et al., 2020)). In addition to
transport phenomena, equation-based models are adopted to
evaluate the mechanical behavior or the fluid dynamics at
tissue/organ scale (e.g., to quantify stresses and strains in the
arterial wall or the hemodynamic variables following
endovascular procedures as percutaneous transluminal
angioplasty (PTA) with/without stenting (Chiastra et al.,
2021a; Chiastra et al., 2021b; Colombo et al., 2021a; Colombo
et al., 2021b)). Usually, given the complex geometry of the
vascular segments, numerical methods, such as finite
difference method, finite element method (FEM) or finite
volume method, are needed to solve PDE systems associated

FIGURE 1 | Multiscale vascular system. Adapted with permission from Wikimedia Commons, (public domain, https://commons.wikimedia.org/wiki/File:DNA_
simple2.svg, https://commons.wikimedia.org/wiki/File:Circulatory_System_no_tags.svg), Blausen.com staff (2014) (https://creativecommons.org/licenses/by/3.0/),
and from Blanco et al. (2017) (http://creativecommons.org/licenses/by-nc/4.0/).
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to solid mechanics or fluid dynamics problems (Walpole et al.,
2013). ABMs are suitable tools to model heterogeneous
populations and capture the behavior of systems with an
intrinsic discrete nature, as systems of cells (Bonabeau, 2002;
An et al., 2009). Moreover, ABMs effectively embed the systems
biology approach: the system behavior emerges from the
simulation of the 1) individual agent dynamics (e.g., cells), 2)
interaction among agents and 3) environmental effects.
Compared to continuum models, ABMs offer a natural
description of cellular systems through the definition of rules
governing the agent activities (e.g., mitosis, apoptosis (Hwang
et al., 2009)). Thanks to this bottom-up approach, a complete
understanding of the whole system is not needed, since its
behavior will naturally emerge from the imposed basic rules.
Moreover, while equation-based models tend to be mostly
deterministic, ABMs can more easily incorporate stochasticity.
Accordingly, multiple runs of the same ABM produce
heterogeneous outputs, consistently with real observations of
the phenomena, making ABMs closer to the reality. Finally,
ABMs easily capture spatial-related aspects as tissue
heterogeneity, composition and morphology, and can integrate
phenomena at different scales within multiscale frameworks
(Glen et al., 2019). Each modeling strategy introduced above
allows simulating phenomena at specific tiers of resolution
reaching a high-fidelity level. However, since biological
processes involve different spatio-temporal scales, the
integration of said tools into biological systems’ multiscale
models is required (Walpole et al., 2013; Norton et al., 2019).

Recently, several multiscale models were proposed to
capture the complex nature of vascular pathologies and
depict the driving mechanisms of response to endovascular
procedures or surgical interventions. The aim of the present
review is to point out works on multiscale modeling of
vascular remodeling, with special emphasis on those
frameworks integrating continuum models and agent-based
approaches in a systems biology perspective. Studies that
proposed ABMs as the core of said frameworks are
reviewed herein, highlighting the potentials of multiscale
agent-based modeling methodology in incorporating the
systems biology principles and capturing
mechanobiological processes in vascular pathophysiology.
In detail, the second section (Agent-Based Modeling:
Promising Tool for a Systems Biology Approach), provides a
description of the ABM strategy, focusing on relevant aspects
in the context of complex biological systems and multiscale
approach. The third section (Multiscale Agent-Based
Modeling Frameworks of Vascular Pathophysiology)
describes the state-of-the-art of computational multiscale
agent-based modeling framework of vascular
pathophysiology. Specifically, models of atherosclerosis, in-
stent restenosis (ISR) and vein graft adaptation will be
detailed, as well as studies focusing on other aspects of
vascular remodeling processes. The fourth section (Agent-
Versus Continuum-Based Multiscale Frameworks: Strengths
and Limitations) discusses the strengths and limitations of
agent-versus continuum-based frameworks. The subsequent
section (Challenges and Future Directions) presents the

current challenges of agent-based modeling strategies and
future perspectives in the field, while the last section
(Conclusion) the concluding remarks.

AGENT-BASED MODELING: PROMOSING
TOOL FOR A SYSTEMS BIOLOGY
APPROACH
ABMs belong to a class of computational models in which the
system of interest is replicated with a bottom-up approach, i.e.
through the discrete representation of its components, called
“agents”, as autonomous decision-making elements (Bonabeau,
2002; An et al., 2009). The behavior of each agent is described
through sets of rules, which can be either probabilistic or
deterministic and may depend on internal and external
variables: the former account for the intrinsic dynamics of the
agent and the latter for the effects of the surrounding
environment and neighboring agents (Bonabeau, 2002; An
et al., 2009). Doing so, the system behavior is not reduced to
the mere superimposition of its elementary components but it
emerges from the concurrent agent actions, interactions, mutual
influence with the environment, and feedback loops that
dynamically evolve throughout the simulation (Chavali et al.,
2008). Consequently, a simple ABM can give rise to complex,
non-linear phenomena that are counterintuitive or difficult to
predict from the analysis of its elementary components’ behavior
(emergent properties) (An et al., 2009).

Considering all the above, ABMs provide a simple but
effective and realistic representation of systems composed by
heterogeneous populations of active elements, in which the
interactions and the spatial-related aspects play a major role.
Translating these concepts to biology, ABMs present great
potentialities in modeling complex biological processes
through an intuitive and flexible framework (Bonabeau,
2002; An et al., 2009). Moreover, the basic principles of
these models make them suitable to express the systems
biology approach, since the concepts of emergence and the
holistic representation of systems are naturally implemented
(Kohl et al., 2010). The most common scale of representation of
biological systems through ABMs is the cell-tissue level, in
which each cell or extracellular matrix (ECM) component
constitutes an autonomous agent (Figure 2) (Hwang et al.,
2009). Cellular dynamics are replicated with dedicated rules
(Hwang et al., 2009), along with other phenotype-specific events
(e.g., production of chemicals, intracellular signaling (An et al.,
2009)). As mentioned above, all these rules can be an explicit
function of variables representing the concentration of
chemicals (e.g., drugs), local microenvironment (e.g.,
hypoxia, inflammation), mechanical stimuli (e.g., state of
stress), and agent-specific internal conditions (e.g., cell cycle
period) (Van Liedekerke et al., 2015). In such a scenario, rule-
based approaches are more intuitive than differential equations-
based systems, especially for non-mathematicians (Bonabeau,
2002), and this is a crucial aspect in the era of multidisciplinary
research. Accordingly, ABMs have the potential to abate the
background-derived roadblocks preventing biologists/clinicians
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FIGURE 2 | Example of agent-based model (ABM) of vascular wall at the cell-tissue scale implemented on a hexagonal lattice, as in Corti et al. (2020). (A) Three-
dimensional patient-specific vessel geometry. (B) Cell-tissue scale ABM of a vessel cross-section implemented on a hexagonal lattice. The vessel wall is composed by
the intima, media and adventitia layers. Each layer is populated by cell and extracellular matrix (ECM) agents, with each agent occupying one lattice site. (C) Examples of
ABM rules.
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from translating their conceptual model of the biological
process into an in-silico replica for further advancing their
research.

Different strategies are adopted to implement agent rules.
Among them, “if-then” conditions are often used to express
different behaviors according to specific situations (Bonabeau,
2002). Cell proliferation usually occurs only if specific conditions
hold, e.g., if the cell is in the mitotic phase, if there is physical
space for the new cell according to the contact inhibition
criterion, if inhibitory signals are deactivated (Hwang et al.,
2009). In addition, force-based or energy-based criteria can be
adopted to define agent and system equilibrium conditions (Zun
et al., 2017). Moreover, deterministic or stochastic rules can be
used. Stochastic rules are commonly implemented to incorporate
an intrinsic level of randomness (e.g., in the form of noise,
random switching between different states of the system
(Andrews et al., 2009)) that allows generating a population of
outputs consistent with the statistical observation of the real
phenomenon (An et al., 2009). Repeated simulations of the same
ABM (under identical initial and boundary conditions) will
exhibit different behaviors, resulting in multiple possible
evolutions of the system. This well reproduces the reality of
biological processes observed at a population level: for
example, the heterogeneous outcomes of in-vitro and in-vivo

experiments, as well as of clinical trials and, more in general, the
inter-subject variability encountered in any clinical study. The
embedded stochasticity may also lead to unexpected and rare
event combinations resulting in an unusual system evolution that,
although constituting an outlier from a statistical viewpoint, may
highlight counterintuitive and unpredictable processes that may
realistically occur. The stochasticity does not necessarily
represent a real stochastic event in the biological system (An
et al., 2009). In some cases, even though the underlying processes
may be intrinsically deterministic, it can be advantageous
describing the event itself as stochastic and based on a specific
probability density function derived from observations of the
exhibited phenomenon (An et al., 2009; Székely and Burrage,
2014). For example, cell proliferation is driven by a cascade of
deterministic sub-processes. However, if a detailed knowledge of
all the sub-processes is lacking or if their explicit modeling is
beyond the purpose of the work, the final event (i.e., cell
proliferation) can be replicated through a probabilistic rule
that follows a phenomenologically-derived probability density
function.

ABMs mainly divide in two classes depending on their
implementation on a lattice (lattice-based) or in the
continuum (lattice-free) space, as schematized in Figure 3
(Van Liedekerke et al., 2015). Within lattice-based ABMs, the

FIGURE 3 | Examples of lattice-free and lattice-based agent-based model (ABM) at the cell scale. (A) Lattice-free ABM. (B) Lattice-based ABMwith one lattice site
corresponding to a single agent, i.e., cell or extracellular matrix (ECM). (C) Lattice-based ABM with multiple agents (cells and ECM) at one lattice site. (D) Lattice-based
ABMwith agents (cells and ECM) occupying more than one lattice site. The lattice-based ABMs shown in (B–D) are implemented on a hexagonal lattice, as in Corti et al.
(2020).
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choice of the relative agent dimension with respect to the
lattice site may vary according to the model purposes (Van
Liedekerke et al., 2015). Focusing as example on the cell level
scale, the following three different strategies are possible
(Van Liedekerke et al., 2015): 1) one lattice site
corresponds to a single cell (Figure 3B), 2) one lattice site
contains multiple cells (Figure 3C) or 3) many lattice sites are
occupied by a cell (Figure 3D). The strategies 1) and 2) are
adopted when large systems of cells are simulated and
attention is given to cell activities (resulting in the
evolution of the system), rather than on local cell
deformation processes. The choice of 1) or 2) has minor
effects on results accuracy, but mainly affects the
computational time. Differently, the strategy 3) is
preferred if the local effects on cells (e.g., the explicit
representation of cell shape and deformation) are of
interest and a small cell system is considered, thus making
it more suitable for processes as tumor growth or
angiogenesis. Since in lattice-free ABMs agents can occupy
any position in the continuum space, these are usually the
first choice if the interactions among cells are pivotal to study
the trajectory of the system of interest (Randles et al., 2021).
They are typically embedded with immersed boundary
techniques to describe the mutual agent interaction
(Garbey et al., 2019) and usually force-based or energy-
based equations are solved to compute agent movement
(Van Liedekerke et al., 2015). However, a fine detail in
this direction comes with the price of a higher
computational cost.

ABMs are flexible and modular (Bonabeau, 2002; An et al.,
2009). Once the structure of the model is implemented, the
inclusion of new agent types (with their rule set) or new
events for existing agents is still possible and does not affect

the general body of the model. Accordingly, increasing levels
of complexity can be explored through a stepwise process and
a modular framework can be adopted, with the possibility to
switch on/off processes according to the goal of the planned
simulation. As downsides, 1) integrating an existent model
with additional components might implicate a re-calibration
of the model if some coefficients of the new agents are
unknown or not directly retrievable from dedicated
experimental data, and 2) the more the complexity of the
model increases, the more the model becomes unmanageable
and unusable in practice. Thanks to their flexibility, cell-scale
ABMs can be coupled with continuum models at tissue or
molecular scale, leading to multiscale agent-based modeling
frameworks of biological systems, in which the ABM
constitutes the main core (An et al., 2009; Van Liedekerke
et al., 2015). A bidirectional interaction between the ABM
and the continuum modules simulates the influence that the
external environment (at the tissue or molecular scales) has
on cellular dynamics and vice-versa. This allows capturing
the adaptation of cell behavior in response to molecular or
mechanical factors from one side, and the environment
modification as consequence of cell activities from the
other side. Many studies have demonstrated the potential
of multiscale agent-based modeling frameworks to model
biological systems in different areas of applications, such
as tissue remodeling (e.g., Rouillard and Holmes (2014),
Virgilio et al. (2015) and Chen et al. (2018)), tumor
growth (e.g., Wang and Vafai (2015) and Norton et al.
(2019)) and wound healing (e.g., Mi et al. (2007), Dutta-
Moscato et al. (2014) and Rikard et al. (2019)). In addition,
the application of similar multiscale frameworks for
modeling vascular adaptation processes is emerging, as
extensively discussed in the following section.

FIGURE 4 | Schematic representation of a general multiscale framework of vascular adaptation. The main simulated events at the different spatio-temporal scales
are: 1) structural mechanics and fluid dynamics, 2) cellular activity and 3) molecular transport. The modules receive proper inputs (red arrows) and generate suitable
outputs (green arrows).
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MULTISCALE AGENT-BASED MODELING
FRAMEWORKS OF VASCULAR
PATHOPHYSIOLOGY
Multiscale agent-based modeling frameworks of vascular
pathophysiology have been developed by several research
groups to predict vessel response to the alteration of the
environmental and operational conditions and to provide
insights into the driving mechanisms of post-intervention
vascular remodeling at different temporal and spatial scales.
To date, the most relevant applications of these computational
frameworks regarded the atherosclerotic plaque development and
the processes of restenosis following endovascular procedures
and of vein graft neointimal hyperplasia after bypass surgery, as
described in detail in, Multiscale Models of Atherosclerosis and
Multiscale Models of In-Stent Restenosis, respectively.
Furthermore, other vascular remodeling processes have been
modeled (i.e., the arterial response to the alteration of growth
factors, chemicals or mechanical stimuli and the remodeling
process of a vascular tissue engineering scaffold), as reviewed
in Multiscale Models of Other Vascular Applications.

A general computational approach characterizes most of the
reviewed studies (Figure 4), based on a framework integrating: 1)
a tissue-scale module (e.g., vascular segment), which simulates
the hemodynamics and/or the solid mechanics, usually with a
continuum approach; 2) a cell-scale module (e.g., vascular cells
and ECM), which replicates cellular activities in response to
hemodynamic, mechanical, chemical stimuli with a discrete
approach (i.e., ABM) and 3) a molecular-scale (subcellular)
module, which computes the transport of molecules (e.g.,
growth factors, chemicals, drugs) within the tissue or simulates
the expression profile of proteins and genes with a continuum
approach.

The ABM is the core of the multiscale framework. It is
initialized with hemodynamic, mechanical or molecular cues
and simulates vascular remodeling by implementing cellular
behaviors. The morphological and compositional tissue
changes, resulting from the ABM simulation, are used to
update the tissue and molecular scale configurations, which
undergo new simulations to compute the updated conditions
for the ABM re-initialization.

Multiscale Models of Atherosclerosis
Atherosclerosis is a multifactorial and inflammatory-driven
disease that leads to the narrowing of the arterial lumen due
to the formation of a plaque in the arterial wall (Bentzon et al.,
2014). The early pathological onset was attributed to the
accumulation of circulating low-density lipoproteins (LDL) in
the arterial wall, which, by triggering an inflammatory response
and a subsequent network of cause-effects events (involving e.g.,
monocytes recruitment, LDL oxidation, foam cell accumulation,
fatty streaks formation, smooth muscle cell (SMC) increased
synthetic activity), ultimately promotes atherosclerotic plaque
formation (Libby et al., 1992; Bentzon et al., 2014). The lipid-
rich plaque may also progress into advanced atherosclerotic
lesion, characterized by necrotic core formation, fibrosis and
calcification (Bentzon et al., 2014). The initial trigger of the

pathology, namely the increased endothelial permeability to
LDL, facilitating LDL accumulation in the intima, is associated
with endothelial dysfunction, which is promoted by several
factors as diabetes, hypercholesterolemia, hypertension,
smoking and obesity (Mudau et al., 2012). Moreover, evidence
of co-localization of plaque formation and luminal regions
exposed to altered hemodynamics, characterized by low and/or
oscillatory wall shear stress (WSS), suggested an implication of
disturbed blood flow in the development of the pathology
(Chatzizisis et al., 2007; Samady et al., 2011). Specifically, the
exposure of endothelial cells to disturbed blood flow triggers an
intracellular signaling pathway that reduces endothelial nitric
oxide synthase expression and the nitric oxide bioavailability,
promoting increased SMC synthetic activity and the activation of
atherogenic processes (Harrison et al., 2006).

Some of the aforementioned aspects of pathology initiation
and progression were considered in the available multiscale
agent-based modeling frameworks of atherosclerosis, as
presented in Table 1 and Supplementary Tables S1, S2, and
discussed below. Table 1 describes the pathology, the framework,
the agent types and the computational domain considered in each
study. Supplementary Table S1 details the module integration
and the software, while Supplementary Table S2 the ABM
strategies, namely the vessel wall compartments, and the agent
types and rules.

The available multiscale models of atherosclerosis (Bhui
and Hayenga, 2017; Corti et al., 2019; Corti et al., 2020)
captured the mutual influence between hemodynamics and
arterial wall remodeling during atherogenesis and plaque
development. The multiscale frameworks of Bhui and
Hayenga (2017), Corti et al. (2019) and Corti et al. (2020)
were based on the bidirectional coupling of a stochastic ABM
of cellular dynamics and a hemodynamics module for blood
flow computation. Additionally, in the framework of Bhui
and Hayenga (2017) a molecular module was included to
describe the transport of inflammatory cytokines and LDL
within the arterial wall.

The work by Bhui and Hayenga (2017) was applied to a three-
dimensional (3D) idealized coronary artery model and
investigated the role of WSS in the processes of leukocyte
trans-endothelial migration, LDL accumulation and,
consequently, atherosclerotic plaque progression.
Computational fluid dynamics (CFD) simulations were
performed to compute the WSS profile, used to initialize the
ABM. Given the ABM-simulated changes of luminal geometry
occurring during plaque growth, an ABM to CFD coupling was
performed to update the WSS distribution, by computing the
hemodynamics in the current vessel geometry. The ABM to CFD
coupling occurred after significant changes in the luminal
geometry rather than at a fixed time. A 3D ABM, constituted
by a uniform layer for the arterial wall (i.e., without intima, media
or adventitia separation) covered by a single layer of endothelial
cells, was implemented. Leukocytes were the only active agents
and specific rules for the endothelial adhesion, the trans-
endothelial migration, the chemotactic migration in the
arterial wall, the cytokines production, and the lifespan were
implemented. In particular, leukocyte adhesion probability was
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TABLE 1 | Multiscale agent-based modelling frameworks of vascular adaptation.

Authors (Year) Pathology Multiscale framework Agents Domain

Bhui and Hayenga (2017) Atherosclerosis Tissue-scale module (seconds) EC, SMC (inert agents),
Leukocytes (Neutrophils,
monocytes, macrophages,
foam cells and lymphocytes)

Simplified 3D model of coronary
arteryHemodynamics module: FEM. I: vessel

geometry; O: WSS
Cell-scale module (hours/days)
ABM; I: WSS; O: vessel geometry and wall
composition
Molecular-scale module (seconds)
Cytokine and LDL transport in the ABM

Corti et al. (2019), Corti
et al. (2020)

Atherosclerosis Tissue-scale module (seconds) SMC, ECM (collagen, elastin),
LDL, Fibroblasts

Idealized 3D model of superficial
femoral artery, with 2D ABM
cross-sections

Hemodynamics module: FVM. I: vessel
geometry; O: WSS
Cell-scale module (hours/days)
ABM; I: WSS; O: vessel geometry and wall
composition

Caiazzo et al. (2011);
Tahir et al. (2011); Tahir
et al. (2013); Tahir et al.
(2014); Zun et al. (2017);
Zun et al. (2019)

In-stent restenosis Tissue-scale module (seconds) SMC, IEL (Caiazzo et al.
(2011); Tahir et al. (2011);
Tahir et al. (2013); Tahir et al.
(2014)); SMC, IEL, EEL (Zun
et al. (2017)); SMC, ECM, IEL,
EEL (Zun et al. (2019))

2D longitudinal section of
idealized straight artery with 2
stent struts (Caiazzo et al.
(2011)),Tahir et al. (2011); Tahir
et al. (2013) - 6 stent struts (Tahir
et al. (2014)); 3D straight artery
(Zun et al. (2017)); Idealized
curved artery with stent
reconstructed from micro-CT.
(Zun et al. (2019))

Hemodynamics module: Lattice Boltzmann.
I: vessel geometry; O: WSS/OSI
Cell-scale module (hours/days)
ABM - physical solver: stent deployment
and structural cell dynamics. I: vessel
geometry; O: equilibrium position, vessel
geometry and structural stress
ABM - biological solver: SMC cell-cycle.
I: WSS/OSI, drug concentration, structural
stress. O: vessel geometry
Molecular-scale module (seconds)
Drug diffusion: FD. I: vessel geometry;
O: drug concentration in the tissue. Included
in (Caiazzo et al. (2011); Tahir et al. (2011))

Boyle et al. (2010) In-stent restenosis Tissue-scale module (seconds) SMC, EC ECM, matrix
degrading factors and growth
factors modeled as agent
internal variables

Solid mechanics module: artery
as 3D cylinder (symmetry: 1/8th

model circumferentially). Lattice-
based model: 2D longitudinal
section

Solid mechanics module: FEM. Stent
expansion. I: vessel geometry; O: vessel
geometry, minimum principal stress
Cell-scale module (hours/days)
ABM. I: vessel geometry, minimum principal
stress. O: updated vessel geometry and wall
composition

Boyle et al. (2011) In-stent restenosis Tissue-scale module (seconds) SMC ECM, matrix degrading
factors, growth factors and
damage modeled as agent
internal variables

2D cross-section of an ideal
cylindrical artery with 6 stent
struts. 1/6th of the model
considered for symmetry

Solid mechanics module: FEM. Stent
expansion. I: vessel geometry; O: vessel
geometry, von Mises stress
Cell-scale module (hours/days)
ABM. I: vessel geometry, damage, matrix
degrading factors, growth factors, ECM;
O: updated vessel geometry and wall
composition
Molecular-scale module (seconds)
Inflammation module: Set of ODEs. I: von
Mises stress. O: damage, matrix degrading
factors, growth factors, ECM

Zahedmanesh et al.
(2014)

In-stent restenosis Tissue-scale module (seconds) SMC, EC ECM, matrix
degrading factors and
damage modeled as agent
internal variables

2D longitudinal section
(axisymmetric model) of artery
and single stent strut

Solid mechanics module: FEM. Stent
expansion. I: vessel geometry; O: vessel
geometry, von Mises stress
Cell-scale module (hours/days)
ABM. I: vessel geometry, damage (sigmoid
function of von Mises stress); O: updated
vessel geometry and wall composition

Nolan and Lally (2018) In-stent restenosis Tissue-scale module (seconds) SMC, EC, ECM, matrix
degrading factors, growth
factors, phenotype and
damage modeled as agent
internal variables

2D quarter cylinder of artery in
the radial-circumferential planeSolid mechanics module: FEM. Stent

expansion. I: vessel geometry; O: vessel
geometry, von Mises stress
Cell-scale module (hours/days)

(Continued on following page)
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TABLE 1 | (Continued) Multiscale agent-based modelling frameworks of vascular adaptation.

Authors (Year) Pathology Multiscale framework Agents Domain

ABM. I: vessel geometry, damage, matrix
degrading factors, growth factors, ECM,
phenotype; O: updated vessel geometry
and wall composition
Molecular-scale module (seconds)
Inflammation module: Set of ODEs. I: von
Mises stress. O: damage, matrix degrading
factors, growth factors, ECM, phenotype

Li et al. (2019) In-stent restenosis Tissue-scale module (seconds) SMC, EC ECM, matrix
degrading factors, growth
factors, cell phenotype and
damage modeled as agent
internal variables

2D longitudinal section
(axisymmetric model) of artery
and single stent strut

Solid mechanics module: FEM. Stent
expansion and structural equilibrium
following geometrical changes. I: vessel
geometry; O: vessel geometry, von Mises
stress
Cell-scale module (hours/days)
ABM. I: vessel geometry, damage, matrix
degrading factors, growth factors, ECM;
O: updated vessel geometry and wall
composition
Molecular-scale module (seconds)
Inflammation module: set of ODEs. I: von
Mises stress. O: damage, matrix degrading
factors, growth factors, ECM, cell
phenotype

Garbey et al. (2015) Vein graft remodeling Tissue-scale module (seconds) SMC, ECM 2D circular vein graft model
Hemodynamics module: FVM and
immersed boundary implementation.
I: vessel geometry; O: WSS.
Solid mechanics module: FEM. I: vessel
geometry; O: loaded vessel geometry,
wall tension
Cell-scale module (hours/days)
ABM. I: WSS, wall tension; O: updated
unloaded vessel geometry and wall
composition

Garbey et al. (2017) Vein graft remodeling Tissue-scale module (seconds) SMC, ECM 2D circular vein graft model
Hemodynamics module: Analytical solution
(Poisson problem). I: vessel geometry;
O: WSS.
Solid mechanics module: Analytical solution
thick wall cylinder. I: vessel geometry;
O: wall tension
Cell-scale module (hours/days)
ABM. I: WSS, wall tension; O: updated
vessel geometry and wall composition

Garbey et al. (2019) Vein graft remodeling Tissue-scale module (seconds) SMC, ECM 2D circular vein graft model
Hemodynamics module: Analytical solution
(Poisson problem). I: vessel geometry;
O: WSS.
Solid mechanics module: Analytical solution
thick wall cylinder. I: vessel geometry;
O: wall tension
Cell-scale module (hours/days)
ABM. SMC/ECM activities. I: WSS, wall
tension; O: updated vessel geometry and
wall composition
IBM. SMC migration and wall remodeling.
I: ABM vessel geometry; O: updated vessel
geometry and composition
Molecular-scale module (seconds)
Diffusion of growth factor. PDE. I: WSS;
O: spatio-temporal evolution of growth
factor

(Continued on following page)
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defined as a function of WSS, circulating cytokine and leukocyte
concentration, while the trans-endothelial migration as a
function of arterial stiffness. Moreover, LDL transport and
accumulation in the arterial wall depended on WSS and
systemic LDL concentration. LDL diffusion in the arterial wall
was modeled through Fick’s law and rules defining LDL oxidation
and phagocytosis by monocyte-derived foam cells were applied.
Finally, Glagov’s remodeling was implemented, according to
which the lumen area was preserved in the initial phases of
atherosclerosis thanks to a compensatory outward remodeling
(Glagov et al., 1987). An example of the simulated plaque
progression is provided in Figure 5. According to Glagov’s
hypothesis, an outward enlargement of the arterial tissue was
produced until month 6 of simulation, without affecting the
lumen area. Then, further plaque growth led to lumen area
decrease. Consistently with experimental and clinical findings,
the framework simulated plaque growth at luminal regions
exposed to low WSS (Stone et al., 2012). Additionally, the
simulated mean lesion area was compared with observations
in pig models of atherosclerosis (Pelosi et al., 2014). While a
good agreement was found at 2 months, an underestimation of
the plaque area was observed at 4 months, compared to animal
data. This was attributed by the authors to the lack of SMC and
fibroblast dynamics (migration, proliferation and ECM synthesis)
in the model, which, if included, would have contributed to the
lumen area reduction. Although the promising computational
results, the assessment of their validity for human cases is
challenging, due to the paucity of human data of early
atherosclerosis. If translated to human cases, the simulated
growth rate, may result accelerated. This was attributed by the
authors to the use of in-vitro data for the conceptualization of
leukocyte adhesion and migration rules and to the lack of ECM
degradation processes. Considering all the above, it would be of
great interest to include SMC and ECM dynamics to better
appreciate their influence on plaque development.

A multiscale CFD-ABM framework was also proposed by Corti
et al. (2019) andCorti et al. (2020). Steady-state CFD simulations of a
3D idealized superficial femoral artery model were coupled with a
2D ABM of cellular dynamics implemented for 10 evenly spaced
vessel cross-sections. The ABM simulations were paused at a fixed
time to update the hemodynamics in the ABM-generated vessel
geometry. Ten ABM simulations were run for each plane to account
for stochasticity. At the defined coupling time, plaque location,
plaque size and lumen contour were retrieved as ABM outputs,
and their average (among the 10 simulations) taken as reference.
This procedure was repeated for each plane and the ABM
configuration (among 10) with the minimum deviation from the
average condition (computed for the specific plane in terms of the
above-mentioned geometrical features) was used to reconstruct the
resulting 3D vessel geometry. The influence of the ABM to CFD
coupling time was investigated by testing three coupling schemes for
14 simulated days: a fixed coupling time of 1) 7 days and 2) 3.5 days,
and 3) a variable frequency consisting in a first coupling after 7 days
and then every 3.5 days. Within the simulated period, the temporal
lumen area trend was not affected by the adopted coupling scheme,
although for some planes the shortest coupling time allowed
capturing a more frequent activation and deactivation of
pathologic processes. Their ABM simulated SMC, ECM and LDL
dynamics to replicate arterial wall remodeling and plaque formation
and progression over time as a function of WSS, computed by the
steady-state CFD simulation. Specifically, in case of at least oneWSS
value lower than 1 Pa (value chosen according to femoral artery data
(Schlager et al., 2011)) in the considered ABM plane, an atherogenic
condition was activated in the intimal layer, promoting LDL
infiltration and increasing SMC proliferation/ECM production
probabilities. The atherogenic threshold influence on the model
output should be assessed through a robust sensitivity and
uncertainty quantification analysis. Figure 6 shows relevant
results of the framework along 2months, obtained without any
intermediate CFD-ABM coupling. In agreement with experimental

TABLE 1 | (Continued) Multiscale agent-based modelling frameworks of vascular adaptation.

Authors (Year) Pathology Multiscale framework Agents Domain

Zahedmanesh and Lally
(2012)

Remodeling of a vascular
tissue-engineered scaffold

Tissue-scale module (seconds) SMC, ECM 2D longitudinal section
(axisymmetric model) of vascular
scaffold

Solid mechanics module: FEM. I: vessel
geometry and wall composition; O: vessel
geometry, cyclic strain, pore fluid velocity
Cell-scale module (hours/days)
ABM. I: vessel geometry, cyclic strain, pore
fluid velocity. O: updated vessel geometry
and wall composition

Keshavarzian et al.
(2018)

Arterial growth and
remodeling under different
conditions: growth factors,
chemicals, blood pressure

Tissue-scale module (seconds) EC, SMC, fibroblasts, ECM 3D model of coronary artery
Solid mechanics module: FEM. I: vessel
geometry and wall composition (use of a
content-based strain energy density
function); O: maximum principal stress and
strain under different loading condition
Cell-scale module (hours/days)
ABM. I: vessel geometry, stress, strain.
O: updated vessel geometry and wall
composition

ABM: agent-based model; FEM: finite element method; FVM: finite volume method; FD: finite difference; ODE: ordinary differential equation; PDE: partial differential equation; IBM:
immersed boundary method; I: input; O: output; WSS: wall shear stress; OSI: oscillatory shear index; SMC: smooth muscle cell; EC: endothelial cell; ECM: extracellular matrix; LDL: low
density lipoprotein; IEL: internal elastic lamina; EEL: external elastic lamina; 2D: bidimensional; 3D three-dimensional.
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and clinical evidence (Samady et al., 2011; Stone et al., 2012), the
model simulated greater plaque formation and lumen area reduction
at luminal regions exposed to low WSS. Moreover, the model
successfully resembled pathological characteristics, as the
development of an asymmetric plaque, characterized by the
presence of a well-defined lipid core and increased intimal ECM
and SMC content, coherently with experimental observations (Stary
et al., 1995).

Three major differences arise with respect to the model of Bhui
and Hayenga (2017). First, Glagov’s remodeling was not
implemented, and, consequently, an increase in the plaque

area was directly associated with lumen area reduction.
Second, inflammatory cell types and cytokines as well as foam
cell accumulation were not included, but a key role was attributed
to SMC and ECM dynamics, neglected in Bhui and Hayenga
(2017). Last, while in the work by Bhui and Hayenga (2017),
plaque formation was related to WSS and LDL/leukocyte blood
concentration, here only the WSS input was considered,
maintaining other risk factors as intrinsic. The models by Bhui
and Hayenga (2017), Corti et al. (2019) and Corti et al. (2020) did
not include several underlying pathological mechanisms, such as
the formation of fatty streaks, and the evolution to advanced

FIGURE 5 | Results of the multiscale computational fluid dynamics–agent-based model (CFD-ABM) framework of atherosclerosis by Bhui and Hayenga (2017).
The temporal evolution of the ABM geometry from the initial configuration (A) to the configuration at 6 months (B) and at 7 months (C) is shown, for the longitudinal (left)
and transverse (right) views, with the endothelial cells in green, the arterial cells in red and leukocytes in yellow. The initial condition (A) is characterized by the presence of
15 leukocytes in the arterial wall. Until 6 months (B), thanks to the compensatory Glagov’s remodeling, the plaque growth determined an outward remodeling, while
preserving the lumen area. At this point, the plaque area is 40%. At 7 months (C), the plaque growth provokes a reduction of the lumen area. Reprinted with permission
from Bhui and Hayenga (2017) (http://creativecommons.org/licenses/by/4.0/).
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atherosclerotic lesions with fibrous cap, necrotic core and
potential calcifications. Nonetheless, both the models nicely
outlined plaque formation at theoretical level and offered a
solid coupling infrastructure to combine hemodynamics and
cellular mechanics within the atherosclerosis development. The
proposed infrastructures promise to be agile enough to serve as
useful tool for clinical hypothesis testing and therapy outcome
prediction, provided that an effort towards the application to
realistic vessel geometries will be considered, together with a
quantitative calibration and validation of the model on
human data.

Multiscale Models of In-Stent Restenosis
ISR after endovascular intervention remains a major drawback
compromising the long-term outcome of the procedure (Mitra
and Agrawal, 2006; Chaabane et al., 2013). ISR consists in the re-
narrowing of the lumen mainly associated to an inflammatory-
driven overexpressed SMC activity, as consequence of multiple,
interrelated systemic, biologic and biomechanical factors (Mitra
and Agrawal, 2006; Chaabane et al., 2013). Most biomechanical
factors are attributable to the wall damage induced by PTA and
stent deployment, and to hemodynamic alterations caused by the
stent presence (Mitra and Agrawal, 2006; Koskinas et al., 2012;
Chaabane et al., 2013). Both of them may promote a maladaptive
healing process, involving the activation of an inflammatory

response and sustained SMC synthetic and proliferative
activity, potentially resulting in neointimal hyperplasia and
ISR (Chaabane et al., 2013). The current knowledge of the
mechanobiological processes governing ISR is still incomplete
(Mitra and Agrawal, 2006; Terzian et al., 2017). Lately, many
computational multiscale agent-based modeling frameworks
focused on the investigation of arterial response to PTA and
stent deployment to gain insights in the impact of the procedure
and the stent design on the intervention outcome (Table 1,
Supplementary Tables S1, S2).

Hoekstra’s research group proposed a modular multiscale
framework to dissect the hemodynamic and mechanical effects
of stenting on the pathological process of ISR and the eventual
benefit of eluting anti-proliferative drugs to reduce neointimal
regrowth (Caiazzo et al., 2011; Tahir et al., 2011; Tahir et al., 2013;
Tahir et al., 2014; Zun et al., 2017; Zun et al., 2019). Different
geometries with ascending complexity were investigated, namely
2D straight vessels (Caiazzo et al., 2011; Tahir et al., 2011; Tahir
et al., 2013; Tahir et al., 2014), a 3D straight cylinder (Zun et al.,
2017) and a 3D curved vessel (Zun et al., 2019). Their framework
was based on the integration of four modules: 1) a Lattice-
Boltzmann-based module for the computation of the
hemodynamics, 2) a finite difference scheme to solve the set of
PDEs for drug transport (activated only in (Caiazzo et al., 2011;
Tahir et al., 2011), when the effect of drug on SMC activity was

FIGURE 6 | Results of the computational fluid dynamics–agent-based model (CFD-ABM) framework of atherosclerosis by Corti et al. (2020). At the top, the
idealized 3D geometry of a superficial femoral artery is represented, with the wall shear stress (WSS) luminal distribution computed from steady-state CFD simulation. At
the bottom, the ABM temporal evolution of three representative cross-sections is presented at day 0, 30 and 60. Greater plaque formation and lumen area reduction is
obtained at luminal regions exposed to lowWSS, such as downstream from the curvature (planes B and C). The planes involved in the atherogenic process (planes
B and C) present an asymmetric plaque characterized by the presence of a well-defined lipid core (in yellow) and an increased intimal extracellular matrix (ECM) and
smooth muscle cell (SMC) content (blue and light-blue, respectively).
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considered), 3) an ABM of tissue mechanics to compute the state
of stress and strain within the arterial wall, and 4) an ABM of
cellular dynamics, which replicates SMC biological activities
(Caiazzo et al., 2011; Tahir et al., 2011; Tahir et al., 2013;
Tahir et al., 2014; Zun et al., 2017; Zun et al., 2019). The stent
deployment represents a perturbation from the model
equilibrium that propagates to the other sub-modules.
Specifically, the mechanical ABM simulates the stent
deployment procedure, computes the resulting state of stress
and determines the post-intervention configuration by
removing the overstressed agents. From this initial
perturbation, the ABM of cellular dynamics then regulates the
mitotic activity of SMCs according to the contact inhibition
criterion and in response to the mechanical, hemodynamic
and drug conditions, which are updated accordingly within
the fully-coupled framework. Specifically, following stent
deployment and agent removal, the potential exposure of
SMCs to blood flow activates the SMC mitotic phase and
makes SMC activity susceptible to WSS. In the first studies
(Caiazzo et al., 2011; Tahir et al., 2011), the WSS trigger was
based on a simple threshold condition. In later investigations
(Tahir et al., 2013; Tahir et al., 2014; Zun et al., 2017; Zun et al.,
2019), the authors introduced a probability of healthy
endothelium over time and a link between nitric oxide release
andWSS, allowing capturing enhanced restenosis at higher stent-
induced injury levels (not replicated in Tahir et al. (2011)).
Further improvement saw the inclusion of the ECM, along
with rules governing its production by synthetic SMCs, and a
validation against experimental data of porcine coronary arteries
(Zun et al., 2019). In this work, the framework was applied to
stented porcine coronary arteries (idealized curved vessel with
stent geometry reconstructed frommicro computed tomography)
and themodel predictions were compared with short-term (i.e., at
14 and 28 days) histological evaluations of the same stented
vessels. A good agreement between histology and simulations
in terms of overall extent of neointimal thickness was obtained
(Figure 7). However, some discrepancies in the local growth
distribution were observed between the simulated and
histological cross-sections. This was attributed by the authors
to the lack of correspondence between the model geometry (based
on the average characteristics of three similar porcine models)
and the real ex-vivo vessels analyzed in the study.

Although including also the mechanical factor, the stent-
derived hemodynamic-induced alteration was the main focus
of the above stream of works. On a different perspective, a deep
investigation of the damage induced during PTA and stenting
with a multiscale agent-based modeling framework was proposed
by Irish researchers (Boyle et al., 2010; Boyle et al., 2011;
Zahedmanesh et al., 2014; Nolan and Lally, 2018). Their
computational framework includes three modules, namely 1) a
FEM module of stent deployment, 2) an ODEs module to
compute the inflammatory cues and 3) an ABM module of
cellular dynamics. In their original model (Boyle et al., 2010),
the inflammation was triggered beyond a certain stress threshold
(on the minimum principal stress) and led to the ABM
initialization with growth and matrix degrading factors,
assumed to constantly decrease as the cellular growth

progressed. In further developments (Boyle et al., 2011;
Zahedmanesh et al., 2014), two formulations of the arterial
wall damage as function of the von Mises stress were
proposed as either cumulative along the loading cycles (cyclic
damage model) (Boyle et al., 2011) or instantaneous at the injury
time (instantaneous damage model) (Zahedmanesh et al., 2014).
Additionally, a more detailed model of the inflammatory
variables was pursued through a set of ODEs describing the
temporal variation of damage, matrix degrading and growth
factors, and ECM, computed at every ABM iteration for each
lattice site (Boyle et al., 2011; Zahedmanesh et al., 2014).

The ABM of cellular dynamics of the referenced works (Boyle
et al., 2010; Boyle et al., 2011; Zahedmanesh et al., 2014; Nolan and
Lally, 2018) was based on the same general hypotheses, although
some differences in the adopted rules were introduced
(Supplementary Table S2). A schematic representation of the
ABM rules is shown in Figure 8. Commonly, the intervention-
induced damage triggered SMCs to produce matrix degrading
factors, progressively reducing the content of ECM. In case the
ECM decreased below a certain value, SMCs switched to a synthetic
phenotype, whose proliferation depended on the contact inhibition,
growth factors (Boyle et al., 2010, 2011) and endothelial cells (when
included, in Boyle et al. (2010), Zahedmanesh et al. (2014) andNolan
and Lally (2018)). In Boyle et al. (2010), Zahedmanesh et al. (2014)
and Nolan and Lally (2018), a total or partial endothelial denudation
was assumed in proximity to the stent struts as initial configuration
(Figure 9). Then, a constant endothelial cell proliferation along
the luminal surface was modeled, potentially leading to complete re-
endothelialization and growth arrest (Figure 9, day 320). The
endothelium recovery had an inhibitory effect on SMC activity
through the release of nitric oxide. Specifically, a distance-based rule
was introduced, according to which a SMC agent switched back to a
contractile phenotype if an endothelial cell was present within a
radius of 60 μm (Zahedmanesh et al., 2014; Nolan and Lally, 2018),
determining intimal growth interruption after re-endothelialization.
Additionally, when SMCs were in their synthetic phenotype, they
produced ECM at constant rate and, once the ECM level reached the
physiologic value, they switched back to quiescence. Finally, with the
exception of the work by Nolan and Lally (2018), randommigration
of synthetic SMCs was implemented, regulated by the contact
inhibition criterion.

The framework of Zahedmanesh et al. (2014) predicted
enhanced SMC activation and intimal growth as well as
delayed stabilization for stents with larger diameter or thicker
struts, in agreement with the clinical evidence. Moreover, as
investigated by Nolan and Lally (2018), the instantaneous
damage model provided a more realistic replication of the ISR
process than the cyclic damage model. Finally, consistently with
in-vivo observations, in the instantaneous damage model a
greater endothelial denudation was associated with enhanced
lumen area reduction. Conversely, this key role of the
endothelial injury on ISR was not captured with the cyclic
damage model.

While the framework proposed by the Irish researchers (Boyle
et al., 2010; Boyle et al., 2011; Zahedmanesh et al., 2014; Nolan
and Lally, 2018) was based on a unidirectional coupling between
the solid mechanics module and the ABM, Li et al. (2019)
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FIGURE 7 | Results of the multiscale agent-based modeling framework of in-stent restenosis of Zun et al. (2019). At the top, the stent geometry is shown, with
indications on the position of the four analyzed cross-sections. At the bottom, the results at 28 days are shown for the four cross-sections. For each cross-section: 1) on
the left, a quantitative comparison of the predicted (in-silico) and in-vivo neointimal thickness is provided for the 6 struts locations (A–F), 2) in the middle, the in-vivo cross-
section is shown and 3) on the right, the in-silico cross-section is represented, with the smooth muscle cells (SMCs) in dark blue, the internal elastic lamina (IEL) in
light blue, the external elastic lamina (EEL) in beige, the extracellular matrix (ECM) in red and the stent struts in light grey. Both in the in-vivo and in-silicosilico cross-
sections the blue area represents the neointima estimation. Reprinted with permission from Zun et al. (2019) (http://creativecommons.org/licenses/by/4.0/).
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developed a bidirectional FEM-ABM framework in which the
information of the cell-scale module was delivered to the tissue-
scale module and vice-versa. The framework was implemented
considering the continuous damage model proposed by Boyle
et al. (2011), since it allowed accounting for time-varying stress.
Differently from Nolan and Lally (2018), in this work, through a
different model setting, reasonable results were obtained also with
the continuous damage model. As regards the ABM, both SMCs
and endothelial cells were included, and proliferation was the
only simulated agent activity. SMC proliferation was governed by
the cyclic damage model developed in Boyle et al. (2011), thus
depending on the level of ECM, matrix degrading factors and
damage. Moreover, similarly to Zahedmanesh et al. (2014) and
Nolan and Lally (2018), the presence of an endothelial cell within
a radius of 60 µm led to a synthetic to contractile SMC phenotypic
switching. Amonolayer of endothelial cells was introduced on the
lumen surface and, as consequence of the stent-induced damage,
endothelial cells in proximity to the stent struts were removed.
Finally, endothelial cells proliferated only if they had one
neighboring endothelial cell. The authors performed
simulations employing both unidirectional and bidirectional
coupling, with and without endothelial cells. From the results
of their study, it emerged that 1) the bidirectional coupling

produced a slower lumen area reduction and less dispersion
among the ABM repetitions than the unidirectional one and
2) the inclusion of endothelial cells led to the suppression of SMC
proliferation once the complete re-endothelialization was
achieved, thus resulting in a lower lumen area reduction
compared to the cases without endothelial cells. The
framework was only applied to a longitudinal section of an
idealized vessel geometry. Further investigation on a more
realistic 3D vessel geometry is required.

Multiscale Models of Bypass Graft
Remodeling
Alternatively to endovascular procedures, bypass surgery may be
preferred depending on lesion characteristics (e.g., lesion site,
length, severity, calcifications) and patient-specific conditions
(e.g., age, comorbidities) (Neumann et al., 2019). Bypass surgery
is a revascularization procedure consisting in the anastomose of a
vessel segment (either a healthy artery or vein, or an artificial graft)
above and below the blocked or narrowed artery to create a parallel
route for blood flow. Neointimal hyperplasia represents a critical
drawback of vein graft bypass surgery affecting the long-term
success of the procedure (Collins et al., 2012), for which switching

FIGURE 8 | Schematic representation of agent-based model (ABM) rules in Boyle et al. (2010), with contractile smooth muscle cells (SMCs) (green circles),
synthetic SMCs (blue circles) and endothelial cells (red circles). (A)When the endothelium and extracellular matrix (ECM) are intact, SMCs are contractile; (B) The injury
provoked by the stent placement induces endothelial denudation, ECM reduction and SMCs removal; (C) In the vicinity of degraded ECM, SMCs switch to the synthetic
phenotype; (D) Synthetic SMCs randomly migrate (arrows represent possible directions); (E) Synthetic SMCs proliferate (blue circles with dashed lines represent
daughter cells); (F) SMCs produce ECM; (G) Lesion formation; (H) Reendothelialization stops lesion growth. Reprinted with permission from Boyle et al. (2010) (http://
creativecommons.org/licenses/by/4.0/).
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from a venous to an arterial environment and the surgery
associated quando mettiamo stent-induced, hemodynamic-
induced. . . forse dovremmo mettere surgery-associated trauma
play a key role (Rehfuss et al., 2018). Neointimal hyperplasia
driving mechanisms in vein grafts are like those occurring in
arteries undergoing endovascular intervention. Among them are
the phenotypic contractile to synthetic switching of SMCs and the
subsequent excessive proliferation and ECM deposition in
response to the inflammatory activation (Collins et al., 2012).

A major contribution in multiscale agent-based modeling in
this field was provided by Garbey’s research group (Hwang et al.,
2013; Garbey et al., 2015; Garbey et al., 2017; Garbey et al., 2019)
(Table 1, Supplementary Tables S1, S2). An early investigation
of vein graft adaptation using ABM methodology was proposed
in Hwang et al. (2013), in which the authors implemented a 1D
(radial direction) and 2D (longitudinal section) ABM with rules
for SMC, ECM and monocyte dynamics based and validated on
experimental measurements (e.g., intimal thickness and fraction
of SMCs undergoing division and apoptosis) from rabbit vein
grafts under different flow conditions (Hwang et al., 2012).
Through the available experimental data, agent probabilities
were related to the WSS, analytically computed from the in-
vivo measured flow rate. The model finely replicated the
experimental intimal area growth over time at different WSS

conditions. In this model, the multiscale component was not
properly represented, because only events at the cell scale were
simulated while the WSS (tissue-scale quantity) was analytically
computed. In a further evolution (Garbey et al., 2015), the
authors proposed a multiscale model that integrates
hemodynamics and solid mechanics modules at the tissue
scale and an ABM module at the cell scale. The framework
was applied to a cross-section of an idealized vein graft model.
The ABM module replicated SMC and ECM dynamics as
function of the WSS and wall tension condition. The 2D
ABM configuration was then given in input to the 2D FEM
solid mechanics module, which computed the new structural
equilibrium and provided the deformed geometry to the
hemodynamics module and the wall tension to the ABM.
Finally, through a finite volume scheme, the hemodynamics
module computed the WSS in the current geometry and
provided said information to the ABM. In a later work
(Garbey et al., 2017), the analytical solutions of the WSS and
wall tension were considered for a simplified vessel geometry,
thus replacing the finite volume hemodynamics and FEM solid
mechanics modules, respectively. The diffusion of a generic
growth factor was solved through a finite difference scheme
within the 2D ABM domain, to account for the transfer of the
biomechanical inputs in the tissue. A further development was
introduced in Garbey et al. (2019), which included an additional
module for the replication of tissue remodeling, using an
immersed boundary, continuum-based approach (Peskin,
2002). SMCs were described as particles moving in a highly
viscous flow, allowing for cell-cell interactions.

The common key agents for the above-described ABMs are
SMCs and ECM, whose proliferation and synthesis are regulated
by WSS and wall tension (Supplementary Table S2).
Specifically, low WSS promoted SMC proliferation and ECM
production in the intima (inward remodeling), while high wall
tension promoted SMC proliferation and ECM production in
the media (outward remodeling). The results obtained in
terms of intimal and medial area over time, as well as SMC
and ECM content temporal evolution, were consistent with
experimental observations (Hwang et al., 2012; Hwang et al.,
2013; Garbey et al., 2015; Garbey et al., 2017; Garbey et al., 2019)
(Figures 10A,B). The ABM proposed in Garbey et al. (2017) was
limited in the capability to generate lumen morphologies
close to the pathophysiological reality. A smooth and regular
lumen contour was retrieved only under a circular symmetry
assumption (Figure 10C), while if the symmetry assumption
was removed, the lumen border assumed an irregular and
excessively discontinuous profile, not observed in histological
images (Conte et al., 2006). This limitation was overcome
introducing the immersed boundary approach (Garbey et al.,
2019).

Finally, an interesting aspect highlighted by Garbey’s research
group was related to the cross-validation of the agent-based
modeling framework with a previously developed dynamical
system, which described the same cellular events thorough a
set of ODEs (Garbey and Berceli, 2013). This procedure allowed
the researchers to choose one approach or the other depending on
the specific purposes of the study. The ODE approach guarantees

FIGURE 9 | Results of the multiscale finite-element method–agent-
based model (FEM-ABM) framework of in-stent restenosis by Boyle et al.
(2010). At the top, the stent expansion configuration obtained from FEM
analysis is shown and constitutes the initial condition of the ABM. At the
bottom, the ABM evolution along 320 days is provided for a longitudinal
section (dashed box). Contractile smooth muscle cells (SMCs) are
represented in green, synthetic SMCs in blue and endothelial cells in red. At
day 7, the ABM is characterized by a complete endothelial denudation and
synthetic SMCs in the injured region (in correspondence of the stent struts).
Lesion progression is shown at day 90 and 160. The endothelium starts
recovering, leading to a complete reendothelialization at day 320. The lesion
growth stops when complete reendothelialization occurs (arrow, day 160) or
when the SMCs switch back to a contractile phenotype (arrow, day 320).
Reprinted with permission from Boyle et al. (2010) (http://creativecommons.
org/licenses/by/4.0/).
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immediate computation but lacks a topological detail, while the
ABM approach provides detailed morphological and
compositional outputs but comes with higher computational
burden.

Multiscale Models of Other Vascular
Applications
Despite the great interest in atherosclerosis and post-intervention
vessel remodeling, multiscale ABMs were also proposed in other
vascular arenas (Table 1, Supplementary Tables S1, S2).

A coupled FEM-ABM framework was developed by
Keshavarzian et al. (2018) to simulate arterial remodeling
following transient increases in blood pressure and changes
in production of soluble factors (e.g., growth factors,
proteases) in a 3D idealized model of porcine left anterior
descending coronary artery. The model performance was
assessed by evaluating both the homeostatic stability and
the capability to recover transient pressure changes. In
addition, the framework was applied to a model of rabbit
common carotid artery to simulate the response of the vessel to
the placement of a cuff. The framework was based on the

bidirectional coupling between 1) a 3D FEM module,
computing the stress and strain values at the tissue scale,
based on the vessel morphology and composition (through
a content-based strain energy function (Zulliger et al., 2004;
Karšaj and Humphrey, 2012)) and 2) a 3D ABM module,
replicating the cellular activities in response to the mechanical
stimuli. The 3D ABM was based on a three-layered structure
(i.e., intima, media and adventitia layers) and was composed of
two main classes of agents, namely patch and cell agents. Each
patch agent contained cells, filling ECM and soluble factors
(e.g., chemokines and growth factors) and, depending on the
cell-type content, it was associated to an intimal, medial,
adventitial or boundary type. Endothelial cells, SMCs and
fibroblasts were modeled. Agent rules were defined to
replicate cell mitosis and apoptosis, production of soluble
factors, and production and degradation of ECM (collagen,
elastin and gelatin). Moreover, the diffusion equations in the
ABM were solved through a forward in time, centered in space,
discretization algorithm. The proposed framework and its
application captured the chemical-cellular-tissue interplay
governing vascular remodeling. First, the ability to replicate
vascular homeostasis and recover from a transient 30%

FIGURE 10 | Outputs of two multiscale agent-based modeling framework of vein graft adaptation by Garbey’s research group. (A) Results obtained by Garbey
et al. (2019), when an immersed boundary method (IBM) module was added to simulate the vessel wall remodeling. (B) Histological images of rabbit vein graft (Conte
et al., 2006). (C) Results obtained by Garbey et al. (2017). The results of panel (A) well resemble the histological images (B). The model captures different possible
patterns of neointimal hyperplasia, namely a vertical and horizontal configuration (panels (A,B)). Panel (C) shows a limitation of the model by Garbey et al. (2017). In
particular, when the symmetry condition is removed, a non-realistic configuration of the lumen contour is obtained (e.g., detached elements, holes). Figures 9A,B
Reprinted with permission from Garbey et al. (2019) (http://creativecommons.org/licenses/by/4.0/). Figure 9C reprinted with permission from Garbey et al. (2017)
(http://creativecommons.org/licenses/by/4.0/).
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increase in blood pressure was verified. Then, through a
sensitivity analysis, the pivotal role of collagen in stress-
induced arterial remodeling emerged. Indeed, changes in
the collagen mass led to modifications in the mechanical
stress, in turn affecting cell and ECM dynamics. Finally, the
placement of the cuff in the carotid artery model produced a
decrease in the mechanical stress, leading to a decrease of SMC
and collagen content, as observed in animal experiments
(Bayer et al., 1999).

Zahedmanesh and Lally (2012) developed a multiscale FEM-
ABM framework to investigate the remodeling mechanisms of
vascular tissue-engineered scaffolds. These constructs may
experience intimal hyperplasia due to an unfavorable
adaptation process that results in excessive SMC synthetic
activity. Mechanical factors (e.g., scaffold compliance) and
loading conditions influence SMC activity by affecting the
cyclic strain and the pore fluid velocity. In this context, the
framework of Zahedmanesh and Lally (2012) investigated the
effects of cyclic strain and pore fluid velocity, quantified
through a FEM module, on SMC and ECM dynamics,
simulated with a lattice-free ABM. Within an iterative
approach, the FEM module transferred the mechanical
inputs to the ABM, which simulated the subsequent tissue
growth and remodeling and provided the new geometry and
composition to the FEM module, that updated the mechanical
condition accordingly. The lattice-free ABM of cellular
behavior was implemented to replicate SMC migration,
proliferation, apoptosis and ECM production in response to
the cyclic strain and pore fluid velocity conditions. While a
random migration was assumed, the rules for cell mitosis,
apoptosis and ECM production were derived from
experimental studies. The framework was applied to a
longitudinal section of an axisymmetric geometry. As
outcome, the hypertension promoted greater SMC
proliferation, by reducing the cyclic strain, consistently with
clinical studies reporting arterial thickening and stiffening
under hypertensive conditions (London et al., 2004).
Moreover, a pulsatile flow allowed for less wall thickening,
less SMC proliferation, but more ECM synthesis, compared to
a static condition, in agreement with in-vitro studies (Jeong
et al., 2005). Additionally, under a physiologic pulsatile
loading condition, a lower scaffold compliance (associated
with lower cyclic strain) produced a greater increase of
SMCs, compared to an arterial compliant scaffold, thus
confirming the clinical observations (Salacinski et al., 2001).
Finally, the removal of the fluid pore velocity effect in the
arterial compliant scaffold under physiologic pulsatile loading
led to a slower SMC growth. In all the explored scenarios, the
simulated temporal trend of cell growth, characterized by a
rapid increase followed by a plateau and a reduction, was
consistent with in-vitro observations (Jeong et al., 2005). The
study highlighted the potentialities of the multiscale
framework in 1) investigating the isolated contributions of
mechanical factors (extremely difficult to be achieved with in-
vitro or in-vivo studies) and 2) indicating favorable scaffold
characteristics (e.g., an arterial-like compliance) and possible
loading conditions to obtain the desired cell growth.

AGENT- VERSUS CONTINUUM-BASED
MULTISCALE FRAMEWORKS:
STRENGTHS AND LIMITATIONS
Works described in Multiscale Agent-Based Modeling
Frameworks of Vascular Pathophysiology demonstrated that
coupling agent- with continuum-based models allows
successfully capturing biological information. The proposed
frameworks used each specific model for the task it is most
suitable for, thus taking advantages from its strengths and
minimizing its limitations. Generally, these frameworks were
based on 1) a continuum model for the molecular advection-
diffusion-reaction processes, 2) a discrete (agent-based) model at
the cellular level and 3) a continuum model for the tissue level
mechanics (solid mechanics or hemodynamics). Moreover, for a
more exhaustive vision related to the modeling of vascular
adaptation, the reader should be directed also to multiscale
frameworks entirely based on continuum models (which are not
the object of this review), implying that also the cell scale is
represented through ODE/PDE systems. Examples can be found
in models of atherosclerosis (e.g., Cilla et al. (2014), Di Tomaso
et al. (2015), Thon et al. (2018) and Pleouras et al. (2020)), ISR (e.g.,
Lally and Prendergast (2006), Escuer et al. (2019) and Maes et al.
(2021)), vein graft remodeling (e.g., Budu-Grajdeanu et al. (2008)
and Casarin et al. (2017)) and other vascular applications (see
Humphrey (2021) for an extensive review on constrained mixture
models of tissue growth and remodeling). The difference of these
works with those reviewed in Multiscale Agent-Based Modeling
Frameworks of Vascular Pathophysiology mainly regarded the
representation of the cell scale (through a ODE/PDE versus
ABM approach), which thus determined the nature of the
multiscale framework to be either hybrid (i.e., based on the
combination of continuum models with an ABM) or fully-
continuum. Accordingly, this section will focus on the strengths
and weaknesses of adopting agent-based versus continuum-based
approaches at the cell scale, within a multiscale framework.

Besides the works by Casarin et al. (2017) and Maes et al.
(2021), in which a set of ODEs was adopted to describe the
temporal dynamics of tissue growth and remodeling, in all the
other cited continuum-based studies PDE systems were
implemented to capture the spatio-temporal evolution of the
species of interest (e.g., growth factors, cells, ECM components,
LDL), and thus the subsequent tissue remodeling, in response to
fluid or mechanical stimuli. For example, in the patient-specific
atherosclerosis model by Pleouras et al. (2020), CFD simulations
were coupled with a PDE system describing mass transport of
monocytes, LDL, and high-density lipoproteins, and
inflammatory species’ dynamics in the arterial wall, ultimately
leading to plaque growth over time (Figure 11). The model
predictions well replicated the in-vivo follow-ups in terms of
plaque growth and lumen area reduction (accuracy of about
80%), thus supporting the potentialities of the proposed
framework. Another example is offered by the ISR model of
Escuer et al. (2019), in which the initial damage stimulus induced
by stenting triggered the biological response. This response was
characterized by endothelial cell denudation and subsequent
repopulation, and the dynamics of growth factors and matrix-
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degrading metalloproteinases, which in turn affected the
production and degradation of ECM, with effects on SMC
contractile to synthetic switching and on the following SMC
activity. Tissue growth was defined as a result of the change over
time of endothelial cells, SMCs and ECM. Also in this case, the
model predictions in terms of percentage of stenosis were in good
agreement with clinical data (Nobuyoshi et al., 1988).

The works by Pleouras et al. (2020) and Escuer et al. (2019)
provide good examples of how continuum-based frameworks
offer an alternative approach to model vascular adaptation
processes, with differences respect to agent-based frameworks
both in modeling perspectives (top-down versus bottom-up
approach) and in the obtained results (in terms of level of
information), as discussed below. About basic modeling
perspective, the systems behavior 1) emerges from the
simulation of individual components’ behaviors and
interactions in ABMs (bottom-up approach), and 2) is
described through aggregate differential equations
governing the population average behavior in PDE systems
(top-down approach). In principle, since the population
dynamics of cells and ECM derive from the behavior of
each entity, the PDEs should represent the collective
behavior emerging from the ABM. However, ABMs provide
a deeper level of detail, beyond the aggregate properties of the

system. Accordingly, as also observed from the comparison of
Figure 11 with Figures 5–10, spatial compositional
heterogeneity and morphological-related features (e.g.,
tissue composition and distribution of cells and ECM or
growth shapes and lumen irregularities) are more naturally
captured in ABMs than in PDE systems (even when
constrained mixture models are considered).

Moreover, in ABMs, cellular activities are often modeled
through “if-then” rules to describe different behaviors the
agents assume according to the specific scenario. This aspect
was not included in the aforementioned frameworks based on
PDEs. Indeed, although PDEs can embed discontinuous
behaviors through properly defined constraints, the individual
nonlinearities are more naturally captured through ABM rules
(Bonabeau, 2002). Generally, the set of cellular behaviors
described by ABMs easily span from a system of few simple
rules, in which only the key activities are simulated, as cell mitosis
and apoptosis, and ECM production and degradation (Garbey
et al., 2019; Corti et al., 2020), to numerous and complex activities
accounting for production of specific molecules and interaction
between cells (e.g., contact inhibition criterion or the silencing
effect of endothelial cells on SMC proliferation (Zahedmanesh
et al., 2014)). Since ABMs describe phenomena from the
perspective of the active component, adding a behavior to the

FIGURE 11 | Results of the continuum-based modeling framework of atherosclerosis by Pleouras et al. (2020). Panels (A,B) depict the artery geometry
reconstructed at the initial condition and follow-up, respectively. The contour maps of wall shear stress (WSS) (C), oxidized low-density lipoproteins (LDLs) (D),
macrophages (E) and plaque formation input (F) at the initial condition are shown. Panels (G,H) refer to the red dashed line in (A)with the initial input of plaque formation
(G) and the computed output cross-section (H). Panels (I,J) refer to the green dashed line in (A)with the initial input of plaque formation (I) and the computed output
cross-section (J). Adapted with permission from Pleouras et al. (2020) (http://creativecommons.org/licenses/by/4.0/).
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agent implies defining a new rule, without changing the basic set
of rules. ABMs can indeed replicate complex systems through a
stepwise process. Conversely, PDE systems become cumbersome
when an elevated number of equations is included, and the
inclusion of new equations is not as easy and intuitive as in ABMs.

Additionally, stochastic ABMs and deterministic continuum
models are usually developed, as also reflected by the studies
previously reviewed. The stochasticity in ABMs is often
introduced by defining probabilistic behavioral rules. This
allows embedding a certain degree of randomness resulting in
the generation of multiple possible evolution outputs of the
system from a given initial condition. Conversely, the
implementation of stochastic differential equations is less
common, although possible (Székely and Burrage, 2014), and,
to the best of the authors’ knowledge, it was never applied to the
modeling of vascular adaptation. In all the continuum-based
modeling frameworks, deterministic differential equations were
implemented, and a unique solution of the system was produced,
in agreement with the average of the observations of the specific
phenomenon. Differently, the stochastic agent-based modeling
frameworks reviewed in Multiscale Agent-Based Modeling
Frameworks of Vascular Pathophysiology generated multiple
solutions, thus reflecting a realistic scenario in which a
population of observations is usually obtained in biology-
related contexts (i.e., in-vitro or in-vivo animal and human
studies). An example of multiple outputs obtained from an
agent-based modeling framework of atherosclerosis is depicted
in Figure 12. The figure shows 9 ABM outputs of compositional
and morphological evolution of an idealized femoral artery cross-
section, being exposed to an atherogenic CFD-derived WSS
profile. All the configurations present similar stenosis degree
as well as plaque size and location. However, they express an
intrinsic variability due to the model stochasticity, consistent with
biological systems.

ABMs to simulate cellular behavior present some weaknesses.
The major limitation is related to the computational costs
associated with a discrete stochastic model (see also
Computational Speed-Up). The simulation of each agent
dynamics is computationally more expensive compared to that
of the aggregate population through PDE systems. ABM
simulations require hours up to days, while ODE/PDE-based
simulations typically run in the order of seconds. For instance, in
the work of Garbey et al. (2017), the re-vascularization dynamics
of a vein graft was simulated for a follow-up period of 6 months
with both an ABM and a dynamical system (ODE-based). The
computational burden was of 24 h (ABM) versus few seconds
(ODE). Additionally, ABM stochasticity imposes multiple runs to
reproduce the full population distribution and thus to obtain a
result comparable with the available data. Conversely,
deterministic models provide a unique solution, which
generally replicates a statistically meaningful representation of
the system trend (Székely and Burrage, 2014). Consequently, the
computational power required by discrete and stochastic models
might limit the spatial dimension of the model and the temporal
window of the simulated processes.

In summary, the integration of agent- and continuum-based
approaches in a multiscale agent-based modeling framework

constituted a successful choice to model vascular adaptation,
allowing 1) exploring the mechanobiological processes at a
deeper level of details, highlighting the importance of spatial
heterogeneity and local morphological peculiarities, 2) capturing
emergent properties of the system and 3) including randomness.
Moreover, such a hybrid scheme exalted the potentialities of
continuummodels at the molecular and tissue scales and of ABM
at the cell scale. Indeed, 1) PDEs are ideal for modeling the spatio-
temporal evolution of concentration profiles of molecules that are
transported through diffusion and/or convection in the tissue and
are subjected to well-defined reactions, 2) ABMs efficiently
describe “active” entities, as cells that proliferate, die or
produce and degrade ECM and 3) continuum models are
typically adopted at the tissue scale to model solid mechanics
and hemodynamics, generally through FEM or finite volume
method.

CHALLENGES AND FUTURE DIRECTIONS

Verification, Uncertainty Quantification,
Calibration and Validation
The advent of computational modeling in vascular pathologies
(and other) have fostered a deep discussion on how much we can
rely on the simulation outcome (Viceconti et al., 2021). Recently,
the American Society of Mechanical Engineers (ASME)
published a technical standard for the assessment of the
computational model credibility in the context of medical
devices, specifying the requirements in terms of context of use
of the model (i.e., the specific role and scope of the model), risk
assessment, verification, validation and uncertainty
quantification (ASME, 2018). Consequently, the model
credibility is obtained for the declared context of use. Similar
concepts were also reported in the European Medicines Agency
(EMA) guideline for the qualification of pharmacokinetic models
and simulations (EMA, 2018). These guidelines only refer to
medical devices and pharmacokinetics, thus future efforts are
needed to define suitable protocols and methods for wider
biomedical applications. The criticality of computational
model verification, uncertainty quantification, calibration and
validation in the biomedical field is also demonstrated by
recent publications (Marino et al., 2008; Luraghi et al., 2018;
Nikishova et al., 2018, 2019; Fleeter et al., 2020; Ye et al., 2021a;
Curreli et al., 2021; Groen et al., 2021; Luraghi et al., 2021;
Rapadamnaba et al., 2021).

Model verification consists in the demonstration that the
computational model behaves as expected from the
mathematical formulation, implying that there are not
implementation errors, the equations are correctly solved and
the introduced numerical errors do not significantly affect the
solution (ASME, 2018). Validation confirms that the
computational results well replicate the experimental
observations, and the model can reliably simulate the real
phenomenon (ASME, 2018). Finally, uncertainty quantification
analysis deals with 1) the measurement of the model uncertainty
in the output, related to the uncertainties in the input parameters
(epistemic uncertainty) or to the model stochasticity (aleatory
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uncertainty), and 2) the investigation of how the parameter
variations affect the model output, known as sensitivity analysis
(ASME, 2018; Ye et al., 2021b). The uncertainty and sensitivity
analyses can be performed either at early stages of model
development or at the end of the validation process. In the first
case (i.e., early development), uncertainty and sensitivity analyses are
useful instruments to gain insights into the functioning of the model
(e.g., how the model responds to variations in the inputs) and to
identify which are the most influencing model parameters, whose
accurate definition would allow improving the model prediction
(parameters associated with high uncertainty in the model output,
and whose variation determines a large oscillation of the model
response), as done for instance in Corti et al. (2020). In this context,
uncertainty and sensitivity analyses can be also preliminary tomodel
calibration, the process through which the model parameters are
tuned to fit experimental data. This is particularly useful if many
model parameters must be calibrated, so that first attentionmight be
paid to the most influencing parameters identified through
uncertainty and sensitivity analyses. In the second case (i.e., after
the validation process), an additional measure of the reliability of the
computational model would be provided. Indeed, the model might
agree with experimental data, meaning that it is validated, but, at the
same time it might have low credibility, due the large uncertainty
associated with the output (Viceconti et al., 2021).

All these processes are challenging, yet fundamental phases
of the modeling activity. When dealing with multiscale
frameworks integrating individual sub-models, it is good
practice to verify, analyze and validate each module first,
and then proceed with the whole multiscale framework
(Walpole et al., 2013). This increases the computational

efforts to achieve the model credibility compared to those
required in case of an individual, single-scale model.
Moreover, multiscale agent-based modeling frameworks
present more issues compared to their deterministic and
fully-continuum counterparts.

A strict definition of what the ABM verification implies, and
which are the suitable methods for this purpose, is lacking. While
verification methods for deterministic and continuum models
(based on ODE/PDE systems) are well documented, the literature
lacks rigorous methods for ABMs. A rare example of model
verification workflow for ABMs was proposed by Curreli et al.
(2021), and applied to a stochastic ABM of Mycobacterium
tuberculosis infection. Both deterministic and stochastic model
verifications were performed. In the first case, the random
variables were fixed and 1) the existence and uniqueness of
the solution, 2) the temporal discretization errors, 3) the
smoothness of the solution and 4) the model outputs at
different parameter sets were evaluated. In the second case,
the random variables were “activated”, and the input
parameters were fixed, thus the robustness of the model at
multiple runs was assessed and the minimum number of
simulation repetitions needed to achieve statistical significance
was computed.

Uncertainty and sensitivity analyses require an elevated
number of independent simulations to obtain a good
estimation of the uncertainties and to capture significant
correlations between input parameters and model outputs. In
addition, if the model is stochastic, characteristic of all the
multiscale agent-based modeling framework reviewed in
Multiscale Agent-Based Modeling Frameworks of Vascular

FIGURE 12 | Agent-based model (ABM) outputs at 2-months follow-up obtained from 9 independent simulations of the same ABM cross-section initialized with
equal WSS profile. Figure inspired from the work of Corti et al. (2020).
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Pathophysiology, a certain number of repetitions must be
performed to account for the aleatory uncertainty, typically
as many as to bring the standard deviation to a stable plateau.
Consequently, these tasks may become extremely time-
consuming and almost unfeasible. This roadblock can be
addressed by either employing ABM-suitable computational
languages that speed up the simulations, or by resorting to
surrogate models (or metamodels) that drastically reduce the
model complexity, as discussed in Computational Speed-Up.
Most of the studies reviewed in Multiscale Agent-Based
Modeling Frameworks of Vascular Pathophysiology analyzed
the response of the model to the variation of certain
parameters (e.g., stent deployment depth, stent strut
dimension, endothelial recovery rate) to explore the model
behavior under specific conditions, which can be easily
linked to meaningful considerations from a clinical/biological
viewpoint. For example, tuning the stent-related parameters
highlighted the potentiality of the model in providing a tool for
testing the arterial response to different stent designs. However,
a robust uncertainty quantification or sensitivity analysis is
generally lacking. Some contribution in this context derived
from Hoekstra’s research group (Nikishova et al., 2018;
Nikishova et al., 2019; Ye et al., 2021a), which proposed a
workflow for the uncertainty quantification of a multiscale
agent-based modeling framework of ISR. The authors
stressed the high computational effort needed for these
analyses if Monte Carlo methods are adopted and proposed
developing surrogate models either for a sub-module
(Nikishova et al., 2019) or the entire framework (Ye et al.,
2021a). Both approaches were up to 7-fold faster than the
Monte Carlo method and provided acceptable estimates of
the uncertainties, thus demonstrating their validity and
potentiality in case of computationally intensive analyses.

Uncertainty and sensitivity analyses can also be performed to
identify the most influencing parameters that drive the model
response, whose accurate estimation would result in a great
improvement of the model prediction reliability and associated
uncertainty reduction (Corti et al., 2020). Indeed, ABMs often
depend onmany parameters, and their calibration in a single-step
process may result ineffective, especially if it is based on the
evaluation of few outputs. For example, if the available patient
data is solely the lumen area over time (as generally occurs), the
calibration of many parameters in a single step may not be the
optimal choice. The calibration problem may be reduced to only
those parameters that are strongly associated with the output of
interest (i.e., the lumen area), achieving a good compromise
between computational efforts and model accuracy. These
considerations highlight the limited availability of patient data,
which makes both the model calibration and the subsequent
validation challenging, in particular when dealing with patient-
specific models. Indeed, to validate the model, a set of patient
data, different from the one used for the calibration, is necessary
to demonstrate that the model predictions agree with the
observations and thus that it can be reliably used for the
purpose it was designed (e.g., predicting the vascular
adaptation following intervention or a specific therapy). The
calibration and validation of idealized models is less

challenging than that of patient-specific models because
suitable comparable data can be more easily obtained from in-
vitro or in-vivo experiments. However, 1) experimental data used
for model calibration and validation are often obtained from
retrospective analyses of experiments that were not specifically
designed to support the computational modeling process, and 2)
most of the in-vitro studies refer to normal cells and not
pathological ones. Consequently, also for idealized models, the
availability of the data required to calibrate and validate the
model is not granted. The advantage of the ABMs reviewed herein
is that, since they replicate cellular behavior under specific
conditions, they can be more easily related to in-vitro or in-
vivo experiments. In this context, the work by Casarin et al. (2018)
offered an example of how their ABM of vein graft adaptation
could be used to wisely plan clinical experiments for retrieving the
parameters needed to optimize the model setup.

In summary, the field of multiscale agent-based modeling of
vascular adaptation still presents challenges in the area of
verification, uncertainty quantification, calibration and
validation that need to be fully addressed. Although these
processes are fundamental for the achievement of model
credibility and its potential application in the pre-clinical or
clinical decisional phase, they have been poorly explored for
multiscale agent-based modeling frameworks. Future works in
this area will be of great impact, since they will add value to this
promising approach for the study of vascular adaptation.

Computational Speed-Up
Amajor limitation ofmultiscale agent-basedmodeling frameworks
is the high computational demand required by ABM simulations.
ABMs are generally based on for and while loops that scan the
entire grid and evaluate each agent dynamics in response to
environmental conditions and mutual interactions with other
agents. Programming languages widely used in academia, such
as Matlab (MathWorks), NetLogo (http://ccl.northwestern.edu/
netlogo/, (Wilensky, 1999)), Repast (http://repast.sourceforge.
net/, (North et al., 2013)) etc., offer great visualization tools that
allow for an easier model development and testing but fail on
execution speed. Languages such as C/C++ or Java are way more
suitable to solve complex models laying on nested for and while
loops. However, they are also not always user-friendly for
computational biologists and they are poor in visualization
tools. Matlab has available a mid-way solution in the form of
the coder toolbox that allows “translating” a code developed in
Matlab into C language. The toolbox has an intuitive interface and
provides a remarkable gain in the computational runtime (Casarin
et al., 2018; Dondossola et al., 2019). Nevertheless, many pre-
implemented Matlab functions are not available in C language,
forcing the developer to build his own C-compatible function.

Surrogate models mimic the behavior of the original
computational model, by providing an estimation of the
outputs of interest, while getting rid of the original model
complexity and being computationally cheaper. They behave
as a black-box replicating only the input-output response of
the original model, without any detail of the inner system
dynamics and working mechanisms. Once validated, the
surrogate model can replace the original one thus allowing
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performing a huge number of simulations at a lower
computational cost. This is useful in tasks that require the
collection of an elevated quantity of outputs or model
evaluations, as in sensitivity analysis, uncertainty
quantification, or model calibration. An example of the latter
is offered by the work of Casarin and Dondossola (2020) through
the integration of machine learning-based random forest
algorithm in the pipeline of ABM calibration. Here, a deep
learning algorithm was fed with a certain (usually large)
number of ABM-generated data points to “learn” the intrinsic
model dynamics that depended on the unknown coefficients
(data-driven approach). The output of the surrogate model
was then compared with experimental data of reference and
their difference minimized with a genetic algorithm.

Other research groups focused more on code parallelization
combined with the use of supercomputers with a huge number of
central processing units (CPUs) and/or graphics processing units
(GPUs). In this direction, Randles et al. (2021) used a large-scale
supercomputer to run their ABM (36 million CPU hours on
131,072 cores). Although extraordinary, it is clear how this
approach is only feasible when massive, optimized parallel
computing resources are available.

Modeling of Molecular Pathways
In the emerging field of personalized medicine, the so-called
omics sciences, including genomics, proteomics, transcriptomics
and metabolomics, are recently receiving great interest. The
omics data allow identifying patient-specific pathophysiological
pathways, thus providing insights into the patient’s disease
mechanisms, and potentially leading to the development of
tailored therapies. The integration of multi-omics data in
multiscale models of vascular adaptation is thought to provide
a remarkable contribution in the understanding of cardiovascular
diseases (e.g., through the discovering of disease biomarkers) and,
as consequence, in the disease prevention, diagnosis and
treatment (e.g., pharmacogenomics and pharmacoproteomics)
(Ouzounian et al., 2007). For instance, a gene expression network
can be included to explicitly model the intracellular signaling
pathways and its effect on cellular activities and tissue
remodeling. Consequently, the vascular adaptation process
resulting from the up- or down-regulation of specific genes
may be predicted through a multiscale framework involving
the gene, molecular, cell and tissue scales. This was done by
Casarin et al. (2017), who proposed a fully-continuum multiscale
framework of vein graft adaptation, based on the following two
modules: 1) a system of ODEs replicating gene expression
dynamics and 2) a system of ODEs describing the temporal
dynamics of SMCs and ECM as function of gene expression
and WSS. The framework was calibrated on experimental data
(i.e., histomorphology measurements, gene expression, flow rate
measurements) obtained from a rabbit model of bilateral vein graft.
The proposed framework can be used to explore the impact of
specific perturbations of gene dynamics on the following vein graft
adaptation, thus providing a virtual platform to identify gene
therapeutic targets, whose manipulation would promote a
successful vein graft outcome. This constitutes a step forward
towards the future of personalized medicine.

Although continuum models of gene-protein networks were
successfully combined with ABMs of cellular behavior in the
context of cancer modeling (Mansury and Deisboeck, 2004;
Zhang et al., 2007; Zhang et al., 2009a; Zhang et al., 2009b), to
the best of the authors’ knowledge, similar approaches have not
been proposed in vascular adaptation yet. Such hybrid models
would promise to make a significant impact in vascular disease
drug development and therapy optimization. After all, most of
molecular therapy advancements today either originate from
already existing approaches (being so most of the time only
incremental), or they emerge unexpectedly from studies with a
different objective, or they arise from processes that are decades-
long, incredibly expensive and with no guarantee of success.
Accordingly, considering 1) the relevant findings of the
continuum gene-cellular framework of Casarin et al. (2017) and
2) the successful application of multiscale agent-based modeling
frameworks integrating multi-omics data in the cancer research
field, the authors’ opinion is that the development of multiscale
agent-based modeling frameworks of vascular adaptation
including gene or protein networks would be an extremely
interesting research area to be explored in the near future.

CONCLUSION

In this review, the state-of-the-art of computational
multiscale agent-based modeling frameworks of vascular
adaptation was presented, demonstrating that coupling
continuum- with agent-based models is a successful
approach for simulating the behavior of complex biological
systems, and especially for capturing the mechanobiological
mechanisms underlying vascular response to biological,
chemical and mechanical stimuli. First, a multiscale model
is deemed fundamental, being the nature of the system
inherently multiscale: the tissue/organ response is just the
tip of the iceberg, resulting from the complex network of
interactions across different spatio-temporal scales. Then,
each scale presents peculiar features, making it more
suitable for either a continuum or discrete model.
Specifically, while the extracellular molecular transport and
the solid mechanics or hemodynamics at the tissue scale are
well described by continuum models (ODE/PDE systems),
cellular behaviors are more naturally and effectively
replicated by ABMs, which, through a bottom-up and
systems biology approach, allow capturing the emergent
behavior of the system arising from the action and
interaction of individual entities (e.g., cells).

To the authors’ opinion, the inclusion of cell-scale ABMs in a
multiscale framework of vascular adaptation, compared to fully-
continuum frameworks, adds value to the description of the
biological system by providing greater details on
morphological-related features, tissue heterogeneity and by
capturing the intrinsic randomness. However, this approach is
not without limitations, which are mainly related to the high
computational costs, and challenges, as those regarding the
processes of verification, uncertainty quantification, sensitivity
analysis, calibration and validation, for which robust and efficient
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methods need to be developed. In fact, most of the studies
presented herein provided sophisticated methodologies to
model vascular adaptation processes but lacked in
calibration and validation. The assessment of the credibility
of these models is an essential requirement that should be
addressed before they can be used as a practical tool for the
improvement of current therapeutical approaches in vascular
medicine and the development of new ones. For example, the
computational frameworks discussed herein might be used to
test drugs acting on specific pathological processes, or different
stent designs (e.g., strut thickness, shape) or deployment
procedure (e.g., deployment depth) either on idealized
cases, as a preliminary study to exclude the worst solutions
and drive further experimental research on the most promising
ones, or on patient-specific cases, to optimize the personalized
therapy.

Finally, the present review, by addressing the state-of-the-art
of multiscale agent-based modeling frameworks of vascular
mechanobiological processes, aimed to inspire researchers for
future investigations of novel and unexplored scenarios within
the cardiovascular field. Multi-omics data, defining patients’
molecular signature, were never explicitly included in
multiscale agent-based model frameworks of vascular
pathophysiology. The integration of these data into the models
could markedly increase the understanding of vascular diseases
and improve the diagnosis, prognosis and treatment in the
context of personalized medicine, which is expected to

revolutionize the approach to cardiovascular diseases in the
near future.
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