
Doctoral Dissertation
Doctoral Program in Electrical, Electronics and Communications Engineering

(34th cycle)

An AI and data-driven approach
to unwanted network traffic

inspection

Francesca Soro
* * * * * *

Supervisors
Prof. Marco Mellia, Supervisor

Prof. Antonio Lioy, Co-supervisor
Prof. Idilio Drago, Co-supervisor

Doctoral Examination Committee:
Prof. Matthias Wählisch, Referee, Freie Universität Berlin
Prof. Battista Biggio, Referee, University of Cagliari
Prof. Gareth Tyson, Queen Mary University of London
Prof. Oliver Hohlfeld, Brandenburg University of Technology
Prof. Cataldo Basile, Politecnico di Torino

Politecnico di Torino
January 11th, 2022

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that, the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. .
Francesca Soro

Turin, January 11th, 2022

www.creativecommons.org

Summary

The growing number of connected devices on the Internet makes the end users
more and more vulnerable to cyberattacks. Malicious entities in the network are
constantly fostering the rise of new botnets and crafting new threats that, if suc-
cessful, may directly impact critical infrastructures and people’s everyday life. De-
tecting these attacks in real-time is paramount to properly counteract them, but
it is also complex, due to the volume, variety and velocity of the data travelling
on the Internet. In this scenario, collecting and analyzing unwanted darknet traf-
fic - often referred to as Internet Background Radiation – may be a path to take
to detect new and potentially malicious phenomena. Observing the traffic hitting
these fully passive probes, a network analyst can identify for instance heavy-hitter
sources, service requests to vulnerable target or new coordinated events. Moreover,
coupling the fully passive probes together with active honeypots further enriches
the visibility on malicious events. In contrast to the darknets, honeypots are indeed
able to reply to unwanted requests, providing a broader knowledge on the threat
scenario. A manual inspection of these traffic traces is however impossible. For
this reason, in this thesis I present a framework to automatically extract knowl-
edge from unwanted traffic data captured on darknets and honeypots. Given the
characteristics of the dataset at my disposal, I make extensive use of big-data and
machine learning techniques to reach my goal. I first provide a characterization of
the traffic hitting fully passive probes located in three different parts of the world,
highlighting the type of traffic they receive, the most targeted services and their
differences and similarities. As a second step, I enrich my scenario with an active
honeypot infrastructure, capable of replying to service requests with different lev-
els of complexity. I demonstrate that actively engaging with the senders increases
the volume of traffic, and more complex responses push the attackers to reach fur-
ther attack stages. After a thorough characterization of the most relevant network
events, I proceed to the data analytics phase: I first depict the activity on the
network as a graph, on top of which I test different community detection algo-
rithms to group together similar activity patterns. By means of such techniques
I am able to distinguish between communities devoted to vertical and horizontal
scans, for instance, or recognize some more fine-grained patterns. As a final step,
I benchmark a well-known set of anomaly detection algorithms against a novel AI

iii

technique, providing a set of custom metrics to quantify their detection capabilities,
even when no ground truth is available. My results demonstrate how the adoption
of big-data and machine learning techniques ease the network traffic monitoring
and analysis task, highlighting potentially critical events that would otherwise go
unnoticed.

iv

Contents

List of Tables ix

List of Figures x

1 Introduction 1

2 Related Work 5

3 Knowledge Extraction Pipeline 9
3.1 Data collection and processing . 9
3.2 Ethics . 11

4 Are Darknets All the Same? On Darknet Visibility for Security
Monitoring 13
4.1 Introduction . 13
4.2 Methodology . 14
4.3 Comparison of darknet traffic . 15

4.3.1 Traffic types . 15
4.3.2 Temporal patterns . 16
4.3.3 Origin of Scan traffic . 18
4.3.4 Per-port breakdown . 20

4.4 Effects of darknet size . 21
4.4.1 Observation period . 22
4.4.2 Darknet size . 23

4.5 Conclusion . 24

5 Enlightening the Darknets: Augmenting Darknet Visibility with
Active Probes 27
5.1 Introduction . 27
5.2 Infrastructure . 29

5.2.1 DPIswitch implementation 31
5.3 Methodology and datasets . 32

5.3.1 Deployments and categories 32

vi

5.3.2 Data capture and processing 33
5.4 Macroscopic changes in traffic . 34

5.4.1 Breakdown per flow stage 35
5.4.2 Temporal evolution . 36

5.5 Ports, senders and neighbors . 37
5.5.1 Changes on probed ports . 38
5.5.2 Changes on traffic senders 40
5.5.3 Who does what? . 42

5.6 Gain in service-specific deployments 43
5.6.1 Gain in service requests . 44
5.6.2 Targeted services and Side-Scans 46
5.6.3 DPIPot additional visibility 48

5.7 Conclusion . 50

6 Sensing the Noise: Uncovering Communities in Unsolicited Traffic 53
6.1 Introduction . 53
6.2 Methodology . 54

6.2.1 Graph definition . 54
6.2.2 Detecting communities . 55

6.3 Darknet datasets . 56
6.3.1 Popularity of ASes . 56
6.3.2 Popularity of ports . 57

6.4 Darknet communities . 59
6.4.1 Community popularity . 59
6.4.2 Community structure . 59
6.4.3 Ports per community . 63
6.4.4 Temporal behaviour . 65

6.5 DPIPot validation . 66
6.6 Conclusion . 68

7 Anomaly Detection Techniques on Network Traffic Time Series:
Practical Considerations and Challenges 69
7.1 Introduction . 69
7.2 Problem characteristics and definitions 70
7.3 Tested algorithms . 72

7.3.1 Classical approaches . 72
7.3.2 Representation learning and autoencoders 75

7.4 Datasets and methodology . 78
7.5 Results . 81

7.5.1 UGR’16 - Artificial dataset validation 81
7.5.2 DPIPot RDP - Hard case 83

7.6 Conclusion . 84

vii

8 Conclusion and Outlook 87

A DPI Solutions in Practice: Benchmark and Comparison 89
A.1 Introduction . 89
A.2 Related Work . 90
A.3 Datasets and Methodology . 91

A.3.1 Selection of DPI Tools . 91
A.3.2 Selection and pre-processing of traces 92
A.3.3 Matching flow labels . 94

A.4 Results . 96
A.4.1 Labelled flows per protocol 97
A.4.2 Classification performance 98
A.4.3 How many packets are needed for DPI? 99

A.5 Conclusions . 100

B List of publications 101

Bibliography 103

viii

List of Tables

2.1 Summary of surveyed papers. 6
2.2 Summary of contributions for each chapter. 8
3.1 Dataset summary . 10
4.1 Datasets and percentage packets per protocol. 14
4.2 Summary of the traffic per category. 16
4.3 Top-10 AS per SCAN traffic – Jan 2019. 18
5.1 Service categories with their typical ports and applications. Note

that services at application level are only available for L7-Responders
and DPIPot. 32

5.2 Deployments and service categories with their basic characterization.
All numbers refer to traffic of a /29 network during a full month. For
direct comparison, we report numbers only for the first /29 used as
darknet. Numbers marked in bold represent clear anomalies. 34

5.3 Jaccard Index of senders hitting different deployments. 41
5.4 Traffic gain for L4-Responders and L7-Responders. Cases in which

no gain is observed is marked with a hyphen. 46
5.5 Top-5 protocols recognized in DPIPot. 48
6.1 Basic statistics per community - IT 61
6.2 Basic statistics per community - BR 61
6.3 Top-5 protocols recognized in DPIPot after port filtering. In brackets

the percentage of retained ports and flows. 67
7.1 Benchmarked algorithms . 72
7.2 Lags dataset . 74
7.3 Tested datasets . 79
7.4 Easy case - Detection performance 81
7.5 Medium case - Detection performance 82
7.6 Hard case - Detection performance 83
A.1 Flows exported by the different tools before the pre-processing. . . . 93
A.2 Macrotraces characteristics with pre-processing results. 94
A.3 Label standardization . 95
A.4 Example of flow label constistency and score. 96
A.5 Summary of classification results. 99

ix

List of Figures

2.1 Unwanted traffic measurements taxonomy 5
3.1 Data capture and processing pipeline 9
4.1 Time series (1h bins) for packets and sources. 17
4.2 Top source countries for Scan traffic. 18
4.3 Packets due to top-1 (boxes) and top-10 (whiskers) source IP ad-

dresses for the 7 most contacted TCP and UDP ports. Numbers in
the top x-axis represent the share of the port in the overall number
of packets for the given network. 19

4.4 Average Jaccard similarity (calculated over sets of ASes) between
BR and NL samples (blue) and among NL samples (red) for the top
contacted ports. 21

4.5 Average Jaccard similarity when fixing the darknet size and varying
observation time. 22

4.6 Average Jaccard similarity when fixing observation time and varying
the darknet size. 24

5.1 Infrastructure architecture overview. 30
5.2 Flows reaching different deployments. 35
5.3 Temporal evolution of the number of flows. 37
5.4 Flow distribution per destination port. Ports are ranked according

to the received traffic volume in the darknet. Zoom on top-12 ports. 38
5.5 Number of flows per destination port. 39
5.6 Fraction of flows per sender IP address. 40
5.7 Activity pattern of top-1000 sender IP addresses. Each row corre-

sponds to a sender IP address. 42
5.8 Flows from top-100 sender to destination port. Addresses are sorted

numerically. 43
5.9 Gain for most targeted ports. 44
5.10 Gain for selected deployments. β marks cases of Side-Scans. 45
5.11 Flows percentages on top-10 ports for DPIPot and different L7 pro-

tocols. 47
5.12 Number of flows per port for RDP traffic. Zoom on first 300 ports

in inner axis. 50

x

6.1 Per-AS breakdown in the Italian darknet. Notice the log-log scales. 57
6.2 Per-port breakdown in the Italian darknet. Notice the log-log scales. 58
6.3 Percentage of packets directed to the top-10 destination ports. . . . 58
6.4 Distribution of packets per community. 60
6.5 Structure of communities in the Week 1. 62
6.6 Example output of the community detection algorithm. 63
6.7 Percentage of packets per Port to ASN communities. 64
6.8 Time patterns of the top-5 most active ports in selected communities. 65
6.9 RDP community breakdown. 67
7.1 Examples of anomaly macro-categories. 71
7.2 Basic autoencoder structure. 76
7.3 Input samples for autoencoders. 78
7.4 Artificial datasets (y-axis in log scale) - anomalous samples are high-

lighted in blue. 79
7.5 RDP timeseries composition and final signal. Different colours indi-

cate the activity of different heavy-hitter sources. 80
7.6 Walk forward process. 80
7.7 UGR’16 Easy case - anomalous points flagged by different algorithms. 82
7.8 UGR’16 Medium case - anomalous points flagged by different algo-

rithms. 83
7.9 RDP hard case - predictions and anomalous points flagged by differ-

ent algorithms. 85
A.1 Testing methodology. 92
A.2 Percentage of labelled flows for each tool. The last bar in the plots

reports percentages for our reference label. 95
A.3 Average per flow confidence score for the top reference labels. 98
A.4 Average accuracy when increasing the number of packets per flow.

Tools reach a final classification already in the first packet with payload.100

xi

Chapter 1

Introduction

The widespread adoption of Information and Communication Technologies has
had an ever growing impact on everyday life, profoundly changing the way in which
people all around the world communicate, work and access any kind of service and
content. According to the Cisco Annual Internet Report [37], the number of internet
users around the world is expected to grow up to 5.3 billion by 2023, with an average
of 3.6 networked devices per capita. The categories of connected devices are more
and more variate as well, spanning from classical laptops and mobile phones, to
IoT and industrial control devices.

Together with the number of connected devices, the number of possible threats
and attacks towards them is constantly rising, calling for new techniques to pro-
tect the end users. Real-time detection of cyber-threats is paramount to properly
counteract these events, but it is also a complicated task, requiring an high level of
automation. Indeed, the extremely high volume of traffic reaching the communi-
cation infrastructures everyday, as well as its velocity and variety, makes a manual
traffic inspection impossible.

The inspection of unwanted traffic - also referred to as Internet Background
Radiation (IBR) - hitting passive targets in the network may help to detect the rise
of new threats. In this scenario, darknets, i.e., completely passive targets, are some
of the most commonly investigated sources of information. Darknets are sets of IP
addresses which expose no services and do not answer to any request, and should
therefore observe no activity towards them, nor receive service requests. In practice,
instead, many remote sources reach for them for the most variate purposes, from
malicious scans in search of vulnerable targets, to benign actors testing the IP space
for research purposes.

Characterizing the traffic hitting the darknet may already help in detecting
scanning attempts, both malicious or related to research projects, or heavy-hitter
sources, but gives little to no information on more sophisticated operations. To
further characterize the behavior and intentions of senders, active targets as the
honeypots are needed. Honeypots mimic specific set of services at different levels.

1

Introduction

They are left vulnerable on purpose, in order to lure attackers and capture as much
information as possible about their behavior, including the set of commands they
used, their login attempts or malware source code, as well as zero-day attacks.

In this thesis I describe the deployment of a comprehensive framework for the
analysis of unwanted traffic, bringing together darknets and different types of hon-
eypots. I test the feasibility and usefulness of such framework in a cybersecurity
scenario defining i) which kind of phenomena are detectable and ii) which are the
steps required to identify them. Through the chapters I describe how I captured
traffic and how I extracted knowledge from the analysis of raw packets. Given
the significant volume of traffic hitting such destinations everyday, big-data and
machine learning techniques are necessary. Most of the chapters are taken from
papers published in international conferences and journals. At the beginning of
each chapter, I report the venue in which the content has been presented.

In Chapter 2, I first summarize the state of the art in darknet and honeypot
traffic analysis, collecting the most relevant works addressing this topic.

Chapter 3 illustrates the main characteristics of the datasets I use throughout
the thesis. I describe the full knowledge extraction pipeline, from the raw data
capture to the log aggregation and the data analytics phase. I capture traffic
hitting 3 darknet deployments in different geographic location starting from 2018,
and update the infrastructure with traffic hitting an active honeypot deployment
starting from end 2020. Finally, I discuss the ethical implication of the honeypot
activity and data collection.

The first work presented in this thesis is contained in Chapter 4. This chapter
provides a first characterization of darknet traffic, comparing three deployment of
different sizes and geographical locations. I investigate to what extent the events
on the network do depend on the addresses location, on the observation time and
on the darknet size, and what the most evident changes across deployments are. I
drill down on the traffic categories and composition, I look for common patterns
over time, and identify the most active sources and their most requested targets.
Eventually, I show that the activity of heavy-hitter sources is visible on all the
daknets, no matter their geographical location and address space. In order to
observe more relevant and less common events, anyway, the observation time and
choosing the proper darknet size are two fundamental aspects.

Chapter 5 enriches the traffic characterization including different kinds of active
probes. I compare three categories of active deployments, namely the L4-Responders,
the L7-Responders and DPIPot, against the darknet. The L4-Responders is only
able to establish a three way handshake with the remote source, without offering
any application layer service but recording any received payload; the L7-Responders
includes a set of well-known low-interaction honeypots, offering application layer
services on their standard ports; DPIPot decouples the required service from the
port, recognizing the required application by means of Deep Packet Inspection. I

2

Introduction

show how actively engaging with the remote sources significantly increases the visi-
bility of the darknet. I record a relevant increase in traffic volume (up to hundreds of
times) also on neighbouring dark addresses. I quantify the Side-Scan phenomenon,
in which a host responding on a restricted set of ports, related to a service, sees also
a surge of traffic for other services and ports. Moreover, I observe how the ability of
DPIPot to decouple services from ports sheds light on large-scale activities directed
to non-standard ports.

After having characterized the macroscopic phenomena on the different deploy-
ments, I need to make a step forward towards the data analytics phase. Chapter 6
provides a methodology to automatically uncover communities in unsolicited traf-
fic. A community is defined as a set of sources performing similar activities (e.g.,
requesting similar services or sequences of ports). Identifying common behaviors
in traffic is a particularly relevant task, as it may help isolating botnets or other
periodical scanning activities, which may otherwise remain unrelated. I first repre-
sent the activity of the remote sources toward the destination ports by means of a
graph, on top of which I test several community detection algorithms. I show that
off-the-shelf techniques as the Greedy Modularity Algorithm can successfully iso-
late communities performing vertical (i.e., specifically requesting only a few ports)
or horizontal (i.e., widespread testing all the ports) scans, both in the darknet and
in the honeypot case.

Together with community detection, another paramount task when dealing with
unwanted traffic is the detection of anomalies. A surge in the traffic volume, for
instance, may indicate the rise of a new botnet, of a misconfigured host performing
repeated requests by mistake, or of a particularly aggressive new actor that may be
worth isolating or blacklisting. Chapter 7 provides an overview of some of the most
common anomaly detection algorithms, comparing them against a more recent one,
the autoencoder. I evaluate these techniques, testing them first on two artificial
labelled datasets, and eventually on the traffic collected on DPIPot. I define a
set of metrics to be used in lack of a ground truth, and provide a set of practical
considerations on the ease of implementation and on the visualization of the results.

Finally, Chapter 8 concludes the thesis and summarizes the next steps of my
research.

3

4

Chapter 2

Related Work

Unwanted network traffic is commonly used as a fruitful source of information
for network monitoring. In this Chapter I collect the most relevant papers and
research projects addressing this topic, grouping them into categories according to
the specific problem they target.

Figure 2.1 summarizes the taxonomy. I collect papers and projects dealing with
fully passive probes (i.e., darknets) as well as various categories of active probes
(i.e., honeypots). For both cases, some of the surveyed papers describe the way in
which the system has been deployed, i.e., sparse sensors or contiguous IP blocks
in the darknet case, or vertical, service-specific honeypots vs. horizontal ones.
Other works characterize events on darknets or honeypots, describing for instance
the rise of new threats and botnets, attack patterns and malicious login attempts,
legitimate network scans, backscattering traffic generated by victims of attacks
with spoofed IP addresses, or misconfigurations. Eventually, many papers present
Machine Learning applications aimed at extracting knowledge from darknet traffic
e.g., detecting communities, anomalies, finding recurrent patterns, etc.

Unwanted Traffic

Passive

Deployment
Sparse

IP Blocks

Approach
Characterization

ML Application

Active

Deployment
Vertical

Horizontal

Approach
Characterization

ML Application

Figure 2.1: Unwanted traffic measurements taxonomy

5

Related Work

Table 2.1: Summary of surveyed papers.

Interactivity Focus ObjectivePassive Active Deployment1 Approach2

[31] ✓ IP /8 darknet deployment
[155] ✓ IP /8 darknet deployment
[68] ✓ SP Greynet run by company
[71] ✓ SP Greynet run by university
[58] ✓ IP CH, ML Survey on darknet usage
[139] ✓ IP CH Characterize malware spread
[54] ✓ IP CH Characterize scans
[46] ✓ IP CH Characterize scans
[55] ✓ IP CH Characterize scans
[105] ✓ IP CH Characterize DDoS
[79] ✓ IP CH Characterize DDoS
[57] ✓ IP CH Characterize DDoS
[44] ✓ IP CH Characterize Internet censorship
[47] ✓ IP CH Characterize IPv4 usage
[112] ✓ IP ML Graph mining
[2] ✓ IP ML Markov chains
[117] ✓ IP ML Markov chains
[125] ✓ IP ML Markov chains
[107] ✓ IP ML Visualization techniques
[93] ✓ IP ML Community detection
[92] ✓ IP ML Community detection
[122] ✓ IP CH Unwanted traffic in production
[74] ✓ ✓ IP, H CH Analysis of two-phase scanners
[143] ✓ H Distributed honeypot system
[48] ✓ V CH Honeypot made of Facebook pages
[97] ✓ H Honeypot mimicking mobile device
[152] ✓ H Honeypot on mobile network
[70] ✓ H SDN-based Honeynet deployment
[149] ✓ V CH Low- and medium-interaction honeypot fingerprinting
[108] ✓ V CH Low- and medium-interaction honeypot fingerprinting
[158] ✓ H L-4 honeypot system
[18] ✓ H CH Characterization of events on honeypot system
[109] ✓ V,H Survey on existing honeypot projects
[8] ✓ V CH Events on high-interaction honeypot
[142] ✓ V CH Ethereum honeypot
[141] ✓ H CH Comparison of honeypot activity across locations
[17] ✓ V,H ML Honeypot pattern identification with Markov Chains
[29] ✓ V Honeypot mimicking cloud environment

1Deployment:
SP (Sparse), IP (IP Blocks), H (Horizontal), V (Vertical).
2Approach:
CH (Characterization), ML (Machine Learning).

Table 2.1 summarizes the content of each of the surveyed papers. Different pa-
pers describe the deployment of darknet infrastructure, from the large-scale projects
run by the CAIDA/UCSD [31] and Merit [155] (each relying on a /8 IP range) to
“sparse” darknets (also called greynets) run by companies [68] and academics [71].
The latter are characterized by a limited number of IP addresses that are dis-
tributed across different IP ranges. Several deployment strategies are thus avail-
able, and knowing the trade-offs is important for increasing the visibility of events

6

Related Work

while reducing the allocation of addresses for darknets, particularly relevant given
the shortage of IPv4 addresses.

More in detail, darknets have been used for a number of tasks [58], including
(i) the investigation of malware spread [139] and Internet scans [54, 46, 55]; (ii) the
estimation of DDoS frequency and volumes [105, 57, 79]; (iii) the analysis of Internet
censorship [44]; (iv) the estimation of IPv4 address space utilization [47].

Given the enormous amount of traffic requests daily reaching the darknet sen-
sors, finding a meaningful way of representing events is particularly difficult. Many
previous works focused on detecting coordinated activities with the most diverse
techniques. In [112], authors suggest to represent network traffic as a bipartite
graph linking IP sources to /24 destination networks. Other works suggest to rep-
resent generic network data by means of first order [2, 117] or second order [125]
Markov Chains. Authors of [123] propose a tool to ease the visualization of scanning
activities, while [40] focus on topological analysis. Community detection is often
used to evaluate social networks, but some works apply the algorithms to computer
networks too. Authors of [107] separate legitimate and unsolicited email traffic. Au-
thors of [93, 92] focus on Internet scans, characterized with an event-based graph
defined as the sequences of ports contacted by scanners.

The analysis of traffic reaching fully passive sensors, however, carries some in-
trinsic limitations due to the impossibility to actively engage with remote sources.
Moreover, a recent work [122] studying unsolicited traffic on Akamai’s Content De-
livery Network (CDN) suggested that the presence of production addresses close
to the "dark" ones also influences the way passive sensors are contacted. Placing
active honeypots close to darknet deployments may therefore have an impact on the
behaviors we observe and deepen our knowledge of network events. A first interest-
ing trade-off between completely passive and active deployments can be found in
[74]: authors characterize the two-phase scanners phenomena, i.e., scanners firstly
sending a first irregular TCP packet, then continuing with a regular TCP SYN
after having received a response by possibly vulnerable targets. This analysis is
lead by means of a reactive network telescope, defined as a /24 network capable of
responding at transport level.

Application layer honeypots, on the other hand, have been used in security ac-
tivities for years, with well-established projects such as the Honeynet Project [75]
and TPot [143] providing multiple alternatives. Previous efforts using honeypots
have covered many aspects, such as (i) introducing new honeypots targeting par-
ticular protocols, services or device types services [48, 97, 152], (ii) evaluating the
effectiveness of different types of honeypots [70], and (iii) presenting techniques
to uncover the presence of honeypots [149, 108]. A seminal work dating back to
2004 [158] introduced iSink, a monitoring system that can answer darknet traffic.
The authors observed traffic peaks due to the presence of responders (e.g., NetBIOS
and SMB) in the dark space. Later, another work [18] characterized honeypot traffic
and discussed whether bots are sensitive to the “liveness” of hosts during scanning.

7

Related Work

The authors found that in around 16.3% of the scan events, there was evidence of
liveness-awareness. Readers are invited to check this survey [109] showing a broad
overview on honeypot research.

Some authors present general characterization of honeypot traffic, focusing on
origin of attacks, targeted services and frequency of attacks (e.g., [8, 142, 97]). A
recent work [141] compared the deployment of honeypots in different geographic
locations. Authors of [17] identify patterns used by attackers contacting honey-
pots. Another work [29] allocated unused addresses in a cloud to deploy honey-
pots. These works however evaluate honeypot deployments in isolation, without
comparing measurements with what is observed in dark spaces.

Table 2.2: Summary of contributions for each chapter.

Chapter Contribution

Chapter 4 Characterization of darknet traffic and similarity analysis
for darknets deployed in different geographical locations

Chapter 5 Deployment of comprehensive framework for darknet,
L4-Responders, L7-Responders and DPIPot

Chapter 6 Coordinated activity detection based on graph mining
and community detection

Chapter 7 Benchmark of algorithms for anomaly detection in network
traffic time-series

This thesis leverages the lessons learned from previous works to provide a com-
prehensive framework for the inspection and analysis of unwanted traffic. Table
2.2 provides a short summary of the original contributions brought by each chap-
ter. Chapter 4 characterizes traffic hitting darknet targets around the world, with
the aim of understanding how generalizable are the findings previously observed
on darknets. Chapter 5 provides a thorough description of a newly deployed flex-
ible infrastructure, including both passive and active probes replying to requests
at different levels, enlarging the set of possibly observable phenomena om darknets
and honeypots. Chapters 6 and 7 describe and extend several analysis techniques
based on big-data and machine learning that contribute to enhance the knowledge
on network phenomena, spot possible malicious users and link together apparently
unrelated events. The framework as a whole allows a 360-degree view on network
events, and aims at significantly easing and automating the work of network ana-
lysts and practitioners.

8

Chapter 3

Knowledge Extraction Pipeline

In this chapter I describe the pipeline required to collect and analyse darknet and
honeypot data. At the end of the chapter, I briefly discuss the ethical implication of
these operations and the countermeasures taken to preserve the privacy of possible
victims of attacks.

3.1 Data collection and processing

NL

BR

IT

Honeypot

Passive traces collection Traces processing and log
storage

Data analytics

Events characterization

Community detection

Similarity analysis

Anomaly detection

Figure 3.1: Data capture and processing pipeline

Figure 3.1 summarizes the data acquisition, processing and analysis procedure.
I rely on three darknets located in two different continents: The first one is formed
by a /15 network allocated by RIPE NCC in the Netherlands (hereafter called NL).
The second one resides in Brazil, formed by a /19 network allocated by LACNIC
(hereafter called BR). The third one is formed by three /24 networks, with non-
continuous addresses, hosted at the Politecnico di Torino in Italy (hereafter called
IT). This latter is particularly interesting, since the addresses were part of an active
network until some years ago. IPv4 prefixes are kept private following requests of
the research institutions running the networks. Together with the three darknets, an

9

Knowledge Extraction Pipeline

honeypot infrastructure handling diverse protocols has been recently added to the
Politecnico infrastructure (cfr. Chapter 5 and Appendix A for a detailed description
of the honeypot deployment).

In each location a network probe captures the traffic arriving to the allocated
address, recording the full packet. The probe obfuscates IPv4 prefixes of the dark-
nets/honeypots (i.e., destination IP addresses) and sends the data to a Hadoop-
based cluster for storage and processing. Traffic is stored on an hourly basis as a
standard .pcap file. Table 3.1 reports the network size, total traffic volume and
observation period for every infrastructure. As visible in the table, despite being
active for a much shorter period of time, the amount of traffic hitting DPIPot,
i.e., interacting with actively responding machines, is significantly larger than that
hitting completely passive deployments. For passive deployments, the network size
certainly plays a significant role on the received traffic volume.

Table 3.1: Dataset summary

Network size Volume From To
NL /15 5.2 TB Aug 14 2018 Jan 25 2019
BR /19 1.3 TB Sep 07 2018 Ongoing
IT 3 × /24 70 GB Dec 21 2018 Ongoing

DPIPot 16 × /29 1.4 TB Nov 12 2020 Ongoing

As a second step, I process the captured traces to generate human-readable logs.
I use Tstat [144], a passive traces analyzer that processes every flow and enriches
it with more than 200 useful measures (e.g., flow completion time, requested ap-
plication protocol, Round Trip Time, etc.).1 I further enrich the logs by adding
the origin Autonomous System and Country. For this purpose I employ the pyasn
library2 and the MaxMind GeoLite2 Databases3. Note that in the darknet case, as
the destination address is not replying to any request, I only record unidirectional,
incomplete flows.

Eventually, I am ready to extract knowledge from the logs. Given the significant
volume of traffic, the data analytics phase requires the usage of Big-Data techniques.
I therefore run all the filtering and aggregation operations by means of pyspark4 on
an high-end Hadoop cluster. Each of the following chapters reports a more detailed
description of the data analytics process. Chapter 4 provides a first characterization
of the events on the darknet, together with a darknet similarity analysis; Chapter

1http://tstat.polito.it/measure.shtml
2https://github.com/hadiasghari/pyasn
3https://dev.maxmind.com/geoip/geolite2-free-geolocation-data?lang=en
4https://spark.apache.org/docs/latest/api/python/

10

http://tstat.polito.it/measure.shtml
https://github.com/hadiasghari/pyasn
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data?lang=en
https://spark.apache.org/docs/latest/api/python/

3.2 – Ethics

5 analyzes the changes occurring on the infrastructure when new honeypots are
active; Chapter 6 discusses the results of the community detection algorithms, and
Chapter 7 benchmarks some anomaly detection techniques on the traffic data.

3.2 Ethics
When it comes to honeypot activity, several countermeasures need to be taken

to restrict the impact of the measurements on third-party networks. First, and
most important, the infrastructure never answer packets if this may worsen the
position of attack victims. In particular, it never answers UDP traffic, as it could
make the infrastructure itself part of DDoS attacks relying on spoofed addresses and
amplification techniques. For the same reason, it silently drops all TCP packets
with SYN/ACK flags and other malformed flows, as they may arrive from victims
of DDoS attacks with spoofed addresses. Answering such packets may help the
attackers to overload the victims’ networks.

The analysed traffic may come from infected machines that are taking part in
botnets. Therefore, I explicitly limit the capacity of the honeypot infrastructure
to avoid creating too much traffic for the networks hosting such infected machines.
The setup discussed in this thesis can comprehensively sustain at most some few
Mbps of traffic upstream, which is far insufficient to overload remote networks.

Finally, IP addresses sending traffic to the infrastructure may uncover vulner-
able computers exploited by attackers [134]. I take all measures to protect such
IP addresses: In the following experiments, no IP address is disclosed. I also col-
laborate with the university security team and our upstream providers, actively
notifying about novel attacks and senders.

11

12

Chapter 4

Are Darknets All the Same? On
Darknet Visibility for Security
Monitoring

The work I present in this chapter is mostly taken from my paper Are darknets
all the same? On darknet visibility for security monitoring, presented at the IEEE
International Symposium on Local and Metropolitan Area Networks (LANMAN)
2019 [137].

4.1 Introduction
Darknets - also called network telescopes, Internet sinks and darkspaces - have

been used for years as a source of information for cybersecurity [58]. A darknet
is a set of IP addresses advertised by routing protocols, however without hosting
any device. All traffic reaching the darknet remains unanswered and, by defini-
tion, is considered unsolicited. A monitoring probe listens to the darknet traffic,
processing it in search for signals of new threats, misconfigurations and possibly
sources/victims of attacks.

As highlighted in Chapter 2, darknets have been used for many diverse tasks,
spanning from the investigation of internet scans and botnets, to the estimation
of the address space utilization. Years of experience running darknets have shown
that three main types of traffic reach such networks [22]: (1) networks scans, both
malicious (e.g., by botnets) and legitimate (e.g., by crawlers and research projects);
(2) backscattering, i.e., deflected traffic received because someone contacted a host
spoofing the source IP address belonging to the darknet; (3) traffic due to miscon-
figured devices or mistyped IP addresses.

13

Are Darknets All the Same? On Darknet Visibility for Security Monitoring

This chapter aims at understanding how the visibility of darknets varies accord-
ing to the IP range, size and location of the darknet. I capture traffic simultane-
ously for 1 month in three darknets, deployed in the Netherlands (a /15 network),
in Brazil (a /19 network) and in Italy (3 /24 networks). I contrast the traffic reach-
ing each network, highlighting the mostly seen protocols. I confirm that the size of
the darknet matters, and quantify how the visibility is affected by the number of IP
addresses allocated for the monitoring. I show that the Autonomous Systems (AS)
and countries originating the traffic present significant differences according to the
IP range where the darknet is deployed as well as the considered time period. All
in all, results show that darknet traffic must be used with care to support security
tasks, since the picture obtained in one darknet may not reflect other darknets or
the attacks seen on production networks.

Several studies already targeted the trade-offs in darknet deployment strategies.
Since seminal works on Internet Background Radiation [106, 59] (i.e., traffic seen
in darknets), authors question the impact of darknet size, an analysis that has
been revisited some years later [155] and repeated for IPv6 [42]. Recently, authors
of [22] compare traffic observed in CAIDA’s and Merit’s darknets. Other authors
have focused on distributed darknets [71, 15, 38, 14]. All acknowledge that darknets
deployed at different IP blocks and networks observe different events. These works
are however aged, given the significant changes on the Internet in the last decade.
I reappraisal this analysis with current traffic, shedding light on the coverage of
interesting events according to parameters of the darknet deployment.

Table 4.1: Datasets and percentage packets per protocol.

Size Volume TCP UDP ICMP Other
BR /19 2.5 GB/day 95.16% 4.39% 0.44% 0.01%
NL /15 30 GB/day 93.69% 5.72% 0.59% 0.00%
IT 3 × /24 420 MB/day 95.71% 3.89% 0.39% 0.01%

4.2 Methodology
I rely on data from three darknets described in Chapter 3. Given the different

size of the darknets, most of the analyses of Section 4.3 are restricted to smaller
subnets of BR and NL darknets (hereafter referred to as NLs and BRs, respectively)
to allow a fair comparison with IT .

I perform analyses using data collected during 1 month, from the 1st of January
to the 1st of February 2019.

Table 4.1 summarizes the dataset and provides a per-protocol breakdown of
packets reaching the darknets. The majority of the traffic is represented by TCP

14

4.3 – Comparison of darknet traffic

(> 93% of the packets), with UDP ranging in 3.89 − 5.72% and less than 1%
for other protocols. No significant difference emerges between the darknets. The
general picture is similar to the one reported in [22], even if higher percentages
of TCP packets are present in these darknets with respect to what is reported in
previous work.

When analyzing the composition of traffic reaching darknets, I will focus on
some main traffic categories:
• Scan: TCP packets with only the SYN flag set. To filter occasional scan from
actual hosts running extensive scans, I mark as scans only those cases where the
sender targets at least k = 10 different destination addresses or ports in a one hour
time bin;
• Backscattering: TCP packets with SYN+ACK, RST, ECN, RST+ACK or only ACK
flags set. Since the darknet does not send any packets with SYN flag set, these
packets are mostly from devices contacted with spoofed source IP addresses;
• UDP: UDP traffic, regardless payload or ports;
• ICMP: ICMP traffic;
• Other: All other cases or protocols. These include SYN scan messages sent by
occasional scanners (that sent less than k = 10 messages in one hour).

4.3 Comparison of darknet traffic
In this section I provide a comparison across darknets, contrasting traffic com-

position, temporal patterns, sources and targeted ports.

4.3.1 Traffic types
Table 4.2 provides a breakdown of the traffic, showing the percentage of packets

and unique source IP addresses distribution across categories. Considering the share
of packets on different categories, the highest share of traffic is constituted by Scan,
with small differences among the darknets. The IT darknet shows a lower share of
backscattering because of middle-boxes sitting upstream the darknet, which drop
incoming packets with inconsistent TCP flags/handshakes. UDP and ICMP shares
are consistent among the three networks.

When comparing source addresses per category, interesting considerations hold.
First, notice that Scan traffic is responsible of the majority of volume but it is
generated by a small fraction (3.2 to 12.5%) of the senders’ IP addresses. Recall that
these sources are involved in non-occasional SYN scans, given the filters described
in Section 4.2. Second, there is a larger number of distinct IP addresses sending
UDP packets to NL than to BR and IT . Here manual inspection confirms a fact
about darknet traffic [22]: There exist few sources that send a lot of UDP packets
to targeted IP addresses. If the darknet does not include any of such targeted

15

Are Darknets All the Same? On Darknet Visibility for Security Monitoring

Table 4.2: Summary of the traffic per category.

Type NL/15 BR/19 IT 3 × /24
Pkts IP addr. Pkts IP addr. Pkts IP addr.

Scan 85.1% 12.5% 84.8% 4.6% 86.9% 3.2%
Back. 3.7% 0.8% 2.3% 0.6% 0.2% 0.2%
UDP 5.7% 10.8% 4.3% 2.3% 3.8% 1.8%
ICMP 0.5% 1.6% 0.5% 0.8% 0.3% 0.6%
Other 4.8% 74.1% 7.8% 91.4% 8.6% 93.9%

destinations, it would see less UDP events. Finally, note the large percentages of
sources whose traffic lies in the “Other” category. Recall these are occasional scans,
where the sender sends only few packets to the darknet. This traffic may be due
to misconfigurations, low-rate attacks, or stale information in e.g., P2P protocols.

4.3.2 Temporal patterns
I next check whether the traffic reaching different darknets follows similar tem-

poral patterns. Since the darknets have different sizes, both the /15 NL and the /19
BR darknets have been split into smaller subnets having the same dimension as the
Italian one - i.e., 3 × /24. In the remainder of this Section, I restrict all analyses to
3 Dutch and 3 Brazilian samples, thus allowing a fair comparisons with the Italian
one. Figure 4.1 reports time series of packets (left) and IP sources (right) per hour
for the most relevant traffic categories. The remaining categories are omitted given
their lesser contribution to the total amount of traffic, and their noisy temporal
pattern. Notice that the gap in the figures is due to a temporary failure in the
Brazilian infrastructure.

Scan traffic (Figure 4.1a) presents no clear temporal pattern and no periodicity.
Equally, there is no apparent similarity between BRs, NLs and IT , and traffic peaks
do not appear to be simultaneous. Similar considerations hold for less relevant
traffic types, i.e., UDP (Figure 4.1c) and ICMP (Figure 4.1e). For these categories
the total number of hourly packets is 1 to 3 orders of magnitude lower than the
SCAN case, with some occasional peaks, appearing with no periodicity. Figure 4.1b
shows, instead, a more regular pattern in the number of distinct IP sources per
hour. Notice that the number of addresses hitting IT is generally higher than the
ones hitting BRs and NLs. I conjecture that this possibly happens because such
addresses have been previously allocated to a production network, and may hence
be more known. Similarly, the lowest number of sources is observed on NLs, whose
addresses have always been allocated as a darknet space. This suggests that the
NLs darknet may be known to attackers that avoid targeting it. Figure 4.1d, shows,
instead an higher level of similarity in the patterns of sources hitting the different
darknets, with the IT darknet still hit by an higher number of remote hosts. This

16

4.3 – Comparison of darknet traffic

201
9/01

/01
0

100000

200000

300000

400000

Pa
ck
et
s

NL BR IT

201
9/01

/07

201
9/01

/13

201
9/01

/19

201
9/01

/25

(a) Number of packets (SCAN)
2019/01/01

2019/01/07

2019/01/13

2019/01/19

2019/01/250

500

1000

1500

2000

2500

3000

IP
 s

ou
rc

es

NL BR IT

(b) Number of source addresses (SCAN)

201
9/01

/01

201
9/01

/07

201
9/01

/13

201
9/01

/19

201
9/01

/25
0

20000

40000

60000

80000

100000

Pa
ck
et
s

NL BR IT

(c) Number of packets (UDP)

0

200

400

600

800

1000

IP
 s

ou
rc

es

NL BR IT

2019/01/01

2019/01/07

2019/01/13

2019/01/19

2019/01/25

(d) Number of source addresses (UDP)

0

2000

4000

6000

8000

10000

12000

Pa
ck
et
s

NL BR IT

201
9/01

/01

201
9/01

/07

201
9/01

/13

201
9/01

/19

201
9/01

/25

(e) Number of packets (ICMP)

0

100

200

300

400

500

600

IP
 s

ou
rc

es

NL BR IT

2019/01/01

2019/01/07

2019/01/13

2019/01/19

2019/01/25

(f) Number of source addresses (ICMP)

Figure 4.1: Time series (1h bins) for packets and sources.

result suggests that the hosts searching for UDP services and vulnerabilities are
fewer, possibly the same, and they target a wider set of destinations, independently
from their locations. ICMP (4.1d) is requested by some tens of sources in the NL
and BR darknets. The patterns are similar across both darknets, with some peaks
on NL. Also in this case, the IT darknet is targeted by more sources. Notice
the simultaneous peak across the three darknet around the 17th January: this may
suggest a common origin of the ICMP requests.

To confirm these hypothesis, I further analyze the time series by calculating the
Pearson correlation coefficient between pairs of darknets. Considering the num-
ber of packets, for all traffic categories the pairwise correlation is zero or slightly
negative – i.e., time series are uncorrelated. Different considerations hold for the
number of sources: The average correlation among all pairs is 0.47 for network

17

Are Darknets All the Same? On Darknet Visibility for Security Monitoring

scans, 0.31 for backscattering, with IT and BRs reaching 0.79, 0.87 for UDP and
0.42 for ICMP (again with a peak of 0.79 between IT and BRs).

0 5 10 15 20 25 30
Netherland [%]

0
5

10
15
20
25
30

B
ra

zi
l [

%
]

RU

BGGB US
PA

IE CN UA
BR DE NL

IT LV 101

102

103

So
ur

ce
 IP

s

Figure 4.2: Top source countries for Scan traffic.

Table 4.3: Top-10 AS per SCAN traffic – Jan 2019.

BRs NLs IT
ASN pkts IPs ASN pkts IPs ASN pkts IPs
49453 14.8 8 49505 10.57 15 43350 22.18 12
57043 10.72 15 202325 9.94 11 204428 7.17 24
202325 6.5 12 204428 7.52 20 58271 7.05 22
58271 5.18 19 58271 6.9 19 51852 6.69 5
204428 3.74 18 201912 5.8 8 57043 6.28 16
14061 2.75 542 47350 5.07 5 14061 2.80 658
57271 2.51 11 57271 3.38 11 202325 2.75 11
47350 1.86 8 14061 3.03 103 202425 2.03 45
50297 1.66 4 48817 2.17 8 206485 1.74 3
51787 1.64 4 41390 1.96 1 49505 1.63 27

4.3.3 Origin of Scan traffic
I now focus on Scan packets to check whether sources of traffic are similar

across darknets. Beside considering source IP addresses, I also map them to the
corresponding AS and country with the Maxmind Geo Location database.1

Considering IP addresses, I record 27,105 sources for BRs, 29,837 for IT and
4,269 for NLs. As previous works observed, the distribution of packets per IP

1https://www.maxmind.com/en/home

18

https://www.maxmind.com/en/home

4.3 – Comparison of darknet traffic

(23) (8545) (22) (3389) (81) (80) (8080)0
20
40
60
80

100

%

2.24 1.73 1.68 1.13 0.99 0.96 0.801.87 1.45 1.25 0.87 0.67 0.64 0.322.47 1.67 1.65 1.24 0.91 0.90 0.35

BR IT NL

(a) Scan

(5060) (1900) (123) (53) (389) (161) (137)0
20
40
60
80

100

%

27.4 5.12 4.51 3.62 2.94 2.01 1.6423.8 6.26 6.15 4.33 4.21 3.82 2.1024.3 7.30 7.22 5.08 4.74 3.58 2.35

(b) UDP

Figure 4.3: Packets due to top-1 (boxes) and top-10 (whiskers) source IP addresses
for the 7 most contacted TCP and UDP ports. Numbers in the top x-axis represent
the share of the port in the overall number of packets for the given network.

address is heavy tailed: in our case 95% of the packets are generated by the (i) 22%
most active addresses in BRs, (ii) by the 18% most active addresses in NLs and
(iii) by the 23.3% addresses in IT . Notice the different order of magnitude in the
number of sources observed in NLs with respect to the other two darknets. This
result leads to the same conjecture reported in Figure 4.1b: being NL addresses
allocated in the darknet space from a long time, they may be known as unused and
hence less targeted.

Considering source ASes, I find 1,393 (BRs), 142 (NLs) and 1,524 (IT) sources,
of which 134 are common to all three darknets (i.e., more than the 94% of the
addresses targeting NLs are seen also in BRs and IT), while 1,015 are common
between BRs and IT (i.e., the 72.8% of the ASes seen in BRs are also present in
IT). The top-10 most active ASes are shown in Table 4.3, which reports in bold
those that are not common across the three darknets. Table 4.3 also shows that
the most common ASes generally produce a large percentage of traffic using only
a small set of addresses (with AS 14,061 being the exception). Moreover, rarely a
single AS targets all darknet in the same way – e.g., AS 49,450 is the most active
against NLs, but it is ranked as last in IT , even if the latter is targeted using a
wider number of sources.

I finally focus on source countries. In total 133 countries are seen on IT , 125 on
BRs, and only 38 on NLs (the latter are all visible also in IT and BRs). Figure 4.2
compares the top-10 most seen countries per BRs and NLs. The scatter plot com-
pares the share of packets from each country, while colors mark the total number of

19

Are Darknets All the Same? On Darknet Visibility for Security Monitoring

IP addresses observed for the country. The ranks mostly overlap, with 13 countries
building the combined lists. Russia is the most popular source for both BRs and
NLs, together with Bulgaria, Great Britain, USA, Ukraine and China.

In general, such results confirm a conjecture raised in [22]: The Scan traffic
reaching different darknets, while similar, is non-uniform.

4.3.4 Per-port breakdown
I now examine the destination ports of packets reaching the darknets. We

restrict our analysis to Scan and UDP traffic since, for backscattering, destination
port does not contain useful information.2 Again, I consider only the three /24 NLs
and BRs subnets for a fair comparison with the IT darknet.

In Figure 4.3 I quantify to what extent traffic originates from a small or large set
of addresses for the 7 most contacted ports. Boxes represent the share of packets
sent by the single most active IP source, while the whiskers represent the share for
the top-10 addresses. Numbers in the top of the figure report the overall percentage
of traffic to the port in the given network.

Considering Scan (Figure 4.3a), the most popular ports are associated with
services known to be targets of attacks, e.g., telnet (port 23) and ssh (port 22).
A significant number of such packets have been linked to attacks targeting IoT
devices [101]. The top-10 sources are generally responsible for less than the 40% of
the traffic, except in some particular cases (for instance port 81 and 8545, which
is targeted by less distributed sources). The single most active source is in most
cases generating about the 20% of the traffic alone. Focusing on the upper x-axis,
I notice that the volume hitting the ports is similar across darknets.

Focusing on UDP (Figure 4.3b), I see that for almost all ports, about 40%
of the packets are related to top-10 IP addresses. Pictures emerging in the three
darknets are very similar, with protocols such as SIP (port 5060), NTP (port 123)
and UPnP (port 1900) leading the ranks. This is not surprising, as such protocols
are well-known targets large-scale attacks and abuses. Again, focusing on the upper
x-axis, I notice that a similar volume of traffic hits the considered ports for the three
darknets.

I finally quantify to what extent the traffic sources are shared among darknets.
Again, I map each IP address to the corresponding AS, and, separately per port,
compute the Jaccard similarity index between the obtained sets of ASes. We con-
sider NLs and BRs darknets, as they resides in different continents. Figure 4.4
shows the results. The blue bars represent the average similarity when comparing
BRs to NLs subnets. The red bars serve as baseline, showing the average similar-
ity when comparing the three NLs subnets against each other. Considering Scan,

2Backscattering traffic typically comes from victims contacted with spoofed source IP address.

20

4.4 – Effects of darknet size

(22) (23) (80) (81) (3389) (8080) (8545)
0

10
20
30
40
50
60
70
80
90

100

%

(a) Scan

(53) (123) (137) (161) (389) (1900) (5060)
0

10
20
30
40
50
60
70
80
90

100

%

BR - NL NL - NL

(b) UDP

Figure 4.4: Average Jaccard similarity (calculated over sets of ASes) between BR
and NL samples (blue) and among NL samples (red) for the top contacted ports.

Figure 4.4a shows a Jaccard always around the 80% for NLs subnets, as expected.
The similarity is generally below 50% when comparing BRs to NLs. Very interest-
ing is the case of port 8548 (Json-RPC), which shows that scanning attempts on
BRs and NLs descend from exactly the same set of ASes. The same considerations
hold for the UDP scenario when comparing the NLs subnets among themselves. In
Figure 4.4b, I see that the Jaccard index is generally above 80% when comparing
the NLs subnets, while, when comparing BRs and NLs, results vary from port to
port (e.g., below 50% for port 137 and port 5060, above 70% for port 53 and 123).
The high values of Jaccard Index for ports 53, 123 and 389 may further explain the
similarities in patterns I highlighted in Figure 4.1d: some of the most requested
UDP ports are targeted by the same sources, regardless of the geographical location
of the destination.

4.4 Effects of darknet size
In this section, I verify how the observation period and the darknet size affect

the list of observed sources. As in the previous section, I rely on the Jaccard
similarity to compare the setups, focusing on source ASes.

21

Are Darknets All the Same? On Darknet Visibility for Security Monitoring

7d 6d 5d 4d 3d 2d 1d 12h 7h 1h
Time window

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 s
im

ila
rit

y
UDP
SCAN
BACK

(a) NL (/19 samples)

7d 6d 5d 4d 3d 2d 1d 12h 7h 1h
Time window

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 s
im

ila
rit

y

UDP
SCAN
BACK

(b) BR (/22 samples)

Figure 4.5: Average Jaccard similarity when fixing the darknet size and varying
observation time.

4.4.1 Observation period
I first analyze the impact of the observation period. For a given darknet setup, I

extract the set of ASes observed in a 1-week long period. Then, I again extract the
sets of ASes after reducing the observation period to given shorter intervals. The
Jaccard similarity is calculated by comparing the sets obtained with short intervals
against the one obtained with the 1-week long interval. To increase reliability on
results, these steps have been performed multiple times, by sampling 8 /19 subnets
from the original /15 NL darknet, and 8 /22 subnets from the /19 BR darknet. In
Figure 4.5, each data point reports the average Jaccard similarity for the multiple
subnets.
Figure 4.5a reports results for NL. Separate lines depict results for network scans,
backscattering and UDP traffic. The visibility of sources in a darknet is reduced
considerably when the observation period is reduced. However, the impact is differ-
ent for the different traffic types. Considering network scans, the Jaccard similarity
is still at around 0.8 when the observation period is reduced to 1 day (i.e., 80% of

22

4.4 – Effects of darknet size

the sources seen in one week are visible in one day despite the reduced interval),
and around half of the ASes are found if one observes only few hours of traffic.
Instead, for UDP and backscattering traffic, the reduction on visibility is much
sharper. Already after shrinking the observation period to 2 days, almost half of
the ASes are lost. This is also a consequence of the overall volume per traffic type
(see Table 4.2): whereas network scans are widespread, the other categories are
rarer, which thus need more time to be observed.
Similar considerations hold for BR (Figure 4.5b). Given the smaller dimension of
the darknet, the decrease is faster. For network scans, the picture is similar to the
NL case, with just 30% of the sources found with a 1 hour observation interval.
For backscattering, I notice a sudden drop when the observation period is shorter
than 2 days. This can be explained by the intrinsic variability of backscattering
traffic. Remind that backscattering sources are likely to be victims of attacks with
spoofed addresses, typically carried out in a short amount of time. Given the lower
volume, UDP decreases faster, too.

4.4.2 Darknet size
Finally, I analyze the impact of the darknet size, quantifying to what extent

a small darknet observes events also found in larger ones. Remind that a small
darknet would require low numbers of IPv4 addresses, thus freeing addresses for
production traffic. Figure 4.6 reports the average similarity obtained when re-
ducing the darknet size. Again, for improving robustness of results, we start by
taking samples from the original darknets, i.e., 8 /19 subnets for NL and 2 /20 for
BR. Then, for each experiment, we split each of these subnets into smaller subnets.

The figure reports the average similarity when comparing the small subnets
to their respective original /19 (NL) or /20 (BR) subnets. The observation time
window is fixed to one week in all cases.

Considering NL (Figure 4.6a), I notice a regular decrease as darknet size shrinks.
For network scans, the plot suggests that a /25 network still observes around 60%
of the source ASes. To obtain the same result for backscattering and UDP, larger
/23 and /21 are needed. In other words, the majority of sources is still visible with
a 64-fold reduction in darknet size for scanning, while for backscattering and UDP
already a 16-fold and 4-fold size reduction hides 40% of the sources, respectively.
Similar considerations hold for BR (Figure 4.6b). For scanning, with a 64-fold
size reduction (/26 subnet) more than half source are still present. UDP decreases
slightly faster than the NL case, with a 8-fold size reduction (/23 subnet) already
hiding almost 70% of sources. For backscattering, again I notice a much faster
decrease with respect to NL, similarly to what emerged from Figure 4.5b. The /25
subnets lose almost all visibility, confirming that the variability and unpredictability
of backscattering traffic requires large darknets to be observed.

23

Are Darknets All the Same? On Darknet Visibility for Security Monitoring

/19 /20 /21 /22 /23 /24 /25 /26 /27 /28 /29 /30 /31
Time window

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 s
im

ila
rit

y
UDP
SCAN
BACK

(a) Netherland

/20 /21 /22 /23 /24 /25 /26 /27 /28 /29 /30 /31
Time window

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 s
im

ila
rit

y

UDP
SCAN
BACK

(b) Brazil

Figure 4.6: Average Jaccard similarity when fixing observation time and varying
the darknet size.

4.5 Conclusion
In this chapter I compared three darknets deployed at different IP ranges and

continents. I confirmed well-known facts about darknet visibility, such as the preva-
lence of traffic to the ports usually targeted by scans and attacks. I observed that
the largest amount of traffic is produced by few source IP addresses performing
massive Scan attempts, while most of them send only few packets. The behaviour
of sources is particularly similar across darknets for UDP traffic, while lower sim-
ilarities are registered for other traffic categories. The top contacted ports are
similar, and mostly composed of well-known targets. For some of them, only few
source ASes are behind the traffic. However, the ASes targeting most ports vary
considerably along the observed time period.

Moreover, I pointed out that network scans are constant and more prominent,
thus easier to monitor. A one order of magnitude reduction in observation time
and IP range size removes little of the darknet visibility. For backscattering and
UDP, large observation times and IP ranges are needed for a good coverage.

All in all, these results provided new evidences that sources of traffic significantly

24

4.5 – Conclusion

varies according to the IP range, and the size of the darknet impacts its visibility.

25

26

Chapter 5

Enlightening the Darknets:
Augmenting Darknet Visibility
with Active Probes

The work I present in this chapter is mostly taken from my paper Enlightening
the Darknets: Augmenting Darknet Visibility with Active Probes, currently under
evaluation at IEEE Transactions on Network and Service Management.

5.1 Introduction
Darknets or network telescopes are IP addresses advertised by routing protocols

without hosting any services. As already stated in the previous chapters, they have
been used for years as passive sensors in a variety of network monitoring activi-
ties. Darknets have supported multiple research activities too [58], and multiple
organizations worldwide deploy, analyze, and eventually archive years of data from
large darknets for research purposes [22, 155, 46]. Traffic reaching a darknet is
necessarily unsolicited. As such, it is helpful to highlight network scans (from both
malicious and legitimate scanners) backscattering (i.e., traffic received from vic-
tims of attacks carried out with spoofed IP addresses) and traffic due to bugs and
misconfigurations [22].

The visibility of darknets is intrinsically limited, as traffic reaching darknets is
never answered. Researchers, operators and practitioners have often relied upon
external honeypots to obtain further information about events seen in darknets [12,
101, 79]. Unlike darknets, honeypots are active sensors that obtain information
about attacks by answering unsolicited traffic. The goal is to engage with the
possible attackers using both simulators that reproduce basic functionalities of real
systems (low-interaction honeypots) or actual live system deployed in controlled
environments (high-interaction honeypots). Typically, such honeypots are deployed

27

Enlightening the Darknets: Augmenting Darknet Visibility with Active Probes

as vertical systems, targeting a particular scenario [109] and exposing only a single
- or just a few - services. For instance, database or terminal server honeypots [52,
41] supporting the respective protocols are deployed on the standard service ports.
Only few honeypots try to dynamically determine protocols present in the incoming
traffic on-the-fly [65, 76].

Darknets and honeypots are complementary: The first offers a broad but shal-
low view on ongoing scanning activity touching a wide spectrum of services; The
second offers deeper insights about specific cases. Combining “the best of both
worlds”, achieving at the same time wide coverage and deep insights, could enrich
the type of information currently extracted from darknets. Indeed, it is known
that darknet traffic changes substantially, not only across the IP address space, but
also because of production services hosted “nearby” the darknet [122, 22, 137]. As
such, the deployment of active services inside the darknet (e.g., using honeypots)
could represent a novel perspective to enrich characterization of unsolicited traf-
fic. However, such a deployment also raises many questions: (i) How much extra
information one would get when responding some unsolicited darknet traffic? (ii)
How does the presence of active services change ports and senders1 seen in different
deployments? Does the presence of these services affect neighbouring darknet ad-
dresses? (iii) Does the presence of a specific service attract traffic to other services?
(iv) What if one answers any service on non-standard ports?

Having these questions in mind, in this chapter I quantitatively compare dif-
ferent levels of interactive responders deployed in a darknet address space. In
particular, I consider the following four levels:

• Darknet, silent listeners that capture received traffic.

• L4-Responders, that only complete the TCP handshake, saving any possible
application-layer requests sent by clients.

• L7-Responders, low-interaction honeypots that mimic specific application
protocols that are expected on the usual well-known ports.

• DPIPot, a novel responder that searches for the application that is most suited
to handle the incoming traffic, regardless of the probed port.

I capture data reaching these deployments for one month: in these measure-
ments, I observe traffic volumes on the order of hundreds (on the darknet) to mil-
lions (on DPIPot) of flows per hour, collecting more than 1 billion flows overall.
Digging into this dataset, I show that active responders can increase the value of
darknet data and provide a detailed quantitative view on the behavior of bots and

1I use the generic term “sender” to indicate attackers, scanners, or even victims of attacks that
send traffic to the infrastructure.

28

5.2 – Infrastructure

scanners when facing responders with different interaction levels. In some cases, I
revisit and update well-known facts about darknet/honeypot deployments. Most
importantly, I gather novel insights that highlight the benefits and drawbacks of
the alternative response strategies. Summarizing my key findings:

• I measure and quantify Side-Scan phenomena, in which a host responding on
a particular service sees also a surge of traffic for other services and ports. In
contrast to [122], who observe similar patterns in CDN nodes, I quantify how
the type of service one deploys in the darknet decisively influences Side-Scan.

• Activating responders leads to a surge of traffic on darknet neighboring IP
addresses too. The joint use of active probes and passive darknets therefore
leads to an overall picture that is different from what is obtained by a pure
darknet deployment, even in the addresses remaining dark.

• L4-Responders augment the visibility of darknets, triggering senders to send
additional traffic that uncovers malicious activities in some cases. Interest-
ingly, the lack of application-layer response, while limiting the interaction,
also uncovers events that may get unnoticed on classic honeypots, such as
“port-knocking” attempts.

• L7-Responders engage senders and attract hundreds of times more traffic
to the darknet. Deploying different L7-Responders to cover specific service
categories helps to increase the Side-Scan phenomena, thus augmenting the
value of darknet data.

• Thanks to the ability of DPIPot to decouple services from ports, I shed light
on large-scale activities directed to non-standard ports, offering a rich picture
that is unseen in other deployments. However, it may trap senders in some
in particular activities, saturating them and thus limiting visibility. This
trade-off suggests a complementarity between completely passive and totally
interactive deployment.

I detail the infrastructure deployment and main features (Sec. 5.2), and the
design of experiments and deployment (Sec. 5.3). I then provide a generic overview
of the macroscopic changes I observe (Sec. 5.4), then I investigate the changes in
the contacted ports (Sec. 5.5.1) and senders contacting the different deployments
(Sec. 5.5.2). I then drill down on the benefits of DPIPot (Sec. 5.6) before final
discussions and conclusions (Sec. 5.7).

5.2 Infrastructure
Fig. 5.1 schematizes the measurement infrastructure. Unsolicited traffic that

reaches the dedicated address space is routed to one of the four deployments that

29

Enlightening the Darknets: Augmenting Darknet Visibility with Active Probes

Darknet

DPIswitch

L7-Responders

L4-Responders

L4/L7-Responders

L4
 Sw

itc
h

DPIpot

Figure 5.1: Infrastructure architecture overview.

correspond to different levels of interactivity:

1. Darknet: IP addresses that just receive traffic without replying to any packet;

2. L4-Responders: responders that complete the TCP three-way handshake,
capture eventual application requests from clients, but never reply to any
message;

3. L7-Responders: honeypots that mimic popular application-layer services. I
deploy state-of-the-art honeypots to simulate well-known services; L7-Responders
act as vertical responders that interact only on a limited set of ports and ser-
vices;

4. DPIPot, a novel responder that performs L7 switching of requests using deep
packet inspection. It decides on-the-fly which application protocol to use,
answering incoming TCP connections on all TCP ports. Differently from
L7-Responders, DPIPot decouples standard TCP ports from application pro-
tocols.2

Note that none of our deployments answers to UDP or malformed TCP packets
(e.g., packets showing syntactically incorrect flags) for preventing abuses. Both the
L4-Responders and DPIPot are implemented in Python using the Twisted frame-
work [146]. The architecture (see Fig. 5.1) is intrinsically distributed, and Twisted
is capable of handling a large number of connections at the same time. However,
as I will show later, the deployment of responders increases the traffic reaching the
darknet by orders of magnitude.

2To avoid resource starvation, both our L4-Responders and DPIPot implement active and
inactive timeouts, dropping active (idle) connections after 60 s (10 s).

30

5.2 – Infrastructure

For the L7-Responders deployments, I rely on the honeypots organized and
distributed by the TPot project [143] that act as backend. I activate honeypots to
handle a range of popular application protocols. TPot offers a collection of third-
party low-interaction honeypots, i.e., programs crafted to simulate a vulnerable
service communicating over an L7 protocol. Most of our L7-Responders offer login
interfaces only [73], registering the brute-force attempts against services (e.g., RDP,
POP3 and IMAP). Some L7-Responders rely on more sophisticated honeypots,
e.g., simulating a vulnerable server accessible via SSH/Telnet [41], or serving pages
that mimic actual services accessible over the web [133]. The L7-Responders offer
vertical services only: They are deployed behind the standard TCP ports of the
given service, e.g., the HTTP honeypot is deployed on port TCP/80 whereas the
Remote Desktop Protocol (RDP) honeypot responds to port TCP/3389.

5.2.1 DPIswitch implementation
To study the impact of answering to traffic arriving on other ports, I implement

and deploy DPIPot. DPIPot listens to all TCP ports. As shown in Fig. 5.1, a
paramount component of the DPIPot deployment is the DPIswitch. On receiving
a new TCP connection request, DPIPot completes the three-way-handshake and
waits for the first message from the client. Before forwarding the new packet to
the most appropriate backend, the DPIswitch analyses the payload looking for the
application-layer protocol. As the name suggests, the DPIswitch integrates a Deep
Packet Inspection tool to perform payload analysis.

The choice of the most suited DPI tool to be implemented in the infrastructure
follows a careful evaluation of four well-known DPI solutions3, namely nDPI [49],
Libprotoident [10], Tstat [144] and Zeek4 (formerly Bro [116]). I restrict the choice
to these four tools, as they are open-source, flexible and well documented. The eval-
uation aims at determining which tool yields the best classification performance,
and whether it can be used in online scenarios. I use real traffic traces covering
various traffic scenarios, including operational networks, IoT scenarios, media and
games, and malware traffic. As no ground truth is available, I study the consis-
tency of classification across the solutions, investigating root-causes of conflicts.
Important for on-line security applications, I check whether DPI solutions provide
reliable classification with a limited number of packets per flow. All in all, I con-
firm that DPI solutions still perform satisfactorily for well-known protocols. They
however struggle with some P2P traffic and security scenarios (e.g., with malware
traffic). All tested solutions reach a final classification after observing few packets
with payload, showing adequacy for on-line applications.

3More details about this evaluation are reported in Appendix A.
4https://zeek.org

31

https://zeek.org

Enlightening the Darknets: Augmenting Darknet Visibility with Active Probes

The final choice fell on nDPI [49], as it proved to be the most accurate in most
of the analysed scenarios. This choice lets us obtain a flexible system, support-
ing hundreds of protocols, which is far more than what is supported in previous
projects [76].

If a known protocol is found and one of the L7-Responders can handle it, DPIPot
steers traffic to such backend; otherwise it acts like L4-Responders. Note that
DPIPot can only identify and steer traffic for cases that are client initiated, i.e.,
where the client sends the first application-layer message. Otherwise, it behaves
like L4-Responders– e.g., in telnet or SMTP, where the client waits for the server
banner before attempting to login.

Table 5.1: Service categories with their typical ports and applications. Note that
services at application level are only available for L7-Responders and DPIPot.

Category Category: Port Category: Application
All 0:65535 All below
Database 3306, 33060,∗ 1433, 4022,∗, 1434,∗ 5432,∗ 27017 mysql, mssql, postgres, mongodb
Fileserver 135:139, 445 netbios, CIFS
Mail 25, 110, 143, 465, 993, 995 pop(s), imap(s), smtp(s)
Proxy 8080, 8000,∗ 3128 generic, squid
Remote Desktop 3389, 5900, 5901, 5800,∗ 5801,∗ 5938,∗ 6568∗ ms rd, vnc, teamviewer, anydesk
Terminal 22, 2222,∗ 23, 2323∗ ssh, telnet
Web 80, 443 http(s)
None 0:65535 -

(∗) Ports that are forwarded to the L7-Responders, even if the backend (i.e., TPot) does not host any honeypot.
The L7-Responders reset the connection in these cases, as opposed to the darknet (which never answers traffic)
and the L4-Responders (which always try to open a connection request).

5.3 Methodology and datasets

5.3.1 Deployments and categories
Inside the regular /16 campus network that hosts servers and clients, I iso-

late one /23 network to perform experiments with our multiple deployments – i.e.,
darknet, L4-Responders, L7-Responders or DPIPot– in equal conditions. I split the
/23 network into /29 networks, each with 8 IP addresses. I dedicate sixteen /29
networks (all belonging to the same /24 network and hosting 8 identical respon-
ders each) to L4-Responders and L7-Responders, answering to a specific service
category. I configure 8 categories for L4-Responders and 8 for L7-Responders (see
Table 5.1). The category defines which services the responder supports. I configure
the responders to receive and handle only traffic that arrives to ports typically host-
ing services belonging to such category, silently dropping packets arriving on other

32

5.3 – Methodology and datasets

ports (e.g., as done by some firewalls). I create categories for database, file, mail,
proxy, remote desktop, terminal, and web services. I report all ports opened for
each category on Table 5.1, together with some typical applications relying on such
ports. I also create an extra category denoted as All, for which the deployments
accept all traffic going to any port. In the case of the all category in L4-Responders,
the system performs TCP handshake for flows arriving in any TCP port. For the
L7-Responders category denoted as All, the system forwards all traffic to the TPot
backend, regardless on whether there is a honeypot active on that port or not: if
no honeypot is present, the backend explicitly resets the connection.

I devote a /29 network to host DPIPot, which answers to all ports by definition.
It performs DPI on the arriving packets to identify the most appropriate responder
based on the payload, and eventually forwards traffic to a honeypot offered by TPot.
The remaining IP addresses in the /23 network operate as a classic darknet. In
particular, I configure an entire /24 network as a darknet, to serve as a baseline for
my experiments. Unless explicitly mentioned, all results using a darknet as baseline
refer to such addresses. The second /24 network partly hosts responders and partly
acts as a darknet – these latter addresses are used in Sec. 5.5 to understand the
impact of active services on neighbour darknet addresses.

5.3.2 Data capture and processing
The infrastructure captures all packets hitting the /23 darknet. I use Tstat and

store all traces on a high-end server, generating separate logs for each deployment.
I here characterize the traffic focusing on TCP flows, defined by the usual 5-

tuple (client/server IP addresses, client/server ports and transport-layer protocol).
A new flow starts when a SYN segment is received, and it terminates after the
connection is closed (in case of the active responders) or an idle time. I annotate
each flow with useful metadata and statistics, including the application protocol
identified by nDPI, if any L7 payload is present. Table 5.2 shows an overall traffic
breakdown for each of our deployments and categories.

According to the capabilities of each responder and the behavior of remote
machines, I identify different flow stages:

• SYN: Flows with only the SYN message(s), eventually retransmitted by the
client multiple times; This is the most common case on darknets, but it
happens also on the blocked ports of other deployments or when a responder
is unable to cope with the workload;

• 2WH: Incomplete three-way handshake, where the client ignores (or resets) the
SYN/ACK message, as in the case of stealth-SYN port scans;

• 3WH: Client and server complete the TCP three-way handshake, but exchange
no payload – this is expected in L4-Responders and DPIPot when clients wait

33

Enlightening the Darknets: Augmenting Darknet Visibility with Active Probes

Table 5.2: Deployments and service categories with their basic characterization. All
numbers refer to traffic of a /29 network during a full month. For direct comparison,
we report numbers only for the first /29 used as darknet. Numbers marked in bold
represent clear anomalies.

Deployment Category Flows Flows with
L7 Payload

Dest.
Ports

Sender
Addr.

DPIPot All 1214 M1 683 M1 49 8642 75 k

L7-Responders

All 17 M 12 M 64 9192 94 k
Database 3 M 166 k 65 535 70 k
Fileserver 5 M 2 M 65 535 68 k
Mail 3 M 51 k 65 535 69 k
Proxy 3 M 24 k 65 535 70 k
Remote Desktop 8 M 4 M 65 535 70 k
Terminal 6 M 3 M 65 535 82 k
Web 3 M 39 k 65 535 73 k

L4-Responders

All 8 M 3 M 49 7772 87 k
Database 3 M 294 k 65 535 71 k
Fileserver 3 M 742 k 65 535 69 k
Mail 3 M 24 k 65 535 71 k
Proxy 3 M 22 k 65,535 70 k
Remote Desktop 3 M 268 k 65 535 90 k
Terminal 4 M 292 k 65 535 71 k
Web 3 M 34 k 65 535 77 k

Darknet None 2 M 0 65 535 63 k

1,2 Anomalies discussed in the following.

for servers to initiate the conversation;

• L7 payload: Client and server open the TCP connection and exchange some
application-layer messages.

In addition, I also record malformed TCP messages, e.g., SYN/ACK likely arriving
due to backscattering or other packets with bogus TCP flags, as well as any other
protocol (UDP, ICMP, etc). These cases are however not discussed in this chapter,
as they represent only a negligible part of the overall traffic. Here, I analyze data
captured over one month, from the 15th of April to the 15th of May 2021. In total
I collected about 115 GB of traffic, corresponding to more than 1 300 millions flows
coming from more than 600 000 unique IP addresses.

5.4 Macroscopic changes in traffic
In this section I report a high-level characterization of the different deployments

to understand how much extra information one would get when starting to reply
to unsolicited traffic. For the sake of comparability, I here restrict our analysis to
8 addresses per deployment, focusing on those answering to the all category.

34

5.4 – Macroscopic changes in traffic

SYN 2WH 3WH L7 payload Other

Darknet

L4-R
esp

onder

L7-R
esp

onder

Acm
eP

ot
104

105

106

107

108

109

1010

N
u
m

b
er

o
f

fl
o
w

s

(a) Flows (notice the y-log scale)

Darknet

L4-R
esp

onder

L7-R
esp

onder

Acm
eP

ot
0

25

50

75

100

P
er

ce
n
ta

g
e

o
f

fl
o
w

s

(b) Percentage

Figure 5.2: Flows reaching different deployments.

5.4.1 Breakdown per flow stage
Fig. 5.2 reports the number of traffic flows received in each deployment, breaking

it down per flow stage. The left plot details the number of flows (notice the y-log
scale) while right plot details the share in each deployment.

The darknet observes a large majority of TCP SYN messages, with a few UDP
and bogus TCP segments (about 8% of the total). As soon as the L4-Responders
starts replying, the number of flows grows by a factor of 4 compared to the darknet
(cfr. Table 5.2). The sudden rise in the number of connection requests may generate
a short-term congestion on the L4-Responders, although the L4-Responders shall
always perform the full 3-way handshake. Thus, some flows remain in the SYN stage.
Their share is marginal as visible in the percentages in the right plot. Interestingly,
35% of the flows terminate at the 2WH stage, most likely corresponding to “host
discovery” scans with crafted SYN messages (e.g., the TCP SYN Ping performed by
Nmap5. About one forth of the open TCP flows carries no payload, i.e., likely host
discovery actions performed with TCP-connect scan6.

Moving to the L7-Responders, the number of flows doubles again. The SYN

5https://nmap.org/man/it/man-host-discovery.html
6https://nmap.org/book/scan-methods-connect-scan.html

35

https://nmap.org/man/it/man-host-discovery.html
https://nmap.org/book/scan-methods-connect-scan.html

Enlightening the Darknets: Augmenting Darknet Visibility with Active Probes

stage flows are now about 7%. Part of this traffic is again caused by the limits I
impose on our infrastructure. However, as I will zoom in later in Sec. 5.6, once I
answer traffic in some ports, more scans are observed in other ports too. This effect
increases the number of SYN-stage flows. Naturally, I observe a strong increase of
L7 payload flows, which are now about 75% of the total.

Finally, moving to DPIPot, it attracts 3 and 2 orders of magnitude more flows
than the darknet and the L7-Responders, respectively. The number of flows grows
to billions – about 70 times more than in the L7-Responders, and 600 times more
than in the darknet. Here I see around 40% of cases finishing on SYN stage, which
correspond to periods in which DPIPot hit the rate limiter. That is, the limits I
impose on the infrastructure capacity play a crucial role, likely reducing the traffic
attracted by DPIPot.

It is worth commenting that the share of Other traffic remains similar in all
deployments. This suggests that answering TCP traffic does not stimulate senders
to generate packets using UDP/ICMP.

5.4.2 Temporal evolution
Darknets and honeypots are known to receive variable numbers of flows over

time. Our setup is not different: Fig. 5.3a reports the average per-hour number
of flows received by each deployment (All category again). Notice again the y-log
scale. As expected, the darknet is steadily the least contacted deployment with a
few hundreds of flows per hour on average, except during sporadic massive scans
hitting the address space [22, 79, 137]. Both L4-Responders and L7-Responders
show a noisier pattern over time, again with small episodes of increases, sometimes
affecting multiple deployments simultaneously (as in April 25th), sometimes being
uncorrelated (as in May 7th).

DPIPot registers much more variable figures. For instance, flows per hour top
to more than 1 million on May 7th to suddenly vanish on May 12th. I will detail
this case in Sec. 5.6.3. As said above, these episodes bring DPIPot to the limits
I impose on the infrastructure. In Fig. 5.3b I break down the hourly number of
DPIPot flows according to the flow stages. I see for example that the number of SYN
stage flows is usually negligible. Yet, it increases together with the overall traffic.
This is evident during the sudden growth in the May 7th – May 12th interval, where
we see a plateau of around 350 000 flows per hour per IP address for L7 payload
stage.

This explains the first anomaly in Table 5.2: DPIPot manages to answer only
683 million flows out of potentially 1 214 million flow requests.

36

5.5 – Ports, senders and neighbors

2021/04/15

2021/04/18

2021/04/21

2021/04/24

2021/04/27

2021/04/30

2021/05/03

2021/05/06

2021/05/09

2021/05/12

2021/05/15
102

103

104

105

106

107

108

N
u

m
b

er
of

fl
ow

s

Darknet

L7-Responder

L4-Responder

AcmePot

(a) Darknet, L4-Responders-All, L7-Responders-All, DPIPot

2021/04/15

2021/04/18

2021/04/21

2021/04/24

2021/04/27

2021/04/30

2021/05/03

2021/05/06

2021/05/09

2021/05/12

2021/05/15
100
101
102
103
104
105
106
107
108
109

N
u

m
b

er
of

fl
ow

s

SYN

3WH

2WH

L7 payload

(b) DPIPot flow stage breakdown

Figure 5.3: Temporal evolution of the number of flows.

5.5 Ports, senders and neighbors
In the previous section, I commented on the effects of answering darknet traffic

in terms of traffic volumes. I now assess changes on traffic patterns along two axes:
the targeted services (i.e., probed ports) and traffic sources (i.e., IP addresses of
senders). This section answers the second question, how the presence of active
services changes ports and senders, and whether these deployments affect neigh-
bouring darknet addresses. For this purpose, I drop the temporal dimension and
analyze the entire aggregate of one-month of data.

37

Enlightening the Darknets: Augmenting Darknet Visibility with Active Probes

DPIpot
L4-Responders (ALL)

L7-Responders (ALL)
Darknet

Figure 5.4: Flow distribution per destination port. Ports are ranked according to
the received traffic volume in the darknet. Zoom on top-12 ports.

5.5.1 Changes on probed ports
The traffic volume is not evenly distributed over the exposed ports. Already

in the darknet, well-known ports are heavily requested while the rest of the ports
receive much less attention, likely part of horizontal scans. I assess how such a
distribution changes with the increase in the interactivity levels.

Fig. 5.4 reports the cumulative fraction of flows directed to each port, ranked by
port popularity (in terms of traffic volume) in the darknet. Focus on the darknet
(black curve). A handful ports receive 20% of flows. Then, the share grows almost
linearly to cover the whole port range. This plot highlights how senders spend most
of the traffic to perform horizontal scans against darknets, i.e., doing host-discovery.

When the deployments start answering requests, the picture drastically changes.
In L4-Responders, the top ports account for more than 60% of the flows. This
percentage grows to more than 70% in L7-Responders. That is, once a target is
discovered, senders activate the next stages of scans or attacks. This is clearly
visible in the inset in Fig. 5.4, which details the share of flows in the top-12 ports.
For instance, observe the increase at ports 23 (Telnet), 445 (SMB) and 3389 (Re-
mote Desktop). These ports attract way more traffic once opened (L4-Responders),
and even more if they expose actual services (L7-Responders, where I confirm that
most activity is related to password guessing and brute-force login attempts). Sur-
prisingly, the pattern is not repeated for port 5555, which is often searched due
to Android Debug Bridge services. This is the most popular port in the darknet,

38

5.5 – Ports, senders and neighbors

0 20000 40000 60000
Port Number

100

102

104

106
#

F
lo

w
s

(a) Darknet

0 20000 40000 60000
Port Number

100

103

106

#
F

lo
w

s

(b) L4-Responders

0 20000 40000 60000
Port Number

100

103

106

#
F

lo
w

s

(c) L7-Responders

0 20000 40000 60000
Port Number

100

103

106

#
F

lo
w

s

(d) DPIPot

Figure 5.5: Number of flows per destination port.

and the L7-Responders offer a honeypot on the port [4]. Apparently, either the
honeypot does not behave as expected by senders, or the service is not currently
receiving attention.

Moving to DPIPot, I register some other differences. Some hundreds of ports
get most of the flows, but the remaining ports also gets some uneven distribution of
traffic. Unlike the darknets and L7-Responders, more than 15 000 ports never re-
ceived any flows in the one-month time period, for both DPIPot and L4-Responders.
Recall that, for both cases, all ports result open during port scans. This behaviour
corresponds to the second type of anomalies reported in Table 5.2. I conjecture that
either senders get busy performing other activities on the already found open ports,
or they are more cautious and abort (or time out) scans after finding a high number
of open ports.

Fig. 5.5 clearly depicts this behaviour. For each deployment, I report the number
of flows per port, ordered by port number. L4-Responders and DPIPot miss some
ports starting from port 27000 (number of flows goes below 1 in the y-log scale).
Curiously, notice the continuous group of ports [35000 : 38000] where senders again
check all ports. For the sake of completeness, note that few ports go unchecked

39

Enlightening the Darknets: Augmenting Darknet Visibility with Active Probes

also in L7-Responders.
Fig. 5.5 illustrates also the frequency in which ports are visited. As expected,

senders usually concentrate their interest on well-known ports below 1024 for dark-
net, L4-Responders and L7-Responders. On the contrary, DPIPot attracts way
more flows on very uncommon ports. Investigating the L7 payload, these flows
carry Remote Desktop Protocol (RDP), hinting for a specific attack. I analyze this
case in details in Sec. 5.6.

5.5.2 Changes on traffic senders

DPIpot

L4-Responders (ALL)

L7-Responders (ALL)

Darknet

Figure 5.6: Fraction of flows per sender IP address.

I here investigate changes seen in the set of senders contacting the deployments.
Fig. 5.6 reports the total fraction of flows from each sender IP. The x-axis reports
with a log scale each sender IP ranked according to the volume, for each deployment.

In the darknet, the three most active senders generate 40% of flows. These are
well know scanners reported multiple times in blocklists. The top-10 most active
responsible of 63% of total flows. Some of them are sending some hundreds probes
per hour for the whole time. Some come, probe at high rate (hitting 20 000 flows
per hour) and disappear after completing their job. These are also reported mul-
tiple times. At last, I observe a tail of more than 63 000 IP addresses. This is in
line with previous work [22] that shows darknet traffic is dominated by misconfig-
ured hosts and victim of attacks producing backscattering, with only a minority of
senders actually performing scans and attacks. Comparing to L4-Responders and
L7-Responders, I observe that flows are more distributed across senders, with the
top-10 of them accounting for 20% and 32% of traffic only. Still, the total num-
ber of IP addresses is comparable, reaching 87 000 and 94 000. Looking at the tail
of the distribution, I observe a lot of senders which exchange few flows with our
deployments.

40

5.5 – Ports, senders and neighbors

The figure is completely different in DPIPot where the top-10 most active
senders account for 95% of all flows. By checking, these senders are involved in
the RDP abuse observed on non-standard ports. They generate millions of flows
per hour, triggering the rate limiting countermeasures we implemented in DPIPot
(cfr. Fig. 5.3b).

Fig. 5.7 offers a visual representation of the activity of the top-1000 most active
senders over time. Each row corresponds to a single IP address. A dot is present
if that IP address is active in that hour. I register the presence of senders that are
active most of the time, and the continuous arrival of new senders. For instance, a
group of 200 new senders appears on day 20 in the darknet. Such bulk arrivals are
likely due to bots that perform a coordinated scan reaching our address space. In
general, different patterns are visible: some senders are persistent, while others keep
coming back periodically. A few interact only for some time before disappearing
and never coming back. The latter is more visible in Fig. 5.7b for DPIPot rather
than the darknet in Fig. 5.7a This sudden and bursty activity patterns are typical
of being part of botnets that perform their scan and attacks to then move on the
following victims.

Next, I compute the Jaccard indexes to check if senders contacting different
deployments are the same. Given two deployments, I extract the set of IP addresses
seen in each of them for the whole period, and compute the ratio between the
intersection of the sets over the union. Table 5.3 details the results, where I further
distinguish between the darknets in the same /24 address space as the deployments,
and the other /24 network. The latter distinction allows us to answer the question
of whether the presence of responders impacts the neighboring addresses.

It turns out that activating responders in the same /24 address space “pollutes”
the darknet addresses, which get contacted more frequently by the same senders
that reach our responders. Indeed, the Jaccard index shows that 34-43% of IP
addresses are in common between the responders and the darknet sharing the same
address space. Conversely, less than 15% of senders seen in the other darknet
are also seen in the responders. This suggests that senders involved in the initial
scan phase are not the same senders involved in the subsequent phases. Activating
responders thus increases the visibility on senders. The low value of the Jaccard
index is due to occasional senders hitting our address space - see the tail in Fig. 5.6
- due to backscattering, misconfigurations, and bugs [22].

Table 5.3: Jaccard Index of senders hitting different deployments.

Dark/same L4-Resp L7-Resp DPIPot
Dark/other 0.128 0.142 0.137 0.143
Dark/same – 0.366 0.341 0.420
L4-Resp – – 0.429 0.396
L7-Resp – – – 0.372

41

Enlightening the Darknets: Augmenting Darknet Visibility with Active Probes

(a) Darknet (b) DPIPot

Figure 5.7: Activity pattern of top-1000 sender IP addresses. Each row corresponds
to a sender IP address.

5.5.3 Who does what?
At last, given the diversity of the destination ports and the sender IP addresses,

I quickly investigate what attack or scan patterns the top-100 most active senders
perform in each deployment. For the sake of brevity, I report only the simplest and
the most complex and diverse scenario of the darknet and the DPIPot, but similar
activities are visible on L4-Responders and L7-Responders as well. Fig. 5.8 plots
the activity pattern. The x-axis reports the destination port of each flow, while
each row refers to a single sender, ordered by its IP address, i.e., putting nearby
addresses starting with the same initial octet. A dot is present if that IP address
sends a flow to such port. The darker the color, the larger the amount.

Check first Fig. 5.8a for the darknet. Clear patterns emerge - some I highlight
using colors. First, some few horizontal scans are visible (cyan), with senders
checking all ports. Second, I observe some vertical scanners (green) - i.e., addresses
that target only few ports. Third, some senders target a large subset of ports,
stopping the scan after some thousands of probes (dark blue).

Moving to Fig. 5.8b for DPIPot, some clearer patterns emerge. Besides the
horizontal scanners (cyan) (which however do not probe all ports anymore - cfr.
Fig. 5.5d), very targeted scans are visible on very few ports with up to thousands of
flows (green). These are vertical attacks that target well-known ports and services.
Not shown here, they are present in L7-Responders too. A large number of coordi-
nated scanners emerge too, i.e., senders that target the same few thousands ports
(most of which in the [1:1024] range), and fewer selected ports higher than 1024
(black). Most of these are senders involved in the RDP attack on non standard
ports. At last, some smaller group of scanners appear (dark blue); each scanner

42

5.6 – Gain in service-specific deployments

(a) Darknet

(b) DPIPot

Figure 5.8: Flows from top-100 sender to destination port. Addresses are sorted
numerically.

probes a different subset of ports, splitting the port range in a coordinated effort.

5.6 Gain in service-specific deployments
Here, I focus on the extra information L4-Responders, L7-Responders and

DPIPot offer compared to darknets. By evaluating the traffic gain of the several

43

Enlightening the Darknets: Augmenting Darknet Visibility with Active Probes

L4-Responders (ALL) L7-Responders (ALL) DPIpot

Figure 5.9: Gain for most targeted ports.

deployments, I answer our last two questions, i.e., whether the presence of spe-
cific services attracts traffic to other services, and what happens when one starts
answering to non-standard ports.

5.6.1 Gain in service requests
To quantify the extra traffic per deployment, I define the Gain as the ratio

between the number of flows seen on the 8 IP addresses of a specific port(s), and
the number of flows directed to the same port(s) on the 8 IP addresses belonging
to the darknet. The aim of this quantity is to define the amount of additional data
gained by active probes compared to non-active ones.

First, I run a preliminary test to verify whether the gain changes when com-
paring IP addresses belonging to the same deployment. For this, I take all /29
darknets included in the single non-polluted /24 address space, and compute – for
each destination port – the gain for each darknet pair. I verify that the distribution
of the pairwise gains is centered between 0.9 and 1.1. I therefore consider significant
any gain outside this range.

Fig. 5.9 shows the gain for some selected ports. I identify five major categories
of behavior, which are labeled with capital letters. I provide two examples per
category:

A) Invariant (around 50 000 ports): the traffic reaching these ports does not
change significantly from the darknet to the other deployments. Ports like
2 000 and 6 379 receive only port scan attempts, whose volume does not change
when responders are present;

B) Homogeneous (around 13 000 ports): senders find possible services on some
open ports. These open ports trigger senders to contact several other ports
on the host – e.g., ports 2 375 and 2 323 in the figure. However, for these

44

5.6 – Gain in service-specific deployments

25 46
5

11
0

99
5

99
3

14
3

44
5
143

3
700

1
808

8
60

001108
0
312

8

Port Number

10°1

100

101

102

A
m

p
li
fi
ca

ti
o
n

L4-Responder L7-Responder

ɑ) β) Ɣ)

(a) Mail

590
0
338

9
590

1 445143
3
700

1
808

8 25 22339
4 53339

7
312

8

Port Number

10°1

100

101

102

103

A
m

p
li
fi
ca

ti
on

L4-Responder L7-Responder

ɑ) β) Ɣ)

(b) Remote Desktop

22 23
872

8
829

1
232

3 445222
2
143

3
700

1 25
590

1
312

8
108

0

Port Number

10°1

100

101

102

103

A
m

p
li
fi
ca

ti
o
n

L4-Responder L7-Responder

ɑ) β) Ɣ)

(c) Terminal

Figure 5.10: Gain for selected deployments. β marks cases of Side-Scans.

ports, senders do not send any L7 payload - e.g., because waiting for servers
to initiate the exchange. Here, L7-Responders and DPIPot behave just like
L4-Responders;

C) L7 client-initiated (around 500 ports): these are clear cases of open services
on default ports with client-initiated protocols, e.g., SSH and RDP on ports
22 and 3 389. Both L7-Responders and DPIPot are effective to engage with
the senders. Since frequent attacks are present, we observe very large gains.
L4-Responders are less interesting for the senders, with reduced gain;

D) L7 server-initiated (around 10 ports): open services on default ports for which
the senders expect the server to initiate the L7 exchange. In this case, the
L7-Responders vertical honeypots are more effective, while DPIPot behaves as
the L4-Responders, e.g., on SMTP and SMB on ports 25 and 445, respectively;

E) Large-scale attacks on non-standard ports (around 1 500 ports): Senders dis-
cover particular services on non-standard ports and perform large attacks.

45

Enlightening the Darknets: Augmenting Darknet Visibility with Active Probes

Table 5.4: Traffic gain for L4-Responders and L7-Responders. Cases in which no
gain is observed is marked with a hyphen.

L4-Responders
DB File Mail Proxy RD Terminal Web Others

DB 15.4 4.3 – – – – – –
File 1.6 42.0 – – – – – –
Mail 1.5 4.1 6.5 – – – – –
Proxy 1.5 4.2 – 2.7 – 1.2 – 1.2
RD 1.5 4.2 – – 21.2 1.6 – –
Terminal 1.5 4.1 – – – 9.3 – 1.3
Web 1.5 4.2 1.4 1.2 – 1.3 8.1 –

L7-Responders
DB File Mail Proxy RD Terminal Web Others

DB 9.3 3.9 – – – – – –
File 1.6 116.3 – – – – – –
Mail 1.5 3.6 9.6 – – – – –
Proxy 1.5 3.8 – 2.8 – – – 1.2
RD 1.5 3.8 – – 254.9 – – –
Terminal 1.5 3.6 – – – 46.6 – 1.2
Web 1.5 3.8 1.2 1.2 – 1.2 5.3 –

Only DPIPot, which identifies the L7-protocol, spots such behavior. In par-
ticular I have witnessed an extensive RDP attack on multiple non-standard
ports, resulting in around 1 500 ports for which DPIPot gain grows to almost
1,000.

5.6.2 Targeted services and Side-Scans
So far I focused on the responders that support All services at the same time.

I now check what happens if I partition responders so that they behave as ver-
tical services. For this, I consider L4-Responders and L7-Responders, with cate-
gories/ports/applications defined in Table 5.2. For each category, we compute the
gain with respect to the corresponding categories/ports/applications in darknet
addresses.

Table 5.4 summarizes results. For each vertical deployment, we report the gain
only when significant. Rows report the category of the deployment while columns
report the corresponding categories in the darknet as reference. As expected, acti-
vating specific services attracts the attention of senders on them (see main diagonal,
in bold). L4-Responders suffice to observe more traffic, but L7-Responders clearly
generate much more interaction. Exceptionally, L4-Responders see higher gain than
L7-Responders in some cases (e.g., DB). This is likely a consequence of our lack of
honeypots for some ports of these categories in the L7 backends (see Table 5.1).
In this case, while L7-Responders reply with an uninteresting response (reset the
connections), the limitation to TCP handshake offered by L4-Responders further
engages the senders.

Surprisingly, I observe also significant gains on services for which the deployment

46

5.6 – Gain in service-specific deployments

9 80 81
8080

8291
8081

2375
9200

2181
8088

Port Number

0

2

4

6

8
%

F
lo

w
s

(a) HTTP

22
6001

6000
8422

8522
8722

9000
8322

18522
8822

Port Number

0

20

40

60

80

%
F

lo
w

s

(b) SSH

1433
102

3389
1962

10001
3433

2433 21 22
28015

Port Number

0

20

40

60

80

100

%
F

lo
w

s

(c) MsSQL-TDS

3389
6000

3456
1025

49165
32772

49172
20031

6346
49188

Port Number

0.0

0.2

0.4

0.6

0.8

%
F

lo
w

s

(d) RDP

Figure 5.11: Flows percentages on top-10 ports for DPIPot and different L7 proto-
cols.

does not answer, i.e., where it drops the SYN packets. Regardless of the deployment,
once senders find an IP address that is alive (i.e., answering a popular service), they
target other ports in the DB and File categories. The case of the Web category is
particularly interesting: When a service is found active on ports typically hosting
HTTP services, senders apparently start targeting multiple other services/ports on
the same host. I refer to this phenomenon as Side-Scan activity.

Fig. 5.10 reports some of the most relevant Side-Scan examples. α) marks the
well-known (and open) ports for the category. Here, I get as expected significant
gains, with L7-Responders getting significantly more traffic than L4-Responders
for some honeypots. β) marks those Side-Scan ports that suddenly get targeted -
despite being blocked for the particular deployment. These are the ports senders
target in vertical attacks/scans triggered by a different category. Finally, γ) exem-
plifies some ports that remain invariant, i.e., they are neither the initial target, nor
reached in Side-Scans. Most ports fall in this class.

These cases clearly show benefits of activating some services on darknets. The

47

Enlightening the Darknets: Augmenting Darknet Visibility with Active Probes

vertical deployments allows the discovery of ongoing Side-Scan for services, which
otherwise would have remained unnoticed in the darknet. When opening ports of
the Mail category (plot in the left-hand side), I observe significant gains on ports
(445, 1 433), which are usually used in File and DB services. I record Side-Scans
also on ports (7 001,8 088). Similar effects can be seen for the Remote Desktop
category.

Less unexpected, ports (2 222, 2 323) are often used as alternative ports for
terminal services. Senders Side-Scan these ports when finding standard terminal
ports open (see Fig. 5.10c). Ports (8 728, 8 291) are known to be vulnerable services
in old versions of software routers. In particular, I observe frequent “port-knocking”
attempts: the sender checks for port 22 first; if open but no banner is offered, it
checks ports (8 728, 8 291). L7-Responders do offer a banner on port 22. Thus, flows
on ports (8 728, 8 291) are smaller than in L4-Responders that offers no banner on
port 22 [124].

5.6.3 DPIPot additional visibility

Table 5.5: Top-5 protocols recognized in DPIPot.

Protocol Flows Sender
Addr.

Dest.
Ports

% of Flows on
Standard Ports

RDP 329 652 678 1 415 28 333 0.8
HTTP 444 715 13 705 9 381 6.2

TLS 221 565 2 806 11 999 4.6
SSH 119 698 1 097 187 72.9

MsSQL-TDS 31 596 3 193 448 92.6

Eventually, I dig into DPIPot data to see if its ability to reply to L7 requests
on any port increases visibility and originates significant changes.

Table 5.5 reports a summary of the most common application protocols detected
by DPIPot. I observe a vast majority of RDP flows - with 1 415 senders generating
more than 330 M flows in one month. These senders target more than 28 thousand
ports, with the standard port 3 389 accounting for only 0.8% of flows. That is, the
majority of this attack would go unnoticed on darknets. I already recorded this
behaviour in Fig. 5.5 and Fig. 5.6 where the IP addresses involved in this attack
dominate the traffic DPIPot collects. DPIPot spots also other popular protocols
like HTTP, TLS and SSH, where thousands of senders target thousands of ports.
Some of these attacks focus mostly on the default port - like SSH or MsSQL-TDS
where 72.9% and 92.6% of the flows goes to the default ports.

To check how senders choose the port to probe for a given protocol, Figure 5.11
details the most popular ports target of some L7 protocols. Start from the HTTP
case. Port 9 results as the most popular port to receive HTTP requests. This is a
Side-Scan performed by an Internet mapping project of the University of Michigan,

48

5.6 – Gain in service-specific deployments

which targets port 9 (about 30 000 flows) and 7 (about 50 flows only), sending bogus
HTTP requests [103]. This scan activity would likely go unnoticed on traditional
honeypots. Besides this curious scan, DPIPot recognizes and correctly handles
HTTP requests on non-standard ports. Given the popularity of solutions based on
HTTP protocol, it is not surprising to see senders probe open ports with HTTP
requests.

Move to SSH now. Here, most flows target port 22. Yet, the senders do check
other ports where system administrators may move the SSH service, e.g., by adding
some digits to the 22 ports as in (8 422, 8 522, 18 522). This behavior suggests a
targeted Side-Scan where senders generate the port to target with some domain-
knowledge driven algorithm.

The Side-Scan using the MsSQL-TDS protocol is even more vertical. Most of
the attacks are directed to the default port 1 443, but some few requests go to port
102, likely trying to abuse some Microsoft Exchange service.

At last, the RDP case is worth more details. RDP has become a viable solu-
tion for malicious hosts for installing ransomware [153] via attacks that start with
password brute-force [26], or exploit a well-known backdoor [13].

Thanks to DPIPot, I observe 1 415 senders performing a password brute-force
attack. The attackers however execute the brute-force in almost any port announc-
ing RDP support. Figure 5.12 shows the targeted ports, ranked per number of
received flows. Notice the log-log scale. The step-wise behavior of the figure sug-
gests the presence of a group of 1 000 ports that gets most requests, followed by
a second group of ports which are contacted less frequently. This second group
may be due to an initial discovery horizontal scan, after which senders come back
to perform the brute force password attack. The inner plot shows that there is
also a clear pattern for the top-300 ports. Checking the behavior of each sender, I
recognize three macro-categories:

• Senders (around 700) that vertically probe only standard RDP port 3 389 and
the immediately adjacent ones;

• Senders that focus on a small group of selected ports (e.g., ports 1 289, 23 390,
1 025, 3 418, 50 000, 554, 3 336) - likely chosen via domain knowledge. The
four IP addresses involved in this attack belong to the same network and have
never been reported at the time of writing. They generate 3.5 million flows;

• Senders that scan thousand of ports (16 IP addresses). These addresses have
been reported as heavy scanners [150] and perform very similar activity. This
suggests they are part of the same botnet.

49

Enlightening the Darknets: Augmenting Darknet Visibility with Active Probes

100 101 102 103 104 105

Port Rank

100

102

104

106

#
F

lo
w

s

33
89

49
18

5

56
32

10
05

0

33
86

0

106

2 · 106

Figure 5.12: Number of flows per port for RDP traffic. Zoom on first 300 ports in
inner axis.

5.7 Conclusion
In this chapter I analyzed the impact of deploying more and more interactive

responders on the darknet address space. The obtained results show the potential
of systematically engaging with senders. I confirm some already known patterns,
such as the expected increase in traffic when active services are deployed on the
darknet: Indeed, the number of flows grows by orders of magnitude with increas-
ingly interactive responders. Vertical honeypots attract 10 times more flows than
darknets. DPIPot pushes this increase to 600 times, thanks to its ability to answer
application traffic on non-standard ports. This growth creates temporal bursts of
traffic that challenge the deployment itself and call for protection mechanisms to
avoid collapsing the infrastructure and biasing the collected data.

I further observe that answering to some ports engages senders, which activate
the next stage in their scans or attacks. This increases the traffic and sometimes
challenges the monitoring infrastructure. Answering all ports traps senders in some
activities, possibly limiting/biasing their activity. Moreover, most of traffic comes
from few thousands senders that are involved either with vertical or horizontal
scans and attacks. IP addresses involved in darknet scans are typically different
from those seen in the later attack stages. And backscattering generates occasional
senders that pollute senders sets. Unlike vertical honeypots, DPIPot allows the
observation of new scan patters where also non-standard ports get the attention of
attackers.

I also shed lights on new events, such as the Side-Scans attracted by opening
different services both on standards and non-standard ports. Such patterns would
remain otherwise unnoticed on darknets or classic honeypots alone, while it is
clearly highlighted by DPIPot.

50

5.7 – Conclusion

I show that each deployment has its own benefits, unveiling different activities
and bringing new perspectives. Combining the several interaction levels augments
visibility. However, deployments may impact each other (e.g., polluting neighboring
addresses) and may foster traffic increase to the point of saturating the monitoring
infrastructure.

Beyond these findings, several challenges are waiting ahead of such hybrid in-
frastructures. For example, the large amount of collected information calls for
automatic methods for analyzing the data, uncovering correlation between deploy-
ments, fingerprinting senders and, ultimately, identifying the rise of novel scans and
cyberthreats.

51

52

Chapter 6

Sensing the Noise: Uncovering
Communities in Unsolicited
Traffic

The work I present in this chapter is mostly taken from my paper Sensing
the Noise: Uncovering Communities in Darknet Traffic, presented at the 18th

Mediterranean Communication and Computer Networking Conference (MedCom-
Net 2020) [135].

6.1 Introduction
As highlighted in the previous chapters, understanding the underlying phenom-

ena behind unsolicited traffic is challenging given the large amount of packets and
the heterogeneity of events generating them. Being darknets and honeypots a con-
tinuous targets for the most diverse types of scans, a manual exploration of the
collected traces is not possible, nor efficient. The analysis of such traffic requires
methods to separate occasional (and likely unimportant) events from large-scale
coordinated actions, e.g., due to botnets. Several works propose methods to cate-
gorize darknet traffic [2, 57, 47, 79, 44], but they usually rely on domain knowledge
to create static categories of traffic (e.g., misconfiguration, backscattering, etc). As
such, they may miss events that diverge from expected signatures. More important,
there is a lack for automatic ways to uncover correlations among different events,
which could help reducing the manual work when interpreting unsolicited traffic.

When processing unsolicited traffic, grouping packets from different sources may
suggest the presence of coordinated activities, due for example to the propagation
of a botnet infection over different hosts. Such coordinated actions may result in
temporal or spatial correlations, e.g., apparently unrelated sources cooperating to
scan for a particular service, and they are invisible if hosts or packets are analyzed

53

Sensing the Noise: Uncovering Communities in Unsolicited Traffic

individually. Data should therefore be represented in an informative way, so to ease
the inspection and uncovering of hidden patterns.

This chapter investigates whether graph mining techniques can help to uncover
such macroscopic coordinated events in unsolicited traffic. I represent traffic as a
bipartite graph linking traffic sources to the contacted destination ports. I then
run community detection algorithms over such graphs, in the search for devices
performing similar activity against the same sources in the same time interval.

I firstly evaluate the methodology using only TCP traffic, collected in two dis-
tinct darknets. I tune and test the methodology on three weeks of data captured
from a darknet in Italy, composed by 3 /24 IPv4 networks. I then apply the method-
ology to one day of traffic captured in a /19 darknet deployed in Brazil. I finally
validate the methodology on one month of honeypot traffic reaching DPIPot (cfr
Sec. 5.6.3). In all cases I found communities performing very homogeneous activity.
I discuss the composition of the most relevant communities, their characteristics
and peculiarities, showing some relevant behaviors that the tested algorithm is able
to automatically detect. In particular, I find (i) communities composed by thou-
sands of sources that focus on popular services; (ii) communities that focus on
horizontal scans for vulnerable services.

This work is a first step towards a methodology to automate the analysis of
darknet traffic. The results confirm that unsolicited traffic can be automatically
characterized by using graph mining techniques to highlight interesting patterns
over space and time. In the following, Section 6.2 describes the applied graph
mining methodology. Section 6.3 describes the datasets and provides a basic char-
acterization of the data. Sections 6.4 and 6.5 describe the output of the graph
mining and community detection analysis on darknets and honeypots, respectively.
Section 6.6 concludes the chapter.

6.2 Methodology
In this section I describe the graph definition (Sect. 6.2.1) and the community

detection algorithms (Sect. 6.2.2) I apply.

6.2.1 Graph definition
I define a graph G(V, E) with V being its set of nodes and E its set of edges. I

want to represent the activity of remote sources sending traffic to my infrastructure.
After I take into account different aspects, I pick a definition for G(V, E) that
provides us not only good semantics, but also a manageable graph.

G(V, E) is a weighted bipartite graph. Nodes in V represent, on the one hand,
the sources sending traffic to darknets and honeypots and, on the other hand,
the destination ports contacted by the sources. I call S the set of nodes in V

54

6.2 – Methodology

representing the traffic sources and P the set of nodes representing the contacted
ports. There is a edge e between a node in S and a node in P if the source has sent
packets to the given port. The weight we of e is the number of packets observed
for the pair of nodes in the given time interval.

I focus on port numbers as they provide an indication of the services searched
by sources. The decision on how to represent the sources is however harder, and
darknets and honeypots data require to be treated differently. In the darknet case,
creating a node for each single sender IP address may result in very large graphs,
and therefore lead to scalability issues. Grouping addresses according to networks
is instead a more prominent alternative. To avoid setting a completely arbitrary
aggregation, here I map the IP addresses to their respective Autonomous Systems
(ASes).1 As such, I report coordination among IP addresses that belong to different
ASes. For the DPIPot case, instead, I extract a separate graph for each L7-protocol
(see Tab. 5.5). By doing so, I am able to refine the granularity of the source nodes
up to the single source IP address, still maintaining the problem tractable.

6.2.2 Detecting communities
Community detection aims at finding subgroups of nodes that are densely con-

nected – i.e., forming communities. In this specific case, communities would rep-
resent sets of ASes (IPs) that contact similar sets of destination ports in a given
time interval. For instance, a group of remote sources that behave similarly due
to a botnet infection, or nodes under the control of the same attacker in distinct
source ASes (IPs), that aim at finding vulnerabilities on similar targets.

I here consider the Greedy Modularity Algorithm (GMA) [25].2 This technique
measures how strongly a graph can be separated into modules – i.e., groups of nodes
that are strongly connected inside the group, while loosely connected with nodes
belonging to other groups. The idea behind the algorithm is that a random graph
is not expected to show cluster structures with condensed nodes and edges, while
nodes having some sort correlation will form a modular structure. To recognize
modular structures, the GMA exploits the concept of modularity [110], defined as:

Q = 1
2m

∑︂
i,j

[wij − kikj

2m
]δ(ci, cj) (6.1)

where wij represents the weight of the edge between node i and node j, ki

is the sum of the weights of the edges on i, ci is the community to which i is
assigned, δ(u, v) is 1 if u = v and 0 otherwise, and m = 1

2
∑︁

i,j wij. The algorithm

1https://pypi.org/project/pyasn/
2I have also considered the Label Propagation Algorithm [118], which however produces less

meaningful results, e.g., putting almost all nodes in a single community.

55

Sensing the Noise: Uncovering Communities in Unsolicited Traffic

starts by initializing a community per node; at the first iteration it hence yields |V |
communities. The second iteration proceeds by calculating the modularity between
each nodes and its neighbours, performing the merge between the pair of nodes
that have the highest modularity gain. At each iteration the algorithm merges
together the neighbouring communities yielding positive gains in modularity. It
stops when it is unable to merge any new elements to any community. As G(V, E) is
a bipartite graph, our communities will contain both nodes belonging to S (sources)
and P (ports). Every packet (flow) in my datasets, which originate the edges
in G(V, E), is labeled with two communities: The community of its source AS
(IP) and the community of its destination port. When quantifying activity of
communities in terms of packets, I therefore split results into AS (IP) communities
and port communities. In other words, an AS (IP) si will belong to a single AS (IP)
community cj (also containing other sources that have performed activity similar to
si), but its activity will be reflected into more than one port community, implying
that not all ports contacted by the si are also part of cj. The same concept applies
when tackling the problem from the point of view of the destination ports.

6.3 Darknet datasets
I rely on packets captured from the Italian and Brazilian darknet, respectively.

I tune and evaluate the methodology using three weeks of traffic collected on the
Italian darknet in January 2020. Afterwards I use the Brazilian traces to confirm
my findings (see Chapter ?? for the datasets characterization). Since both dark-
nets are physically located in different continents and logically located in far away
IPv4 ranges,3 I can verify whether the main events observed in a darknet are also
observable in another network.

In the following I report some basic characteristics of the darknet traffic. Note
that I show only results for the Italian darknet, as they are needed for tuning the
methodology. Figures for the Brazilian darknet are qualitatively similar, even if
it receives much more packets, since it aggregates more addresses than the Italian
one.

6.3.1 Popularity of ASes
Figure 6.1 breaks down the data according to source ASes. Different lines

represent each of the three weeks in the data, I analyse every week independently
from the others.

3Privacy requirements imposed by the network operators prevent me from disclosing the IPv4
prefixes hosting the darknets.

56

6.3 – Darknet datasets

100 101 102 103 104

AS rank

100

102

104

106

Pa

ck
et

s

W1
W2
W3

(a) Packets per AS

100 101 102 103 104

AS rank

100

102

104

Po

rt
s

W1
W2
W3

(b) Contacted ports per AS

Figure 6.1: Per-AS breakdown in the Italian darknet. Notice the log-log scales.

Figure 6.1a shows the number of packets received from each AS. ASes are ranked
in the x-axis according to the number of packets they send. Results are almost
coincident for the three weeks. Most ASes are populated by sources which send
only few packets to the darknet in a week (notice the log-log scale). Yet, a small
group hosts some heavy hitters which send thousands of packets. Notice how the
top 1 000 ASes are origin of more than 1 000 packets each, some of them of hundreds
of thousands of packets (leftmost part of the plot).

More interesting, Figure 6.1b shows the ranking of ASes according to the number
of destination ports their hosts contact. We see that only a small number of ASes
targets 100 ports or more (leftmost points). Hosts targeting lots of destination ports
are likely performing Internet scans. The remaining ASes target a small number of
destination ports, suggesting either targeted activity or random behaviour – e.g.,
hosts in different ASes collaborating for distributed port scans.

6.3.2 Popularity of ports
Figure 6.2 depicts a breakdown according to destination ports. As for the

previous section, I show only results for the Italian darknet.
Figure 6.2a depicts the number of packets received by each port. Again only a

small subset of ports sees a significant number of packets. I observe that most of the
65 536 available TCP ports do not receive any packets in a week, whereas most of
the targeted ports receive less than 100 packets (notice the log scales). Figure 6.2b
depicts the number of unique ASes that contact each port. The leftmost part of
the plot shows that only a minor number of ports is contacted by a large number
of ASes. Only the most contacted ports receive packets from 30 or more ASes.

The ports receiving lots of packet are the ones corresponding to services often
targeted by remote attacks. In Figure 6.3 I highlight the most contacted ports

57

Sensing the Noise: Uncovering Communities in Unsolicited Traffic

100 101 102 103 104

Port rank

100

102

104

106

Pa

ck
et

s

W1
W2
W3

(a) Packets per Port

100 101 102 103 104

Port rank

100

102

104

A

S

W1
W2
W3

(b) Source ASes per Port

Figure 6.2: Per-port breakdown in the Italian darknet. Notice the log-log scales.

23 1433 445 80 81 8080 5555 8545 22 33890

5

10

15

20

%

Week 1
Week 2
Week 3

Figure 6.3: Percentage of packets directed to the top-10 destination ports.

in the Italian darknet, along with the percentage of packets received by each of
them. I see that ports hosting terminal services (e.g., port 23, 22 and 3389), web
servers (e.g., ports 80 and 8080) and databases (e.g., port 1433) dominate the list,
attracting large percentage of traffic.

All in all, I record heavy-tails in the popularity of both ASes and ports. For
building the graphs in the coming sections, I filter out traffic going to unpopular
ports. This step is relevant, since some graph mining algorithms do not scale
well for large graphs. I set the threshold at 100 packets based on Figure 6.2a.
I argue that most packets going to those ports are due to misconfigurations and
backscattering [137]. The latter, in particular, are packets sent by victims of spoofed
IP attacks, which therefore are less likely to show interesting coordination. This
threshold allows to filter out (on average) 93% of the ports, while still retaining
98.7% of the observed packets in the traces. Given that my objective is to identify
the spread of wider phenomena and possible coordinated actions among ASes, I
choose instead not to set a threshold to filter out the sources.

58

6.4 – Darknet communities

6.4 Darknet communities
In this section I summarize the communities found in both darknets. The

resulting graphs are composed by an average of around 16 000 nodes and 67 000
edges per week (Italy), and around 32 000 nodes and 142 000 edges (Brazil).

6.4.1 Community popularity
Figure 6.4 provides a high-level view of the communities found for the first

analyzed week (day in the BR case). The community detection algorithm has
found 18 (20) communities of variable sizes for Italy (Brazil). The figure shows the
percentage of packets per community. Recall that each packet may be associated
with 2 communities, one for its AS and one for its destination port. The total
number of packets per community is however very similar regardless on whether
ports or ASes are considered for this association.

The top three communities are involved in more than half of the total weekly
traffic in both darknets. Intuitively, these communities may include sources search-
ing for common Internet services, e.g., scans for the popular ports seen in Figure 6.3.
I will investigate this hypothesis later. Observe that only the top 12 (13) commu-
nities in Italy (Brazil) have a significant number of packets. Communities with
negligible number of packets are mostly formed by a few ASes that target a single
port. I ignore these negligible communities in the analysis that follows. Tables 6.1
and 6.2 report a more detailed breakdown of each community. The communities
are sorted as in Figure 6.3, according to the number of packets they include. Most
of the communities target all the available addresses in the darknets. Some of the
largest communities prove to collect either more sources (as in IT1 or BR0), or
more destinations (as in IT3 and BR3). Only by having a look at these data I
am able to identify more specific and less evident events as possible net scans on
a single port (e.g., as in IT10, IT17 and BR17), or neglect what really may seem
isolated phenomena, as the ones in BR13.

6.4.2 Community structure
Figure 6.5 summarizes the structure of popular communities. It depicts a scatter

plot that compares the number of ports and ASes in the communities. Every dot
represents a community, and the dot sizes represent the average number of IP
addresses per AS belonging to it. It assists in understanding how pervasive the
activities are in the ASes, e.g., whether only some few clients per AS participate in
suspicious activities, or whether lots of hosts in the ASes join them.

Focusing on the top figure (Italy), see how the communities that group more
ASes (i.e., IT1, IT4 and IT0) have a low number of hosts. Moreover, these ASes
send packets to a small number of destination ports. These communities are also

59

Sensing the Noise: Uncovering Communities in Unsolicited Traffic

IT
4

IT
0

IT
2

IT
3

IT
1

IT
7

IT
8

IT
6

IT
9

IT
5

IT
12

IT
13

IT
16

IT
10

IT
15

IT
14

IT
11

IT
17

Community

0

5

10

15

20

%
 P

ac
ke

ts

ASes
PORTS

(a) Italy - Week 1

B
R

1
B

R
0

B
R

2
B

R
8

B
R

3
B

R
4

B
R

6
B

R
9

B
R

10
B

R
7

B
R

15
B

R
12

B
R

11
B

R
5

B
R

16
B

R
18

B
R

19
B

R
17

B
R

14
B

R
13

Community

0

10

20

%
 P

ac
ke

ts

ASes
PORTS

(b) Brazil - Day 1

Figure 6.4: Distribution of packets per community.

among the largest ones uncovered by the modularity algorithm. In a nutshell,
the results suggest the existence of sparse sources, distributed in a large number
of ASes, targeting some specific (popular) ports. This signature matches scans
towards specific services, carried on by very distributed sources (e.g., botnets).

Focus now on communities IT3 and IT7 in the same figure. Those communities
are formed by a low number of ASes. However, these ASes present a large number
of IP addresses. More interestingly, the communities target a large number of
destination ports. In other words, I record a small number of ASes in which a large
number of IP addresses contribute to scan thousands of destination ports. These
characteristics are typical of horizontal scans, such as those performed by tools like

60

6.4 – Darknet communities

Table 6.1: Basic statistics per community - IT

Community # Ports # ASes # server IPs # client IPs
IT4 895 2739 760 92122
IT0 222 1316 760 88864
IT2 1426 410 760 8449
IT3 2717 19 760 1072
IT1 439 6581 760 118269
IT7 1519 28 760 3073
IT8 401 19 760 6490
IT6 149 176 760 2921
IT9 105 6 760 359
IT5 89 139 760 2353
IT12 121 6 760 366
IT13 109 2 760 11
IT16 30 2 760 92
IT10 1 1 384 1
IT15 17 1 760 100
IT14 6 1 760 32
IT11 6 1 6 3
IT17 1 1 102 1

Table 6.2: Basic statistics per community - BR

Community # Ports # ASes # server IPs # client IPs
BR1 4283 156 8192 3123
BR0 2632 10940 8192 267880
BR2 13637 68 8192 2035
BR8 12513 40 8192 5841
BR3 18053 65 8192 2549
BR4 4628 36 8192 1873
BR6 417 170 8192 2424
BR9 796 75 8192 5240
BR10 450 7 8192 150
BR7 341 5 8192 21
BR15 454 6 8192 1051
BR12 1721 6 8192 633
BR11 488 9 8192 196
BR5 21 1 2638 176
BR16 4 2 8192 13
BR18 12 1 8192 4
BR19 4 1 6168 4
BR17 1 1 8190 1
BR14 2 1 1876 2
BR13 1 1 1 1

61

Sensing the Noise: Uncovering Communities in Unsolicited Traffic

0 1000 2000 3000 4000 5000 6000 7000
ASes

0

500

1000

1500

Po
rt

s

Hosts per AS
(0, 10]
(10, 20]
(20, 30]
(30, 40]

(40, 50]
(50, 100]
(100, 200]
(300, 400]

IT3

IT7

IT2

IT0 IT4 IT1

(a) Italy

0 2000 4000 6000 8000 10000 12000
ASes

0

2000

4000

6000

8000

Po

rt
s

Host s per AS
(0, 10]
(10, 20]
(20, 30]

(30, 40]
(50, 100]
(100, 200]

BR0

BR3

BR2

BR1
BR8

BR4

(b) Brazil

Figure 6.5: Structure of communities in the Week 1.

nmap4, likely run on servers hosted in specifc ASes.
The remaining communities match patterns where a small number of ASes tar-

gets specific ports. Those cases include port numbers usually not used by very
popular services and ports not exploited in common attacks. This signature hints
to sources performing sporadic scans, misconfigurations and other rare anomalies.

Interesting, the bottom plot in Figure 6.5 confirms results with data from the

4https://nmap.org

62

https://nmap.org

6.4 – Darknet communities

Brazilian darknet. In this case, however, the number of communities in some sec-
tors of the plot is reduced. Manual inspection shows that some of the communities
seen in the Italian darknet may be merged by the modularity algorithm when
applied to the (larger and noisier) Brazilian dataset. Other communities are com-
pletely diverse. Some source ASes are observed only in one of the datasets and
target completely different sets of destination ports. These results confirm previ-
ous works [137, 122] that show dissimilarities in traffic reaching darknets deployed
at diverse IP ranges.

6.4.3 Ports per community

AS 1

2323

23

1433

AS 2 445

Figure 6.6: Example output of the community detection algorithm.

I next dig into the ports each community targets as a way to understand the
services these communities are probing. First, I visually explore the communities
in search for patterns. A sample visualization is provided in Figure 6.6: It reports
a sample of the communities for the Italian darknet. Node sizes are proportional
to their degrees. The figure shows several behaviors. The community in lilac is an
example of targeted action from distributed ASes. It gets represented as a strong
concentration around two destination ports, namely ports 23 and 2323. Hundreds
of ASes are connected to those nodes. These are ports usually hosting terminal
services such as Telnet, drawing the attention of some sources by those services. A
similar consideration holds for the community in green, for which ports 1 433 and

63

Sensing the Noise: Uncovering Communities in Unsolicited Traffic

23
14
33 44
5 80 81

80
80

55
55

85
45 22

33
89

45
67

80
00 88 44
3

60
00
1

63
79

23
23

50
38

80
81

82
91 13
9

10
25 21

59
00

80
88

33
06

92
00

84
43

17
23

87
28 85

90
00 26

90
90 53

52
86
9

88
88

54
32 25

31
28

55
00

70
01 82

22
22

50
60

81
81

33
90 83

70
02

33
88

Port s

IT4 8%
IT0 3.9%
IT2 52.3%
IT3 96.4%
IT1 6.6%
IT7 92.8%
IT8 32.9%
IT6 39.3%
IT9 37.6%
IT5 12.8%
IT12 89.6%
IT13 98%
IT16 92%

A
S
N
C
om
m
u
n
it
y

80

60

40

20

0

(a) Italy

23
14

33 44
5 22 80

85
45

33
89

80
80 81

82
91

55
55 13
9

50
38

75
47 44
3

45
67

10
80

33
90

90
90

80
00

33
91 88

23
23

50
80

2
63

79
37

21
5

33
92 25

60
00

1
88

88 21
33

88
33

06
80

81
87

28
80

88
92

00
33

93
34

00
33

97 82
33

85
59

00
90

00
33

87
33

98
31

28
33

94
33

38
9

33
96

Ports

BR1 94.8%
BR0 4.7%
BR2 96.2%
BR8 83.1%
BR3 96.9%
BR4 93.5%
BR6 49.8%
BR9 50.2%

BR10 94.8%
BR7 89.9%

BR15 12.4%
BR12 94.7%
BR11 40%

BR5 87.8%
BR16 89.6%

A
SN

 C
om

m
un

ity

0

20

40

60

80

100

(b) Brazil

Figure 6.7: Percentage of packets per Port to ASN communities.

445 are the most common targets. The community in blue, on the other hand,
may indicated an horizontal action carried over by groups of ASes, likely scanning
hundreds of ports.

The heatmaps in Figure 6.7 extend the analysis. They show with colors how the
traffic for the top-50 ports (x−axis) is distributed according to the several commu-
nities (y − axis). The rightmost column of the plot quantifies, for each community,
the percentage of traffic that is not related to the top-50 ports. Communities and
ports are sorted according to their popularity.

Focusing on the most popular community (IT4) at the top plot (Italy), observe
how 92% is targeting several ports in the top-50. The community in particular
contacts five ports that often host services vulnerable to remote attacks, such as
MsSQL (port tcp/1433) and Microsoft Active Directory (port tcp/445). The second
most popular community (IT0) is also strongly concentrated on the top-50 ports,
differently from IT4, (e.g., port tcp/22), with only 3.9% of its traffic goes to the
remaining ports.

The community IT2 is the clearest example of sources performing large-scale

64

6.4 – Darknet communities

horizontal scans for popular services. It dominates many of the top-50 ports, in-
cluding services such as Telnet, HTTP, HTTPs, among others. Yet, notice how
half of the traffic from this AS community is directed to ports not in the top-50
set. Finally, notice community IT9, which focuses mostly on port 8 291, related
to a vulnerability on MikroTik RouterOS Winbox. This targeted behaviour is also
visible in other communities that do not dominate any port in top-50 (e.g., IT3,
IT5 and IT12).

The bottom plot (Brazil) confirms the general division of communities in (i)
vertical scans for popular services – e.g., BR0; (ii) horizontal scans on multiple
ports – e.g., BR2 and BR6; and (iii) targeted activity – e.g., BR11. Yet, here we
clearly see major differences in formation of communities when compared to the
Italian dataset. Notice, for example, how the port tcp/23 (telnet) is dominated
by a single community (BR11), whereas it is dominated by sources performing
horizontal scans in the Italian case.

6.4.4 Temporal behaviour

0

2000

4000

6000

8000

10000

Pa

ck
et

s

1433
445
23

22
8291

202
0/01

/01

202
0/01

/04

202
0/01

/07

(a) IT4

2020/01/01

2020/01/04

2020/01/07
0

5

10

15

20

25

Pa

ck
et

s

1541
1542

1540
1545

(b) IT15

0 6 12 18 24
0

20000

40000

60000

80000

100000

120000

Pa

ck
et

s

23
445
1433

80
8080

(c) BR0

0 6 12 18 24
0

500

1000

1500

2000

Pa

ck
et

s

8002
8003

1433
445

(d) BR16

Figure 6.8: Time patterns of the top-5 most active ports in selected communities.

65

Sensing the Noise: Uncovering Communities in Unsolicited Traffic

Finally, I investigate how sources in different communities behave over time.
Figure 6.8 reports timeseries of the number of packets per hour for different ports
in a community. I only show four of the most interesting communities and report
activity for their five most active ports. Figure 6.8a and Figure 6.8b show results
for IT4 e IT5 covering 1 week. Figure 6.8c and Figure 6.8d show results for BR0
and BR16 covering 1 day to improve visualization.

Recall from previous sections that IT4 is the most active community and ver-
tically focuses on popular services. Figure 6.8a confirms, among the top-5 most
targeted ports, the prevalence of ports 1 433 and 445, with a lower amount of
traffic to ports 22, 23 and 8 291. I see that sources in this community produce a
constant amount of noise. A similar level of traffic on each port reaches the darknet
without any apparent daily or weekly patterns.

Figure 6.8b, on the other hand, shows a targeted community. Here the traffic
volume is much less prominent, with only few dozens of packets reaching the darknet
in each hour. The ports in the [1 540 − 1 545] range are often used by a cluster
management framework (RDS services). Notice how the few sources participating
in this community have an orchestrated behaviour, alternating the contacted ports
after some days of activity, which may suggest the presence of a coordinated, low-
rate action. Similar results hold for the other two analyzed weeks, not shown for
brevity.

Figures in the Brazilian darknet follows very close patterns. Figure 6.8c shows
the hourly pattern for the 5 most contacted port in BR0 – an example of community
engaged in vertical scans. Figure 6.8d shows instead BR16, an example of targeted
community. Similar patterns as for the Italian case emerge in both cases. Notice
however that sources in BR16 alternate ports with much higher frequency as before.

6.5 DPIPot validation
I further validate the methodology on the DPIPot setup, to check the compati-

bility of the algorithm with active deployments. Refer to Chapter 5 for a thorough
characterization of the traffic reaching the active infrastructure.

I consider each of the top-5 protocols requested on AcmePot, namely RDP,
HTTP, TLS, SSH and MsSQL-TDS (cfr. Tab. 5.5) separately. For each of the
considered protocols, I observe a tail of ports receiving less than 10 flows during
the analyzed month. Therefore, I choose to remove flows directed to such ports.
Table 6.3 shows the result of this filtering process. Note that, despite discarding at
least two thirds of the observed ports, the number of flows hitting the deployment
still remains almost untouched (less than 10% reduction), and all the IP sources
are still visible.

I build the graph as described in Sec. 6.2. Given the significantly lower number
of sources requesting the L7 services, I can avoid to map each source IP address to

66

6.5 – DPIPot validation

Table 6.3: Top-5 protocols recognized in DPIPot after port filtering. In brackets
the percentage of retained ports and flows.

Protocol Flows Sender
Addr.

Dest.
Ports # Comm.

RDP 329 549 604 (99.9%) 1 415 7 646 (26.9%) 8
HTTP 430 026 (96.4%) 13 705 3 191 (34%) 21
TLS 205 607 (92.8%) 2 806 2 876 (16%) 14
SSH 119 389 (99.7%) 1 097 30 (16%) 11
MsSQL-TDS 30 968 (97.1%) 3 193 7 (1.5%) 3

its AS and still maintain the graph manageable.
For the sake of space, I comment here only the results regarding RDP, the

most common protocol in the trace. Figure 6.9 summarizes the flow distribution,
community structure and flow destination. From Figure 6.9a I observe that RDP2
is the community gathering the largest number of flows. Figures 6.9b and 6.9c show
that this community includes several hundreds of IPs, respectively producing high
volumes of traffic (up to an average of 10 million flows per address) in an horizontal
scan towards several hundreds of ports.

R
D

P
2

R
D

P
0

R
D

P
6

R
D

P
1

R
D

P
7

R
D

P
5

R
D

P
4

R
D

P
3

Community

0

20

40

60

%
F

lo
w

s

PORTS

IPs

(a) Distribution of flows per community.

0 200 400 600 800 1000

IPs

0

2000

4000

6000

#
P

or
ts

RDP4

RDP1

RDP0

RDP2

Avg flows per IP

[5k-10k)

[10k-100k)

[100k-1M)

[1M-10M)

(b) Community structure.

33
89

34
56

49
16

5
49

17
2

63
46

49
15

3 22
20

49
49

16
2

49
18

2
10

29
55

00 37
10

26
32

81
5

51
7

53
55

36
59

29
67

22
23

49
15

2
10

01
14

33
49

15
6

99
6

Port

RDP0

RDP1

RDP2

RDP3

RDP4

RDP5

RDP6

RDP7

IP
C

om
m

u
n

it
y

0

20

40

60

80

100

(c) Percentage of packets per Port to IP communities.

Figure 6.9: RDP community breakdown.

67

Sensing the Noise: Uncovering Communities in Unsolicited Traffic

RDP1 represents the opposite case: it gathers a low number of flows (less than
10%), sent by a large number of IP sources targeting a restricted set of ports for
an average of 10 thousand times each. Figure 6.9c shows that IPs belonging to
this community are mostly targeting the well-known port for RDP service - port
3 389 - in a vertical scan. In between cases are the smaller communities RDP0 and
RDP4. The former gathers almost 20% of the total RDP flows, while the latter is
significantly smaller (< 1%). They include more than 3 000 ports each, but those
ports are not shown among the top-50 ones.

6.6 Conclusion
In this chapter I presented a community detection-based methodology aimed at

easing the analysis of large amounts of unsolicited traffic. Thanks to it, I was able
to detect coordinated events, such as network scans due to botnets. The described
methodology has automatically identified and isolated sources engaging in three
major categories of events: vertical, horizontal and targeted scans.

This work is a study of the application of community detection algorithms to
unsolicited traffic analysis. Many promising directions emerge. I plan to deepen the
investigation on sources behaving similarly. In the same line, I plan to characterize
the ASes hosting sources sending packets to darknets. Finally, I observe that some
activities in darknet and honeypots are rather constant, thus becoming less relevant.
I plan to apply advanced complex network approaches to filter out the expected
noisy traffic, so to highlight events that are rare and potentially more interesting
for cyber-security applications.

68

Chapter 7

Anomaly Detection Techniques on
Network Traffic Time Series:
Practical Considerations and
Challenges

The methodology I present in this chapter is inspired by my paper Regular Pat-
tern and Anomaly Detection on Corporate Transaction Time Series, presented at
the 4th International workshop on Data Analytics solutions for Real-LIfe APplica-
tions (DARLI-AP 2020) [136]. A thorough review of classical and new AI-based
anomaly detection techniques can be found on our book chapter The New Abnor-
mal: Network Anomalies in the AI Era [138], published in Communication Net-
works and Service Management in the Era of Artificial Intelligence and Machine
Learning [162].

7.1 Introduction
Authors of [34] define anomaly detection as the “problem of finding patterns in

data that do not conform to expected behavior”. In computer networks anomaly
detection techniques have been employed in several tasks, such as finding nodes
compromised by malware, triggering alerts in network monitoring systems and pin-
pointing faults reported in service logs.

Most anomaly detection algorithms used in networking problems are based on
techniques proposed for other scenarios. Methods to perform anomaly detection
are indeed researched and exploited since decades before the development of the
Internet itself – from the study of outliers in probability distributions to the search
for frauds in pre-Internet systems, e.g., banking systems. The surge on data coming

69

Anomaly Detection Techniques on Network Traffic Time Series: Practical Considerations and Challenges

from networked applications (e.g., social networks, IoT devices, cyber-physical sys-
tems) together with the measurements needed to operate these applications have
pushed anomaly detection further. Anomaly detection more than ever requires
techniques and algorithms able to uncover anomalous behaviors on datasets that
are large, complex and diverse.

Initial approaches ported to the network anomaly detection problem have been
strongly rooted in rules-of-thumb, statistics, information theory and machine learn-
ing. Threshold-based anomaly detection, for instance, has been widely adopted in
cyber-security for the detection of port scans and DDoS attacks. Similarly, diverse
statistical solutions have been employed to identify anomalies on time-series ex-
ported by Internet telemetry systems. As more and more data became available,
data-driven solutions gained momentum. Machine learning algorithms for predic-
tion, clustering and classification have been applied on anomaly detection thanks
to their good capabilities to automatically learn patterns from data. The trend
has been exacerbated in recent years: The continuous growth on data availability,
the unprecedented increase on computing resources and breakthroughs on AI re-
search have allowed data-driven solutions to solve new complex problems on various
fields. Some of these breakthroughs have potential to revolutionize the research on
anomaly detection too.

This chapter focuses on the development of a sound anomaly detection bench-
mark in a network traffic scenario. Given different time-series reporting the traffic
volume per time instant, I require the tested algorithms to detect anomalous pat-
terns, i.e., unusual peaks, mean shifts, any deviation in the signal periodicity and
other similar phenomena. I test several classical anomaly detection approaches
against a more recent representation learning technique, the autoencoder. I want
to investigate whether similar AI techniques add any advancement to the anomaly
detection task. I discuss the upsides and downsides of each implementation, bear-
ing in mind a possible practical application (e.g., a real-time network monitoring
dashboard).

The reminder of this chapter is organized as follows: Section 7.2 includes some
of the most relevant related works in the field and provides the lexicon that I will
use throughout the chapter; Section 7.3 describes the basic functioning of each of
the benchmarked algorithms; Section 7.4 provides details on the tested datasets,
the full ML pipeline and the metrics I used to evaluate the unlabelled case; Section
7.5 describes the results, Section 7.6 concludes the chapter.

7.2 Problem characteristics and definitions
Anomaly detection in networked applications are studied since early days of the

Internet. Many surveys have summarized the developments in the field [24, 95, 91,
6]. In this section I introduce the definitions and the taxonomy used throughout

70

7.2 – Problem characteristics and definitions

the chapter, which is based on [34].
The term Anomaly detection aggregates many different, yet related, tasks: Out-

liers are values detached from the remaining samples. For example, given a random
variable, an outlier can be a value that should not happen because it is out of the ac-
ceptable variable range, or because it falls far from the expected value. Rare events
are usually defined similarly – points falling far from expected values. However,
they represent events that are known to happen rarely. As such, some anomaly
detection algorithms may consider such events as normal, even if they deviate from
common patterns. Finally, novelty represents a behavioural (and possibly perma-
nent) change of a variable. Unlike outlier detection, where deviating points have
been seen before (in training), novelty detection aims at capturing whether a new
sample is an outlier compared to the past or not. Here again the surge of a novelty
can be considered an anomaly, as the novel points diverge from the usual patterns.
Some novelty detection algorithms however try to identify whether points deviating
from expected patterns represent indeed such a change in behaviour, thus tagging
the change as novelty, rather than an anomaly.

In this chapter, I adhere to the somehow loose definition by authors of [34] and
consider an anomaly any unexpected behavior in a data variable. Novelty detection,
outlier detection and rare event detection are some of the related tasks that are
commonly found in the literature, which I group together as anomaly detection.

Moreover, anomalies are classified as pointwise, collective or contextual [6, 24,
119], regardless of the nature of data. Examples are provided in Figure 7.1 consid-
ering a numeric attribute forming a time-series.

2018 2019 2020

Date

0

1000

2000

3000

A
m

ou
n
t

(a) Pointwise

8:00 14:00 20:00 2:00 8:00

Hour of day

10099

10100

10101

A
m

ou
n
t

(b) Contextual

2018 2019 2020

Date

9980

9990

10000

10010

10020

A
m

ou
n
t

(c) Collective

Figure 7.1: Examples of anomaly macro-categories.

Pointwise anomalies are individual data instances that diverge in a dataset. We
see an example in Figure 7.1a, in which a single spike deviates from the regular
behavior of the series. Examples of pointwise anomalies in network security and
performance domains are (i) an abrupt rise in the number of packets reaching a
server during a DDoS attack and (ii) increases in the RTT between two networks
due to a temporary congestion.

71

Anomaly Detection Techniques on Network Traffic Time Series: Practical Considerations and Challenges

Contextual anomalies are cases where an instance becomes anomalous thanks
to its context, even if it would not be anomalous in isolation. Figure 7.1b provides
an example. A single low value appears while the series is reporting (smooth) high
values for the attribute. However, low values are expected to be seen in other
contexts. In network accounting, such behavior could represent the bytes per hour
in a backbone link during a short daytime outage. Yet, low values would still be
expected during night periods, thus characterizing the contextual anomaly in the
former case.

Collective anomalies are cases in which various data instances, in conjunction,
form the anomaly. Figure 7.1c provides an example. Here a time-series that peri-
odically oscillates suddenly changes trend. Whereas the newer values remain in the
same range, they collectively change the series behavior. This is a classic example
sometimes considered as novelty, as the changed behavior may become the new
normal after the anomalous transition. A permanent decrease or increase in traffic
volume in a link caused by a fault on peering links could produce a similar anomaly.

The datasets I choose in this chapter - as I will detail in the following - are
composed by univariate time series, collected at different time granularities and
including examples of pointwise and collective anomalies, with different levels of
detection difficulty.

7.3 Tested algorithms
This section describes the algorithms I adopted for my benchmark. Table 7.1

summarizes the set of adopted approaches, their macro-categories and the required
input dataset, namely simple timeseries, temporal features from past samples, or
sample windows. I provide a brief explanation of every algorithm in the following.

Table 7.1: Benchmarked algorithms

Category Algorithm Acronym Input dataset
Timeseries Forecasting Auto Regressive Integrated Moving Average ARIMA Univariate TS

Supervised Regression

Support Vector Regressor SVR Temporal features
Stochastic Gradient Descent Regressor SGDR Temporal features

Decision Tree Regressor DT Temporal features
ADABoost Regressor ADA Temporal features

Random Forest Regressor RF Temporal features
Representation Learning Autoencoders AE Windows

7.3.1 Classical approaches
Anomaly detection has been faced with multiple machine learning and data

mining algorithms. In fact, most classic algorithms used for classification and
clustering can be applied on anomaly detection too. As for classification algorithms,

72

7.3 – Tested algorithms

for example, anomalies can be detected by training a model to recognize the normal
or anomalous instances. Clearly, labels are needed for training these supervised
algorithms, thus limiting their applicability. In some cases, to partially solve this
issue, only normal instances are labeled, forcing any testing instance not assigned
to a class to be marked as anomalous. In the case of clustering algorithms, data
points are split into clusters based on arbitrary distance measures, which may be
problem-specific. Points belonging to small clusters as well as those left unassigned
are considered possible anomalies.

Statistical anomaly detection is instead based on the assumption that normal
instances can be mapped to a stochastic model. Algorithms in this category mark as
anomalies, instances that deviate partially or completely from the model. A classic
technique belonging to the category is the so-called boxplot rule, which marks data
instances as outliers considering a reference probability distribution.

Many algorithms have been derived from the information theory research.
These techniques exploit different measures to quantify the information in a dataset,
with the entropy being the most well-known alternative. For example, when con-
sidering entropy, some algorithms assume that normal instances would present at-
tributes with a relatively low entropy, whereas the introduction of anomalies would
cause an increase in entropy.

Several other categories of anomaly detection algorithms have been documented
in the literature, and readers are invited to refer to [5, 7, 89, 6, 91, 24, 119] for a
deeper discussion on them.

I choose to include in my benchmark a set of well-known [147, 120] algorithms
for time-series forecasting and supervised regression techniques of easy usage and
interpretation. In the following I describe the specifications about each implemen-
tation, its parameters and threshold criteria.

Auto Regressive Integrated Moving Average (ARIMA)

Time Series Forecasting is an extensively used technique to tackle the anomaly
detection problem ([113], [60], [145], [81]). Its final objective is to provide a pre-
diction of the future values of a time series based on its past values. By defining a
reasonable confidence interval for the predicted values, I identify as anomalies the
points that fall outside such predicted interval. Here I focus on ARIMA Models.
Every ARIMA model requires as input a stationary time series, with three fun-
damental parameters: p, the number of autoregressive terms, d, the order of the
differencing term and q, the number of moving average terms. As a general best
practice, the values of p, d and q should usually kept below 3. I therefore run a
grid search with parameters ranging from 0 to 3. At each iteration, I instantiate
an ARIMA model per each combination and I chose the best model by calculating
the Mean Squared Error between the actual value and the prediction yielded by
every (p, d, q) triplet. Once I find the best model, I let it predict the following time

73

Anomaly Detection Techniques on Network Traffic Time Series: Practical Considerations and Challenges

instants, then compute the upper and lower boundary of the confidence interval for
each prediction, and I flag as anomalous every point falling outside such bound-
aries. In a nutshell, I consider anomalous every point consistently deviating from
the ARIMA forecast result.

Supervised regression algorithms

Table 7.2: Lags dataset

Field Value
y Target variable

date Date, minute granularity
y_t-D Value of y at time bin b-B (B={1,..,6})

hourly_avg Average value of y per hour
daily_avg Average value of y per day

prev_H_hours Value of y at hour h-H (H={1,..,3})
neigh_4_bins Average value of y at -4 time bins

All the following techniques use as input the dataset described in Table 7.2,
properly standardized. This dataset includes the target variable to predict - y,
i.e., the volume of traffic in a given time instant - the reference timestamp, and
a complete set of time-based features (e.g., the value of the target variable in the
previous N time bins, the hourly/daily average value of the target variable, etc.).
Similarly as before, I consider well-accepted ML algorithms trained to predict the
next value ŷ. I run hyperparameter selection, and compare the prediction ŷ with
the actual value y. Again, if the predicted volume for a given time bin deviates
consistently from the real one, the time bin is flagged as anomalous. Differently
from ARIMA models, I do not have a standard way to compute confidence intervals,
thus I rely on domain knowledge heuristics to flag outliers. In details I define two
threshold-based control criteria to label a point as anomalous: the anomaly is
advertised if at least one criterion is triggered. I list the criteria below:

• Criterion 1 (multiplicative):{︄
Anomaly : if (y > τŷ) ∧ (| y − ŷ |>= σ)
OK : else

• Criterion 2 (additive): {︄
Anomaly : if (y − ŷ) > kσ
OK : else

Where τ and k are multiplicative thresholds I manually tune and σ is the stan-
dard deviation of the label over the last N training samples label.

74

7.3 – Tested algorithms

For the regression, I consider state of the art algorithms. I perform a Grid Search
with Cross-Validation for the parameter of each module, choosing the combina-
tion that minimizes the Mean Squared Error. For the Support Vector Regressor
([148], [53]) I evaluate two different kernel functions: the polynomial and the RBF
one. All kernels require a regularization parameter C, evaluated between 10−7

and 10. The remaining parameters keep their default values. The Stochastic Gra-
dient Descent Regressor [84] exploits the standard concept of stochastic gradient
descent to fit linear regression models. I test the same values for the tolerance
parameter C for this technique as well, combined together with two different loss
functions (i.e., squared loss and huber) and four different learning rates (i.e.,
constant, optimal, invscaling, adaptive). I then exploit a set of Decision-
Tree based regressors: I first optimize the parameters of a simple Decision Tree
(criterion, i.e., the function to evaluate the quality of a split, max_depth and
min_samples_split). I then use the resulting optimum as a building block for an
AdaBoost regressor [126] and a Random Forest regressor [27]. For both I evaluate
n_estimators spanning from 10 to 100.

7.3.2 Representation learning and autoencoders
The advent of deep learning and its automated feature learning abilities has

opened the way to advances on representation learning. This latter includes the
vast collection of techniques that directly or indirectly allow to learn rich features
or representations from unstructured data [21]. Applied to anomaly detection, the
idea would be to constrain the learned representations to produce a latent space
where normal and anomalous (or novel) samples can be easily separated.

A number of recent work follows the representation learning ideas. Authors of [1]
propose to augment the above reconstruction error approach with an additional
surprisal metric, which assesses how likely a representation should occur under
the learned model. The authors argue that detecting anomalies can leverage two
approaches: (i) the ability to remember what has been seen and (ii) the ability to
spot novelties, i.e., surprisal. They propose a novelty score that incorporates both.
For the first, they leverage the reconstruction error. For the second, they learn an
autoregressive model on the latent vectors of the autoencoder and use the resulting
likelihood of the latent vector as a proxy for surprisal.

On the same line, authors of [88] leverage the learning of latent representations of
normal instances in multiple domains, and the learned boundaries between normal
and anomalous in some specific domains (for which they have a ground-truth)
to transfer anomaly detectors from source domains (supervised, known) to target
domains (unknown).

A somewhat similar intuition has been used for multi-view anomaly detec-
tion [78] where data instances can have multiple views – e.g., a video represented
by audio, video and subtitles; a face that has multiple views; pages that have

75

Anomaly Detection Techniques on Network Traffic Time Series: Practical Considerations and Challenges

versions in different languages. The intuition is to have multiple views of normal
data instances generated from the same latent vector, while data instances that are
anomalous shall have multiple latent vectors.

Another related approach has been proposed by the authors of [66] for anomaly
detection in images. They train a classifier to distinguish between a set of geometric
transformations applied to images. The learned representations in this auxiliary
task is useful to detect anomalies at testing phase, by analyzing the output of the
model when applied on transformed images.

Authors of [23] couple a similar approach with a student-teacher framework for
unsupervised anomaly detection and pixel-precise anomaly segmentation in images.
While the teacher network learns latent features from a set of images, an ensemble
of student networks is trained to regress the teacher’s output on anomaly-free input.
When fed with data with anomalous parts during the testing phase, the student
networks will exhibit higher regression errors and lower predictive certainties in
areas involving anomalies.

A famous representation learning technique is Autoencoders. These are neural
networks that compress the input data into a latent space and, then, reconstruct the
input based on the latent variables. Figure 7.2 depicts the basic idea: considering X
as input, the encoder (left) compresses the input to a latent space h = f(X). The
decoder (right) reconstructs the input based on h, with X ′ = g(h). The quality of
the reconstruction is then evaluated by means of the reconstruction error.

Encoder

Decoder

X X’h

Figure 7.2: Basic autoencoder structure.

The autoencoder is trained with normal instances for anomaly detection. Then,
the reconstruction error grows when the autoencoder is fed with anomalous in-
stances during the testing phase, pointing to anomalies. Autoencoders are largely

76

7.3 – Tested algorithms

used to detect anomalies in images, videos and text, but have found applications in
several other scenarios too. For example, authors of [161] propose a deep autoen-
coder – called Robust Deep Autoencoder – that not only discovers high-quality,
non-linear features from input instances, but also eliminates outliers and noise
without access to clean training data. The model takes inspiration form Robust
Principal Component Analysis, as defined in [32]. It aims at splitting the input in-
stances into two parts: a low-dimensional representation of the input data, that can
be effectively reconstructed by a deep autoencoder, and another one that contains
element-wise outliers.

Authors of [36] highlight challenges for the application of autoencoders on
anomaly detection, in particular the sensitiveness of the technique to noise and
the need for large training sets. The authors then propose RandNet, an ensemble
of autoencoders relying on different NN architectures for outlier detection. In a
somehow similar direction, authors of [163] present the Deep Autoencoding Gaus-
sian Mixture Model, which combines a compression network with an estimation
network. The joint optimization of the two networks is claimed to improve perfor-
mance of unsupervised anomaly detection on multivariate, high-dimensional data.

The assumption that autoencoders produce large reconstruction errors for every
anomaly is questioned in [67] and others [163, 160, 72]. Some anomalies may
be subtle, and the autoencoders may generalize normal instances to the point of
overlooking anomalies. Authors propose the Memory-Augmented Autoencoder,
i.e., MemAE, which memorizes prototypes of normal instances. In testing phase,
the network will always use one of the prototypes in memory for reconstruction,
hopefully increasing the reconstruction error in case of anomalies.

Finally, a similar problem is targeted in [20], emerging when the dataset used
for training the autoencoders is contaminated with anomalies (e.g., noise). The
autoencoders could learn how to reconstruct the anomalous instances, reducing the
reconstruction error for other anomalies. Anyway, as the dataset is by definition
mostly composed by normal samples, observing the reconstruction error distribu-
tion helps in counteracting this effect.

The latter use case is also the one I target in this chapter, as also the training
samples in the selected timeseries may contain anomalous data. For detecting
the anomalous points, I follow the simple principle described above, i.e., I mark as
anomalous the input samples whose reconstruction error deviates significantly from
the error distribution.

Figure 7.3 depicts an example of how the original timeseries needs to be reshaped
to serve as input for the autoencoder. Each time bin ti becomes a part of an input
window wi containing a total of W time bins. Note that, as the window is sliding
of one bin at a time, most bins are included in more than one input sample. Such
windows are then stacked to form the final input matrix M . The window size W ,
together with the training batch_size and epochs is a paramount hyperparameter
for the effectiveness of this technique. To optimize their choice I run a grid search

77

Anomaly Detection Techniques on Network Traffic Time Series: Practical Considerations and Challenges

t
…

W1

…

W2

W3

Generated
windows

Original timeseries

Input matrix M

Figure 7.3: Input samples for autoencoders.

and I choose the triplet minimizing the validation loss.
Once the autoencoder is trained and validated, I test it against new input sam-

ples. Every time a new sample enters the autoencoder, it generates its reconstructed
sample wî and evaluates the mean squared error between wi and wî. If the sample
error overcomes the 95th percentile of the error distribution, I mark as anomalous
every ti included in wi.

7.4 Datasets and methodology
As previously mentioned, evaluating the effectiveness of anomaly detection al-

gorithms is particularly difficult in case of unlabelled datasets. Before running
the benchmark on DPIPot RDP data, I validate the process by means of an ar-
tificially generated dataset. Table 7.3 summarizes the composition of the tested
datasets, ordered by increasing level of anomaly detection difficulty. For the Easy
and Medium use cases, both provided with labels for anomalous points, I combine
several instances of the well-known UGR’16 dataset [99]. This dataset aggregates
a mixture of background traffic flows and artificially generated attacks. Each flow
is summarized in the standard netflow format and provided with a label. Among
the attacks, UGR’16 numbers various types of DoS attacks, port scans, botnet and

78

7.4 – Datasets and methodology

spam traffic. For my use cases, I chose to retain only the background traffic reduced
of a factor of 10, firstly adding to it the One-to-One DoS attack traffic (cfr. Figure
7.4a, DoS spikes are evident and regular), subsequently adding single spam attack
(cfr. Figure 7.4b, with a continuous spam attack at the very end).

Finally, Figure 7.5 depicts the RDP traffic profile captured on DPIPot (see
Section 5.6.3 for a full characterization). Also in this case, I chose to artificially
modify the total signal by adding and removing at random time instants the traffic
produced by the first 10 heavy-hitters, as shown in Figure 7.5a. In total I perturb
the original signal in 60 time bins (less than 1% of the total dataset). These time
bins will be my reference in the absence of a proper ground truth.

Each of the chosen algorithms should provide its own prediction of the traffic
patterns, and flag as anomalous the time bins deviating from it, ideally the ones in
which the attack is present.

Table 7.3: Tested datasets

Name Composition Sample rate Label Type of anomaly Difficulty Dataset size
UGR’16 background+DoS11 1’ ✓ Pointwise Easy 6 388 points
UGR’16 background+Spam 1’ ✓ Continuous Medium 6 388 points
DPIPot RDP 10’ × Various Hard 4 570 points

28
Jul

2016

29 30 31

date

102

103

104

105

#
F

lo
w

s

BACK DoS

(a) Easy

28
Jul

2016

29 30 31

date

101

103

105

#
F

lo
w

s

BACK SPAM

(b) Medium

Figure 7.4: Artificial datasets (y-axis in log scale) - anomalous samples are high-
lighted in blue.

79

Anomaly Detection Techniques on Network Traffic Time Series: Practical Considerations and Challenges

May

2021

19 26 03 10

date

0

100000

200000

300000

400000

500000
#

F
lo

w
s

(a) Hard case - Composition.

May

2021

19 26 03 10

date

0

200000

400000

600000

#
F

lo
w

s
(b) Hard case - Final signal.

Figure 7.5: RDP timeseries composition and final signal. Different colours indicate
the activity of different heavy-hitter sources.

Every algorithm is trained and tested iteratively in a walk forward fashion, as
depicted in Figure 7.6. At every iteration Ii+1 the older samples (in red in the
Figure) are dropped, and the newer samples (green) are included in the training
even if they are marked anomalous in the previous iteration Ii. The idea is to
mimic the incoming of new events in an online environment, where the framework
should learn from the recent past and report significant changepoints to the network
analyst.

t
Original timeseries

Train

Test

Forget

I1

I2

I3

Figure 7.6: Walk forward process.

Finally, I need to define a set of metrics to evaluate the detection performance of
each algorithm. For this task as well, I distinguish between the labelled cases (i.e.,

80

7.5 – Results

Easy and Medium) and the unlabelled one (Hard). In the former case, Accuracy
and weighted F1-Score are enough to evaluate the detection capabilities. The latter
case requires the definition of three new metrics:

• A_tot: total number of alarms, ideally the lower the better;

• Correctness: how many of the artificially introduced changepoints does the
algorithm detect?

• Consistency: given the anomalies spotted on the timeseries without pertur-
bations, how many of those are still present when we artificially modify it?

• Mean Squared Error : computed between the real and the predicted signal to
evaluate the predictive capabilities of each algorithm.

Together with these quantitative metrics I take into consideration the visual
distribution of the anomaly flags, as this aspect has a significant impact on a
potential practical implementation of the whole pipeline. I discuss the outcome of
each algorithm in the Results section.

7.5 Results

7.5.1 UGR’16 - Artificial dataset validation

Table 7.4: Easy case - Detection performance

Algorithm Flagged Points (%) Accuracy F1-Score
ARIMA 276 (5.58%) 0.944 0.954

SVR 388 (7.84%) 0.938 0.953
SGDR 389 (7.86%) 0.948 0.961

DT 272 (5.49%) 0.956 0.964
ADA 276 (5.57%) 0.951 0.96
RF 205 (4.14%) 0.963 0.967
AE 420 (8.84%) 0.937 0.953

I here show the performance of each algorithm in the UGR’16 use cases. Table
7.4 summarizes the classification metrics for the easy case. All the algorithms show
satisfactory values for both accuracy (0.937 - 0.963) and F1-score (0.953-0.967).
Random Forest (in bold in the table) is the one yielding the most satisfactory
performance in term of total number of flagged points, accuracy and F1-score. Au-
toencoders, Support Vector and Stochastic Gradient Descent are the ones flagging
the highest number of anomalies.

81

Anomaly Detection Techniques on Network Traffic Time Series: Practical Considerations and Challenges

See Figure 7.7 for an example. Taking a look at the metrics, the autoencoder
seems to be penalized by the required input format: the algorithm marks as anoma-
lous all the time bins concentrated around the spikes, because the spikes are in-
cluded in more than one input window (cfr. Figure 7.7a - note that many red dots
are almost overlapping). This aspect does affect the accuracy and F1-Score, but
the result can still be useful for a first qualitative interpretation of the signal: a
network analyst could profit from a visualization of the autoencoder output, as it
draws attention on restricted time intervals that are worth observing. Opposite
considerations are valid in the case of RF (cfr. Figure 7.7b): despite the good
metrics, visualizing a similar output is not helpful to isolate relevant events. Fi-
nally, both SVR and SGDR flag points across the whole signal without a specific
rationale, leading to unreliable results.

All in all, in such a trivial scenario the adoption of easily tunable and inter-
pretable algorithms - as the tree-based ones and Random Forest in particular - is
enough to have a clear and reliable picture of the anomalous instances.

2016/07/28

2016/07/29

2016/07/29

2016/07/30

2016/07/30

2016/07/31

2016/07/31

date

0

20000

40000

60000

#
F

lo
w

s

Real Anomaly

(a) AE

2016/07/28

2016/07/29

2016/07/29

2016/07/30

2016/07/30

2016/07/31

2016/07/31

date

0

20000

40000

60000

#
F

lo
w

s

Real Anomaly

(b) RF

Figure 7.7: UGR’16 Easy case - anomalous points flagged by different algorithms.

Table 7.5: Medium case - Detection performance

Algorithm Flagged Points (%) Accuracy F1-Score
ARIMA 1 532 (30.96%) 0.62 0.641

SVR 384 (7.76%) 0.74 0.689
SGDR 365 (7.37%) 0.747 0.695

DT 288 (5.82%) 0.75 0.688
ADA 231 (4.67%) 0.757 0.69
RF 198 (4%) 0.761 0.69
AE 960 (19.4%) 0.726 0.721

82

7.5 – Results

Similar considerations hold for the medium case. As visible in Table 7.5, a
more complex case yields generally lower values of accuracy (0.62 - 0.761) and F1-
Score (0.641 - 0.721). Tree-based algorithms seem again to be the best trade-off
between complexity and performance, with Random Forest outperforming the other
algorithms in terms of accuracy and number of flagged points. Despite the large
number of points flagged, again due to the input format, the autoencoder reaches
the highest value of F1-Score. Also in this case the autoencoder output may aid
the event interpretation in practice: comparing Figures 7.8a and 7.8b I observe
how the Autoencoder concentrates all the flags around the anomalous area, while
Random Forest flags are more scattered over time.

2016/07/28

2016/07/29

2016/07/29

2016/07/30

2016/07/30

2016/07/31

2016/07/31

date

0

5000

10000

15000

20000

25000

#
F

lo
w

s

Real Anomaly

(a) AE

2016/07/28

2016/07/29

2016/07/29

2016/07/30

2016/07/30

2016/07/31

2016/07/31

date

0

5000

10000

15000

20000

25000

#
F

lo
w

s

Real Anomaly

(b) RF

Figure 7.8: UGR’16 Medium case - anomalous points flagged by different algo-
rithms.

7.5.2 DPIPot RDP - Hard case

Table 7.6: Hard case - Detection performance

Algorithm A_tot (%) Correctness (%) Consistency (%) MSE
ARIMA 386 (12.45%) 14 (23.73%) 20 (13.61%) 3.94 · 109

SVR 1247 (40.22%) 17 (28.81%) 645 (46.24%) 1.16 · 1010

SGDR 3026 (97.61%) 45 (76.27%) 1902 (99.27%) 1.41 · 1010

DT 505 (16.29%) 11 (18.64%) 152 (31.73%) 2.54 · 109

ADA 399 (12.87%) 8 (13.56%) 139 (42.9%) 2.02 · 109

RF 348 (11.64%) 9 (15.25%) 97 (27.95%) 1.03 · 109

AE 407 (13.12%) 16 (27.12%) 74 (9.15%) 1.75 · 109

83

Anomaly Detection Techniques on Network Traffic Time Series: Practical Considerations and Challenges

Finally, I present the results in the Hard case. As mentioned earlier, the algo-
rithm evaluation is not trivial in an unlabeled scenario. I look for the best trade-off
among the metrics (cfr. Section 7.4) and the predictive capabilities of each algo-
rithm, here evaluated by means of the MSE. Table 7.6 summarizes the results. By
taking a look only at A_tot (i.e., the total number of alarms raised by each algo-
rithm), I can already rule SGDR and SVR out of the reliable algorithms, given the
high number of flagged points (higher than 97% in the case of SGDR). The poor
performance of both algorithms is confirmed by the MSE, one order of magnitude
larger than the other algorithms (i.e., higher than 1010). The remaining algorithms
show comparable values of A_tot (from 11.64% for RF - in bold - to 13.12% of
AE). In order to rule out the best one I should refer to the remaining metrics: AE
is the most correct one, while DT the most consistent. AE and RF are the ones
yielding the lowest values of MSE.

All in all, determining which algorithm performs best in such a complex case
is not trivial and is strongly dependent on the practical needs of the final user.
The visualization of the predicted signals compared to the real one may help in
the choice. Figure 7.9 shows the four more relevant cases out of the seven selected
algorithms. Figure 7.9a shows how ARIMA only predicts flat segments, following
the mean shifts of the signal over time. This behavior can still be useful, if the
purpose of the network analyst is only to be warned in case of significant changes
in volume, but it leads to the neglect of smaller and potentially interesting events.
Figure 7.9b, instead, confirms the poor performance of SVR, which proved to be
unsuitable for this purpose.

RF and AE (Figures 7.9c and 7.9d) show good predictive capabilities and gen-
erate a relatively low number of alarms. Again, the flag distribution depends on
the different format of the input: the AE flags are more concentrated around the
sudden spikes, while the RF ones are more distributed and cover also flatter parts
of the signal presenting minor oscillations. Both can be considered a good fit for
the problem, but the best trade-off should be chosen based on the monitoring needs
of the final user, or combined to have a full and clearer view.

7.6 Conclusion
In this chapter I tested a set of well-known anomaly detection algorithms bench-

marking their effectiveness on anomalous network traffic time series. I focused on
highlighting the advantages and limitations of a new AI-based technique - the au-
toencoder - compared to more well-known techniques.

I first validated the whole pipeline by means of a well-known labelled dataset,
defining two cases of increasing detection difficulty, and finally tested the method-
ology against real RDP flows reaching the DPIPot infrastructure. I artificially
constructed a set of anomalies to be used as a reference, and defined three metrics

84

7.6 – Conclusion

2021-04-25

2021-04-29

2021-05-03

2021-05-07

2021-05-11

2021-05-15

date

0

200000

400000

600000

800000

#
F

lo
w

s

Real

Predicted

Anomaly

(a) ARIMA

2021-04-25

2021-04-29

2021-05-03

2021-05-07

2021-05-11

2021-05-15

date

0

250000

500000

750000

1000000

#
F

lo
w

s

Real

Predicted

Anomaly

(b) SVR

2021-04-25

2021-04-29

2021-05-03

2021-05-07

2021-05-11

2021-05-15

date

0

200000

400000

600000

800000

#
F

lo
w

s

Real

Predicted

Anomaly

(c) RF

2021-04-25

2021-04-29

2021-05-03

2021-05-07

2021-05-11

2021-05-15

date

0

200000

400000

600000

800000

#
F

lo
w

s

Real

Predicted

Anomaly

(d) AE

Figure 7.9: RDP hard case - predictions and anomalous points flagged by different
algorithms.

to allow a fair benchmark. I showed that, in presence of easily recognizable anoma-
lies (i.e., clear pointwise anomalies), all the tested algorithms give a satisfactory

85

Anomaly Detection Techniques on Network Traffic Time Series: Practical Considerations and Challenges

performance, and therefore the most easily implementable and interpretable algo-
rithm should be chosen. On more difficult cases (e.g., continuous anomalies) the
performance of all algorithms decreases, and too simple ones should be considered
particularly unreliable. Algorithms as the Random Forest and the Autoencoder
guarantee the best values of accuracy and F1-Score respectively, and the choice of
one rather than the other should be made taking into account the practical needs
of the final user (e.g., minimize alarms, precision, easy visualization, etc.).

Similar considerations hold for the hard case as well: a one-size-fits-all solution
does not exist, and the choice is strongly dependent on the monitoring require-
ments. Random Forest and Autoencoder are the best performing algorithms, but
they flag points based on different principles. If one’s interest is to detect and visu-
alize sudden spikes and their immediate surroundings, then autoencoders should be
preferred; otherwise, if small oscillations and continuous anomalies are the focus,
Random Forest is the right choice. Combining the two outputs may be a viable
solution, provided that the user agrees to tolerate a higher number of alarms.

Eventually, an aspect that is worth underlying is the need of a correct threshold
definition. This is crucial for the correct functioning of the system, though it still
requires an extensive domain knowledge to be properly set, especially when using
classic approaches. Using an autoencoder and evaluating the error distribution to
set a threshold allows a first step towards the full automation of this task, but still
does not allow to completely forego the human intervention.

86

Chapter 8

Conclusion and Outlook

In this thesis, I presented several works addressing the analysis of unwanted
network traffic. I used big-data and machine learning techniques to detect different
patterns, communities and anomalous behaviors, providing a full pipeline useful for
network analysts and cybersecurity practitioners, as well as for researchers. The
key idea is to provide a complete toolkit automating the network monitoring task
without the need of complex tuning or human intervention.

In the first part of my thesis I characterized relevant events taking place in
different deployments, either completely passive or active at different levels. I high-
lighted some of the most requested services, evaluating their patterns and similarity
in time and space. I demonstrated how a large part of the packets composing the
Internet Background Radiation target darknets regardlessly their geolocation. I
enriched the fully passive framework adding active deployments, registering the
changes in patterns and requests when active targets are deployed in the network.
I showed how responding at different layers, horizontally on all ports or vertically
on selected services, attracts different types of requests and, when the senders have
malicious purposes, leads to different attack phases.

In the second part, I described the results of the automatic aggregation of traf-
fic sources, showing how aggregating the sources in form of a graph allows the
execution of community detection algorithms that group together seemingly uncor-
related activities. At last, I discussed the effectiveness of several well-known and
more advanced AI-based anomaly detection techniques. Bearing in mind the practi-
cal implications of my work, I mostly chose to focus on off-the-shelf methodologies,
discussing their advantages and limitations in terms of scalability, interpretability
and visualization.

All in all, I believe that the key findings of this work represent a step forward in
the analysis of the internet background radiation. Firstly, the light shed on the way
most services and ports are requested by remote sources may drive the practitioners
towards a more effective configuration of the existing cybersecurity systems and
to the recognition of otherwise unknown phenomena and actors. Moreover, the

87

Conclusion and Outlook

proposed machine learning methodologies will surely speed up the analysts’ work,
and can be adapted to other monitoring scenarios.

Several research directions emerge from the encountered topics. The first one is
the characterization of the remote sources observing their activity at the application
layer: as I showed earlier, most of the active deployments receive some application
payload, that often contains login attempts, malicious binaries, or command se-
quences. Having a deeper knowledge of such phenomena represents a further step
towards the design of efficient cybersecurity systems.

Moreover, both the community detection and the anomaly detection task can
benefit from newly deployed AI techniques. Apart from the autoencoders, recent
works propose the application of Natural Language Processing techniques to the
community detection task [64], as well as various Generative Adversarial Networks
[127], Reinforcement Learning [77] and Deep Learning [159] techniques to detect
anomalies in network traffic. Such methodologies allow the usage of more complex,
multivariate datasets containing more complex features as well.

88

Appendix A

DPI Solutions in Practice:
Benchmark and Comparison

The work I present in this chapter is mostly taken from my paper DPI Solu-
tions in Practice: Benchmark and Comparison, presented at the 6th International
Workshop on Traffic Measurements for Cybersecurity (WTMC 2021) [121].

A.1 Introduction
The internet is a continuously growing ecosystem composed by diverse protocols

and applications. The rise and spread of smart devices, video-conference platforms
as well as the continuous appearance of sophisticate cyber-attacks keeps changing
the characteristics of traffic observed in the network. Understanding protocols that
are carrying specific flows in the middle of such a variety of traffic has always
been essential for multiple applications, in particular for those supporting network
security like firewalls and IDS.

Deep Packet Inspection (DPI in short) has been the dominant approach to
perform protocol recognition, showing effectiveness in several traffic monitoring
scenarios. DPI parses traffic payload searching for signatures that characterize the
protocols. Indeed, many DPI solutions do exist and still find important applica-
tions, despite the increasing usage of encrypted protocols. DPI is particularly useful
in cyber-security scenarios, such as for intrusion detection systems, firewalls and
other tools supporting security (e.g., flexible honeypots). The timely identification
of a broad range of protocols remains a key first step in the security use case, calling
for accurate, efficient and up-to-date DPI solutions. Yet, previous efforts providing
an independent evaluation of DPI are already aged [30] or leverage on restrict traffic
traces, which questions the applicability of such results to practical scenarios.

I revisit the question on the quality of DPI-based protocol identification. I se-
lect and evaluate four popular, open source projects implementing DPI, namely

89

DPI Solutions in Practice: Benchmark and Comparison

nDPI [49], Libprotoident [10], Tstat [144] and Zeek [116]. I first study their clas-
sification using passively captured traces, covering a wide range of scenarios, i.e.,
traffic produced by IoT devices, collaborative platforms/video-calls, malware, as
well as production internet traffic. Establishing a ground-truth is challenging when
dealing with such diverse traces composed by dozens of protocols. I here evaluate
the consistency of the classification provided by the tools, relying on heuristics and
domain knowledge to validate the decision of each tool when finding conflicting
cases.

After that, I investigate whether the DPI solutions operate consistently when
exposed to a limited number of packets per flow. Indeed, network applications
usually perform protocol identification on-the-fly using the initial packets of each
flow, in order to take timely decisions. For this, I investigate the number of packets
per flow each solution needs to reach a decision, as well as the consistency of such
decisions as more traffic is observed.

The obtained results show that:

• All tested solutions perform well when facing traces with well-established
protocols. This is particularly true for popular protocols that account for the
majority of production traffic;

• Some DPI solutions struggle when facing unusual events, such as massive
scans or malware traffic;

• All tested tools reach a final decision already after observing the first packets
with payload in a flow;

• nDPI outputs labels more often than others, and it usually agrees with the
majority when tools diverge about the protocol of a flow.

To foster further research and contribute to the community, the code and the in-
structions to build the complete datasets and repeat the experiments is shared.1

Next, Sect. A.2 summarizes the related work. Sect. A.3 introduces our datasets
and methodology. Sect. A.4 describes the results, and finally Sect. A.5 concludes
the chapter.

A.2 Related Work
DPI has been applied to protocol identification since the early 2000s, when

the usage of well-known ports for traffic identification turned out to be unreliable.
Multiple approaches have been proposed. Some works rely on “shallow” packet

1https://smartdata.polito.it/dpi-in-practice/

90

https://smartdata.polito.it/dpi-in-practice/

A.3 – Datasets and Methodology

inspection [35], i.e., they parse only packet headers in the search for protocol fin-
gerprints. Such techniques still find practical applications, as encryption protects
protocol payloads. Others propose efficient approaches for DPI, e.g., using pattern
matching [19] or finely-tailored DPI algorithms [90]. Finally, some works rely on
stateful information from multiple flows to label traffic, e.g., leveraging the DNS to
obtain the labels used to classify encrypted traffic [144].

Many DPI tools have been introduced implementing such techniques. Here I
consider four alternatives, which have been evaluated by original authors in [10, 49,
116, 100]. In contrast to them, I perform an independent evaluation of the tools,
thus providing also a validation of the authors’ results.

Past works compare DPI solutions. Authors of [104] perform an extensive bench-
mark covering port-based classification, packet signature algorithms etc. In [156],
authors survey approaches to overcome the lack of ground truth in such studies.
In some cases manual labelling of packet captures is used for DPI comparisons [9],
while other works rely on active measurements to enrich captures with information
about underneath applications [140, 69, 98].

Closer to this analysis is the work presented in [30], where authors also provide
an independent comparison of DPI solutions. In contrast to [30], I leave out of our
evaluation proprietary tools and libraries, since the lack of source code makes it
hard to explore and explain discrepant results. I also refrain from evaluating tools
no longer maintained. More important, I provide an updated comparison of DPI
tools considering recent and real traces, thus covering scenarios not evaluated in
the previous work, with a particular focus on modern security applications.

A.3 Datasets and Methodology
Fig. A.1 summarizes our methodology. I describe the DPI tools selected for

testing (Sect. A.3.1). Then, I build up a set of traces covering different traffic
scenarios (Sect. A.3.2). Next I process the traces with the DPI tools. I then
perform several steps and build up heuristics to build a reference label, and find
discrepancies on the final classifications (Sect. A.3.3).

A.3.1 Selection of DPI Tools
I here restrict the analysis to DPI tools that perform protocol identification

(e.g., HTTP, TLS, SSH etc.), ignoring those aiming at the identification of the
services generating traffic (e.g., Google, Facebook etc.) [85, 3]. Namely, I focus on
the following four alternatives:

• nDPI [49] is an open-source DPI library written in C and based on dissectors,
i.e., functions that detect the given protocols. It is an OpenDPI [83] fork
optimized for performance and supports more than 100 protocols.

91

DPI Solutions in Practice: Benchmark and Comparison

Figure A.1: Testing methodology.

• Libprotoident [10] is a C++ library that focuses on L7 protocols. It applies a
lightweight approach that uses just the first 4 bytes of payload. The idea is to
overcome drawbacks of DPI, i.e., computational complexity and privacy risks.
The library combines pattern matching with algorithms based on payload
sizes, port numbers and IP matching. It supports over 200 protocols.

• Zeek2 – formerly Bro [116] – is a complete framework for traffic analysis that
also allows L7 protocol recognition. It exploits a combination of protocol
fingerprint matching and protocol analyzers. It currently supports more than
70 protocols.

• Tstat [144] is a passive traffic monitoring tool that classifies traffic flows. It
identifies a set of L7 protocols using payload fingerprint matching. It supports
over 40 protocols.

Recall that I ignore projects no longer active. In particular, I leave L7-filter out
since it has been shown to produce unreliable results in more recent scenarios [9].
Equally, I ignore proprietary alternatives, given the intrinsic difficulty to evaluate
the root-causes of conflicting results without access to source codes [49]. Finally, I
do not evaluate tshark3 as it has proved much slower than the alternatives.

A.3.2 Selection and pre-processing of traces
I consider four scenarios to compare the DPI alternatives, including not only

common internet protocols, but also protocols encountered by security applications.
I select 421 different PCAP traces that are aggregated in four macro-categories:

(i) User, which includes ordinary browsing activity of ISP users while at home;

2https://zeek.org
3https://www.wireshark.org/docs/man-pages/tshark.html

92

https://zeek.org
https://www.wireshark.org/docs/man-pages/tshark.html

A.3 – Datasets and Methodology

Table A.1: Flows exported by the different tools before the pre-processing.

Macrotrace Tool Flows
TCP UDP

User Traffic

Tstat 681 k 1.1 M
Libprotoident 678 k 1.1 M
nDPI 543 k 1.1 M
Zeek 804 k 1.2 M

Media & Games

Tstat 15 k 16 k
Libprotoident 15 k 14 k
nDPI 10 k 21 k
Zeek 17 k 16 k

Malware

Tstat 858 k 979 k
Libprotoident 858 k 993 k
nDPI 891 k 1 M
Zeek 1242 k 971 k

IoT

Tstat 118 k 50 k
Libprotoident 118 k 51 k
nDPI 120 k 62 k
Zeek 119 k 52 k

(ii) Media & Games [111, 45, 50] that includes conference-calls, RTC applications,
multimedia and gaming traffic; (iii) Malware [130], which aggregates several samples
of malware4 and security experiments;5 and IoT [132, 115], captured in different
labs hosting a variety of IoT devices. I include both traces captured in our premises
and third-party traces available on public repositories. Traces cover multiple years,
and total more than 143 GB of PCAP files. For brevity, I do not provide details of
each PCAP file here, instead describing only the aggregated macrotraces. To allow
others reproduce these results, I link the public PCAP files in our website.6

I need to match flows as defined by each DPI tool for comparing their per-
formance.7 However, tools employ different rules for defining and exporting flow
records. For example, each tool uses various timeouts to terminate flows that be-
come inactive. Equally, traffic flags (e.g., TCP FIN and RST flags) are possibly
used to identify the end of flows, releasing memory in the traffic monitor. The way
such rules are implemented differs and, as a consequence, tools identify and report

4https://www.malware-traffic-analysis.net
5https://www.netresec.com/?page=PcapFiles
6https://smartdata.polito.it/dpi-in-practice/
7I use the classic 5-tuple definition for a flow: Source IP address, destination IP address, source

port, destination port and transport protocol.

93

https://www.malware-traffic-analysis.net
https://www.netresec.com/?page=PcapFiles
https://smartdata.polito.it/dpi-in-practice/

DPI Solutions in Practice: Benchmark and Comparison

Table A.2: Macrotraces characteristics with pre-processing results.

Macrotrace
Flows PacketsTCP UDPComplete Ignored Original Filtered

User 440 k 241 k 1.1 M 118 M 10.1 M
Media&Games 11 k 4 k 16 k 81 M 2 M

Malware 392 k 466 k 979 k 33 M 26 M
IoT 39 k 79 k 50 k 5 M 2 M

different numbers of flows. Thus, I need to build a common rule to compare results.
Table A.1 summarizes the number of flows reported by each tool. I record

major differences, e.g., Zeek usually identifies more flows than Tstat, even when
configured with similar timeouts. This happens because of the way midstream
traffic and incomplete flows are processed by the tools.

Most of the cases creating discrepancies are however not interesting for the
final analysis, since they usually refer to flows that carry no payload. Indeed,
a lot of flows without payload are present in particular for the Malware traces
due to internet scanning traffic. These flows cannot be evaluated with DPI. As
such, I perform a pre-processing step using Tstat as reference to keep in the final
macrotraces only complete flows, i.e., UDP flows with payload and TCP flows
with complete three-way handshake. All remaining flows are discarded. Whenever
possible, I set the tools with similar timeout parameters for the experiments that
will follow. I next normalize results ignoring the small percentage of flows that are
not revealed by tools other than Tstat to avoid artifacts related to the way flow
are expired or terminated. At last, I keep only the first 20 packets per flow in the
final macrotraces to speed-up the analysis (see column “Filtered”). I will show later
that all tested tools achieve a final protocol classification using a small number of
packets per flow. As such, this pre-processing step does not impact results.

I report a summary of the final macrotraces in Table A.2. I show the number
of packets and flows reported by Tstat, with the latter split as TCP and UDP. For
TCP flows, I detail the number of complete and ignored flows.

In total, our final macrotraces include more than 3 M flows, and 40 M packets
after all pre-processing steps are applied.

A.3.3 Matching flow labels
We need some common rules to normalize the output of the tools and compare

their classifications. First, I normalize all labels, e.g., using always lower case and
removing special characters. Then, I manually verify the output strings to identify
possible synonyms used across tools. Table A.3 reports a subset of labels that
require manual standardization. In total I manually evaluated 225 labels, replacing

94

A.3 – Datasets and Methodology

p2p

dns

http

sslTls

others

skype
unknown

nDPI Libprotoident Zeek Tstat Reference Label
0

20

40

60

80

100

%

(a) User Traffic Macrotrace

sslTls

dns

http

teredo

stun

others

quic

netbiosSmb
unknown

nDPI Libprotoident Zeek Tstat Reference Label
0

20

40

60

80

100

%

(b) Media & Games Macrotrace

dns

sslTls

http

others
unknown

nDPI Libprotoident Zeek Tstat Reference Label
0

20

40

60

80

100

%

(c) Malware Macrotrace

nDPI Libprotoident Zeek Tstat Reference Label
0

20

40

60

80

100

%

http

dns

ntp

sslTls

others

dhcp

stun
netbiosSmb

ssdp
unknown

(d) IoT Macrotrace

Figure A.2: Percentage of labelled flows for each tool. The last bar in the plots
reports percentages for our reference label.

Table A.3: Label standardization

Standardized
Label

Original
Label

p2p p2p, edonkey, emule, ed2k, cacaoweb,
kademlia, bittorrent, torrent

netbiosSmb netbios, smb, smb2, nbns
krb krb, kerberos, spnego-krb5spnego
dns dns, llmnr, mdns
sslTls ssl, tls
skype skype, skypetcp
ldap ldap, cldap
quic quic, gquic

cases such as those in the right column of Table A.3 by a single common label (left
column).

Next, I face the question on how to determine the label for each flow in absence

95

DPI Solutions in Practice: Benchmark and Comparison

Table A.4: Example of flow label constistency and score.

Flow ID Tool Reference
Label ScoreTstat Libprotoident nDPI Zeek

1 krb krb krb krb krb 1
2 unk unk unk unk unk 1
3 krb unk krb krb krb 0.75
4 unk unk krb krb krb 0.5
5 unk unk unk krb krb 0.25
6 unk sip unk p2p conflict 0
7 krb krb p2p p2p conflict 0

of ground truth. Indeed, the lack of ground truth has pushed most of previous
works to resort to testbeds or emulated traffic that I want to avoid [156]. I thus
decide to focus on the consistency of different tools, i.e., I assume that the most
common normalized label assigned to a flow is the reference label for such flow,
and calculate a confidence score for each decision. In case of conflicts, we manually
verify each case.

Table A.4 reports examples of classification, along with the per-flow confidence
score. The easiest cases happen when there is an unanimous decision towards the
same protocol (e.g., Flow 1) or towards the unknown label (e.g., Flow 2). Both
decisions result in a score equals to 1. When at least one tool is able to recognize
the protocol, I ignore the unknown labels and pick the recognized label as reference
label. Yet, our confidence score is lower in this case, e.g., see Flow 5. It rarely
happens (e.g., Flow 6) that all tools recognize a different protocol, or there is a
draw (e.g., Flow 7). Some of these cases have been solved by inspecting the source
code of the DPI tools, e.g., giving preference to labels found by pattern matching
over those guessed based on port numbers or other heuristics. The few cases I could
not resolve are ignored, with confidence score equals to zero.

Finally, once the reference labels are defined, I calculate performance metrics for
each tool. I consider the following metrics: (i) accuracy, the percentage of flows with
label matching the reference; (ii) precision (per protocol), the percentage of such
flows that match with the reference; and (iii) recall (per protocol), the percentage
of such flows the tool has classified as the given protocol.

A.4 Results
Here, I show a summary of the identified flows per tool and I summarize the

classification performance in the several scenarios. Next, I discuss the performance
in terms of the number of packets required to reach a steady classification, and
briefly discuss computational performance of tools.

96

A.4 – Results

A.4.1 Labelled flows per protocol
Fig. A.2 shows a break-down of the number of labelled flows reported by each

tool. Four plots depict results for the different macrotraces. The last bar on each
plot reports the percentage of flows given by the reference label, i.e., the label
selected by the majority of tools. Each figure reports the most common lables in
order of popularity.

In the User Traffic case (top-left plot), Tstat shows the best performance, report-
ing labels for around 85% of the flows. All the libraries recognize popular protocols
(e.g., HTTP, DNS and TLS), but Libprotoident, nDPI and Zeek fail to recognize
some P2P traffic, thus leaving a larger number of flows marked as unknown. Yet,
notice how the number of unknown flows is small for the reference label – i.e., flows
marked as unknown by Tstat are recognized by others.

In the Media & Games case – Fig. A.2b – all tools recognize close to 80% of the
flows. This trace is mostly composed by HTTP, DNS and TLS traffic, which are
well recognized by all tools. The reference label reports again a lower percentage of
unknown than each single tool, showing potential for achieving higher classifications
by merging the output of different tools.

The analysis of the Malware macrotrace – Fig. A.2c – leads to worse numbers
for all cases. The percentage of labelled flows ranges from 66% to 70%. Here the
presence of UDP scans towards multiple ports impact results. Manual inspection
shows the presence of payload that matches the fingerprints of scan UDP attacks
against certain IoT devices. None of the tools is able to identify the protocol of
this malicious traffic, calling for specialized DPI approach in security use cases.

In the IoT case – Fig. A.2d – nDPI is the best performing, labelling almost all
flows. Tstat is penalized by the lack of fingerprints for NTP, STUN and SSDP. All
in all, most flows in this trace are labelled by at least one tool (see the reference
label bar).

Finally, I evaluate the average confidence scores for different protocols. With
this analysis, I aim at identifying protocols for which the tools demonstrate high
consistency. Fig. A.3 shows the average scores for flows labeled with one of the
top-20 protocols considering all four macrotraces. Common protocols such as TLS,
HTTP and NTP are recognized with an average score higher or equal to 75% (left
side of the figure). That is, such protocols are consistently identified by at least
three tools on average. As I move to less popular labels, the confidence scores
reduce significantly. Indeed, the score is reduced to around 25% for Netbios, QUIC
and SSDP (right side of the figure). In other words, only one tool outputs a label
for flows carrying these protocols, with others marking flows as unknown.

97

DPI Solutions in Practice: Benchmark and Comparison

ss
lT

ls
ht

tp nt
p

dh
cp

te
re

do p2
p

st
un

sk
yp

e

ne
tb

io
sS

m
b

qu
ic

ss
dp

ot
he

rs

Protocol

25

50

75

100

S
co

re
(%

)

Figure A.3: Average per flow confidence score for the top reference labels.

A.4.2 Classification performance
I next quantify the percentage of flows classified by each tool as well as their

classification performance in respect to the reference labels. Results are presented
in Tab. A.5. I highlight in bold the best performing tool per trace and metric.

Consider the first row group in the table. It reports the percentage of labelled
flows, summarizing the results presented in the previous section. As said, Tstat
reports more labels for the User Traffic scenario, thanks to its abilities to spot P2P
flows. nDPI instead reaches the largest percentages in the other scenarios, thanks
to its capabilities to guess labels based on multiple heuristics.

Considering accuracy (second row group), the numbers are similar to those for
labelled flows across all scenarios. That is, the overall accuracy (with regards to the
reference labels) is driven by the percentage of unknown flows reported by each tool.
Yet, some particular cases can be noticed, such as minor differences between nDPI
and Libprotoident in the Media & Games Macrotrace. These minor mismatches
arise from cases in which one of the tools, although capable to label the given flow,
disagree with the label given by the majority. These cases are rare and indeed
confirm that once tools labels a flow, the provided label is usually reliable.

Zeek wins when it comes to the average precision per protocol (third row group),
almost always reaching 100%. That is, when Zeek recognizes a protocol, its label
matches the reference. Yet, Zeek suffers in terms of average recall (fourth row
group), due to its limited set of labels. Libprotoident, on the other hand, reaches
the highest average recall per protocol in most scenarios, which can be explained
by its large set of labels, with over 200 protocols. nDPI shows balanced numbers
for both precision and recall per protocol. nDPI find a good number of labels (high
recall) that usually match with the reference (high precision).

98

A.4 – Results

Table A.5: Summary of classification results.

Metric Library Macrotrace

User
Traffic

Games
&

Media
Malware IoT

Labelled
Flows

Tstat 0.85 0.77 0.67 0.73
Libprotoident 0.69 0.86 0.66 0.89
nDPI 0.63 0.86 0.70 0.98
Zeek 0.40 0.78 0.66 0.89

Accuracy

Tstat 0.85 0.77 0.67 0.73
Libprotoident 0.69 0.82 0.66 0.85
nDPI 0.62 0.79 0.70 0.98
Zeek 0.40 0.78 0.66 0.89

Average
Precision

Tstat 0.99 0.87 0.98 1
Libprotoident 0.96 0.91 0.99 0.80
nDPI 0.93 0.89 1 0.99
Zeek 1 0.97 1 1

Average
Recall

Tstat 0.71 0.62 1 1
Libprotoident 1 0.89 1 0.94
nDPI 0.82 0.78 1 1
Zeek 0.66 0.62 0.97 0.79

A.4.3 How many packets are needed for DPI?
I analyze the performance of tools while limiting the number of packets per

flow. This test has been performed by cutting off each flow after observing its
n first packets with payload, i.e., ignoring initial TCP handshake packets. Flows
composed by n or less packets with payload are kept untouched. The goal is to
evaluate the number of packets needed to reach a final classification, and whether
labels change as more packets are observed.

Fig. A.4 shows the resulting average accuracy among all macrotraces. Clearly
results do not change when increasing the number of packets, and all tools reach
an almost steady classification after just one packet. Some tools (e.g., nDPI) in-
crease accuracy further after observing the second packet with payload, but gains
are marginal. This result is particularly relevant, as DPI tools are often used for
real-time identification of protocols on security applications. Note that nDPI has
average accuracy slightly superior than others, with Libprotoident and Tstat com-
ing next.

Finally, I also controlled the performance of the tools in terms of memory fin-
gerprint and processing time. Here a general conclusion is hard to be reached,
since the tools are delivered for different target scenarios. For example, the basic

99

DPI Solutions in Practice: Benchmark and Comparison

1 2 3 4 5 6 7 8 9 10
Packets per flow

0.6

0.8

1.0

A
ve

ra
ge

A
cc

u
ra

cy

nDpi

Libprotoident

Zeek

Tstat

Figure A.4: Average accuracy when increasing the number of packets per flow.
Tools reach a final classification already in the first packet with payload.

installation of Zeek runs as multiple processes, prepared to handle several Gbps.
Libprotoident and nDPI are libraries that can also be integrated in simple demon-
stration programs. In our tests, all tool, but Zeek, present similar performance
figures when processing a single PCAP at a time.

A.5 Conclusions
I presented an evaluation of DPI solutions in several traffic scenarios, comparing

the consistency of their classifications. The tools are practically equivalent when the
input traffic is composed by popular and well-known protocols (e.g., HTTP, DNS
and TLS). When applied to complex scenarios, such as traffic generated by Malware
scans, DPI tools struggle. I also observed discrepancies on the classification of less
popular protocols, with some protocols being supported by only one of the tools.
In sum, there is space for improving these DPI tools by extending their label sets.
Interestingly, tools reach steady-state classification after one packet, suggesting
they can be exploited in online scenarios.

100

Appendix B

List of publications

1. Soro, F., Favale, T., Giordano, D., Vassio, L., Ben Houidi, Z., & Drago, I.
(2021). The New Abnormal: Network Anomalies in the AI Era. Communi-
cation Networks and Service Management in the Era of Artificial Intelligence
and Machine Learning, 261-288.

2. Rescio, T., Favale, T., Soro, F., Mellia, M., & Drago, I. (2021). DPI Solu-
tions in Practice: Benchmark and Comparison. In 2021 IEEE Security and
Privacy Workshops (SPW) (pp. 37-42). IEEE.

3. Trevisan, M., Soro, F., Mellia, M., Drago, I., & Morla, R. (2020). Does do-
main name encryption increase users’ privacy?. ACM SIGCOMM Computer
Communication Review, 50(3), 16-22.

4. Favale, T., Soro, F., Trevisan, M., Drago, I., & Mellia, M. (2020). Campus
traffic and e-Learning during COVID-19 pandemic. Computer networks, 176,
107290.

5. Soro, F., Allegretta, M., Mellia, M., Drago, I., & Bertholdo, L. M. (2020).
Sensing the Noise: Uncovering Communities in Darknet Traffic. In 2020
Mediterranean Communication and Computer Networking Conference (Med-
ComNet) (pp. 1-8). IEEE.

6. Soro, F., Mellia, M., & Russo, N. (2020). Regular Pattern and Anomaly De-
tection on Corporate Transaction Time Series. In EDBT/ICDT Workshops.

7. Soro, F., Drago, I., Trevisan, M., Mellia, M., Ceron, J., & Santanna, J. J.
(2019). Are darknets all the same? On darknet visibility for security mon-
itoring. In 2019 IEEE International Symposium on Local and Metropolitan
Area Networks (LANMAN) (pp. 1-6). IEEE.

8. Khatouni, A. S., Soro, F., & Giordano, D. (2019). A machine learning appli-
cation for latency prediction in operational 4g networks. In 2019 IFIP/IEEE

101

List of publications

Symposium on Integrated Network and Service Management (IM) (pp. 71-74).
IEEE.

9. Faroughi, A., Javidan, R., Mellia, M., Morichetta, A., Soro, F., & Trevisan,
M. (2018). Achieving horizontal scalability in density-based clustering for
URLs. In 2018 IEEE International Conference on Big Data (Big Data) (pp.
3841-3846). IEEE.

10. Casas, P., Soro, F., Vanerio, J., Settanni, G., & D’Alconzo, A. (2017). Net-
work security and anomaly detection with Big-DAMA, a big data analytics
framework. In 2017 IEEE 6th international conference on cloud networking
(CloudNet) (pp. 1-7). IEEE.

102

Bibliography

[1] Davide Abati et al. “Latent space autoregression for novelty detection”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. IEEE. 2019.

[2] Subil Abraham and Suku Nair. “A predictive framework for cyber security
analytics using attack graphs”. In: arXiv preprint arXiv:1502.01240 (2015).

[3] G. Aceto et al. “PortLoad: Taking the Best of Two Worlds in Traffic Clas-
sification”. In: 2010 INFOCOM IEEE Conference on Computer Communi-
cations Workshops. 2010, pp. 1–5.

[4] ADBHoney. Low interaction honeypot designed for Android Debug Bridge
over TCP/IP. 2021. url: https://github.com/huuck/ADBHoney.

[5] Shikha Agrawal and Jitendra Agrawal. “Survey on anomaly detection using
data mining techniques”. In: Procedia Computer Science 60 (2015), pp. 708–
713.

[6] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. “A survey of
network anomaly detection techniques”. In: Journal of Network and Com-
puter Applications 60 (2016), pp. 19–31.

[7] Leman Akoglu, Hanghang Tong, and Danai Koutra. “Graph based anomaly
detection and description: a survey”. In: Data mining and knowledge discov-
ery 29.3 (2015), pp. 626–688.

[8] Eric Alata et al. “Lessons learned from the deployment of a high-interaction
honeypot”. In: 2006 Sixth European Dependable Computing Conference. IEEE.
2006, pp. 39–46.

[9] S. Alcock and R. Nelson. “Measuring the accuracy of open-source payload-
based traffic classifiers using popular Internet applications”. In: 38th Annual
IEEE Conference on Local Computer Networks - Workshops. 2013, pp. 956–
963.

[10] Shane Alcock and Richard Nelson. “Libprotoident: Traffic Classification Us-
ing Lightweight Packet Inspection”. In: (2012).

103

https://github.com/huuck/ADBHoney

BIBLIOGRAPHY

[11] Omar Alrawi et al. “The Circle Of Life: A Large-Scale Study of The IoT Mal-
ware Lifecycle”. In: 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, 2021.

[12] M. Antonakakis et al. “Understanding the Mirai Botnet”. In: Proceedings of
the 26th USENIX Security Symposium. USENIX Security’17. 2017, pp. 1093–
1110.

[13] Tim Bai et al. “RDP-Based Lateral Movement Detection using Machine
Learning”. In: Computer Communications 165 (2021), pp. 9–19.

[14] Michael Bailey et al. “Practical Darknet Measurement”. In: Proc. of the
CISS. 2006, pp. 1496–1501.

[15] Michael Bailey et al. “The Internet Motion Sensor: A Distributed Blackhole
Monitoring System”. In: Proc. of the NDSS. 2005, pp. 167–179.

[16] F. Baker, W. Harrop, and G. Armitage. IPv4 and IPv6 Greynets. Tech. rep.
6018. RFC Editor, 2010.

[17] Ariel Bar et al. “Identifying attack propagation patterns in honeypots using
Markov chains modeling and complex networks analysis”. In: 2016 IEEE in-
ternational conference on software science, technology and engineering (SW-
STE). IEEE. 2016, pp. 28–36.

[18] Paul Barford et al. “Employing honeynets for network situational aware-
ness”. In: Cyber situational awareness. Springer, 2010, pp. 71–102.

[19] Michela Becchi, Mark Franklin, and Patrick Crowley. “A workload for eval-
uating deep packet inspection architectures”. In: 2008 IEEE International
Symposium on Workload Characterization. IEEE. 2008, pp. 79–89.

[20] Laura Beggel, Michael Pfeiffer, and Bernd Bischl. “Robust anomaly de-
tection in images using adversarial autoencoders”. In: Proceedings of the
Joint European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer. 2019.

[21] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation learn-
ing: A review and new perspectives”. In: IEEE transactions on pattern anal-
ysis and machine intelligence 35.8 (2013), pp. 1798–1828.

[22] Karyn Benson et al. “Leveraging Internet Background Radiation for Oppor-
tunistic Network Analysis”. In: Proc. of the IMC. 2015, pp. 423–436.

[23] Paul Bergmann et al. “Uninformed students: Student-teacher anomaly detec-
tion with discriminative latent embeddings”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. IEEE. 2020.

[24] Monowar H Bhuyan, Dhruba Kumar Bhattacharyya, and Jugal K Kalita.
“Network anomaly detection: methods, systems and tools”. In: Ieee commu-
nications surveys & tutorials 16.1 (2013), pp. 303–336.

104

BIBLIOGRAPHY

[25] Vincent D Blondel et al. “Fast unfolding of communities in large networks”.
In: Journal of statistical mechanics: theory and experiment 2008.10 (2008),
P10008.

[26] Matt Boddy, Ben Jones, and Mark Stockley. “RDP Exposed-The Threat
That’s Already at Your Door”. In: Sophos, Inc, Sophos White Paper (2019).

[27] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.
[28] N. Brownlee. “One-way Traffic Monitoring with Iatmon”. In: Proceedings

of the 13th International Conference on Passive and Active Measurement.
PAM’12. 2012, pp. 179–188.

[29] A. Brzeczko et al. “Active Deception Model for Securing Cloud Infrastruc-
ture”. In: Proceedings of the IEEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS). 2014, pp. 535–540.

[30] Tomasz Bujlow, Valentín Carela-Español, and Pere Barlet-Ros. “Indepen-
dent comparison of popular DPI tools for traffic classification”. In: Computer
Networks 76 (2015), pp. 75–89.

[31] CAIDA/UCSD. The UCSD Network Telescope. 2021. url: https://www.
caida.org/projects/network_telescope/.

[32] Emmanuel J Candès et al. “Robust principal component analysis?” In: Jour-
nal of the ACM (JACM) 58.3 (2011), pp. 1–37.

[33] Pedro Casas et al. “Network security and anomaly detection with Big-
DAMA, a big data analytics framework”. In: 2017 IEEE 6th international
conference on cloud networking (CloudNet). IEEE. 2017, pp. 1–7.

[34] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detection:
A survey”. In: ACM computing surveys (CSUR) 41.3 (2009), pp. 1–58.

[35] Ajay Chaudhary and Anjali Sardana. “Software based implementation method-
ologies for deep packet inspection”. In: 2011 international conference on
information science and applications. IEEE. 2011, pp. 1–10.

[36] Jinghui Chen et al. “Outlier detection with autoencoder ensembles”. In:
Proceedings of the SIAM international conference on data mining. SIAM.
2017.

[37] Cisco. “Cisco annual internet report (2018–2023) white paper”. In: (2020).
url: https://www.%20cisco.%20com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/whitepaper-c11-
741490.%20html.

[38] Evan Cooke et al. “Toward Understanding Distributed Blackhole Place-
ment”. In: Proc. of the WORM. 2004, pp. 54–64.

105

https://www.caida.org/projects/network_telescope/
https://www.caida.org/projects/network_telescope/
https://www.%20cisco.%20com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/whitepaper-c11-741490.%20html
https://www.%20cisco.%20com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/whitepaper-c11-741490.%20html
https://www.%20cisco.%20com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/whitepaper-c11-741490.%20html

BIBLIOGRAPHY

[39] Gianpiero Costantino and Ilaria Matteucci. “CANDY CREAM-haCking in-
fotAiNment anDroid sYstems to Command instRument clustEr via cAn data
fraMe”. In: Proceedings of the IEEE International Conference on Embedded
and Ubiquitous Computing (EUC). IEEE. 2019, pp. 476–481.

[40] Marc Coudriau, Abdelkader Lahmadi, and Jerome Francois. “Topological
analysis and visualisation of network monitoring data: Darknet case study”.
In: 2016 IEEE International Workshop on Information Forensics and Secu-
rity (WIFS). IEEE. 2016, pp. 1–6.

[41] Cowrie. SSH/Telnet Honeypot. 2021. url: https://github.com/cowrie/
cowrie.

[42] Jakub Czyz et al. “Understanding IPv6 Internet Background Radiation”.
In: Proc. of the IMC. 2013, pp. 105–118.

[43] A. Dainotti et al. “Extracting Benefit from Harm: Using Malware Pollution
to Analyze the Impact of Political and Geophysical Events on the Internet”.
In: SIGCOMM Comput. Commun. Rev. 42.1 (2012), pp. 31–39.

[44] Alberto Dainotti et al. “Analysis of Country-Wide Internet Outages Caused
by Censorship”. In: IEEE/ACM Trans. Netw. 22.6 (2014), pp. 1964–1977.

[45] Alberto Dainotti, Antonio Pescapé, and Giorgio Ventre. “A packet-level
characterization of network traffic”. In: 2006 11th International Workshop
on Computer-Aided Modeling, Analysis and Design of Communication Links
and Networks. IEEE. 2006, pp. 38–45.

[46] Alberto Dainotti et al. “Analysis of a "/0" Stealth Scan From a Botnet”. In:
IEEE/ACM Trans. Netw. 23.2 (2015), pp. 341–354.

[47] Alberto Dainotti et al. “Lost in Space: Improving Inference of IPv4 Address
Space Utilization”. In: IEEE Journal on Selected Areas in Communications
34.6 (2016), pp. 1862–1876.

[48] Emiliano De Cristofaro et al. “Paying for Likes? Understanding Facebook
Like Fraud Using Honeypots”. In: Proceedings of the 2014 Conference on
Internet Measurement Conference. IMC ’14. Vancouver, BC, Canada, 2014,
pp. 129–136. isbn: 9781450332132.

[49] L. Deri et al. “nDPI: Open-source High-speed Deep Packet Inspection”.
In: Proceedings of the International Wireless Communications and Mobile
Computing Conference. IWCMC. 2014, pp. 617–622.

[50] Andrea Di Domenico et al. “A network analysis on cloud gaming: Stadia,
GeForce Now and PSNow”. In: arXiv preprint arXiv:2012.06774 (2020).

[51] Paraskevi Dinaki. “Deep Packet Inspection: A Comparison Study Between
Exact Match and Regular Expression Techniques”. In: (2018).

106

https://github.com/cowrie/cowrie
https://github.com/cowrie/cowrie

BIBLIOGRAPHY

[52] Dionaea. Generic Low Interaction Honeypot. 2021. url: https://github.
com/DinoTools/dionaea.

[53] Harris Drucker et al. “Support vector regression machines”. In: Advances in
neural information processing systems. 1997, pp. 155–161.

[54] Zakir Durumeric, Michael Bailey, and J. Alex Halderman. “An Internet-
Wide View of Internet-Wide Scanning”. In: Proc. of the SEC. 2014, pp. 65–
78.

[55] Elias Raftopoulos et al. “How Dangerous Is Internet Scanning? A Measure-
ment Study of the Aftermath of an Internet-Wide Scan”. In: Proc. of the
TMA. 2015, pp. 158–172.

[56] Scott Emmons et al. “Analysis of network clustering algorithms and cluster
quality metrics at scale”. In: PloS one 11.7 (2016).

[57] Claude Fachkha, Elias Bou-Harb, and Mourad Debbabi. “Inferring Dis-
tributed Reflection Denial of Service Attacks from Darknet”. In: Comput.
Commun. 62.C (2015), pp. 59–71.

[58] Claude Fachkha and Mourad Debbabi. “Darknet as a Source of Cyber In-
telligence: Survey, Taxonomy, and Characterization”. In: Commun. Surveys
Tuts. 18.2 (2016), pp. 1197–1227.

[59] Jinliang Fan et al. “Prefix-Preserving IP Address Anonymization: Measurement-
Based Security Evaluation and a New Cryptography-Based Scheme”. In:
Comput. Netw. 46.2 (2004), pp. 253–272.

[60] Durdu Ömer Faruk. “A hybrid neural network and ARIMA model for wa-
ter quality time series prediction”. In: Engineering Applications of Artificial
Intelligence 23.4 (2010), pp. 586–594.

[61] S. Fernandes et al. “Slimming Down Deep Packet Inspection Systems”. In:
IEEE INFOCOM Workshops 2009. 2009, pp. 1–6.

[62] Santo Fortunato. “Community detection in graphs”. In: Physics reports
486.3-5 (2010), pp. 75–174.

[63] Daniel Fraunholz et al. “Data Mining in Long-Term Honeypot Data”. In:
Proceedings of the IEEE International Conference on Data Mining Work-
shops. ICDMW. 2017, pp. 649–656.

[64] Luca Gioacchini et al. “DarkVec: automatic analysis of darknet traffic with
word embeddings”. In: Proceedings of the 17th International Conference on
emerging Networking EXperiments and Technologies. 2021, pp. 76–89.

[65] Glutton. Generic Low Interaction Honeypot. 2021. url: https://github.
com/mushorg/glutton.

107

https://github.com/DinoTools/dionaea
https://github.com/DinoTools/dionaea
https://github.com/mushorg/glutton
https://github.com/mushorg/glutton

BIBLIOGRAPHY

[66] Izhak Golan and Ran El-Yaniv. “Deep anomaly detection using geometric
transformations”. In: Proceedings of the Advances in Neural Information
Processing Systems. NIPS. 2018.

[67] Dong Gong et al. “Memorizing normality to detect anomaly: Memory-augmented
deep autoencoder for unsupervised anomaly detection”. In: Proceedings of
the IEEE International Conference on Computer Vision. IEEE. 2019.

[68] GreyNoise. 2021. url: https://greynoise.io/.
[69] Francesco Gringoli et al. “Gt: picking up the truth from the ground for

internet traffic”. In: ACM SIGCOMM Computer Communication Review
39.5 (2009), pp. 12–18.

[70] Wonkyu Han et al. “HoneyMix: Toward SDN-Based Intelligent Honeynet”.
In: Proceedings of the 2016 ACM International Workshop on Security in
Software Defined Networks & Network Function Virtualization. SDN-NFV
Security’16. USA, 2016, pp. 1–6.

[71] Warren Harrop and Grenville Armitage. “Defining and Evaluating Greynets
(Sparse Darknets)”. In: Proc. of the LCN. 2005, pp. 344–350.

[72] Mahmudul Hasan et al. “Learning temporal regularity in video sequences”.
In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition. IEEE. 2016.

[73] Heralding. Credentials Catching Honeypot. 2021. url: https://github.
com/johnnykv/heralding.

[74] Raphael Hiesgen et al. “Spoki: Unveiling a New Wave of Scanners through a
Reactive Network Telescope”. In: arXiv preprint arXiv:2110.05160 (2021).

[75] Honeynet. The Honeynet Project. 2021. url: https://www.honeynet.org/.
[76] Honeytrap. Advanced Honeypot Framework. 2021. url: https://github.

com/honeytrap/honeytrap.
[77] Chengqiang Huang et al. “Towards experienced anomaly detector through

reinforcement learning”. In: Thirty-Second AAAI Conference on Artificial
Intelligence. 2018.

[78] Tomoharu Iwata and Makoto Yamada. “Multi-view anomaly detection via
robust probabilistic latent variable models”. In: Proceedings of the Advances
in neural information processing systems. NIPS. 2016.

[79] Mattijs Jonker et al. “Millions of Targets Under Attack: A Macroscopic
Characterization of the DoS Ecosystem”. In: Proc. of the IMC. 2017, pp. 100–
113.

[80] P. Joshi and H. Dinesha. “Survey on Identification of Malicious Activities
by Monitoring Darknet Access”. In: 2020 Third International Conference on
Smart Systems and Inventive Technology (ICSSIT). 2020, pp. 346–350.

108

https://greynoise.io/
https://github.com/johnnykv/heralding
https://github.com/johnnykv/heralding
https://www.honeynet.org/
https://github.com/honeytrap/honeytrap
https://github.com/honeytrap/honeytrap

BIBLIOGRAPHY

[81] Karin Kandananond. “Electricity demand forecasting in buildings based on
ARIMA and ARX models”. In: Proceedings of the 8th International Con-
ference on Informatics, Environment, Energy and Applications. ACM. 2019,
pp. 268–271.

[82] A. R. Khakpour and A. X. Liu. “High-Speed Flow Nature Identification”.
In: 2009 29th IEEE International Conference on Distributed Computing Sys-
tems. 2009, pp. 510–517.

[83] Jawad Khalife, Amjad Hajjar, and Jesús Díaz-Verdejo. “Performance of
OpenDPI in identifying sampled network traffic”. In: Journal of Networks
8.1 (2013), p. 71.

[84] Jack Kiefer et al. “Stochastic estimation of the maximum of a regression
function”. In: The Annals of Mathematical Statistics 23.3 (1952), pp. 462–
466.

[85] Hyunchul Kim et al. “Internet Traffic Classification Demystified: Myths,
Caveats, and the Best Practices”. In: Proceedings of the 2008 ACM CoNEXT
Conference. CoNEXT ’08. Madrid, Spain: Association for Computing Ma-
chinery, 2008. isbn: 9781605582108.

[86] A. King et al. “A Coordinated View of the Temporal Evolution of Large-scale
Internet Events”. In: Computing 96.1 (2014), pp. 53–65.

[87] M. Kuhrer et al. “Exit from Hell? Reducing the Impact of Amplification
DDoS Attacks”. In: Proceedings of the 23rd USENIX Conference on Security
Symposium. SEC’14. 2014, pp. 111–125.

[88] Atsutoshi Kumagai, Tomoharu Iwata, and Yasuhiro Fujiwara. “Transfer
anomaly detection by inferring latent domain representations”. In: Proceed-
ings of the Advances in Neural Information Processing Systems. NIPS. 2019.

[89] Mahesh Kumar, Nitin R Patel, and Jonathan Woo. “Clustering seasonality
patterns in the presence of errors”. In: Proceedings of the 8th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM.
2002.

[90] Sailesh Kumar, Jonathan Turner, and John Williams. “Advanced algorithms
for fast and scalable deep packet inspection”. In: 2006 Symposium on Archi-
tecture For Networking And Communications Systems. IEEE. 2006, pp. 81–
92.

[91] Donghwoon Kwon et al. “A survey of deep learning-based network anomaly
detection”. In: Cluster Computing (2019), pp. 1–13.

[92] Sofiane Lagraa, Yutian Chen, and Jérôme François. “Deep mining port
scans from darknet”. In: International Journal of Network Management 29.3
(2019), e2065.

109

BIBLIOGRAPHY

[93] Sofiane Lagraa and Jérome François. “Knowledge discovery of port scans
from darknet”. In: 2017 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM). IEEE. 2017, pp. 935–940.

[94] Andrea Lancichinetti and Santo Fortunato. “Community detection algo-
rithms: a comparative analysis”. In: Physical review E 80.5 (2009), p. 056117.

[95] Max Landauer et al. “System log clustering approaches for cyber security
applications: A survey”. In: Computers & Security 92 (2020), p. 101739.

[96] Ian XY Leung et al. “Towards real-time community detection in large net-
works”. In: Physical Review E 79.6 (2009), p. 066107.

[97] Steffen Liebergeld, Matthias Lange, and Ravishankar Borgaonkar. “Cellpot:
A Concept for Next Generation Cellular Network Honeypots”. In: Internet
Society (2014), pp. 1–6.

[98] Peng Lizhi et al. “Traffic labeller: collecting internet traffic samples with
accurate application information”. In: China Communications 11.1 (2014),
pp. 69–78.

[99] Gabriel Maciá-Fernández et al. “UGR ‘16: A new dataset for the evalua-
tion of cyclostationarity-based network IDSs”. In: Computers & Security 73
(2018), pp. 411–424.

[100] Marco Mellia, R Lo Cigno, and Fabio Neri. “Measuring IP and TCP behavior
on edge nodes with Tstat”. In: Computer Networks 47.1 (2005), pp. 1–21.

[101] Lionel Metongnon and Ramin Sadre. “Beyond Telnet: Prevalence of IoT Pro-
tocols in Telescope and Honeypot Measurements”. In: Proc. of the WTMC.
2018, pp. 21–26.

[102] Lihua Miao, Wei Ding, and Haiting Zhu. “Extracting Internet Background
Radiation from Raw Traffic using Greynet”. In: Proc. of the ICON. 2012,
pp. 370–375.

[103] University of Michigan. Why am I receiving connection attempts from the
University of Michigan? 2013. url: https: //cse .engin. umich.edu /
about/resources/connection-attempts/.

[104] Andrew W Moore and Konstantina Papagiannaki. “Toward the accurate
identification of network applications”. In: International Workshop on Pas-
sive and Active Network Measurement. Springer. 2005, pp. 41–54.

[105] David Moore et al. “Inferring Internet Denial-of-Service Activity”. In: ACM
Trans. Comput. Syst. 24.2 (2006), pp. 115–139.

[106] David Moore et al. Network Telescopes: Technical Report. Tech. rep. 2004.
[107] Farnaz Moradi, Tomas Olovsson, and Philippas Tsigas. “An evaluation of

community detection algorithms on large-scale email traffic”. In: Interna-
tional symposium on experimental algorithms. Springer. 2012, pp. 283–294.

110

https://cse.engin.umich.edu/about/resources/connection-attempts/
https://cse.engin.umich.edu/about/resources/connection-attempts/

BIBLIOGRAPHY

[108] S. Morishita et al. “Detect Me If You... Oh Wait. An Internet-Wide View
of Self-Revealing Honeypots”. In: Proceedings of the IFIP/IEEE Symposium
on Integrated Network and Service Management (IM). 2019, pp. 134–143.

[109] M. Nawrocki et al. “A Survey on Honeypot Software and Data Analysis”.
In: arXiv:1608.06249 (2016).

[110] Mark EJ Newman. “Modularity and community structure in networks”. In:
Proceedings of the national academy of sciences 103.23 (2006), pp. 8577–
8582.

[111] Antonio Nisticó et al. “A comparative study of RTC applications”. In: To
appear in the Proceedings of the 22nd IEEE International Symposium on
Multimedia (2020).

[112] Steven Noel et al. “Cygraph: graph-based analytics and visualization for
cybersecurity”. In: Handbook of Statistics. Vol. 35. Elsevier, 2016, pp. 117–
167.

[113] Ping-Feng Pai and Chih-Sheng Lin. “A hybrid ARIMA and support vector
machines model in stock price forecasting”. In: Omega 33.6 (2005), pp. 497–
505.

[114] Ruoming Pang et al. “Characteristics of Internet Background Radiation”.
In: Proc. of the IMC. 2004, pp. 27–40.

[115] A Parmisano, S Garcia, and MJ Erquiaga. “A Labeled Dataset with Mali-
cious and Benign IoT Network Traffic”. In: Stratosphere Laboratory: Praha,
Czech Republic (2020).

[116] Vern Paxson. “Bro: a system for detecting network intruders in real-time”.
In: Computer networks 31.23-24 (1999), pp. 2435–2463.

[117] Cynthia Phillips and Laura Painton Swiler. “A graph-based system for network-
vulnerability analysis”. In: Proceedings of the 1998 workshop on New security
paradigms. 1998, pp. 71–79.

[118] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. “Near linear
time algorithm to detect community structures in large-scale networks”. In:
Physical review E 76.3 (2007), p. 036106.

[119] Stephen Ranshous et al. “Anomaly detection in dynamic networks: a sur-
vey”. In: Wiley Interdisciplinary Reviews: Computational Statistics 7.3 (2015),
pp. 223–247.

[120] K Hanumantha Rao et al. “Implementation of anomaly detection technique
using machine learning algorithms”. In: International Journal of Computer
Science and Telecommunications 2.3 (2011), pp. 25–31.

111

BIBLIOGRAPHY

[121] Tommaso Rescio et al. “DPI Solutions in Practice: Benchmark and Compar-
ison”. In: 2021 IEEE Security and Privacy Workshops (SPW). IEEE. 2021,
pp. 37–42.

[122] Philipp Richter and Arthur Berger. “Scanning the Scanners: Sensing the
Internet from a Massively Distributed Network Telescope”. In: Proceedings
of the Internet Measurement Conference. IMC ’19. Amsterdam, Netherlands,
2019, pp. 144–157.

[123] Jean-Pierre van Riel and Barry Irwin. “InetVis, a visual tool for network
telescope traffic analysis”. In: Proceedings of the 4th international conference
on Computer graphics, virtual reality, visualisation and interaction in Africa.
2006, pp. 85–89.

[124] V. Riyadi. Securing Mikrotik Router. 2018. url: https://mum.mikrotik.
com/presentations/ID18/presentation_5554_1540255240.pdf.

[125] Martin Rosvall et al. “Memory in network flows and its effects on spreading
dynamics and community detection”. In: Nature communications 5.1 (2014),
pp. 1–13.

[126] R. E. Schapire. “Explaining adaboost”. In: Empirical inference. Springer,
2013, pp. 37–52.

[127] Thomas Schlegl et al. “f-AnoGAN: Fast unsupervised anomaly detection
with generative adversarial networks”. In: Medical image analysis 54 (2019),
pp. 30–44.

[128] Subhabrata Sen, Oliver Spatscheck, and Dongmei Wang. “Accurate, scal-
able in-network identification of p2p traffic using application signatures”.
In: Proceedings of the 13th international conference on World Wide Web.
2004, pp. 512–521.

[129] Shaoqiang Wang, DongSheng Xu, and ShiLiang Yan. “Analysis and appli-
cation of Wireshark in TCP/IP protocol teaching”. In: 2010 International
Conference on E-Health Networking Digital Ecosystems and Technologies
(EDT). Vol. 2. 2010, pp. 269–272.

[130] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. “Toward
generating a new intrusion detection dataset and intrusion traffic character-
ization.” In: ICISSP. 2018, pp. 108–116.

[131] Chaofan Shen and Leijun Huang. “On detection accuracy of L7-filter and
OpenDPI”. In: 2012 Third International Conference on Networking and Dis-
tributed Computing. IEEE. 2012, pp. 119–123.

[132] Arunan Sivanathan et al. “Classifying IoT devices in smart environments us-
ing network traffic characteristics”. In: IEEE Transactions on Mobile Com-
puting 18.8 (2018), pp. 1745–1759.

112

https://mum.mikrotik.com/presentations/ID18/presentation_5554_1540255240.pdf
https://mum.mikrotik.com/presentations/ID18/presentation_5554_1540255240.pdf

BIBLIOGRAPHY

[133] SNARE/TANNER. Web Application Honeypot Sensor. 2021. url: http:
//mushmush.org/.

[134] Pavol Sokol, Jakub Míšek, and Martin Husák. “Honeypots and Honeynets:
Issues of Privacy”. In: EURASIP Journal on Information Security 2017.1
(2017), p. 4. issn: 1687-417X.

[135] F. Soro et al. “Sensing the Noise: Uncovering Communities in Darknet Traf-
fic”. In: Proceedings of the Mediterranean Communication and Computer
Networking Conference. MedComNet. 2020, pp. 1–8.

[136] Francesca Soro, Marco Mellia, and Nicolo Russo. “Regular Pattern and
Anomaly Detection on Corporate Transaction Time Series.” In: EDBT/ICDT
Workshops. 2020.

[137] Francesca Soro et al. “Are Darknets All The Same? On Darknet Visibility
for Security Monitoring”. In: 2019 IEEE International Symposium on Local
and Metropolitan Area Networks (LANMAN). IEEE. 2019, pp. 1–6.

[138] Francesca Soro et al. “The New Abnormal: Network Anomalies in the AI
Era”. In: Communication Networks and Service Management in the Era of
Artificial Intelligence and Machine Learning (2021).

[139] Stuart Staniford et al. “The Top Speed of Flash Worms”. In: Proc. of the
WORM. 2004.

[140] Géza Szabó et al. “On the validation of traffic classification algorithms”.
In: International Conference on Passive and Active Network Measurement.
Springer. 2008, pp. 72–81.

[141] Jay Thom, Yash Shah, and Shamik Sengupta. “Correlation of Cyber Threat
Intelligence Data Across Global Honeypots”. In: Proceedings of the IEEE
11th Annual Computing and Communication Workshop and Conference.
CCWC. 2021, pp. 0766–0772.

[142] Christof Ferreira Torres, Mathis Steichen, and Radu State. “The Art of
The Scam: Demystifying Honeypots in Ethereum Smart Contracts”. In:
28th USENIX Security Symposium (USENIX Security 19). Santa Clara, CA,
2019, pp. 1591–1607.

[143] TPot. The All In One Honeypot Platform. 2021. url: https://github.
com/telekom-security/tpotce.

[144] M. Trevisan et al. “Traffic Analysis with Off-the-Shelf Hardware: Challenges
and Lessons Learned”. In: IEEE Commun. Mag. 55.3 (2017), pp. 163–169.

[145] Fang-Mei Tseng et al. “Fuzzy ARIMA model for forecasting the foreign
exchange market”. In: Fuzzy sets and systems 118.1 (2001), pp. 9–19.

[146] Twisted. Event-driven Networking Engine Written in Python. 2021. url:
https://twistedmatrix.com/trac/.

113

http://mushmush.org/
http://mushmush.org/
https://github.com/telekom-security/tpotce
https://github.com/telekom-security/tpotce
https://twistedmatrix.com/trac/

BIBLIOGRAPHY

[147] Himani Tyagi and Rajendra Kumar. “Attack and Anomaly Detection in
IoT Networks Using Supervised Machine Learning Approaches.” In: Rev.
d’Intelligence Artif. 35.1 (2021), pp. 11–21.

[148] Vladimir Vapnik et al. “Support vector method for function approximation,
regression estimation and signal processing”. In: Advances in neural infor-
mation processing systems. 1997, pp. 281–287.

[149] Alexander Vetterl and Richard Clayton. “Bitter Harvest: Systematically
Fingerprinting Low- and Medium-interaction Honeypots at Internet Scale”.
In: Proceedings of the 12th USENIX Workshop on Offensive Technologies
(WOOT 18). Baltimore, MD, USA: USENIX Association, 2018.

[150] VirusTotal. 2021. url: https://www.virustotal.com/.
[151] Paul Wagenseller, Feng Wang, and Weili Wu. “Size matters: A compara-

tive analysis of community detection algorithms”. In: IEEE Transactions on
Computational Social Systems 5.4 (2018), pp. 951–960.

[152] Matthias Wählisch et al. “First insights from a mobile honeypot”. In: ACM
SIGCOMM Computer Communication Review 42.4 (2012), pp. 305–306.

[153] ZiHan Wang et al. “Automatically Traceback RDP-based Targeted Ran-
somware Attacks”. In: Wireless Communications and Mobile Computing
2018 (2018).

[154] Gavin Watson. A comparison of header and deep packet features when de-
tecting network intrusions. Tech. rep. 2018.

[155] Eric Wustrow et al. “Internet Background Radiation Revisited”. In: Proc.
of the IMC. 2010, pp. 62–74.

[156] Jinghua Yan. “A survey of traffic classification validation and ground truth
collection”. In: 2018 8th International Conference on Electronics Informa-
tion and Emergency Communication (ICEIEC). IEEE. 2018, pp. 255–259.

[157] Vinod Yegneswaran, Paul Barford, and Vern Paxson. “Using Honeynets for
Internet Situational Awareness”. In: In Proceedings of the Fourth Workshop
on Hot Topics in Networks. HotNets. 2005, pp. 17–22.

[158] Vinod Yegneswaran, Paul Barford, and Dave Plonka. “On the design and use
of Internet sinks for network abuse monitoring”. In: International Workshop
on Recent Advances in Intrusion Detection. Springer. 2004, pp. 146–165.

[159] Chuxu Zhang et al. “A deep neural network for unsupervised anomaly de-
tection and diagnosis in multivariate time series data”. In: Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019, pp. 1409–
1416.

114

https://www.virustotal.com/

BIBLIOGRAPHY

[160] Yiru Zhao et al. “Spatio-temporal autoencoder for video anomaly detection”.
In: Proceedings of the 25th ACM international conference on Multimedia.
ACM. 2017.

[161] Chong Zhou and Randy C Paffenroth. “Anomaly detection with robust
deep autoencoders”. In: Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM. 2017.

[162] Nur Zincir-Heywood, Marco Mellia, and Yixin Diao. “Overview of Artificial
Intelligence and Machine Learning”. In: Communication Networks and Ser-
vice Management in the Era of Artificial Intelligence and Machine Learning
(2021).

[163] Bo Zong et al. “Deep autoencoding gaussian mixture model for unsuper-
vised anomaly detection”. In: Proceedings of the International Conference
on Learning Representations. 2018.

[164] Tanja Zseby et al. “The Day after Patch Tuesday: Effects Observable in IP
Darkspace Traffic”. In: Proc. of the PAM. 2013, pp. 273–275.

115

BIBLIOGRAPHY

This Ph.D. thesis has been typeset
by means of the TEX-system facil-
ities. The typesetting engine was
pdfLATEX. The document class was
toptesi, by Claudio Beccari, with
option tipotesi=scudo. This class
is available in every up-to-date and
complete TEX-system installation.

116

	List of Tables
	List of Figures
	Introduction
	Related Work
	Knowledge Extraction Pipeline
	Data collection and processing
	Ethics

	Are Darknets All the Same? On Darknet Visibility for Security Monitoring
	Introduction
	Methodology
	Comparison of darknet traffic
	Traffic types
	Temporal patterns
	Origin of Scan traffic
	Per-port breakdown

	Effects of darknet size
	Observation period
	Darknet size

	Conclusion

	Enlightening the Darknets: Augmenting Darknet Visibility with Active Probes
	Introduction
	Infrastructure
	DPIswitch implementation

	Methodology and datasets
	Deployments and categories
	Data capture and processing

	Macroscopic changes in traffic
	Breakdown per flow stage
	Temporal evolution

	Ports, senders and neighbors
	Changes on probed ports
	Changes on traffic senders
	Who does what?

	Gain in service-specific deployments
	Gain in service requests
	Targeted services and Side-Scans
	DPIPot additional visibility

	Conclusion

	Sensing the Noise: Uncovering Communities in Unsolicited Traffic
	Introduction
	Methodology
	Graph definition
	Detecting communities

	Darknet datasets
	Popularity of ASes
	Popularity of ports

	Darknet communities
	Community popularity
	Community structure
	Ports per community
	Temporal behaviour

	DPIPot validation
	Conclusion

	Anomaly Detection Techniques on Network Traffic Time Series: Practical Considerations and Challenges
	Introduction
	Problem characteristics and definitions
	Tested algorithms
	Classical approaches
	Representation learning and autoencoders

	Datasets and methodology
	Results
	UGR'16 - Artificial dataset validation
	DPIPot RDP - Hard case

	Conclusion

	Conclusion and Outlook
	DPI Solutions in Practice: Benchmark and Comparison
	Introduction
	Related Work
	Datasets and Methodology
	Selection of DPI Tools
	Selection and pre-processing of traces
	Matching flow labels

	Results
	Labelled flows per protocol
	Classification performance
	How many packets are needed for DPI?

	Conclusions

	List of publications
	Bibliography

