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Abstract—Bias in the data used to train decision-making
systems is a relevant socio-technical issue that emerged in recent
years, and it still lacks a commonly accepted solution. Indeed,
the “bias in-bias out” problem represents one of the most
significant risks of discrimination, which encompasses technical
fields, as well as ethical and social perspectives. We contribute
to the current studies of the issue by proposing a data quality
measurement approach combined with risk management, both
defined in ISO/IEC standards. For this purpose, we investigate
imbalance in a given dataset as a potential risk factor for
detecting discrimination in the classification outcome: specifically,
we aim to evaluate whether it is possible to identify the risk of bias
in a classification output by measuring the level of (im)balance
in the input data. We select four balance measures (the Gini,
Shannon, Simpson, and Imbalance ratio indexes) and we test
their capability to identify discriminatory classification outputs
by applying such measures to protected attributes in the training
set. The results of this analysis show that the proposed approach
is suitable for the goal highlighted above: the balance measures
properly detect unfairness of software output, even though the
choice of the index has a relevant impact on the detection of
discriminatory outcomes, therefore further work is required to
test more in-depth the reliability of the balance measures as risk
indicators. We believe that our approach for assessing the risk
of discrimination should encourage to take more conscious and
appropriate actions, as well as to prevent adverse effects caused
by the “bias in-bias out” problem.

Index Terms—Data quality, Data bias, Data ethics, Algorithm
fairness, Automated decision-making

I. INTRODUCTION

Decision-making processes are rapidly turning into auto-
mated decision-making (ADM) systems in a variety of sectors
of our society, both in private and public organizations, lever-
aging the large availability of data and classification/prediction
algorithms [1]. This new phase of automation is supposed
to increase economic efficiency as well as remove human
subjectivity and errors. However, alongside these possible
benefits, indisputable harms are now evident: when trained on
biased data, automated data-driven processes replicate or even

amplify the same bias of our society [2] [3]. From a technical
perspective, one form of biased data is imbalanced data, which
is an unequal distribution of the occurrences between the
classes of a given attribute (e.g. gender, ethnic group, etc.)
[4]. Causes of imbalanced data include errors or limitations in
the data collection process (including design and operations),
or merely because the reality that the data reproduce is itself
imbalanced in given characteristics (e.g., data about nurses
can be easily imbalanced with respect to gender). Specifically,
the imbalance is between-class when only two classes are
taken into consideration and one class is over-represented
with respect to the other, or multiclass when imbalances exist
between multiple classes. Herein we focus on the more general
case, i.e., multiclass imbalance. Imbalanced data is known for
a long time to be a problematic aspect in the machine learning
domain [4]: this issue is still relevant [5] because it can give
rise to very heterogeneous accuracy across the classes of data
and, consequently, to relevant social, ethical, and legal issues.
In this paper we study how an imbalance in the training data
can be used as a predictor of possible unfair software output,
combining concepts from data quality measurement and risk
management.

We provide the theoretical foundations of the approach in
section II; then, we describe the experimental design in sec-
tion III, while results are reported and discussed in section IV.
After that, we position our work in the literature in section V
and we take into consideration the limitations of the approach
in section VI. Finally, we highlight conclusions and potential
future work in section VII.

II. DATA IMBALANCE AS RISK INDICATOR

Our measurement approach is derived from the series of
standards ISO/IEC 25000:2014 Software Engineering — Soft-
ware Product Quality Requirements and Evaluation (SQuaRE)
[6], which describes quality models and measurements of soft-
ware products, data and services. In this family of standards,
quality is composed of quantifiable characteristics and sub-
characteristics. Data imbalance (or its dual concept of data978-1-6654-3902-2/21/$31.00 ©2021 IEEE



balance) is not a characteristic of data quality in ISO/IEC
25012:2008, however it can be seen as a possible exten-
sion because it is a key element in the chain of effects
and dependencies described in SQuaRE: according to this
principle, data quality has an effect on the system quality
in use and as a consequence on the users of a software
system. In our context, imbalanced datasets may lead to
imbalanced software outputs, which means –in the context of
ADM systems– differentiation of products, information and
services based on personal protected characteristics, and thus
discrimination. Therefore, according to this line of reasoning,
we treat data imbalance as an extension of the data quality
model formalized in ISO/IEC 25012:2008, and we quantify
it with proper measures, extending those already defined in
ISO/IEC 25024:2015.

The second pillar behind our approach is represented by
the ISO 31000:2018 standard on risk management [7] that
provides the guiding principles for the management of risks.
Because of its role in systematic and unjustified unequal
treatment – and even unlawful discrimination– made by ADM
systems, we propose that data imbalance shall be also consid-
ered as a risk factor in all those systems that rely on historical
data and that automate decisions on important aspects of
the lives of individuals, which concern the exercise of their
rights and freedoms (think to automated decisions on wages,
education, working positions, social benefits, etc.).

For reasons of space we cannot analytically report on all
the relations between our proposed approach and the two ISO
standards (which can be found in [8]), however, following the
line of reasoning exposed above, should clearly emerge our
hypothesis: by measuring the level of (im)balance of specific
attributes in a dataset, it is possible to detect the risk of bias in
the classification output from ADM systems. More in detail,
we refer to the following specifications:

• software systems are biased when they ”systematically
and unfairly discriminate against certain individuals or
groups of individuals in favor of others [by denying]
an opportunity for a good or [assigning] an undesirable
outcome to an individual or groups of individuals on
grounds that are unreasonable or inappropriate [9];

• we identify as social groups of category object of possi-
ble discrimination those identified by the characteristics
provided in “Article 21 - Non- discrimination” of the EU
Charter of Fundamental Rights [10]:

1. Any discrimination based on any ground such
as sex, race, colour, ethnic or social origin, genetic
features, language, religion or belief, political or any
other opinion, membership of a national minority,
property, birth, disability, age or sexual orientation
shall be prohibited.
2. Within the scope of application of the Treaties and
without prejudice to any of their specific provisions,
any discrimination on grounds of nationality shall
be prohibited.

III. EXPERIMENTAL DESIGN

Our goal consists in understanding how the balance of
protected attributes in training data can be used to assess the
risk of algorithmic unfairness. For this purpose, we conducted
a study aimed at answering the following Research Question:

Is it possible to identify the risk of bias in a classifi-
cation output by detecting the level of (im)balance in
the input data?

In order to conduct this analysis, we selected a set of
indexes that are able to measure balance in the data –and
thus its absence, i.e. imbalance–, and we assessed how well
such balance measures applied to a given dataset reflect a
discrimination risk. Specifically, we followed this procedure:

1. we selected a large dataset (available in the literature
and described in section III-A) and a multiclass protected
attribute1 with cardinality “m” ;

2. using a mutation technique, we generated a number
of derived synthetic datasets having different levels of
balance; specifically, we adopted a pre-processing method
as mutation technique (see section III-B) and we mutate
the distribution of the occurrences between the classes
of a certain attribute by adjusting the specific parameter
C.perc;

3. we implemented a binomial logistic regression model in
order to predict the score variable for each synthetic
dataset; particularly, we trained a binary classifier on a
training set composed by the 70% (randomly selected)
of the data and we ran it on the remaining 30%, which
represents the test set;

4. we measured the level of (im)balance of the protected
attribute in the training set through four different widely
used balance measures (described in section III-C);

5. we applied two distinct fairness criteria (see sec-
tion III-D) to the protected attribute in the test set –i.e.
to the classifications obtained from the model– for a total
of three unfairness measures on each output.

6. we analyzed first the behavior of both balance and
unfairness measures in response to mutations, and then
we examined the relationship between balance measures
and fairness criteria, by checking in the end whether a
negative correlation holds, that is, whether a lower level
of balance corresponds to a higher level of unfairness,
and vice-versa.

Therefore, by examining the balance features of the pro-
tected attributes in the training data, we aim at analyzing
if the indexes of balance taken into account are able to
reveal a risk of bias in the test set, for the purpose of
evaluating the reliability of such balance measures as risk
indicators of distorted recommendations or biased decisions
–i.e., discrimination risks– in the context of ADM systems.

1For identifying an attribute as protected, we take as reference the defi-
nition provided in “Article 21 - Non-discrimination” of the EU Charter of
Fundamental Rights [10], as already mentioned in section II.



A. Data

With a view to exploring the potential of our approach in
one of the prominent fields of application of ADM systems,
we examined a dataset belonging to the application domain
of financial services: Default of Credit Card Clients, whose
properties have been summarized in table I.
This dataset –referred to as Dccc hereinafter– has been re-
trieved by the Kaggle platform2 and was chosen because of
the high impact of using ADM systems in this domain and
that particular dataset because of popularity: at the time of the
research, it was ranked as the fourth most voted dataset on
credit cards on Kaggle3 and it fits better our study than the
one ranked first (Credit Card Fraud Detection), which is based
on transactions, while we are interested in datasets that collect
data on persons.

Dccc is composed of 25 variables: it contains information
on default payments, demographic factors, credit data, history
of payment, and bill statements of credit card clients in Taiwan
from April 2005 to September 2005 [11]. Moreover, since this
dataset does not contain a pre-computed classification, so we
built a binomial logistic regression model in order to predict
the score variable: in particular, we trained a binary classifier
on a training set composed by the 70% (randomly selected)
of the original dataset and we ran it on the remaining 30%,
which represents the test set. Finally, note that in real datasets
we can often find missing values (NA), so we decided not to
exclude missing values from the analysis and to consider them
as a separate “NA” category.

TABLE I
SUMMARY OF THE DATASET’S PROMINENT PROPERTIES.

Dataset Size Domain Target
variable

Protected
attribute m

Default of
credit cards
clients (Dccc)

30000×25 Financial default
payment
next month

education 6

B. Mutation technique

We adopted a specific pre-processing method as mutation
technique in order to create several variations of the distribu-
tion of the occurrences between the classes of a given protected
attribute. To this end, we used the UBL-package 4:

“The package provides a diversity of pre-processing func-
tions to deal with both classification (binary and multi-class)
and regression problems that encompass non-uniform costs
and/or benefits.”.

In particular, we assumed the SmoteClassif function 5

as mutation technique:

2https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset
3https://www.kaggle.com/datasets?search=credit+card&sort=votes, last vis-

ited on November 9, 2021.
4https://rdocumentation.org/packages/UBL/versions/0.0.6/topics/

UBL-package, last visited on November 9, 2021
5https://www.rdocumentation.org/packages/UBL/versions/0.0.6/topics/

SmoteClassif, last visited on November 9, 2021

“This function handles unbalanced classification
problems using the SMOTE method. Namely, it can
generate a new ‘SMOTEd’ data set that addresses
the class unbalance problem.”.

This method has been applied with the following settings:
• “education∼” is the multi-class protected attribute

chosen as formula; as a consequence of our decision to
include missing values in the analysis and count them as
a separate category, this attribute consists of six classes:
“NA”, “graduate school”, “university”, “high school”,
“others”, “unknown”.

• “C.perc” is a list containing the percentages of under-
sampling or/and over-sampling to apply to each class of
the protected attribute in the formula: an over-sampling
percentage is a number above 1, while an under-sampling
percentage should be a number below 1; in particular, a
class remains unchanged if the number 1 is provided for
that class; note that there exists an infinite number of
possible combinations of the percentages of the classes.
Alternatively, C.perc may be set to the two values
“balance” (the default) or “extreme”, cases where the
sampling percentages are automatically estimated either
to balance the examples between the minority and major-
ity classes, or to invert the distribution of examples across
the existing classes transforming the majority classes into
the minority, and vice-versa.

• “repl=FALSE” is a boolean value controlling the pos-
sibility of having (or not, as in this case) repetition of
examples when performing under-sampling by selecting
among the majority class(es) examples.

In our study we decided to examine five different cases for
the parameter C.perc: first, we set the parameter to the pre-
established value “balance” –which is the perfect uniform dis-
tribution, with all the occurrences equally distributed between
the classes–, then we assigned four different lists of percent-
ages for the classes of the protected attribute, corresponding
to the exemplar distributions “Power2”, “HalfHigh”, “OneOff”
and “QuasiBalance” already analyzed in [12]. In particular,
such exemplar distributions are described as follows:

- Power 2: occurrences are distributed according to a
power-law with base 2, i.e., distributions among the
classes increase like the powers of 2;

- Half High: occurrences are distributed mostly among
half of the classes while the remaining have a very low
frequency –specifically, a ratio of 1:9 has been chosen
for the frequencies of the two halves;

- One Off : occurrences are distributed among all classes
but one;

- Quasi Balance: half of the classes are 10% higher w.r.t.
max balance and the other half is 10% lower.

In addition, for each exemplar distribution we considered 6
permutations of the values of the percentages assigned to the
different classes of the protected attribute. Finally, in order
to increase the variability –and thus the reliability– of our
method, we decided to vary a seed (an integer recommended



for reproducibility purposes to keep track of the samples) by
setting 100 randomly sampled values between 1 and 1000.

Therefore, for the discussion of the results we kept track of
the outcomes for each value of the seed in the case of the
mutation with C.perc=“balance”, for a total of 1×100=100
values for each measurement –both balance measures and
fairness criteria–; whereas in the case of the mutations corre-
sponding to the four different lists of percentages, we collected
a total of
4 (exemplar distributions) × 6 (permutations) × 100 (seed) =
2400 values for each measurement, leading to a grand total of
100+2400=2500 values for each balance measure and 2500
values for each unfairness measure.

C. Balance measures

In this study, we limited our attention to categorical at-
tributes and we selected four indexes of data balance (sum-
marized in table II) that are widely used in the literature. The
measures have been normalized in order to meet two criteria:

• range in the interval [0, 1];
• share the same interpretation: the closer the measure to

1 and the higher the balance (i.e. categories have similar
frequencies); vice-versa, values closer to 0 means more
concentration of frequencies in few categories, thus an
imbalanced distribution.
a) Gini index: it is a measure of heterogeneity that

reflects how many different types are represented and it is used
in many disciplines with different designations: examples are
political polarization, market competition, ecological diversity
as well as racial discrimination. In statistics, the heterogeneity
of a discrete random variable can vary between a degenerate
case (= minimum value of heterogeneity) and an equiprobable
case (= maximum value of heterogeneity, since categories are
all equally represented). Thus, for a given number of categories
the heterogeneity increases if probabilities become as equal as
possible, i.e. the different classes have similar representations.

b) Shannon index: it is a measure of species diversity in
a community, which is a widely employed concept in biology,
phylogenetics and ecology. Indeed, diversity indexes represent
a useful tool to measure imbalance providing information
about community composition taking the relative amounts of
different species (classes) into account.

c) Simpson index: it is another indicator of diversity
that measures the probability that two individuals randomly
selected from a sample belong to the same species, i.e., the
same category. It is employed in social and economic sciences
for measuring wealth, uniformity and equity, as well as in
ecology for measuring the diversity of living beings in a given
location.

d) Imbalance Ratio: the Imbalance Ratio (IR) is a
widely used measure made of the ratio between the highest and
the lowest frequency. We take the inverse in order to normalize
it in the range [0, 1] and to make it comparable to the previous
balance measure, i.e., the higher the values and the higher the
balance.

TABLE II
THE balance measures WITH THE RESPECTIVE FORMULA, WHERE WE
CONSIDER A DISCRETE RANDOM VARIABLE WITH m CLASSES, EACH

WITH FREQUENCY fi (= PROPORTION OF THE CLASS i W.R.T. THE TOTAL)
WHERE i = 1, ...,m:

Gini G = m
m−1 ·

(
1 −

∑m
i=1 f2

i

)
Simpson D = 1

m−1 ·
(

1∑m
i=1

f2
i

− 1

)
Shannon S = −

(
1

lnm

)∑m
i=1 fi ln fi

Imbalance Ratio IR =
min({f1..m})
max({f1..m})

D. Fairness assessment

We assessed the unfairness of automated classifications rely-
ing on two criteria formalized in [13]. Note that hereinafter we
call indistinctly “Fairness criteria” and “Unfairness measures”,
as we assume the fairness criteria as measures of unfairness
in a classification output.
In general, to evaluate unfairness we consider a sensitive cate-
gorical attribute A that can assume different values (a1, a2, ...),
a target variable Y and a predicted class R where Y is binary
(i.e., Y = 0 or Y = 1 and thus R = 0 or R = 1). In practice,
we aim to check whether the ADM system, which assigned a
predicted class, behaved fairly w.r.t. the different values of a
sensitive attribute.

Independence criterion: this criterion requires the ac-
ceptance rate to be the same in all groups, where acceptance
corresponds to the event R = 1, and it has been explored
through many equivalent terms or variants referred to as,
for instance, demographic parity or statistical parity, since it
enforces groups to have equal selection rates. Thus –in terms
of probability– it corresponds to the following constraint:

P (R = 1 | A = a) = P (R = 1 | A = b) = ...

If A is binary (that is, A = a1 or a2), then we can compute
the Independence unfairness measure as:

UI(a1, a2) = |P (R = 1 | A = a1)− P (R = 1 | A = a2)|

Separation criterion: roughly speaking, since in many
scenarios the sensitive characteristic may be correlated with
the target variable, the separation criterion allows correlation
between the score and the sensitive attribute to the extent
that it is justified by the target variable, reason why it is
also said equalized odds, equality of opportunity, or even
conditional procedure accuracy. Specifically, the separation
criterion requires the equivalence of true positive rate and false
positive rate for each level of the protected attributed under
analysis:

P (R = 1 | Y = 1, A = a1) = P (R = 1 | Y = 1, A = a2) = ...

P (R = 1 | Y = 0, A = a1) = P (R = 1 | Y = 0, A = a2) = ...

Therefore, if A is binary we can compute two Separation
unfairness measures (U) as follows:



• US TPR(a1, a2) =

|P (R = 1 | Y = 1, A = a1)− P (R = 1 | Y = 1, A = a2)|

• US FPR(a1, a2) =

|P (R = 1 | Y = 0, A = a1)− P (R = 1 | Y = 0, A = a2)|

Both the definition of the Independence criterion and of the
Separation criterion can be easily extended to the case of non-
binary attributes – i.e. m > 2 – by taking the mean of indexes
computed considering all the possible pairs of levels in A:

U(a1, ..., am) =
2

m(m− 1)

m−1∑
i=1

m∑
j=i+1

U(ai, aj)

Note that all the unfairness measures described herein range
in the interval [0, 1]: they assume values equal to zero for
a perfectly fair classification and higher values for unfair
behavior.

Finally, since the score variable was not included in the
original datasets, after defining a logistic regression model we
assessed the unfairness on the test set, whereas we computed
the balance measures on the training set of the model.

IV. RESULTS AND DISCUSSION

First of all, we remark that hereinafter the values of both
balance measures and fairness criteria have been multiplied
by 100, so that all measures range in the interval [0,100],
in order to simplify the readability of the results. Hence, we
remind that:

• in the case of balance measures, values close to 0 indicate
a high imbalance, vice-versa the closer the measure to
100 and the higher the balance;

• in the case of unfairness measures, values close to 0
reveal a fair classification, on the contrary, high values
indicate unfair behavior.

Before addressing the Research Question, we observe the
behavior of both balance measures and fairness criteria as the
permutation of a specific mutation varies –for each of the four
mutations corresponding to the exemplar distributions.
Given a certain mutation, we note that the values of the
balance measures remain substantially unchanged for all six
permutations, suggesting that permutations have a very weak
effect or no effect at all on the balance measures.
On the contrary, regarding the fairness criteria, we observe
an irregular behavior particularly in the case of mutations
that lead to more imbalanced distributions –Power2, HalfHigh
and OneOff–, while the values tend to be more stable for
QuasiBalance; thus, permutations result to have some effect
on the measures of unfairness.

A. Analysis of the Balance measures in response to mutations.

With a view to analyzing more in-depth the behavior of the
indexes, we report in Fig. 1 the box plots of the whole distri-
butions for each balance measure with respect to mutations.
Keeping in mind the description of the exemplar distributions

in section III-B, we expect balance measures to increase as the
mutation tends to be increasingly balanced. For this aim, we
remind that the most imbalanced distribution is represented
by Power2, followed by HalfHigh (which is slightly more
balanced with respect to Power2), OneOff (slightly more
balanced again), QuasiBalance and Balance –which is the best
case, with all the occurrences equally distributed between the
classes. Indeed, we note an overall absence of variance and
we observe that balance measures increase as the mutations
become increasingly balanced, with the lowest values in
correspondence of the case Power2, respectively followed by
HalfHigh (which presents higher values with respect to the
previous, indicating a more balanced distribution) and OneOff
(with even higher values); then, we observe the highest out-
comes corresponding to the cases QuasiBalance and Balance,
confirming our general expectations.

Looking at the individual measures, Gini and Shannon
indexes present a similar behavior, with values in the range
between 75 and 100, and apparently no difference in detecting
QuasiBalance and Balance, both with values close to 100. The
Simpson index covers a larger range, about 38-100, with a
slight difference between the cases QuasiBalance and Balance.
Finally, the IR index appears to be spanned over the whole
range [0,100], with well distinct values for the two most
balanced cases, and the uncommon presence of zero values in
correspondence of the mutation OneOff: indeed, by definition
of IR, in the special case of one or more empty classes6 the
value of the IR index results to be zero, that is the reason for
which we observe null values in the case of OneOff.

Therefore, we can confirm the ability of the mutation
approach to generate synthetic datasets that spread the whole
range of conventional balance measures.

B. Analysis of the Fairness criteria in response to mutations.

An analogous analysis has been performed for the un-
fairness measures and is reported in Fig. 2, which presents
the box plots of the whole distributions for each fairness
criterion in correspondence of the five mutations. First of all,
we observe that the variance decreases as the mutations tend
to be more and more balanced, with a very large variance
in the cases Power2 and HalfHigh; then, the variance tends
to drop in the intermediate case OneOff, and becomes much
smaller for QuasiBalance and Balance. Such variance trend
is substantially the same for all the unfairness measures,
but looking at the individual measures, we observe that the
Separation criterion in the case of TP rate assumes values in
the range [0,23], while it assumes values between 0 and 4 in
the case of FP rate; finally, we observe that the Independence
criterion ranges in the interval [0,7].

Despite the different ranges of values, we note that all the
unfairness measures present overall very similar distributions
with respect to mutations: we observe the highest values in
correspondence of Power2 (thus indicating the most unfair

6We define as empty class a class with null frequency as there are
no occurrences, i.e., a class that exists because potentially there could be
occurrences, but is not represented in the dataset.



Fig. 1. Distributions of the Balance measures with respect to mutations.

classification output), followed by HalfHigh, OneOff, Quasi-
Balance and Balance which all present lower values compared
to the case Power2, revealing a fairer classification output,
but substantially no difference between the mean values. In
conclusion, only on the condition of considering the highest
extreme values of each mutation, the general trend of the
unfairness measures seems to decrease (thus indicating an
increasingly fair classification) as the mutations tend to be
increasingly balanced.

C. Analysis of the Fairness criteria in response to the Balance
measures.

In the subsequent analysis we examine the trends of the
fairness criteria in response to the balance measures with
respect to the different mutations, by considering (for each
mutation) first the mean value of Unfairness, as reported in
Fig. 3(a), and then the maximum value, which is represented
in Fig. 3(b). Particularly, we aggregate data for mutation and
we plot the distributions of the three fairness criteria (Y
axis) with respect to the increase of the balance measures
(X axis); therefore, the dashed lines trace the trend of the
unfairness measures as the balance measures increase. We
also specify that regarding the balance measures we always
consider the mean values for each mutation (as in the previous
analysis of Fig. 1 we observed an absence of variance);
whereas, concerning the unfairness measures, after aggregating
data for mutation, we first compute the mean values (“Mean
case”) and then we take the maximum values (“Worst case”,
which corresponds to the most unfair output for that given
mutation), since we previously observed in Fig. 2 a large
variance, above all in correspondence of highly imbalanced

distributions. Overall, we note a decrease in the unfairness
measures as the balance measures increase.

This trend is confirmed in both the Mean and the Worst
cases, but looking at the individual indexes of balance we
observe an irregular behavior for the IR index: indeed, we
already explained the special case of one or more classes
with null frequency that make the IR index drop to zero,
therefore in correspondence of the mutation OneOff the IR
index results to be zero, while the unfairness level assumes
an intermediate value between the mutation HalfHigh and
QuasiBalance, thus reflecting the same order of the unfairness
levels in response to the other balance measures. In turn, we
observe that the unfairness measures decrease –thus indicating
an increasingly fair classification– as the mutations tend to be
increasingly balanced, with the highest values in the case of
Power2, respectively followed by HalfHigh (which presents
lower values compared to the previous, revealing a fairer
classification output) and OneOff (with even lower values);
then, the lowest values are obtained in the cases QuasiBalance
and Balance, thus indicating the fairest output.

To analyze results more in depth, we integrate our study
with the computation of the Spearman correlation coefficient
between balance and unfairness measures. Specifically, we
expect the coefficient to be negative, as we expect the balance
measures to be high (meaning low imbalance) if the unfairness
values are low (indicating higher fairness). Thus, the stronger
the negative correlation, the stronger is the relationship be-
tween balance and unfairness measures.
As we can observe from table III, all the balance measures
present a negative correlation with the fairness criteria, mean-
ing that the higher the indexes of balance, the lower the



Fig. 2. Distributions of the Unfairness measures with respect to mutations.

unfairness measures; in addition, the computations reveal that
such values are all significant (p-value<0.05) except for the IR
index in correspondence of Separation TPR. More in detail, we
notice that the Imbalance Ratio index always presents a weaker
negative correlation (between -0.018 and -0.049) with respect
to the other three balance measures, which seem to reflect
very similarly the different unfairness measures; specifically,
the more accurate balance measure is the Shannon index,
followed by Gini and Simpson indexes respectively, each one
with correlation values between -0.08 and -0.1.
From the perspective of the unfairness measures, the Separa-
tion criterion in the case of True Positive rate results to be
the most difficult to detect (with correlation values around -
0.08, and even -0.018 in correspondence of the IR index),
followed by the Independence criterion –which presents a
slightly stronger negative correlation–, while the Separation
criterion in the case of False Positive rate appears to be the
best to detect, showing a stronger negative correlation above all
with the Gini, Shannon and Simpson indexes (with correlation
values around -0.1).
Therefore, although correlations are weak, they are always
negative (and significant, i.e. p-value<0.05, except for IR w.r.t.

Separation TPR): we can assert that overall the correlation
analysis do not reject the hypothesis that the balance measures
are capable of revealing unfairness of software output, with
some variation among the balance measures (e.g., we observed
halved correlation values in correspondence of the IR index,
which is highly sensitive to extreme values of balance and
imbalance).

In conclusion, on the basis of all the highlighted observa-
tions and within the limits of this study, we positively answer
our initial research question: it is possible to identify the risk
of unfairness in a classification output by detecting the level
of (im)balance in the input data.

V. RELATED WORK

We contribute to the main corpus of researches on al-
gorithmic bias and fairness by moving the focus from the
outcomes of ADM systems (where most of the literature
concentrate) to their inputs and processes, as indicated as
necessary in several recent studies (.e.g, [14], [15] and [16]).
Our proposal differentiates from the reference literature for
two additional important aspects: i) it is built upon a series of
international standards, which incorporate by design a multi-



(a) Mean case of unfairness.

(b) Worst case of unfairness.

Fig. 3. Trends of the Fairness criteria in response to the Balance measures with respect to the different mutations, by considering (for each
mutation) the Mean value of unfairness (a), and then the maximum value –which corresponds to the most unfair output– i.e., the Worst case (b).



TABLE III
CORRELATION BETWEEN BALANCE MEASURES AND UNFAIRNESS MEASURES.

Fairness criteria
Balance Measures Gini Shannon Simpson Imbalance

Ratio

Independence -0.088 -0.089 -0.087 -0.046
Separation (TPR) -0.083 -0.084 -0.082 -0.018

(FPR) -0.102 -0.103 -0.100 -0.049

stakeholder perspective; ii) we examine the balance features
of input datasets by looking at data imbalance as a risk
factor, and not as a technical fix. Indeed, we firmly believe
that a risk approach is more advisable because it keeps the
ultimate responsibility in the realm of human agency, rather
than delegating the mitigation of the issue to yet another
algorithm, with a very low probability of success given the
socio-technical nature of the problem.

Noteworthy it is the work of Takashi Matsumoto and Arisa
Ema [17]: they adopted an approach similar to ours but with
a wider scope, by proposing a risk chain model for risk
reduction in Artificial Intelligence (AI) services, named RCM,
where they consider both data quality and data imbalance
as risk factors. Even though our work is not as wide in
scope, we believe that it can be easily plugged into the RCM
framework, due to the fact that we propose a quantitative way
to measure balance, backed by a structural relation to the
ISO/IEC standards on software quality requirements and risk
management. In addition, our work is complementary to the
existing toolkits for bias detection and mitigation [18], since
the balance measures proposed herein have not been taken into
account yet.

Other approaches that can be related to ours are in the
direction of labeling datasets. The “The Dataset Nutrition
Label Project” 7 has been an inspiring work for us. Similar
to nutrition labels on food, this initiative aims to identify the
“key ingredients” in a dataset such as provenance, population,
missing data.

A similar goal was declared by authors of the “Ethically and
socially-aware labeling” (EASAL) [19], who identified three
types of data input properties that could lead to downstream
potential risks of discrimination: data quality, correlations and
collinearity, and disproportions in datasets. The last property
coincides with imbalanced data: indeed, the same authors
lately published a data annotation and visualization schema
based on Bayesian statistical inference [20], always for the
purpose of warning about the risk of discriminatory outcomes
of a given dataset.

VI. LIMITATIONS

As limitations of our approach, first of all we highlight the
limited amount of data that has been taken into account, as we
tested the mutation technique on just one multiclass protected
attribute belonging to a specific dataset: it would be advisable

7It is the result of a joint initiative of MIT Media Lab and Berkman Klein
Center at Harvard University: https://datanutrition.org/

to retrieve a larger number of datasets with all the concerning
information, with the aim of further assessing the reliability
of this approach. Secondly, it would be recommended to take
into consideration additional measures of balance (also for
non-categorical data) as well as other fairness criteria. Both
directions would help to generalize the validity of the findings
of this study.

The binomial logistic regression used for the classification
task assumes linearity between the dependent variable and
the independent variables, and limited or no multi-collinearity
between independent variables. These requirements were not
taken into account and verified in our analyses. In addition,
other classification algorithms (each with different parameters)
could be applied to understand if they propagate imbalance
differently from the logistic regression, and in general to
improve the external validity of this study.

Eventually, other types of mutation techniques should be
taken into account, for instance by adopting different pre-
processing methods to reproduce several distributions of the
occurrences between the classes of the protected attributes.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we assess imbalance in a given dataset as
a potential risk factor for detecting discrimination in the
classification outcome of automated decision-making systems.
The approach combines aspects of data quality and risk
management (backed by ISO/IEC standards). For this pur-
pose, we selected four balance measures (the Gini, Shannon,
Simpson, and Imbalance Ratio indexes, normalized to share
the same meaning and the same range of values) and we
tested their ability to anticipate discrimination occurring in
the classification output. Overall, the results reveal that the
proposed approach is suitable for the given goal, however
further work ought to be devoted to testing more systematically
both balance measures and fairness criteria on a larger number
of datasets and protected attributes, to derive usage guidelines
for each index, given the different behaviors observed in the
study. In addition, the use of different classification algorithms
and mutation techniques could further enrich this study.

We hope that these preliminary results will encourage
researchers and policy-makers to assess the risk of discrimi-
nation in ADM systems by measuring the imbalance of the
protected attributes in training sets, hopefully adopting the
approach we proposed here and improving it with additional
measures and techniques.
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