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1. Introduction

The primary purpose of this work is to prove pointwise estimates for a family of functions that are
fundamentally related to the spectral analysis of spherical Laplacians and sub-Laplacians and
expressed in terms of ultraspherical polynomials. More specifically, for a fixed d ∈ N, d ≥ 2, we
consider the functions

X d
`,m(x) = c`m(1−x2)m/2−(d−2)/4P (m,m)

`−m−1/2(x). (1)

Here ` ∈ Nd := N+ (d − 1)/2, m ∈ Nd−1, m ≤ `, x ∈ [−1,1], the symbol P (α,β)
j denotes the Jacobi

polynomial of degree j ∈N and indices α,β>−1, and c`m is the normalization constant given by

c`m =
[
`Γ(`−m +1/2)Γ(`+m +1/2)

]1/2

2m Γ(`+1/2)
(2)
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and chosen so that ∫ 1

−1
|X d

`,m(x)|2 (1−x2)(d−2)/2 dx = 1, (3)

see [32, (4.3.3)].
The functions X d

`,m are instrumental in the recursive construction of orthonormal bases of

L2(Sd ), Sd denoting the unit sphere in R1+d , made of spherical harmonics. Namely, for all k ≥ 1
and m ∈ Nk , let H m(Sk ) denote the space of spherical harmonics (that is, restrictions to the
spherical surface of harmonic polynomials) of degree m − (k − 1)/2 on the unit sphere in R1+k .
Moreover, for all functions f on Sd−1, let us define the function X d

`,m ⊗ f on Sd by

(X d
`,m ⊗ f )((cosψ)ω, sinψ) = X d

`,m(sinψ) f (ω),

for all ω ∈ Sd−1 and ψ ∈ [−π/2,π/2] (this definition makes sense almost everywhere on Sd ;
actually, when m > (d−2)/2, it makes sense everywhere, because X d

`,m(±1) = 0 in that case). Then,

for all ` ∈ Nd and m ∈ Nd−1 such that m ≤ `, the map f 7→ X d
`,m ⊗ f is an isometric embedding

of H m(Sd−1) into H `(Sd ) (with respect to the Hilbert space structures induced by L2(Sd−1) and
L2(Sd ) respectively), and indeed we have the orthogonal direct sum decomposition

H `(Sd ) = ⊕
m≤`

X d
`,m ⊗H m(Sd−1). (4)

This construction is classical and can be found in several places in the literature, modulo some
minor notational differences (see, e.g., [35, Chapter IX] or [10, Chapter XI]).

In order to obtain pointwise estimates for X d
`,m(x), it is natural to seek bounds for the (d-

independent) functions

Y`,m(x) = c`,m(1−x2)m/2 P (m,m)
`−m−1/2(x),

with (`,m) ∈ (N/2)2 and `−m − 1/2 ∈ N. Upper bounds for Jacobi polynomials P (α,β)
j , that are

uniform with respect to α, β and j in suitable ranges, have recently attracted a considerable in-
terest. For a brief account of these bounds, with particular emphasis on Bernstein-type inequali-
ties, we refer to [24]; for some earlier results on ultraspherical polynomials and the strictly related
associated Legendre functions, see [20, 21]. For recent contributions, focusing on the uniformity
with respect to the indices, we refer to works of Haagerup and Schlichtkrull [13], Koornwinder,
Kostenko and Teschl [16], and Krasikov [17, 18]. In the particular case d = 2, some relevant upper
bounds for the classical spherical harmonics may be found in [6, 12, 28].

Most of the aforementioned results give uniform weighted estimates for suitably normalised
families of Jacobi polynomials P (α,β)

j , where the weight depends on the type (α,β) and is inde-
pendent of the degree j . In contrast, the estimates that we obtain here take into consideration,
for each individual function Y`,m , the position of the “transition points” ±a`,m (see (7) below)
that separate the regions of oscillation and decay of Y`,m on [−1,1]. Estimates of this nature, that
describe with a certain precision the behaviour of the function near the transition points, turn
out to be essential ingredients in the proof of a sharp spectral multiplier theorem for Grushin op-
erators on the unit sphereSd , whose spectral decomposition can be expressed in terms of spher-
ical harmonics. In the case d = 2, this problem was studied in [7], where pointwise estimates of
this type were proved for the functions X 2

`,m . The present paper confirms the validity of similar

estimates for the functions X d
`,m with arbitrary d ≥ 2; details on their application to the proof of

a multiplier theorem are given in the companion paper [8], where the estimates of the present
paper are crucially used to prove “weighted spectral cluster bounds” for spherical Grushin oper-
ators (see Remark 2 below). We also refer to [15, Section 8] for the discussion of estimates of the
kind proved in the present paper for a different family of Jacobi polynomials (namely, P (α,β)

j , with
α 6=β and only one fixed between α and β).
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As in the case d = 2, our approach detects a discrepancy in the behaviour of X d
`,m , depending

on whether m is smaller or larger than ε` for some fixed ε ∈ (0,1). This corresponds to the fact
that, if m ≤ ε`, the functions in (1) are asymptotically related to Bessel functions, while for m ≥ ε`
their asymptotical behaviour is described by Hermite polynomials. Indeed a crucial tool in the
proof of our pointwise bounds for X d

`,m is provided by the precise asymptotic approximations
of ultraspherical polynomials in terms of Bessel functions and Hermite polynomials previously
obtained by Boyd and Dunster and by Olver [5, 26]. We point out that estimates for Hermite and
Bessel functions of a similar character to those considered here are available in the literature
(see, e.g., [2, 4]), but they apply to one-parameter families; in contrast, here we obtain uniform
estimates for two-parameter families of ultraspherical polynomials. Similarly, but in a different
context, [9] presents a robust approach that applies to orthonormal expansions associated to
second-order ODE on the real line, yielding estimates that are uniform with respect to an
additional scale parameter.

We would like to point out that part of the results obtained here can be deduced from estimates
in [17, 18]. In those works, the author employs a different approach, yielding very precise bounds
with explicit constants for Jacobi polynomials P (α,α)

j , where α need not be integer or half-integer.
On the other hand, due to the various constraints on α and j in [17, 18], those estimates do
not appear to cover the whole range of indices that we consider here. In addition, the results
in [17,18] mainly focus on the oscillatory region, and do not appear to provide comparably precise
information on the behaviour beyond the transition points.

Some of the proofs presented here are similar to those given in [7, Section 3], but several
variations and new ideas are required when d > 2. As a matter of fact, even in the case d = 2,
here we obtain a substantially stronger decay beyond the transition points in the Hermite regime
compared to the one proved in [7]. When comparing results, one should take into account a slight
change of notation, since ` in [7] corresponds to `−1/2 here.

Let us introduce, for all d ∈N, d ≥ 2, the index set

Id = {(`,m) : ` ∈Nd , m ∈Nd−1, `≥ m}. (5)

Moreover, for all `,m ∈N/2 with ` 6= 0 and 0 ≤ m ≤ `, we define the points a`,m ,b`,m ∈ [0,1] by

b`,m = m

`
(6)

and

a2
`,m = 1−b2

`,m = (`−m)(`+m)

`2 . (7)

One should think of ±a`,m as the values of x ∈ [−1,1] corresponding to the transition points for
X d
`,m(x), while b`,m corresponds to the transition points after the change of variables y =

p
1−x2.

In the statement below, and throughout the paper, for two given nonnegative quantities A and
B , we use the notation “A . B” to indicate that A ≤ C B for some positive constant C . We also
write A ' B as shorthand for A . B and B . A. Variants such as .k and 'k are used to indicate
that the implicit constants may depend on the parameter k.

Theorem 1. Let d ∈N, d ≥ 2. For all ε ∈ (0,1), there exists c ∈ (0,1) such that, for all (`,m) ∈ Id , if
m ≥ ε`, then

|X d
`,m(x)|.d ,ε

{
(`−1 +|x2 −a2

`,m |)−1/4 for all x ∈ [−1,1],

|x|−1/2(1−x2)(c`−(d−2)/4)+ for |x| ≥ 2 a`,m ,
(8)

while, if m ≤ ε`, then

|X d
`,m(x)|.d ,ε

{
y−(d−2)/2

(
`−2(1+m)4/3 +|y2 −b2

`,m |)−1/4 for all x ∈ [−1,1],

`(d−1)/2 2−m if y ≤ b`,m/(2e),
(9)

where y =
p

1−x2.

C. R. Mathématique — 2021, 359, n 10, 1239-1250
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The above estimates will be derived from a series of bounds for the d-independent functions
Y`,m stated in Propositions 4, 6, 8, and 9. It is important to remark that the dependence on d of the
above estimates is not only due to the factor (1−x2)−d/4 in (1), but also to the range of indices Id .

Remark 2. As observed above, Theorem 1 is an essential tool in [8] in order to prove “weighted
spectral cluster bounds” of the form

∑
`d≥...≥`k
ε`d≤`k

`2
d−`2

k∈[i 2,(i+1)2]

`
k−1−γ
k

d∏
j=k+1

∣∣X j
` j ,` j−1

(x j )
∣∣2.d ,k,α,ε i d−1−γmin{i , |~x|−1}k−γ,

∑
`d≥...≥`k
`k≤ε`d

`2
d−`2

k∈[i 2,(i+1)2]

`k−1
k

d∏
j=k+1

∣∣X j
` j ,` j−1

(x j )
∣∣2.d ,k,ε i d−1

for all 1 ≤ k < d , γ ∈ [0,k), ε ∈ (0,1), ~x = (xk+1, . . . , xd ) ∈ [0,1]d−k and i ∈ N \ {0}. We refer to [8]
for a discussion of the significance of these bounds in relation to the spectral theory of spherical
Grushin operators of the form Ld ,k =∆d −∆k , where ∆d is the usual Laplace–Beltrami operator
on Sd , while ∆k is the “partial Laplacian” corresponding to the subsphere Sk × {0}. Here we only
mention that, in the unweighted case γ = 0, the above bounds imply the spectral projection
estimate ∥∥∥χ[i ,i+1](

√
Ld ,k )

∥∥∥
L1→L2

.d ,k i d+k−1, (10)

which is a sub-elliptic analogue (see also [11]) of the Agmon–Avakumovič–Hörmander spectral
cluster bounds for the Laplace–Beltrami operator,∥∥∥χ[i ,i+1](

√
∆d )

∥∥∥
L1→L2

.d ,k i d−1

[14, 29, 30]; the weighted case γ > 0 of the above bounds is nevertheless crucial in the proof of
the sharp multiplier theorem for Ld ,k in [8]. A more general discussion of the problem of proving
sharp multiplier theorems for sub-elliptic operators can be found, e.g., in [22] and references
therein.

2. Notation and preliminaries

By the symbol P (α,β)
j we shall denote the Jacobi polynomial of degree j ∈N and indices α,β>−1,

defined by means of Rodrigues’ formula:

P (α,β)
j (x) = (−1) j

2 j j !
(1−x)−α(1+x)−β

(
d

dx

) j (
(1−x)α+ j (1+x)β+ j

)
for x ∈ (−1,1). We recall, in particular, the symmetry relation

P (α,β)
j (x) = (−1) j P (β,α)

j (x),

for j ∈N, α,β>−1 and x ∈R.
In the case α = β, Jacobi polynomials reduce to ultraspherical polynomials [32, (4.7.1)]. In

particular, by using the relation between Jacobi polynomials and associated Legendre functions
(Ferrers functions), namely,

P (α,α)
k (x) = 2αΓ(α+k)

k !
(1−x2)−α/2P−α

α+k (x)

C. R. Mathématique — 2021, 359, n 10, 1239-1250



Valentina Casarino, Paolo Ciatti and Alessio Martini 1243

for x ∈ (−1,1), k ∈ N, α ≥ 0 (see [1, formulas 14.3.1, 14.3.3, 15.8.1 and 18.5.7]), we can write the
functions X d

`,m as follows:

X d
`,m(x) =

√
`Γ(`+m +1/2)

Γ(`−m +1/2)
(1−x2)−(d−2)/4P−m

`−1/2(x). (11)

Let now I = {(`,m) ∈ (N/2)2 : `−m −1/2 ∈N}. For (`,m) ∈ I , define

Y`,m(x) = c`m(1−x2)m/2P (m,m)
`−m−1/2(x)

=
√
`Γ(`+m +1/2)

Γ(`−m +1/2)
P−m
`−1/2(x).

(12)

Note that, if d ≥ 2 and m ∈Nd−1, then

X d
`,m(x) = (1−x2)−(d−2)/4Y`,m(x). (13)

3. Results from representation theory

We recall some well known facts concerning the spectral theory of the Laplace–Beltrami operator
∆d on the unit sphere Sd in R1+d . For a detailed account of the theory we refer to [31, Chapter 4]
or [3, Chapter 5].

The operator ∆d is essentially self-adjoint on L2(Sd ), with discrete spectrum. The symbol
H `(Sd ) will denote the eigenspace of ∆d corresponding to the eigenvalue

λd
` := (`+ (d −1)/2)(`− (d −1)/2), (14)

where ` ∈ Nd . It is well-known that H `(Sd ) consists of all spherical harmonics of degree `′ =
`− (d −1)/2 ∈N, that is, of all restrictions to Sd of homogeneous harmonic polynomials on R1+d

of degree `′.
The following facts on the spaces H `(Sd ) are standard.

(i) Since ∆d is self-adjoint, its eigenspaces are mutually orthogonal in L2(Sd ), i.e.,

H `1 (Sd ) ⊥H `2 (Sd )

for `1,`2 ∈Nd , `1 6= `2.
(ii) Each H `(Sd ) is a finite-dimensional space of dimension

dim(H `(Sd )) =
(
`′+d

`′

)
−

(
`′+d −2

`′−2

)
= 2`′+d −1

d −1

(
`′+d −2

d −2

)
(15)

for ` = `′ + (d − 1)/2 ∈ Nd (the last identity in (15) only makes sense when d > 1). In
particular

dim(H `(Sd )) 'd `
d−1 (16)

Here and subsequently, we adhere to the convention that 00 = 1, so that this estimate is
also valid when d = 1.

(iii) The spaces H `(Sd ) are O(d +1)-invariant for every ` ∈Nd .
(iv) The representation of O(d +1) on the space H `(Sd ) is irreducible.

Next, we introduce a system of “cylindrical coordinates” on Sd , d ≥ 2. For all ω ∈ Sd−1 and
x ∈ [−1,1], one defines the point bx,ωe ∈Sd as

bx,ωe = (
√

1−x2ω, x). (17)

Then (17) yields a “system of coordinates” on Sd , modulo null sets, since, apart from x =±1, the
map (ω, x) 7→ bω, xe is a diffeomorphism onto its image, which is the sphere with the two poles
removed.

C. R. Mathématique — 2021, 359, n 10, 1239-1250
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In these coordinates, the spherical measure σd on Sd is given by

dσd (bω, xe) = (1−x2)(d−2)/2 dx dσd−1(ω),

where σd−1 is the spherical measure on Sd−1. We recall that

σd (Sd ) = (d +1)π(d+1)/2

Γ((d +3)/2)
. (18)

The following formula, proved in [31, Chapter 4, Corollary 2.9], will be repeatedly used
throughout the paper: if E d

`
is any orthonormal basis of H `(Sd ), then∑
Z∈E d

`

|Z (z)|2 = (
σd (Sd )

)−1 dim(H `(Sd )) (19)

for all z ∈Sd .
The above-mentioned properties as a whole imply a universal bound for Y`,m(x), which will

be useful, in particular, in the Bessel regime.

Proposition 3. For all (`,m) ∈ I and all x ∈ [−1,1],

Y`,m(x)2. (1−x2)m `p
m +1

(
`−1/2+m

2m

)
. (20)

Moreover

Y`,m(x)2.

{
`1/2 if m ∈N,

(1−x2)1/2`/m1/2 if m ∈N+1/2.
(21)

Proof. Let ` ∈ Nd , d ≥ 2. By the decomposition (4), if K d
`

: Sd ×Sd → R is the integral kernel of
the orthogonal projection of L2(Sd ) onto H `(Sd ), then

K d
` (bx,ωe ,

⌊
x ′,ω′⌉) = ∑

m≤`
m∈Nd−1

X d
`,m(x)X d

`,m(x ′)K d−1
m (ω,ω′).

Hence, in light of (19),

dim(H `(Sd ))

σd (Sd )
= ∑

m≤`
m∈Nd−1

X d
`,m(x)2 dim(H m(Sd−1))

σd−1(Sd−1)
(22)

and in particular

Y`,m(x)2 = (1−x2)(d−2)/2X d
`,m(x)2 ≤ (1−x2)(d−2)/2 dim(H `(Sd ))

dim(H m(Sd−1))

σd−1(Sd−1)

σd (Sd )
(23)

for all (`,m) ∈ Id . Now, for a given (`,m) ∈ I , the estimates (20) and (21) follow from (23) by
choosing d ≥ 2 to be, respectively, the largest and the smallest possible so that (`,m) ∈ Id , and
using (18) and (15). �

4. The Bessel regime

In this section we prove some pointwise estimates for Y`,m and X d
`,m in the range m ≤ ε`, for some

ε ∈ (0,1).
First, from the bound (20) we readily derive an estimate that is particularly effective in the

region where y =
p

1−x2 ¿ b`,m .

Proposition 4. Let ε ∈ (0,1). For all (`,m) ∈ I such that m ≤ ε`, and for all x ∈ [−1,1],∣∣Y`,m(x)
∣∣.ε b−(m+1/2)

`,m (ye)m , (24)

where y =
p

1−x2.

C. R. Mathématique — 2021, 359, n 10, 1239-1250
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Proof. For m = 0 the estimate is trivial, so we may assume m > 0. The universal bound (20)
implies that for all x ∈ [0,1] and all (`,m) ∈ I , with 0 < m ≤ ε`,

Y`,m(x)2. y2m `p
m

(
`−1/2+m

2m

)

.ε y2m `p
m

1p
2π(2m)

( (`−1/2+m)e

2m

)2m

. y2m `

m

(`e

m

)2m
,

as a consequence of Stirling’s approximation. This proves (24). �

A more precise estimate in the region where y & b`,m can be derived from a uniform asymp-
totic approximation for the associated Legendre functions P−m

`−1/2 in terms of Bessel functions,
previously proved in [5]. This was shown in [7, Proposition 3.5] in the case where m is integer.
The case where m is half-integer can be treated similarly, however the proof requires a number
of modifications, mainly due to the fact that the proof in [7] exploits certain estimates for spher-
ical harmonics on S2 from [6], which do not directly apply to the case where m is not an integer.
The proof presented below, instead, applies irrespective of whether m is integer, and exploits the
following bound from [19] for the Bessel function of the first kind Jν of order ν ∈ (−1,∞).

Lemma 5. There exists b ∈ (0,1) such that, for all ν ∈ (0,∞) and z ∈R,

|Jν(z)| ≤ bν−1/3.

By combining this bound with the results of [5] we can prove the following estimate.

Proposition 6. Let ε ∈ (0,1). The following bounds hold for all (`,m) ∈ I such that m ≤ ε`, and for
all x ∈ [−1,1]: ∣∣Y`,m(x)

∣∣.ε (
(1+m)4/3

`2 +|y2 −b2
`,m |

)−1/4

, (25)

where y =
p

1−x2.

Proof. Without loss of generality we may assume x ≥ 0. Following the proof of [7, Proposi-
tion 3.5], by using the results of [5] we can write

|y2 −b2
`,m |1/4 Y`,m(x) = κ̃`,m

∣∣`2ζ`,m(x)−m2∣∣1/4

× [
Jm(`ζ`,m(x)1/2)+E−1

m Mm(`ζ`,m(x)1/2)O (`−1)
]
, (26)

uniformly in x ∈ [0,1] and (`,m) ∈ I with m ≤ ε`. Here y =
p

1−x2 and κ̃`,m ' 1 uniformly in
(`,m) ∈ I ; moreover, E−1

m Mm is the pointwise quotient of the auxiliary functions Mm and Em

introduced in [5, Section 3] and ζ`,m : [0,1] → [0,ζ`,m(0)] is the decreasing bijection satisfying
ζ`,m(a`,m) = b2

`,m and implicitly defined by∫ ζ`,m (x)

b2
`,m

(ξ−b2
`,m)1/2

2ξ
dξ=

∫ a`,m

x

(a2
`,m − s2)1/2

1− s2 ds (0 ≤ x ≤ a`,m), (27)

∫ b2
`,m

ζ`,m (x)

(b2
`,m −ξ)1/2

2ξ
dξ=

∫ x

a`,m

(s2 −a2
`,m)1/2

1− s2 ds (a`,m ≤ x ≤ 1). (28)

Notice that ` in [7] corresponds to `−1/2 here.
The same argument as in [7] (see formula (3.20) there) shows that the right-hand side of (26)

is uniformly bounded, thus yielding that

|Y`,m(x)|.ε |y2 −b2
`,m |−1/4, (29)

C. R. Mathématique — 2021, 359, n 10, 1239-1250
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uniformly in x ∈ [0,1] and (`,m) ∈ I with m ≤ ε`. Hence the proof of (25) will be complete if we
show that

|Y`,m(x)|.ε `1/2(1+m)−1/3 (30)

for all (`,m) ∈ I with m ≤ ε` and x ∈ [0,1]. Actually, we need only consider the case where
b`,m/2 ≤ y ≤ b`,m(1+δm−2/3) for some δ > 0, for otherwise (30) easily follows from (29). In this
case, y ' m/`, and therefore |Y`,m(x)|. `1/2 by (21); hence, in proving (30), we need only consider
m ≥ m0 for some m0 > 0.

Now, as discussed in [5, Section 3], the identity

E−1
m Mm(z) =p

2Jm(z)

holds for all z ∈ [0, Xm], where Xm is a positive real number defined in [5, (3.4)] and satisfying

Xm ≥ m (31)

for all m ≥ 0 by [23, Corollary 1 applied with θ = 3π/4], as well as

Xm = m +2cm1/3 +O (m−1/3)

as m →∞, for some c ∈ (0,1) [25, Chapter 12, Example 1.1, p. 438]. In particular

Xm ≥ m(1+ cm−2/3) (32)

for all m ≥ m0, for a suitable m0 > 0. Moreover, (26) implies that

|y2 −b2
`,m |1/4 |Y`,m(x)|.ε |`2ζ`,m(x)−m2|1/4|Jm(`ζ`,m(x)1/2)| (33)

uniformly for all (`,m) ∈ I with m ≤ ε` and x ∈ [0,1] satisfying `ζ`,m(x)1/2 ≤ Xm .
We now recall from [7, (3.24)] the inequality

ζ`,m(x)1/2 ≤ y (34)

for all x ∈ [a`,m ,1]. Further, we claim that

ζ`,m(x)−b2
`,m

y2 −b2
`,m

'ε 1 (35)

for all x ∈ [0,1] with b`,m/2 ≤ y ≤ ε−1/2b`,m .
Assuming the claim, from (35) we deduce that, for all (`,m) ∈ I and x ∈ [0,1], if m ≤ ε` and

b`,m/2 ≤ y ≤ b`,m(1+δm−2/3) for some δ ∈ (0,1), then

ζ`,m(x) ≤ b2
`,m(1+ cεδm−2/3),

whence, by (32),
`ζ`,m(x)1/2 ≤ m(1+ cεδm−2/3) ≤ Xm

provided δ is chosen sufficiently small and m ≥ m0 for some sufficiently large m0. Therefore,
from (35) and (33) and Lemma 5 we deduce that

|Y`,m(x)|.ε `1/2m−1/3

for all (`,m) ∈ I and x ∈ [0,1] satisfying m0 ≤ m ≤ ε` and b`,m/2 ≤ y ≤ b`,m(1+δm−2/3). This
completes the proof of (30).

We are left with the proof of the claim (35). Assume first that b`,m ≤ y ≤ ε−1/2b`,m . Then,
by (34), b`,m ≤ ζ1/2

`,m(x) ≤ ε−1/2b`,m as well, and moreover
p

1−ε1/2 ≤ x ≤ a`,m ≤ 1 (here we use
that b`,m ≤ ε). Consequently, from (27) we deduce that∫ ζ`,m (x)

b2
`,m

(ξ−b2
`,m)1/2 dξ'ε

∫ a`,m

x
(a2
`,m − s2)1/2 ds 'ε

∫ a2
`,m

x2
(a2
`,m − t )1/2 dt , (36)

that is,
(ζ`,m(x)−b2

`,m)3/2 'ε (a2
`,m −x2)3/2 = (y2 −b2

`,m)3/2, (37)
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which gives (35) in this case. In the case where b`,m/2 ≤ y ≤ b`,m , instead, by (28) we first deduce
that

b`,m

2
p

2
log+

(
b2
`,m

2ζ`,m(x)

)
≤

∫ b2
`,m /2

min{ζ`,m (x),b2
`,m /2}

(b2
`,m −ξ)1/2

2ξ
dξ

≤ 4

b2
`,m

∫ x

a`,m

(s2 −a2
`,m)1/2 ds 'ε b−2

`,m(x2 −a2
`,m)3/2. b`,m

(here we used that 1 ≥ x ≥ a`,m ≥
p

1−ε2), whence

cεb`,m ≤ ζ`,m(x)1/2 ≤ b`,m

for some cε ∈ (0,1). Now the analogues of (36) and (37) can be derived by using (28) in place of (27),
giving (35) in this case as well. �

Propositions 4 and 6 immediately yield the second part of Theorem 1.

Corollary 7. Let d ∈N, d ≥ 2, and ε ∈ (0,1). For all (`,m) ∈ Id , if m ≤ ε`, then

|X d
`,m(x)|.ε,d

y−(d−2)/2
(

(1+m)4/3

`2 +|y2 −b2
`,m |

)−1/4
for all x ∈ [−1,1],

2−m `(d−1)/2 if y ≤ b`,m/2e,
(38)

where y =
p

1−x2.

Proof. The first inequality is an immediate consequence of (13) and (25). Moreover, if m ∈Nd−1

and y ≤ b`,m/2e, then∣∣X d
`,m(x)

∣∣.ε (
b`,m/2e

)m−(d−2)/2b−m−1/2
`,m em .d 2−m`(d−1)/2,

proving the second bound in (38). �

5. The Hermite regime

In this section we prove pointwise estimates for both Y`,m and X d
`,m as m ≥ ε` for some ε ∈ (0,1).

In this range, we can apply a uniform asymptotic approximation of P−m
`−1/2 for large ` in terms

of Hermite functions previously proved by Olver [26, 27]. Indeed, the same argument used in
the proof of [7, Proposition 3.3], which is based on Olver’s approximation, as well as standard
estimates for Hermite functions [2, 33] and the uniform estimate for Jacobi polynomials of
Haagerup and Schlichtkrull [13], can be applied to prove the following estimate.

Proposition 8. Let ε ∈ (0,1). Then for all (`,m) ∈ I with m ≥ ε` and for all x ∈ [−1,1]∣∣Y`,m(x)
∣∣.ε (

`−1 +|x2 −a2
`,m |)−1/4. (39)

By combining this estimate with ODE techniques we can obtain a stronger decay estimate in
the region where |x|À a`,m .

Proposition 9. For all K ∈ (1,∞) there exists c ∈ (0,1) such that, for all ε ∈ (0,1) and m0 ∈N/2, if
(`,m) ∈ I is such that m ≥ max{ε`,m0}, then∣∣Y`,m(x)

∣∣.ε,m0,K |x|−1/2(1−x2)max{cε`,m0}/2 (40)

whenever x ∈ (−1,1) and |x| ≥ K a`,m .
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Proof. Note that, if m ≤ 1, then `.ε 1 and the desired estimate trivially follows from (20). So in
what follows we may assume m > 1. For a similar reason, we may also assume that `≥ `(m0,K ) for
some large `(m0,K ) to be specified later. Further, due to parity, we need only prove the estimate
for x ≥ 0.

Recall (see, e.g., [26, (2.1)]) that the function L(x) = (1−x2)1/2Y`,m(x) satisfies the ODE

L′′(x) =Q(x)L(x) (41)

on the interval (−1,1), where

Q(x) =Q`,m(x) =
`2(x2 −a2

`,m)− (3+x2)/4

(1−x2)2 = (`2 −1/4)
x2 − x̄2

`,m

(1−x2)2 , (42)

with a`,m defined as in (7), and

x̄`,m =
√
`2 −m2 +3/4

`2 −1/4
∈ [a`,m ,8a`,m] (43)

for all (`,m) ∈ I . Note that x̄`,m < 1 (since m > 1), and Q(x) > 0 whenever |x| > x̄`,m . In addition,
since m > 1, from (12) we deduce that

lim
x→1

L(x) = lim
x→1

L′(x) = 0. (44)

We now claim that L(x)L′(x) < 0 for all x ≥ x̄`,m . Indeed, L(x) and L′(x) cannot vanish
simultaneously, because L is a nontrivial solution of a second order linear ODE. Moreover, by (44),
L(x)L′(x) cannot be positive for any x > x̄`,m (otherwise by (41) the function L would be positive
and increasing, or negative and decreasing, on the interval (x,1), and would not tend to zero).
Finally one cannot have L(x)L′(x) = 0 for any x ≥ x̄`,m (because for any larger x one would find
the situation that we have just ruled out).

Note also that Q is strictly increasing for x ≥ 0. We can then apply the argument in [34,
Section 8.2] and conclude that, for x > x∗ > x̄`,m ,

|L(x)| ≤ |L(x∗)|exp

(
−

∫ x

x∗
Q(u)1/2 du

)
. (45)

From (42) we deduce that, if x2 ≥ (1−η2)−1x̄2
`,m for some η ∈ (0,1), then

Q(x)1/2 ≥ η
√
`2 −1/4

x

1−x2 ,

and consequently, for x > x∗ ≥ (1−η2)−1/2x̄`,m ,∫ x

x∗
Q(u)1/2 du ≥ η

2

√
`2 −1/4

∫ x2

x2∗

du

1−u
= η

2

√
`2 −1/4log

1−x2∗
1−x2 .

Hence (45) yields

|Y`,m(x)| ≤ |Y`,m(x∗)|
(

1−x2

1−x2∗

)(η
p
`2−1/4−1)/2

.

Note that, if we take x2 ≥ (1−δ)−1x2∗ for some δ ∈ (0,1), then 1−x2∗ ≥ 1− (1−δ)x2 ≥ (1−x2)1−δ, by
Bernoulli’s inequality, whence

|Y`,m(x)| ≤ |Y`,m(x∗)| (1−x2)δ(η
p
`2−1/4−1)/2. (46)

Finally, let us remark that `2 − m2 ≥ (` + m)/2 for all (`,m) ∈ I . Consequently, by (43),
x̄`,m/a`,m → 1 as `→∞ uniformly in m, so there exists `K ,η ∈N/2 such that

x̄`,m/a`,m ∈ [1,K 1/3], η
√
`2 −1/4−1 ≥ η`/2, (47)

for all (`,m) ∈ I with `≥ `K ,η. Moreover

a2
`,m ≥ 1/(2`) (48)
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for all (`,m) ∈ I , and therefore, for any α> 0,

|x|/a`,m . `
1/2|x|.α exp(α`x2) ≤ (1−x2)−α`. (49)

Now, since m ≥ ε`, if we take x∗ = (1−η2)−1/2x̄`,m , then x∗ ≥ (1−η2)−1/2a`,m and

|Y`,m(x∗)|.ε,η a−1/2
`,m (50)

by (39). Hence, by (46), (50) and (49), if x2 ≥ (1−δ)−1(1−η2)−1x̄2
`,m , then

|Y`,m(x)|.ε,η a−1/2
`,m (1−x2)δ(η

p
`2−1/4−1)/2

.α |x|−1/2(1−x2)δ(η
p
`2−1/4−1−α`)/2.

As a consequence, by (47), if we take δ and η so that 1−δ= 1−η2 = K −2/3, α= η/4 and c = δη/4,
then

|Y`,m(x)|.ε,K |x|−1/2(1−x2)c`/2,

whenever x ≥ K a`,m , m ≥ ε` and ` ≥ `K ,η. This proves the desired estimate (40) for all ` ≥
`(m0,K ) = max{`K ,η,m0/c}. �

The first part of Theorem 1 is a consequence of the following result.

Corollary 10. Let d ∈N, d ≥ 2. For all K ∈ (1,∞), there exists c ∈ (0,1) such that, for all ε ∈ (0,1),
for all (`,m) ∈ Id , if m ≥ ε` then

|X d
`,m(x)|.ε,K ,d

{
(`−1 +|x2 −a2

`,m |)−1/4 for all x ∈ [−1,1],

|x|−1/2(1−x2)(cε`−(d−2)/2)+/2 if |x| ≥ K a`,m .
(51)

Proof. In light of (13), the second estimate in (51) immediately follows from Proposition 9
applied with m0 = (d − 2)/2. Let now ε̄ = (1 − ε2)1/2 and note that a`,m ≤ ε̄ whenever m ≥ ε`.
By Proposition 9 applied with ε̄−1/2 in place of K , we also deduce that

|X`,m(x)|.ε,d |x|−1/2.ε a−1/2
`,m

whenever |x| ≥ ε̄−1/2a`,m , and in particular whenever |x| ≥ ε̄1/2. In view of (48), this proves the first
estimate in (51) whenever |x| ≥ ε̄1/2. Since ε̄ ∈ (0,1), the same estimate for |x| ≤ ε̄1/2 immediately
follows from Proposition 8 and (13). �
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