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Abstract—This paper introduces a compression strategy to
speed-up the calculation of frequency-domain stochastic mod-
els based on rational polynomial chaos expansions. Principal
component analysis is used to remove redundancy in the data,
thus leading to a considerable reduction in the number of
model coefficients to estimate. Compared to the state-of-the-art
techniques, the proposed solution turns out to be a good trade-
off between accuracy and processing efficiency. As a validation,
the method is applied to the uncertainty quantification of the
scattering responses of a nine-port distributed network.

Index Terms—Multiport systems, polynomial chaos, principal
component analysis, rational modeling, variability analysis, un-
certainty quantification.

I. INTRODUCTION

The first-time-right design of electrical and electronic prod-

ucts often involves uncertainty quantification to assess the

impact of manufacturing tolerances, as well as of free or un-

controllable design parameters. In this field, various methods

based on polynomial chaos expansion (PCE) [1] have recently

emerged as a powerful and efficient alternative to traditional

Monte Carlo-like techniques [2], [3].

The PCE is basically a surrogate model in which stochastic

outputs are represented in terms of suitable orthogonal polyno-

mials, which are functions of the uncertain parameters. While

conventional approaches make use of linear PCE models [4],

a rational PCE model was recently proposed as a more

suitable alternative for the frequency-domain characterization

of stochastic linear systems [5]. Indeed, a rational model turns

out to be more accurate for distributed circuits, especially at

high frequency, and even exact for lumped ones. Nevertheless,

compared to the conventional linear PCE, it suffers from a

reduced model-building efficiency that is exacerbated when

the number of ports and frequency points is large.

This paper aims at mitigating this issue by introducing a

compression strategy based on principal component analysis

(PCA) [6]. The PCA allows removing the redundancy in the

model data, thus leading to a large reduction of the model

coefficients to be estimated. The advocated approach is applied

to the uncertainty quantification of the scattering parameters

of a nine-port distributed circuit.

II. CONVENTIONAL AND RATIONAL PCES

Consider a stochastic, linear, P -port electrical system af-

fected by d uncertain parameters defined by vector ξ =
(ξ1, . . . , ξd). According to conventional approaches (see, e.g.,

[4]), any frequency-domain port (e.g., scattering) representa-

tion is approximated with the following PCE:

S(s, ξ) ≈
L∑

�=1

S�(s)ϕ�(ξ), (1)

where the basis functions ϕ� are a set of orthogonal poly-

nomials w.r.t. the joint probability density function (PDF) of

the uncertain parameters ξ, whereas the model coefficients S�

are computed by means of linear regression based on a set

of random responses (“training samples”). The number of

expansion terms L depends on the truncation strategy [3], [5].

The model (1) is approximate also for lumped circuits,

and rapidly becomes inaccurate for distributed and/or strongly

resonant systems. For this reason, a rational model of the form

S(s, ξ) ≈
∑L

�=1 N�(s)ϕ�(ξ)

1 +
∑L

�=2 D�(s)ϕ�(ξ)
(2)

was put forward, and proven to be exact for lumped circuits

(with a suitable choice of the basis functions) and much more

accurate for distributed ones [5]. The model coefficients N�

and D� are computed via an iterative re-weighted linearized

regression. Unfortunately, this method requires to solve the

regression problem separately for each matrix entry and fre-

quency of interest, thus rapidly becoming inefficient for large

datasets.

III. PCA COMPRESSION

To alleviate the aforementioned burden, PCA is here ex-

ploited, leveraging on its intrinsic compression properties. The

following derivations are inspired by the method documented

in [7], [8] (details on this are deferred to a future report).

Assume a set of K random samples of the P × P network

response S are available at M frequency points. First of

all, this P × P × M × K dataset is reorganized into a

matrix B ∈ C
MP 2×K . Next, an “economy-size” singular value

decomposition (SVD) of the zero-mean matrix B̃ = B − μ,



where μ is the mean value of B, calculated rowwise and

subtracted columnwise, is computed:

B̃ = UΣVH (3)

(the superscript H stands for the complex conjugate transpose).
In (3), Σ is a diagonal matrix containing the singular

values {σi}Ki=1 of B̃, in descending order. By selecting n̄
singular values, such that σi/σ1 ≤ ε, ∀i > n̄, a truncation

of (3) is defined:

B̃ ≈ B̂ = ÛΣ̂V̂
H
= ÛẐ (4)

where Û and V̂ are matrices consisting of only the first n̄
columns of U and V in (3), and Σ̂ is a matrix corresponding

to the n̄× n̄ upper-left sub-block of Σ.
It is important to note that, in (4), Ẑ ∈ C

n̄×K , and that

n̄ < K � MP 2. Such a matrix, much smaller than B̃,

can be interpreted as a reduced dataset collecting K samples

of n̄ stochastic variables {Zi}n̄i=1 that depend, just like the

original data, on the uncertain parameters ξ. These stochastic

variables are also modeled using the rational PCE (2). The

fundamental difference, however, is that now only n̄ models

have to computed, instead of MP 2. See also [9]. Once a

model like (2) is available for the compressed variables, it can

be used to inexpensively generate new data samples thereof.

Corresponding samples for the original variables are recovered

as B̂+μ through (4). It should be noted that the approximation

error is controlled by the threshold ε for the PCA-cut.

IV. NUMERICAL RESULTS

As a validation example, the nine-port distributed network

investigated in [5] is considered, which includes three coupled

microstrip lines and d = 2 uncertain parameters (namely, the

microstrip trace gap and length, with Gaussian distribution).
As a reference, 10000 samples of the pertinent 9 × 9

S-parameter matrix are evaluated at 401 frequency points

by means of HSPICE simulations, using a Latin hypercube

design. For all the PCE-based models, total degree expansions

of order p = 3 are used1, leading to L = 10. Another set of

K = 76 samples is generated for training the PCE models,

drawn again with a Latin hypercube design. Figure 1 shows

the plot of the first 40 normalized singular values of the zero-

mean training dataset B̃. By choosing a threshold of ε = 10−2

for the PCA-cut, indicated by the blue line, there are n̄ = 8
singular values above it, shown by green dots.

Figure 2 shows the variability of a meaningful selection of

S-parameters, either in magnitude or phase. The gray lines are

a subset of 100 samples from the reference data, providing

a visual idea of the variability of the scattering responses

due to the uncertainty in the microstrip gap and length. The

solid blue lines are the mean and standard deviation of the

reference samples. The same statistical information is also

estimated using the conventional single PCE model (1) (dashed

red lines), the standard rational PCE model (2) (dash-dotted

green lines), and the proposed PCA-compressed rational PCE

model (dotted orange lines).

1The Reader is referred to [5] for further details on the truncation schemes.
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Fig. 1. Singular values of the zero-mean training dataset ˜B. Singular values
that are above and below the selected threshold for the PCA-cut (ε = 10−2,
blue line) are shown by green ◦ and red × markers, respectively.

As already observed in [5], the rational models exhibit

superior accuracy compared to the single PCE, especially at

high frequency. Nonetheless, it is interesting to note that, while

generally providing very high accuracy, the standard rational

model exhibits large local errors at some of the frequencies.

This is probably due to a convergence issue of the iterative

re-weighted regression. On the contrary, the PCA-compressed

rational model is very accurate over the entire frequency range.
Figure 3 shows the error on the standard deviation of the

S-parameters shown in Fig. 2. It is observed that the error of

the PCA-compressed model is much lower than the error of

the single PCE, and comparable to that of the standard rational

model, but it is distributed more evenly over frequency. This is

expected, as the model is computed for the reduced variables,

rather than frequency by frequency.
Finally, Table I collects the relevant information about the

accuracy and the efficiency of the various PCE-based tech-

niques. The accuracy in reproducing the reference samples is

first assessed by calculating the root-mean-square (RMS) error

over all the 10000 random samples, as well as over frequency

and matrix entries (port variables). The maximum error on

the standard deviation over frequency is also considered. It is

noted that the RMS accuracy of the proposed PCA-compressed

method is much higher than that of the conventional single

PCE, yet lower compared to the standard rational model.

Nevertheless, the processing time, inclusive of the SVD as well

as of the construction and iterative solution of the regression

problem, is 21.8× faster than for the conventional rational

model, and even slightly faster than for the single PCE

model. Moreover, the PCA-based model exhibits the lowest

maximum error on the standard deviation since, unlike the

standard rational model, it does not exhibits error spikes. It is

important to mention that no significant difference is found by

using ε = 10−3 in the SVD truncation. Therefore, the main

contribution to the RMS error increase, compared to [5], is

to be ascribed to a lower accuracy in modeling the reduced

variables Zi for a given expansion order.

V. CONCLUSIONS

This paper presented a PCA-based compression strategy

to speed-up the calculation of rational PCE models for the

frequency-domain responses of stochastic linear circuits. The
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Fig. 2. Variability of some of the S-parameters for the considered test case. Gray lines: subset of reference samples; blue lines: mean and standard deviation
of the reference samples; dashed red, dash-dotted green, and dotted orange lines: mean and standard deviation obtained with the conventional single PCE [4],
with the rational PCE [5], and with the proposed PCA-compressed rational PCE, respectively.
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Fig. 3. Error on the standard deviation of the S-parameters in Fig. 2 for the
considered PCE-based methods.

advocated method reduces the modeling to a much smaller set

of stochastic variables, corresponding to the most significant

singular values of the original data. Compared to the state-of-

the-art rational model approach, the proposed method offers a

trade-off between accuracy and processing efficiency for large

datasets in terms of number of ports and frequency points. The

techniques has been validated based on a nine-port network

with distributed elements.
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