
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Uncertainty quantification of cable inductances and capacitances via mixed-fidelity models / Manfredi, P.. -
ELETTRONICO. - (2020), pp. 1-5. (Intervento presentato al  convegno 2020 International Symposium on
Electromagnetic Compatibility (EMC Europe 2020) tenutosi a Rome, Italy nel 23-25 Sept. 2020)
[10.1109/EMCEUROPE48519.2020.9245657].

Original

Uncertainty quantification of cable inductances and capacitances via mixed-fidelity models

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/EMCEUROPE48519.2020.9245657

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2949639 since: 2022-01-13T11:41:49Z

Institute of Electrical and Electronics Engineers Inc.



Uncertainty Quantification of Cable Inductances and
Capacitances via Mixed-Fidelity Models

Paolo Manfredi
Department of Electronics and Telecommunications

Politecnico di Torino, Turin, Italy 10129
Email: paolo.manfredi@polito.it

Abstract—In this paper, we investigate a mixed-fidelity ap-
proach for the uncertainty quantification of the per-unit-length
(p.u.l.) capacitance and inductance of cables with random geo-
metrical and material parameters. Polynomial chaos expansion
is used to model uncertainty, whereas a numerical discretization
technique is used to calculate p.u.l. inductances and capacitances.
However, instead of using a model with high fidelity in both
features, the results are obtained as a combination of two
complementary models with mixed fidelity in each feature.
Numerical examples concerning the statistical assessment of the
p.u.l. inductance and capacitance matrices of two shielded cables
show that similar accuracy is attained at a fraction of the
computational cost compared to conventional approaches.

Index Terms—Cables, multiconductor transmission lines, poly-
nomial chaos, tolerance analysis, uncertainty quantification.

I. INTRODUCTION

Uncertainty is becoming ubiquitous in electromagnetic com-
patibility (EMC) and signal integrity (SI) investigations. In
this framework, uncertainty quantification is an increasingly
important task in the early design phase. As opposed to tradi-
tional Monte Carlo techniques, polynomial chaos expansion
(PCE) [1] recently gain wide consideration in engineering
thanks to its remarkable accuracy and efficiency. The method
consists in expanding stochastic quantities of interest into
series of suitable orthogonal polynomials. This approach yields
a convenient surrogate model from which statistical and sen-
sitivity information is readily extracted [2].

This work focuses in particular on the statistical assessment
of the per-unit-length (p.u.l.) inductance and capacitance of ca-
bles subject to uncertain geometrical and material parameters,
which is often a preliminary step in stochastic EMC/SI anal-
ysis [2]. Some efficient numerical approaches were proposed
based on PCE [3], [4]. In these methods, there are two key
parameters that control the accuracy of the result: the number
of PCE terms and the discretization of the charge distributions
around metallic and dielectric interfaces. Setting both features
to a sufficiently high value is an obvious option.

Nonetheless, inspired by some recent mathematical de-
velopments [5] and by a “predictor-corrector” algorithm for
carbon nanotube interconnects [6], in this paper we propose a
“mixed-fidelity” approach: instead of performing an expensive
calculation of a model that has high fidelity both in terms
of PCE approximation and geometrical discretization, we
combine two models, one with high probabilistic fidelity but

low geometrical fidelity, and vice versa. Since the calculation
of this mixed-fidelity model is overall cheaper than evaluat-
ing the high-fidelity model, the proposed approach provides
further computational speed-up with respect to state-of-the-
art techniques. This is illustrated through the analysis of two
shielded cables.

The paper is organized as follows. Section II briefly de-
scribes the numerical method for the calculation of the p.u.l.
inductance and capacitance. A conventional high-fidelity ap-
proach is summarized in Section III, whereas the proposed
mixed-fidelity method is outlined in Section IV. Numerical
examples are discussed in Section V, while conclusions are
drawn in Section VI.

II. CALCULATION OF THE INDUCTANCE AND
CAPACITANCE MATRICES FOR CIRCULAR CONDUCTORS
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Fig. 1. Cable cross-section consisting of circular wires, possibly dielectric
coated and/or enclosed within a metallic shield.

We consider a system of N circular conductors, possibly
shielded and/or dielectric-coated, as shown in Fig. 1. The
reference for the voltages and return path for the currents
can be one of the conductors, a ground plane, or a shield.
The p.u.l. capacitance and inductance of the wires are com-
puted following the approach in [7] and [8], which starts by
describing the charge distributions at the metal-dielectric and
dielectric-background interfaces as the Fourier expansions

ρn(θn) = an0 +
A∑

m=1

anm cos(mθn) +
A∑

m=1

bnm sin(mθn)
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and

ρ′n(θn) = a′n0 +
A∑

m=1

a′nm cos(mθn) +
A∑

m=1

b′nm sin(mθn),

(1b)
respectively, with n = 1, . . . , N and θn denoting the angular
coordinate on wire n.

The charge distributions produce an electric potential and
an electric field. By enforcing that 1) the potential on each
conductor periphery is constant with the angular position and
2) the normal component of the electric displacement field
is continuous across each dielectric periphery, an algebraic
system of 2N(1 + 2A) equations in the unknown charge
distribution coefficients is obtained. The p.u.l. capacitances
are related to the constant terms an0 and a′n0 in (1), which
are obtained from the solution of the aforementioned system.
The p.u.l. inductance matrix is obtained from the capacitance
matrix as described in [8]. The overall accuracy is determined
by the angular discretization parameter A. Wire proximity
demands for larger values of A, with A = 10 typically being
a good choice for closely-spaced wires.

III. CONVENTIONAL POLYNOMIAL CHAOS APPROACH

The PCE method amounts to approximating stochastic
quantities of interest, p.u.l. inductances and capacitances in
the context of this paper and here generically denoted with X ,
using the following model:

X(ξ) ≈
K∑
k=1

Xkϕk(ξ), (2)

where ξ = (ξ1, . . . , ξd) is a set of d uncertain parameters
which X depends on (typically, geometrical and material
parameters), whereas {ϕk}Kk=1 is a basis of multivariate or-
thogonal polynomials based on the distribution of ξ [1].

The multivariate basis functions ϕk are constructed as the
product combination of univariate orthogonal polynomials:

ϕk(ξ) =
d∏
i=1

φki(ξi), (3)

where φki is a polynomial of degree ki in the variable ξi.
There is a one-to-one mapping between each scalar index k
and a corresponding vector of multi-indices k = (k1, . . . , kd).
Several schemes are available for the truncation of (2) based
on a predefined order p, leading to increasing sparsity in the
number of terms K. The three most common strategies are
summarized in Table I. Usually, a total-degree truncation [9]
with p = 2 or p = 3 yields satisfactory results in many
practical applications [2]. Hyperbolic truncations [10] lead to
sparser representations controlled by the parameter u.

The main difference among the various PCE implementa-
tions resides in the strategy for the calculation of the unknown
coefficients Xk. In [3] and [4], two intrusive numerical tech-
niques, respectively based on a Galerkin and on a stochas-
tic testing approach, were proposed to solve for the induc-
tance and capacitance coefficients. In general, however, non-
intrusive and “black-box” sampling-based methods relying on

TABLE I
DEFINITION OF COMMON PCE TRUNCATION STRATEGIES.

Strategy Truncation condition Number of terms K

Tensor degree maxi{ki} = ‖k‖∞ ≤ p (p+ 1)d

Total degree
∑d

i=1 ki = ‖k‖1 ≤ p
(p+d)!
p!d!

Hyperbolic
(∑d

i=1 k
u
i

)1/u
= ‖k‖u ≤ p ∈

(
2d+ 1,

(p+d)!
p!d!

)

suitable regression/interpolation strategies can be used [11]–
[13]. For our purposes, we adopt here the interpolative method
of [12], and we evaluate the PCE coefficients as a linear com-
bination of suitable samples of the stochastic p.u.l. parameters:

Xk =
K∑
q=1

bkqX(ξq), (4)

where {ξq}Kq=1 are the stochastic testing nodes [14] and
bkq are the elements of the inverse of the Vandermonde-like
matrix containing the basis functions ϕk evaluated at these
nodes. It is important to note that this approach requires a
number of samples that equals the number of unknown PCE
coefficients K.

In any case, there are two fundamental parameters that
control the accuracy of the calculation: the number of PCE
terms K in (2) and (4), and the discretization of the charge
distribution A that is used in (1) for the evaluation of the
samples X(ξq) in (4). An immediate, reasonable choice is to
set both parameters to a sufficiently high value. Nevertheless,
there exist theories suggesting that it is often unnecessary to
simultaneously set both parameters to a large value, as we
discuss in the next section.

IV. MIXED-FIDELITY POLYNOMIAL CHAOS APPROACH

Let us denote with MA,K a model for X that has “high
fidelity” in terms of both angular discretization (geometrical
fidelity) and PCE approximation (probabilistic fidelity). By
using a telescopic identity, this model can be expressed as [5]

MA,K = MA,K

+Mα,K −Mα,K

+MA,κ −MA,κ

+Mα,κ −Mα,κ

+Mα,κ −Mα,κ,

(5)

where lowercase subscripts α and κ denote low fidelity in
geometry and probability, respectively. By mere rearrangement
of the above identity as

MA,K = Mα,k

+MA,κ −Mα,κ

+Mα,K −Mα,κ

+MA,K −MA,κ −Mα,K +Mα,κ,

(6)

we can interpret the second and third rows as corrections
in geometrical discretization and probabilistic approximation,
respectively, while the term in the fourth row plays the



role of a mixed correction. Since this “higher-order” mixed
correction is often negligible [5], the high-fidelity model can
be approximated as

MA,K ≈ Mα,κ +MA,κ −Mα,κ +Mα,K −Mα,κ

=Mα,K +MA,κ −Mα,κ.
(7)

Practically speaking, the above result suggests that the high-
fidelity model MA,K can be approximated by the sum of
a model computed with high probabilistic fidelity but low
geometrical fidelity (Mα,K) and a low-fidelity probabilistic
model of the difference between high- and low-fidelity models
in geometrical discretization (MA,κ − Mα,κ). The main
advantage is that the calculation of these two models is usually
computationally cheaper than the direct evaluation of MA,K .

A similar concept is found, under different names, in various
uncertainty quantification or design optimization methodolo-
gies, including (but not limited to):

• multi-level Monte Carlo method [15];
• multi-index stochastic collocation [5];
• multi-fidelity design optimization [16];
• predictor-corrector polynomial chaos scheme [6].

In particular, the approach that we propose in this paper is
closely inspired by the predictor-correct algorithm in [6].

We first start by computing a predictor model of the p.u.l.
inductance and capacitance using a high-fidelity probabilistic
approximation:

Mp =Mα,K =

K∑
k=1

Xp,kϕk(ξ). (8)

To introduce a computational compensation for the high ac-
curacy in probability, we evaluate the PCE coefficients Xp,k

with (4) by using samples computed with a coarse geometrical
discretization, which we denote as Xα(ξq) meaning that
α < A is used in (1).

The above predictor is complemented by a corrector that de-
scribes, with low probabilistic fidelity, the difference between
high and low geometrical fidelities:

Mc =MA,κ −Mα,κ =
κ∑
k=1

Xc,kϕk(ξ), (9)

where κ < K is obtained by using a lower PCE order p
and/or a sparser truncation scheme (cfr. Table I). The coef-
ficients Xc,k are evaluated based on the difference between
samples with high and low geometrical fidelity, the former
being denoted with XA(ξq). Since changing the probabilistic
fidelity potentially leads to a different set of stochastic testing
nodes, the samples with low geometrical fidelity Xα(ξq) are
effectively obtained by evaluating the predictor (8), rather than
by solving again for the charge distributions with a coarser
discretization. It should be noted that the computational cost
of building (9) is relatively low because the higer cost of
evaluating XA(ξq) is offset by the lower number κ of required
samples, and the evaluation of (8) is inexpensive.

rsrw

td
s

Fig. 2. Cross-section of the application test case consisting of three dielectric-
coated wires within a metallic shield.

V. NUMERICAL RESULTS

The proposed method is applied to the shielded cable
with the cross-section depicted in Fig. 2 [3]. The nomi-
nal geometrical dimensions are as follows: conductor radius
rw = 0.52 mm, dielectric thickness td = 64 µm, shield
radius rs = 1.675 mm. The three wires are placed at a
radial distance of s = 0.8575 mm from the shield center.
The relative permittivity of the dielectric coating is εr = 2.6.
The uncertainty is provided by the conductor radius as well
as by the thickness and relative permittivity of the dielectric
coating of each wire, leading to d = 9 random parameters.
The distribution is assumed to be Gaussian with a 5% relative
standard deviation from the nominal value.

First of all, reference results are computed using a Monte
Carlo analysis with 10000 samples of the uncertain parameters,
which takes 153.4 s on a Lenovo ThinkPad X1 Yoga laptop
with an Intel(R) Core(TM) i7-7500U, CPU running at 2.7 GHz
and 16 GB of RAM. Next, a high-fidelity modelMA,K of the
p.u.l. inductance and capacitance matrices is computed using
a total-degree PCE with order p = 3, which has therefore
K = 220 terms. The PCE coefficients are obtained via (4)
using 220 samples of the inductance and capacitance matrices
calculated with A = 10 in (1). The time required is 3.2 s, with
a speed-up of 48× over the Monte Carlo analysis.

For the proposed mixed-fidelity approach instead, we first
build a predictor model Mp with low geometrical fidelity
and the same probabilistic features as the high-fidelity one.
Therefore, we use α = 2 instead of A = 10 for the calculation
of the PCE coefficients. Given the much coarser geometrical
discretization, this step now only requires 0.3 s. Then we
construct a corrector modelMc with low probabilistic fidelity.
To this end, we consider a hyperbolic PCE truncation with
u = 0.7, while keeping the order to p = 3. This leads to
a sparser PCE with κ = 64 terms. The coefficients of the
corrector model are computed using 64 samples of the p.u.l.
inductance and capacitance matrix, with the samples of high
geometrical fidelity calculated using A = 10 and the samples
of low geometrical fidelity estimated with the predictor model.
This step takes 1.1 s. Hence, the proposed mixed-fidelity
approach overall takes 1.4 s, with a further speed-up of 2.3×
compared to the conventional high-fidelity approach.

Figure 3 shows the probability density functions of the
3 × 3 p.u.l. inductance and capacitance matrix entries. Sym-
metric elements are equal because of reciprocity and they are
therefore omitted. The units are nH/m for inductances and
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Fig. 3. Distributions of the p.u.l. inductance and capacitance matrix entries
for the cable of Fig. 2, computed with Monte Carlo (gray bars), conventional
high-fidelity model MA,K (solid blue lines), predictor model Mp (dashed
red lines), and mixed-fidelity model Mp +Ms (dashed green lines).

pF/m for capacitances. The gray bars show the distribution of
the Monte Carlo samples. The solid blue lines are the dis-
tributions obtained with the conventional high-fidelity model,
exhibiting excellent agreement with the reference Monte Carlo
distribution. The dashed red lines are the distributions of the
predictor model (8), which highlight the inaccuracy due to the
low geometrical fidelity. However, if the model is adjusted by
including the corrector (9), the dashed green lines are obtained,
which match the results of the high-fidelity model.
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Fig. 4. Cross-section of the second application test case consisting of seven
dielectric-coated wires within a metallic shield.

As a second example, we consider the shielded cable with
the cross-section shown in Fig. 4 [4], [17]. Given the radius rw
of each wire, the shield radius is rs = 10 rw and the thickness
of the dielectric coating is td = rw. The outer wires are located
evenly along the angular coordinate and at a radial distance
of s = 5 rw from the central wire. The relative permittivity of

the dielectric coating is εr = 4. The uncertainty is provided
by the Cartesian coordinates of the outer wires, which vary
uniformly within ±0.5 rw around their nominal center. The
total number of random parameters is thus d = 12.

The calculation of 10000 reference Monte Carlo samples
takes 337.6 s. A high-fidelity model is again computed using
a third-order PCE with total-degree truncation, leading in this
case to K = 445 terms. The calculation of the corresponding
PCE coefficients by setting the geometrical discretization to
A = 10 requires 15.8 s, i.e., 21× faster than the Monte Carlo
analysis.

The same features as in the previous example are used
to construct the mixed-fidelity model, i.e., α = 2 for low
geometrical fidelity and a hyperbolic truncation with u = 0.7,
leading to κ = 103 terms, for low probabilistic fidelity. The
calculations of the predictor and corrector models take 1.4 s
and 3.6 s, respectively, with a further 3.2× speed-up compared
to the high-fidelity approach.

410 415 420 100 110 120 130 140 360 370 380 390 400 80 100 120 140 160

40 50 60 70 30 40 50 60 60 70 80 90 -20 -15 -10

50 60 70 80 -40 -30 -20 -10 -0.4 -0.2 0 -0.04 -0.02 0

Fig. 5. Distributions of the p.u.l. inductance and capacitance matrix entries
for the cable of Fig. 4. Curve identification is as in Fig. 3.

The probability density functions of some elements of the
7 × 7 p.u.l. inductance and capacitance matrices are shown
in Fig. 5. The omitted entries have similar statistical behavior
due structural symmetries. The curve identification is the same
as in Fig. 2. Once again, an excellent agreement is observed
between the proposed mixed-fidelity model (dashed green
lines) and the conventional high-fidelity model (solid blue
lines), except for C25. However, it should be noted that this
element is almost negligible as it takes extremely low values
(cfr. the x-axis scale). This is readily explained by the fact that
wires #2 and #5 are “shielded” from each other by wire #1,
also causing the predictor to provide a very poor model. The
same consideration applies to 3-6 and 4-7 pairs.

The main figures concerning the performance of the pro-
posed mixed-fidelity method for the two application exam-
ples, and the speed-up versus the conventional high-fidelity
approach, are summarized in Table II. The overall speed-up
achieved versus the Monte Carlo analysis is 110× and 67× for
the test cases of Figs. 2 and 5, respectively. The same param-



eters for geometrical discretization and PCE approximation
turned out to provide a reasonable trade-off between accuracy
and efficiency improvement for both application examples. An
extensive investigation of the impact of such parameters on the
performance is deferred to future works.

TABLE II
PERFORMANCE OF THE CONVENTIONAL HIGH-FIDELITY AND PROPOSED
MIXED-FIDELITY MODELS FOR THE PROPOSED APPLICATION EXAMPLES.

Cable High-fidelity Mixed-fidelity
Predictor Corrector Total Speed-up

Fig. 2 3.2 s 0.3 s 1.1 s 1.4 s 2.3×
Fig. 4 15.8 s 1.4 s 3.6 s 5.0 s 3.2×

VI. CONCLUSIONS

This paper presented a mixed-fidelity approach, based on
polynomial chaos, for the uncertainty quantification of the
p.u.l. inductance and capacitance matrices of cables with un-
certain geometrical and material parameters. Accurate results
were obtained by combining two models, one with high prob-
abilistic fidelity but computed with low geometrical fidelity,
and one with low probabilistic fidelity but computed with
high geometrical fidelity. The proposed method was shown
to provide comparable results with respect to a conventional
high-fidelity approach, at a fraction of the computational cost.
For this purpose, two shielded cables were considered. The
development of similar methods for other EMC/SI problems
is currently under investigation.
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