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Abstract: We propose a machine learning-based technique that accurately estimates
quality-of-transmission (QoT) impairments of an optical switch on 400ZR. The proposed
scheme works in an entirely agnostic way reduces inaccuracy in QoT impairments estima-
tion by 1.5 dB. © 2021 The Author(s)

1. Introduction

With the present-day rise in capacity and traffic demands, the key network operators always welcome novel so-
lutions that try to exploit the residual capacity of existing infrastructures to maximize their capex. The newly
evolved concept of disaggregated and open network infrastructure has been recognized as a potential candidate
that provides more flexibility to the network and defines a path for a multi-vendor system [1, 2]. In this context,
optical software-defined networking (SDN) applications may be implemented on each layer to control and man-
age the optical network. This deployment of SDN down to the transmission and physical layer enables the full
virtualization operation of wavelength division multiplexed (WDM) optical transport with a standard application
programming interface (API) in order to manage network subsystems and components independently [3]. To ac-
complish this, a quality of transmission estimator (QoT-E) plays an essential role by computing the generalize
signal-to-noise ratio (GSNR) of transparent lightpath (LPs) to maximize the deployed capacity by accumulating
the GSNR degradation of noisy elements and filtering penalties of switches.

To avoid out-of-service (OOS), the network operators must guarantee that the QoT never falls below a given
threshold; this introduces the provisioning of a certain degree of margin that quantifies the uncertainties on the
computed QoT. Typically, the provisioned margin ranges to several dB due to conservative overestimation [4].
Cutting the uncertainties in QoT-E allows margin reduction with considerable increase in traffic deployment using
the existing network infrastructure. The modern optical networks extensively exploit photonic integrated circuits
(PICs) for switching operations due to their wide-band capabilities, minimal latency and low power consumption.
Hence, requests for a generic softwareized control model for photonic switches to enable their complete control
by a centralized controller as shown in Fig. 1a. Such a model includes the switches control states and the filtering
penalty degrading the GSNR of the routed LP.

This work extends our previous investigation related to model control states of N×N photonics switching sys-
tem using a topology-agnostic blind approach based on inverse ML technique [5]. In this work, we exploit ML
techniques with a direct design method to accurately predicting the filtering penalties of an optical switching
system on LP deploying 400ZR [6]. The proposed method can be easily extended to model N×N optical switch
performance on the network layer metrics. The presented data-driven scheme is trained by a dataset obtained by
considering any N×N photonics switch under test as a black-box. The training dataset can either be acquired
experimentally or synthetically by using a software simulator for components [7], as for the presented results

2. Switching Topology and Data Generation

The switching device used in the analysis is based on the Beneš network topology, due to the architecture
widespread applications, and is defined as a 8×8 non-blocking multistage switching network. The circuit is made
of M = 20 2×2 crossbar optical switching elements (OSE). The OSEs have been modelled as micro-ring resonator
filters [8], with the capability of routing optical signals in the C-band transmission window, with free spectral range
(FSR) of 100 GHz. The switching network state is controlled through a binary vector M ∈R1,20, which describes
the state of each OSE i: each crossbar element can be in one of two possible states, representing the signal permu-
tation at the output of the device, with the BAR state represented as CSi = 0, [I1, I2]→ [O1, O2], and the CROSS
state as CSi = 1, [I1, I2]→ [O2, O1]

The device and its components have been implemented as a simulation-ready models through the Optsim Pho-
tonic Circuit Design Suite [9], allowing the simulation of transmission penalties, with each input port handling a
different channel of the WDM comb. The channel frequencies are centered at f = (193.1+ 0.1× x)THz for x ∈
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(a) Abstraction of the photonic switch in optical-SDN. (b) 8×8 Beneš switch topology
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Fig. 1

[1,8], with each input signal representing a dual-polarization 16-QAM modulated stream at symbol rate of 59.8
Gbaud as per the 400ZR implementation agreement [6].

The dataset of the OSNR filtering penalties were gathered from a random set of 1000 control vector configu-
rations, measuring the needed extra OSNR with respect to the back-to-back characterization to obtain the target
BER under different input-output routings.

The overall filtering penalty distribution obtained with 500 random configurations, is shown in Fig. 1c. Results
show a statistics of penalties as a bi-modal distribution with mean (µ) = 2.5 dB and standard deviation (σ ) =
0.6 dB. In order to define the maximum operative OSNR degradation to be considered as model for the switching
penalty, we always have to consider the worst-case scenario (WCS) in the absence of any information related to the
switch characteristics to avoid any OOS. The resulting WCS OSNR penalty (OP) is as large as OPWCS = 3.8dB,
and this is the value to be considered for QoT-E in the absence of a more advanced model.

3. Machine Learning Black Box

As an alternative to modeling the filtering penalty as described in the previous section, we propose to exploit
ML techniques to accurately predict the QoT impairment. The proposed data-driven system consists of two ML
networks: the initial network works inversely to determine the M control states given the required switching
condition. In contrast, the subsequent ML network gets the output of the first ML network and works in a direct
method for the estimation of the QoT penalty of the N×N photonic switch on 400ZR LPs, considered as the
black-box shown in Fig. 1d.

A deep neural network (DNN) is considered for both the proposed ML networks. The DNN is built using
higher-level APIs of the TensorFlow© library. The DNN is trained and tested on a separate subset of the dataset:
the conventional rule of 70% and 30% has been opted to split the available dataset. To avoid over-fitting, the
training steps is set as the ceasing factor and the mean square error (MSE) as the loss function defined as:
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where RTMSE and QoTMSE is the routing and QoT agent MSE. n is the number of test combinations, M is the
overall number of switching elements in the definite N×N switching system, while for each tested instance i, CSp

i,m
and CSa

i,m are the predicted and actual control states of the m-th switching element of the considered topology.
Similarly, N is the total number of input/output ports of the specific N×N switching system and OPp

i,k,OPa
i,k are

the predicted and actual OP of the k-th output port of the considered architectures.
Furthermore, the DNN engines of both networks are tuned by various parametric values that have been opti-

mized (such as the training steps, set to 1000), loaded with the adaptive gradient algorithm (ADAGRAD) Keras
optimizer, with learning rate set to 10-2 and L1 regularization set to 10-3. Moreover, Relu has been selected as an
activation function. For the hidden-layers we performed a trade-off between precision and computational time,
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Fig. 2: ∆OSNR with and without ML of the 8x8 Beneš switch.
we opted upon a DNN with three hidden-layers with 10 cognitive neurons for each hidden layer in the initial ML
network. In contrast, for the subsequent ML network, we selected one hidden-layers with 11 cognitive neurons.
The initial ML routing network considers various permutations of the input signals (I1, I2, I3....In) at the output
ports of the switch as features while it exploits its M control states as labels. The following ML QoT network
exploits the output of the first ML network, i.e., the M controls states as features and utilized the OP of the specific
output port of N×N switching system as a response variable.

4. Results and Conclusion

We explored the performance of the proposed data-driven scheme first in the prediction of the control
states and then exploit the predicted control states to accurately predict the QoT impairments in terms
of OPk for each k port of the considered Beneš network. The ML routing agent delivers excellent accu-
racy (100%) in predicting the control states of the considered 8x8 Beneš topology. The scalability and de-
tailed analysis of the considered ML routing agent is demonstrated in [5]. Now, to evaluate the effective-
ness of the ML QoT agent, we compare its findings with the results obtained considering WCS of OP
in Fig. 1c. To this aim, we adopted a common metric ∆OSNRi,k for assessment. The ∆OSNRi,k used for
the assessment of ML QoT agent is ∆OSNRML

i,k , while for WCS we termed it as ∆OSNRWML
i,k defined as:

∆OSNRWML
i,k = OPWCS−OPa
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where OPWCS is the worst-case OP (see Fig. 1c). The rest of Eq. 3 and Eq.4 parameters description are same as
in Eq. 2.The distributions of ∆OSNRWML and ∆OSNRML are shown in Fig. 2 along with µ and σ . The distribu-
tion of ∆OSNRWML is always positive (∆OSNRs≥ 0), so WCS completely avoid the possibility to get into OOS.
To avoid any kind possible OOS in ML-assisted approach the term min

(
OPp

i,k−OPa
i,k

)
in Eq.4 is introduced,

that actually shifts the distribution of ∆OSNRs towards operative region and thus satisfy the condition of no oos
(∆OSNRs≥ 0).

Furthermore, observing the general statistics (µ and σ ) and visualizing both the distribution, the effectiveness
of ML assistance is quite promising. Regarding the numerical assessment, the maximum inaccuracy in estimating
OP ( δ = ∆OSNRmax). The maximum inaccuracy without-ML assistance in estimating OP is δWML ≈ 2.74 dB.
Similarly, the maximum inaccuracy with-ML assistance in estimating OP is δML ≈ 1.21 dB (see Fig. 2).

In conclusion, the use of ML in the proposed scenario significantly reduces the error in estimating the OP by
1.5 dB (δWML - δML) of the considered 8x8 Beneš switch on 400ZR LPs.
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