
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Weighted spectral cluster bounds and a sharp multiplier theorem for ultraspherical Grushin operators / Casarino,
Valentina; Ciatti, Paolo; Martini, Alessio. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-
7928. - STAMPA. - 2022:12(2022), pp. 9209-9274. [10.1093/imrn/rnab007]

Original

Weighted spectral cluster bounds and a sharp multiplier theorem for ultraspherical Grushin operators

Publisher:

Published
DOI:10.1093/imrn/rnab007

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2949514 since: 2022-06-08T11:25:51Z

Oxford University Press



V. Casarino et al. (2021) “Weighted Spectral Cluster Bounds and a Sharp Multiplier Theorem for Ultraspherical
Grushin Operators,”
International Mathematics Research Notices, Vol. 00, No. 0, pp. 1–66
https://doi.org/10.1093/imrn/rnab007

Weighted Spectral Cluster Bounds and a Sharp Multiplier
Theorem for Ultraspherical Grushin Operators

Valentina Casarino1, Paolo Ciatti2 and Alessio Martini1,∗
1Università degli Studi di Padova, Stradella san Nicola 3, I-36100
Vicenza, Italy, 2Università degli Studi di Padova, Via Marzolo 9, I-35100
Padova, Italy, and 3School of Mathematics, University of Birmingham,
Edgbaston, Birmingham, B15 2TT, UK

∗Correspondence to be sent to: e-mail: a.martini@bham.ac.uk

We study degenerate elliptic operators of Grushin type on the d-dimensional sphere,

which are singular on a k-dimensional sphere for some k < d. For these operators

we prove a spectral multiplier theorem of Mihlin–Hörmander type, which is optimal

whenever 2k ≤ d, and a corresponding Bochner–Riesz summability result. The proof

hinges on suitable weighted spectral cluster bounds, which in turn depend on precise

estimates for ultraspherical polynomials.

1 Introduction

In this paper we continue the study of spherical Grushin-type operators started in [13]

with the case of the 2-dimensional sphere. The focus here is on a family of hypoelliptic

operators {Ld,k}1≤k<d, acting on functions defined on the unit sphere S
d in R

1+d, that

is, on

S
d = {(z0, . . . , zd) ∈ R

1+d : z2
0 + · · · + z2

d = 1}, (1.1)
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2 V. Casarino et al.

for some d ≥ 2. The special orthogonal groups SO(1 + k) with 1 ≤ k ≤ d can be

naturally identified with a sequence of nested subgroups of SO(1+d), so that SO(1+ k)

acts trivially on the coordinates zk+1, . . . , zd. Correspondingly each of these groups acts

on S
d by rotations. We denote by �k the (positive semidefinite) 2nd-order differential

operator on S
d corresponding through this action to the Casimir operator on SO(1+ k).

The operators �k for k = 1, . . . , d commute pairwise and �d turns out to be the Laplace–

Beltrami operator on S
d. The operators we are interested in are defined as

Ld,k = �d −�k, (1.2)

with k = 1, . . . , d− 1.

While it may not be immediately apparent from the above formula, each operator

Ld,k can be written as minus the sum of squares of a system of smooth divergence-free

vector fields on S
d (see Section 3.2 below), and in particular is a positive semidefinite

operator too. These vector fields span the tangent space of Sd at each point not lying in

the k-submanifold S
k×{0}, and consequently Ld,k is elliptic away from this submanifold.

Moreover, by introducing a suitable system of “spherical coordinates” (ω, ψ) on S
d,

where ω ∈ S
k and ψ = (ψk+1, . . . , ψd) ∈ (−π/2, π/2)d−k (see Section 3.3 below for details),

one can write Ld,k in a neighbourhood of the submanifold S
k × {0} more explicitly as

Ld,k =
d∑

r=k+1

Y+
r Yr +V(ψ)�k, (1.3)

where the Yr and their formal adjoints Y+
r (with respect to the standard rotation-

invariant measure σ on S
d) are vector fields only depending on ψ , to wit,

Yr =
1

cos ψr+1 · · · cos ψd

∂

∂ψr
, (1.4)

and V : (−π/2, π/2)d−k → R is given by

V(ψ) = 1

cos2 ψk+1 · · · cos2 ψd
− 1 =

d∏
j=k+1

(1+ tan2 ψj)− 1. (1.5)

The vanishing of V(ψ) for ψ = 0 corresponds to the fact that Ld,k is not

elliptic at any point of the submanifold S
k × {0}. The loss of global ellipticity is anyway

compensated by the fact that Ld,k is hypoelliptic and satisfies subelliptic estimates, as

shown by an application of Hörmander’s theorem for sums of squares of vector fields
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Ultraspherical Grushin Operators 3

[32]. Indeed the expression (1.3) reveals the analogy of the operators Ld,k with certain

degenerate elliptic operators Gd,k on R
d, given by

Gd,k = �x + |x|22�y, (1.6)

where x, y are the components of a point in R
d−k
x × R

k
y and �x, �y denote the

corresponding (positive definite) partial Laplacians, while |x|2 is the Euclidean norm

of x.

In light of [28, 29], the operators Gd,k are often called Grushin operators;

sometimes they are also called Baouendi–Grushin operators, since shortly before the

papers by V. V. Grushin appeared, M. S. Baouendi introduced a more general class

of operators containing also the Gd,k [5]. In these and other works (see, e.g., [18, 23,

49]), the coefficient |x|22 in (1.6) may be replaced by a more general function V(x). As

prototypical examples of differential operators with mixed homogeneity, operators of

the form (1.6) have attracted increasing interest in the past 50 years; we refer to [13]

for a brief list of the main results, focused on the field of harmonic analysis. More

recently, the study of Grushin-type operators began to develop also on more general

manifolds than R
n, from both a geometric and an analytic perspective [6, 7, 9, 10, 25,

26, 48].

In this article, we investigate Lp boundedness properties of operators of the form

F(
√
Ld,k) in connection with size and smoothness properties of the spectral multiplier

F : R→ C; here Lp spaces on the sphere S
d are defined in terms of the spherical measure

σ , and the operators F(
√
Ld,k) are initially defined on L2(Sd) via the Borel functional

calculus for the self-adjoint operator Ld,k. The study of the Lp boundedness of functions

of Laplace-like operators is a classical and very active area of harmonic analysis, with

a number of celebrated results and open questions, already in the case of the classical

Laplacian in Euclidean space (think, e.g., of the Bochner–Riesz conjecture). Regarding

the spherical Grushin operators Ld,k, in the case d = 2 and k = 1, a sharp multiplier

theorem of Mihlin–Hörmander type and a Bochner–Riesz summability result for Ld,k

were obtained in [13]. Here we treat the general case d ≥ 2, 1 ≤ k < d, and obtain the

following result.

Let η ∈ C∞c ((0,∞)) be any nontrivial cutoff, and denote by Lq
s (R) the Lq Sobolev

space of (fractional) order s on R.

Theorem 1.1. Let D = max{d, 2k} and s > D/2.
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4 V. Casarino et al.

(i) For all continuous functions supported in [−1, 1],

sup
t>0

‖F(t
√
Ld,k)‖L1(Sd)→L1(Sd) �s ‖F‖L2

s
.

(ii) For all bounded Borel functions F : R→ C such that F|(0,∞) is continuous,

‖F(
√
Ld,k)‖L1(Sd)→L1,∞(Sd) �s sup

t≥0
‖F(t·) η‖L2

s
. (1.7)

Hence, whenever the right-hand side of (1.7) is finite, the operator F(
√
Ld,k)

is of weak type (1, 1) and bounded on Lp(Sd) for all p ∈ (1,∞).

Part (i) of the above theorem and a standard interpolation technique imply the

following Bochner–Riesz summability result.

Corollary 1.2. Let D = max{d, 2k} and p ∈ [1,∞]. If δ > (D − 1)|1/2 − 1/p|, then the

Bochner–Riesz means (1− tLd,k)δ+ of order δ associated with Ld,k are bounded on Lp(Sd)

uniformly in t ∈ (0,∞).

It is important to point out that weaker versions of the above results, involving

more restrictive requirements on the smoothness parameters s and δ, could be readily

obtained by standard techniques. Indeed the sphere S
d, with the measure σ and the sub-

Riemannian distance associated to Ld,k (see Sections 3.2 to 3.4 below for details), is a

doubling metric measure space of “homogeneous dimension” Q = d+k, and the operator

Ld,k satisfies Gaussian-type heat kernel bounds. As a consequence (see, e.g., [17, 20,

21, 31]), one would obtain the analogue of Theorem 1.1 with smoothness requirement

s > Q/2, measured in terms of an L∞ Sobolev norm, and the corresponding result for

Bochner–Riesz means would give Lp boundedness only for δ > Q|1/p − 1/2|. Since Q >

D > D− 1, the results in this paper yield an improvement on the standard result for all

values of d and k.

As a matter of fact, in the case k ≤ d/2, the above multiplier theorem is

sharp, in the sense that the lower bound D/2 to the order of smoothness s required in

Theorem 1.1 cannot be replaced by any smaller quantity. Since Ld,k is elliptic away from

a negligible subset of S
d, and D = d is the topological dimension of S

d when k ≤ d/2,

the sharpness of the above result can be seen by comparison to the Euclidean case via

a transplantation technique [34, 42].
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Ultraspherical Grushin Operators 5

The fact that for subelliptic nonelliptic operators one can often obtain

“improved” multiplier theorems, by replacing the relevant homogeneous dimension

with the topological dimension in the smoothness requirement, was first noticed in the

case of sub-Laplacians on Heisenberg and related groups by D. Müller and E. M. Stein

[44] and independently by W. Hebisch [30] and has since been verified in multiple cases.

However, despite a flurry of recent progress (see, e.g., [13, 18, 38, 39] for more detailed

accounts and further references), the question whether such an improvement is always

possible remains open. The results in the present paper can therefore be considered as

part of a wider programme, attempting to gain an understanding of the general problem

by tackling particularly significant particular cases.

In these respects, it it relevant to point out that Theorem 1.1 above can be

considered as a strengthening of the multiplier theorem for the Grushin operators Gd,k

on R
d proved in [40]: indeed a “nonisotropic transplantation” technique (see, e.g., [36,

Theorem 5.2]) allows one to deduce from Theorem 1.1 the analogous result where S
d

and Ld,k are replaced by R
d and Gd,k.

The structure of the proof of Theorem 1.1 broadly follows that of the analogous

result in [13], but additional difficulties need to be overcome here. An especially delicate

point is the proof of the “weighted spectral cluster estimates” stated as Propositions 4.2

and 4.3 below, essentially consisting in suitable weighted L1 → L2 norm bounds for

“weighted spectral projections”

(Ld,k/�d)α/2χ[i,i+1](
√
Ld,k) (1.8)

associated with bands of unit width of the spectrum of
√
Ld,k. These can be thought of as

subelliptic analogues of the Agmon–Avakumovič–Hörmander spectral cluster estimates

‖χ[i,i+1](
√

�d)‖L1→L2 � i(d−1)/2 (1.9)

for the elliptic Laplacian �d, which are valid more generally when
√

�d is replaced

with an elliptic pseudodifferential operator of order one on a compact d-manifold [33]

and are the basic building block for a sharp multiplier theorem for elliptic operators

on compact manifolds and related restriction-type estimates [24, 50, 52, 53]. Thanks

to pseudodifferential and Fourier integral operator techniques, estimates of the form

(1.9) can be proved for elliptic operators in great generality, but these techniques break

down when the ellipticity assumption is weakened. Nevertheless alternative ad hoc

methods may be developed in many cases, based on a detailed analysis of the spectral
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6 V. Casarino et al.

decomposition of the operator under consideration, often made possible by underlying

symmetries.

In the case of the spherical Grushin operator Ld,k, as a consequence of its

spectral decomposition in terms of joint eigenfunctions of the operators �d, . . . , �k,

the integral kernel of the “weighted projection” in (1.8) involves sums of (d − k)-fold

tensor products of ultraspherical polynomials. This is a substantial difference from

the case considered in [13] (where d − k = 1) and requires new ideas and greater care.

Section 6 of this paper is devoted to the proof of these estimates. As in [13], here we

make fundamental use of precise estimates for ultraspherical polynomials, which are

uniform in suitable ranges of indices. These estimates, which are consequences of the

asymptotic approximations of [11, 45–47], could be of independent interest, and their

derivation is presented in an auxiliary paper [14].

In the context of subelliptic operators on compact manifolds, “weighted spectral

cluster estimates” were first obtained in the seminal work by Cowling and Sikora [17]

for a distinguished sub-Laplacian on SU(2), leading to a sharp multiplier theorem in

that case; their technique was then applied to many different frameworks [2, 15, 16,

36]. However, the general theory developed in [17], based on spectral cluster estimates

involving a single weight function, does not seem to be directly applicable to the

spherical Grushin operator Ld,k (which, differently from the sub-Laplacian of [17], is

not invariant under a transitive group of isometries of the underlying manifold). For

this reason, here we take the opportunity to establish an “abstract” multiplier theorem,

which applies to a rather general setting of self-adjoint operators on bounded metric

measure spaces, satisfying the volume doubling property, and extends the analogous

result in [17] to the framework of a family of scale-dependent weights.

It would be of great interest to establish whether Theorem 1.1 is sharp when k >

d/2 or alternatively improve on it. The corresponding question for the Grushin operators

Gd,k on R
d has been settled in [37]; based on that result, one may expect that Theorem 1.1

and Corollary 1.2 actually hold with D replaced by d. However, when the dimension k of

the singular set is larger than the codimension, the approach developed in this paper,

which is based on a “weighted Plancherel estimate with weights on the first layer,” does

not suffice to obtain such result and new methods (inspired, for instance, to those in

[37] and involving the “second layer” as well) appear to be necessary.

We point out that the method of [37] for the Grushin operators Gd,k is based on

a delicate inductive argument, which relates multiplication by a weight on the space

side to differentiation on the spectral side; in turn, this inductive argument crucially

hinges on special identities for Hermite functions. While setting up an analogous
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Ultraspherical Grushin Operators 7

inductive scheme in the case of the spherical Grushin operators Ld,k may be possible,

a number of nontrivial additional technical challenges would need to be tackled, due

to the discreteness of the spectrum of Ld,k and to the different nature of the available

identities for spherical harmonics compared to those for Hermite functions. We hope to

be able to investigate these matters in the future.

Structure of the paper

In Section 2 we state our abstract multiplier theorem, of which Theorem 1.1 will be a

direct consequence; in order not to burden the exposition, we postpone the proof of the

abstract theorem to Section 7.

In Section 3 we introduce the spherical Laplacians and the Grushin operators on

S
d. A precise estimate for the sub-Riemannian distance � associated with the Grushin

operator Ld,k is also given. Moreover, we introduce the system of spherical coordinates

on S
d, which is key to our approach.

In Section 4 we recall the construction of a complete system of joint eigen-

functions of �d, . . . , �k on S
d, in terms of which we explicitly write down the spectral

decomposition of the Grushin operator Ld,k = �d −�k. We also prove some Riesz-type

bounds for Ld,k. Moreover we state the crucial “weighted spectral cluster estimates” for

the Grushin operators Ld,k; due to its technical nature, the proof of these estimates is

deferred to Section 6.

In Section 5 we use the Riesz-type bounds and the weighted spectral cluster

estimates to prove “weighted Plancherel-type estimates” for the Grushin operator Ld,k.

After this preparatory work, the proof of Theorem 1.1, which boils down to verifying the

assumptions of the abstract theorem, concludes the section.

Notation

Throughout the paper, for any two nonnegative quantities X and Y, we use X � Y or

Y � X to denote the estimate X ≤ CY for a positive constant C. The symbol X 	 Y is

shorthand for X � Y and Y � X. We use variants such as �a,b and 	a,b to indicate that

the implicit constants may depend on the parameters a and b.

2 An Abstract Multiplier Theorem

We state an abstract multiplier theorem, which is a refinement of [17, Theorem 3.6] and

[20, Theorem 3.2]. The proof of our main result, Theorem 1.1, for the operator Ld,k will

follow from this result.
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8 V. Casarino et al.

As in [17, 20], for all q ∈ [2,∞], N ∈ N \ {0} and F : R → C supported in [0, 1], we

define the norm ‖F‖N,q by

‖F‖N,q =
⎧⎨⎩
(

1
N

∑N
i=1 supλ∈[(i−1)/N,i/N] |F(λ)|q

)1/q
if q < ∞,

supλ∈[0,1] |F(λ)| if q = ∞.
(2.1)

Moreover, by KT we denote the integral kernel of an operator T. Further, let η ∈
C∞c ((0,∞)) be any nontrivial cutoff.

Theorem 2.1. Let (X, �) be a bounded metric space, equipped with a regular Borel

measure μ. Let L be a nonnegative self-adjoint operator on L2(X). Let q ∈ [2,∞]. Suppose

that there exist a family of weight functions πr : X × X → [0,∞), where r ∈ (0, 1], and a

constant d ∈ [1,∞) such that the following conditions are satisfied:

(a) the doubling condition:

μ(B(x, 2r)) � μ(B(x, r)) ∀x ∈ X ∀r > 0;

(b) heat kernel bounds:

|Kexp(−tL)(x, y)| �N μ(B(y, t1/2))−1(1+ �(x, y)/t1/2)−N

for all N ≥ 0, for all t ∈ (0,∞) and x, y ∈ X;

(c) the growth condition:

1 � πr(x, y) � (1+ �(x, y)/r)M0 (2.2)

for some M0 ≥ 0, for all r ∈ (0, 1] and x, y ∈ X;

(d) the integrability condition

∫
X
(1+ �(x, y)/r)−β(πr(x, y))−1 dμ(x) �β μ(B(y, r)) (2.3)

for all r ∈ (0, 1], β > d and for all y ∈ X;

(e) weighted Plancherel-type estimates:

ess supy∈Xμ(B(y, 1/N))

∫
X

π1/N(x, y) |KF(
√
L)

(x, y)|2 dμ(x) � ‖F(N·)‖2
N,q (2.4)
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Ultraspherical Grushin Operators 9

for all N ∈ N \ {0} and for all bounded Borel functions F : R → C supported

in [0, N].

Finally, assume that s > d/2. Then the following hold.

(i) For continuous functions F : R→ C supported in [−1, 1],

sup
t>0

‖F(t
√
L)‖L1(X)→L1(X) �s ‖F‖Lq

s
.

(ii) For all bounded Borel functions F : R→ C continuous on (0,∞),

‖F(
√
L)‖L1(X)→L1,∞(X) �s sup

t≥0
‖F(t·) η‖Lq

s
. (2.5)

Hence, whenever the right-hand side of (2.5) is finite, the operator F(
√
L) is

of weak type (1, 1) and bounded on Lp(X) for all p ∈ (1,∞).

Since the subject is replete with technicalities, which could weigh on the

discussion, we defer the proof of the abstract theorem to Section 7.

Let us just observe that Assumption (b) only requires a polynomial decay in

space (of arbitrary large order) for the heat kernel; hence this assumption is weaker

than the corresponding ones in [20], where Gaussian-type (i.e., superexponential) decay

is required, and in [17], where finite propagation speed for the associated wave equation

is required (which, under the “on-diagonal bound” implied by (2.4), is equivalent to

“second order” Gaussian-type decay [51]) and matches instead the assumption in [31]

(see also [36, Section 6]).

Another important feature of the above result, which is crucial for the applica-

bility to the spherical Grushin operators Ld,k considered in this paper, is the use of a

family of weight functions, where the weight πr may depend on the scale r in a nontrivial

way; this constitutes another important difference to [17], where the weights considered

are effectively scalar multiples of a single weight function (compare Assumptions (d)

and (e) above with [17, Assumptions 2.2 and 2.5]).

The attentive reader will have noticed that it is actually enough to verify

Assumptions (c) and (d) for scales r = 1/N for N ∈ N \ {0} (indeed, one can redefine

πr as π1/�1/r when 1/r /∈ N); the slightly redundant form of the above assumptions is

just due to notational convenience.
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10 V. Casarino et al.

3 Spherical Laplacians and Grushin Operators

3.1 The Laplace–Beltrami operator on the unit sphere

For d ∈ N, d ≥ 1, let S
d denote the unit sphere in R

1+d, as in (1.1). The Euclidean

structure on R
1+d induces a natural, rotation-invariant Riemannian structure on S

d. Let

σ denote the corresponding Riemannian measure, and �d the Laplace–Beltrami operator

on the unit sphere S
d in R

1+d.

It is possible (see, e.g., [27]) to give a more explicit expression for �d as a sum of

squares of vector fields, namely,

�d = −
∑

0≤j<r≤d

Z2
j,r; (3.1)

here the vector fields Zj,s are the restrictions to the sphere of the vector fields on R
1+d

given by

Zj,r = zj
∂

∂zr
− zr

∂

∂zj
,

where (z0, . . . , zd) are the coordinates of R1+d.

Indeed the rotation group SO(1+d) acts naturally on R
1+d and S

d; via this action,

the vector fields Zj,r (0 ≤ j < r ≤ d) correspond to the standard orthonormal basis of the

Lie algebra of SO(1+d), and �d corresponds to the Casimir operator. The commutation

relations

[Zj,r, Zj′,r′ ] = δr,j′Zj,r′ + δj,r′Zr,j′ − δj,j′Zr,r′ − δr,r′Zj,j′ (3.2)

are easily checked and correspond to those of the Lie algebra of SO(1+ d).

3.2 A family of commuting Laplacians and spherical Grushin operators

By (3.2), the operator �d commutes with all the vector fields Zj,r (this corresponds to the

fact that the Casimir operator is in the centre of the universal enveloping algebra of the

Lie algebra of SO(1+d)); in particular it commutes with each of the “partial Laplacians”

�r = −
∑

0≤j<s≤r

Z2
j,s (3.3)

for r = 1, . . . , d.
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Ultraspherical Grushin Operators 11

Assume that d ≥ 2. We now observe that, for r = 1, . . . , d − 1, we can identify

SO(1+ r) with a subgroup of SO(1+d), by associating to each A in SO(1+ r) the element

(
A 0

0 I

)

of SO(1+d). Via this identification, the operator �r corresponds to the Casimir operator

of SO(1+ r), and therefore it commutes with all the operators �s for s = 1, . . . , r.

In conclusion, the operators �1, . . . , �d commute pairwise and admit a joint

spectral decomposition. In what follows we will be interested in the study of the

Grushin-type operator

Ld,k = �d −�k = −
d∑

r=k+1

r−1∑
j=0

Z2
j,r. (3.4)

for k = 1, . . . , d− 1.

The operator Ld,k is not uniformly elliptic: indeed it degenerates on the k-

submanifold Ed,k = S
k × {0} of Sd. More precisely, if

Zd,k = {Zj,r : k+ 1 ≤ r ≤ d, 0 ≤ j < r}

is the family of vector fields appearing in the sum (3.4), then it is easily checked that,

for all z ∈ S
d,

Hd,k
z := span{X|z : X ∈ Zd,k} =

⎧⎨⎩TzS
d if z /∈ Ed,k,

(TzEd,k)⊥ if z ∈ Ed,k.
(3.5)

On the other hand, the commutation relations (3.2) give that

[Zj,d, Zj′,d] = −Zj,j′

for all j, j′ = 0, . . . , d − 1; in particular the vector fields in Zd,k, together with their

Lie brackets, span the tangent space of S
d at each point. In other words, the family of

vector fields Zd,k satisfies Hörmander’s condition and (together with the Riemannian

measure σ ) determines a (non-equiregular) 2-step sub-Riemannian structure on S
d with
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12 V. Casarino et al.

the horizontal distribution Hd,k described in (3.5). The corresponding sub-Riemannian

norm on the fibres of Hd,k is given, for all p ∈ S
d and v ∈ Hd,k

p , by

|v|Ld,k
= inf

⎧⎨⎩
√ ∑

X∈Zd,k

a2
X : (aX)X ∈ R

Zd,k , v =
∑

X∈Zd,k

aXX|p

⎫⎬⎭ . (3.6)

For more details on sub-Riemannian geometry we refer the reader to [1, 8, 12, 43].

We remark that from (3.4) it follows that Ld,k is positive semidefinite; moreover,

from the fact that Zd,k satisfies Hörmander’s condition, it follows that Ld,k is hypoel-

liptic and moreover Ld,kf = 0 if and only if f is constant, whence

kerLd,k = ker �d. (3.7)

3.3 Spherical coordinates

In order to study the operator Ld,k, it is useful to introduce a system of “spherical

coordinates” on S
d that will provide a particularly revealing expression for Ld,k in a

neighbourhood of the singular set Ed,k.

For all ω ∈ S
d−1 and ψ ∈ [−π/2, π/2], let us define the point �ω, ψ� ∈ S

d by

�ω, ψ� = ((cos ψ)ω, sin ψ). (3.8)

Away from ψ = ±π/2, the map (ω, ψ) �→ �ω, ψ� is a diffeomorphism onto its image,

which is the sphere without the two poles; so (3.8) can be thought of as a “system of

coordinates” on S
d, up to null sets. In these coordinates, the spherical measure σ on S

d

is given by

dσ(�ω, ψ�) = cosd−1 ψ dψ dσd−1(ω),

where σd−1 is the spherical measure on S
d−1. Moreover, the Laplace–Beltrami operator

may be written in these coordinates as

�d = − 1

cosd−1 ψ

∂

∂ψ
cosd−1 ψ

∂

∂ψ
+ 1

cos2 ψ
�d−1, (3.9)

where �d−1, given by (3.3), corresponds to the Laplace–Beltrami operator on S
d−1 (see,

e.g., [56, §IX.5]).
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Ultraspherical Grushin Operators 13

We now iterate the previous construction. Let k ∈ N such that 1 ≤ k < d be fixed.

Starting from (3.8), we can inductively define the point

�ω, ψ� = ⌊
. . .

⌊⌊
ω, ψk+1

⌉
, ψk+2

⌉
. . . , ψd

⌉
(3.10)

of S
d for all ψ = (ψk+1, . . . , ψd) ∈ [−π/2, π/2]d−k and ω ∈ S

k; if we restrict ψ to

(−π/2, π/2)d−k, then (3.10) defines a “system of coordinates” for an open subset �d,k

of Sd of full measure, namely,

�d,k = {�ω, ψ� : ω ∈ S
k, ψ ∈ (−π/2, π/2)d−k}.

In these coordinates, the spherical measure σ on S
d is given by

dσ(�ω, ψ�) = cosd−1 ψd · · · cosk ψk+1 dψd · · · dψk+1 dσk(ω), (3.11)

where σk is the spherical measure on S
k. Moreover, starting from (3.9), we get inductively

that

�d = −
d∑

r=k+1

1

cos2 ψr+1 · · · cos2 ψd

1

cosr−1 ψr

∂

∂ψr
cosr−1 ψr

∂

∂ψr
+ 1

cos2 ψk+1 · · · cos2 ψd
�k,

where again �k is the operator given by (3.3).

In particular, the Grushin operator Ld,k = �d−�k on S
d may be written in these

coordinates as in (1.3), where the vector fields Yr and the function V : (−π/2, π/2)d−k →
R are defined by (1.4) and (1.5), respectively. Note that V(ψ) vanishes only for ψ = 0,

corresponding to the singular set Ed,k. We also remark that

1

cos ψr+1 · · · cos ψd
	 1, V(ψ) 	 |ψ |2 (3.12)

for r = k+ 1, . . . , d, uniformly for |ψ | ≤ ε, for any given ε ∈ (0, π/2); here

|ψ | = |ψ |∞ = max
j∈{k+1,...,d}

|ψj|. (3.13)

The formula (1.3) for the sub-Laplacian corresponds to a somewhat more

explicit expression for the sub-Riemannian norm (3.6) on the fibres of the horizontal

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab007/6165007 by guest on 13 January 2022



14 V. Casarino et al.

distribution, which is better written by identifying, via the “coordinates” (3.10), the

tangent space T�ω,ψ�Sd with TωS
k × R

d−k for all �ω, ψ� ∈ �d,k. Under this identification,

Hd,k
�ω,ψ� =

⎧⎨⎩TωS
k × R

d−k if ψ �= 0,

{0} × R
d−k if ψ = 0

(3.14)

and, for all (v, w) ∈ Hd,k
�ω,ψ�, its sub-Riemannian norm satisfies

|(v, w)|2Ld,k
=
⎧⎨⎩
∑d

r=k+1(cos ψr+1 · · · cos ψd)2|wr|22 +V(ψ)−1|v|22 if ψ �= 0,∑d
r=k+1 |wr|22 if ψ = 0,

(3.15)

where w = (wk+1, . . . , wd) ∈ R
d−k, |w|2 is its Euclidean norm, and |v|2 is the Riemannian

norm of v ∈ TωS
k.

3.4 The sub-Riemannian distance

Thanks to (3.15), we can obtain a precise estimate for the sub-Riemannian distance �

associated with the Grushin operator Ld,k. This is the analogue of [49, Proposition 5.1]

that treats the case of “flat” Grushin operators on R
n, and [13, Proposition 2.1], that

treats the case of L2,1 on S
2.

In the statement below we represent the points of the sphere in the form �ω, ψ�
for ω ∈ Sk, ψ ∈ [−π/2, π/2]d−k, as in (3.10); moreover, |ψ | has the same meaning as in

(3.13). We also denote by �R,Sk and �R,Sd the Riemannian distances on the spheres S
k

and S
d.

Proposition 3.1. Let ε ∈ (0, π/2). The sub-Riemannian distance � on S
d associated with

Ld,k satisfies

�(�ω, ψ� ,
⌊
ω′, ψ ′⌉) 	 |ψ − ψ ′| +min

{
�R,Sk(ω, ω′)1/2,

�R,Sk(ω, ω′)
max{|ψ |, |ψ ′|}

}
, (3.16)

if max{|ψ |, |ψ ′|} ≤ ε; if instead max{|ψ |, |ψ ′|} ≥ ε, then

�(�ω, ψ� ,
⌊
ω′, ψ ′⌉) 	 �R,Sd(�ω, ψ� ,

⌊
ω′, ψ ′⌉). (3.17)
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Ultraspherical Grushin Operators 15

Consequently, the σ -measure V(�ω, ψ� , r) of the �-ball centred at �ω, ψ�with radius r ≥ 0

satisfies

V(�ω, ψ� , r) 	 min{1, rd max{r, |ψ |}k}. (3.18)

The implicit constants may depend on ε.

Proof. Note that the sub-Riemannian distance � and the Riemannian distance �R,Sd

are locally equivalent far from the singular set Ed,k: since Hd,k
p = TpM for all p ∈ S

d \
Ed,k (see (3.5)), and the Riemannian and sub-Riemannian inner products on TpM depend

continuously on p, it is enough to apply [13, Lemma 2.3] by choosing as M and N the

Riemannian and sub-Riemannian S
d, respectively, and as F the identity map restricted

to any open subset U of S with compact closure not intersecting E. Then [13, Lemma

2.2], applied with K = {(�ω, ψ� ,
⌊
ω′, ψ ′⌉) ∈ S

d × S
d : max{|ψ |, |ψ ′|} ≥ ε}, yields (3.17).

Note now that the expression in the right-hand side of (3.16) defines a contin-

uous function � : �d,k × �d,k → [0,∞), which is nondegenerate in the sense of [13,

Lemma 2.2]. Hence, in order to prove the equivalence (3.16), it is enough to show that �

and � are locally equivalent at each point p0 ∈ �d,k, and then apply [13, Lemma 2.2] with

K = {(�ω, ψ� ,
⌊
ω′, ψ ′⌉) ∈ S

d × S
d : max{|ψ |, |ψ ′|} ≤ ε}.

Consider now the Grushin operator G = Gd,k on R
d−k
x × R

k
y defined in (1.6). The

associated horizontal distribution HG and sub-Riemannian metric are given by

HG
(x,y) =

⎧⎨⎩R
d−k × R

k if x �= 0,

R
d−k × {0} if x = 0,

|(w, v)|2G =
⎧⎨⎩|w|22 + |x|−2

2 |v|22 if x �= 0,

|w|22 if x = 0,
(3.19)

for all (x, y) ∈ R
d−k ×R

k and (w, v) ∈ HG
(x,y). Moreover, according to [49, Proposition 5.1],

the associated sub-Riemannian distance �G satisfies

�G((x, y), (x′, y′)) 	 |x − x′| +min
{
|y − y′|1/2,

|y − y′|
max{|x|, |x′|}

}
. (3.20)

Let p0 = ⌊
ω0, ψ0

⌉ ∈ �d,k. Choose coordinates for S
k centred at ω0, thus

determining a diffeomorphism f from an open neighbourhood A of 0 in R
k to a

neighbourhood f (A) of p in S
k. By the equivalence of norms, up to shrinking A, we may

assume that

|dfy(w)|2 	 |w|2 (3.21)
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16 V. Casarino et al.

for all y ∈ A, w ∈ R
k ∼= TyR

k, where the norms in (3.21) are those determined by the

Riemannian structures of Sk and R
k; similarly, we may also assume that

�R,Sk(f (y), f (y′)) 	 |y − y′| (3.22)

for all y, y′ ∈ A. Let now U = B × A, where B is a neighbourhood of ψ0 with compact

closure in (−π/2, π/2)d−k, and define F : U → S
d by F(x, y) = �f (y), x�. A comparison

of (3.14) and (3.15) with (3.19), taking (3.12) and (3.21) into account, immediately shows

that [13, Lemma 2.3] can be applied to the map F and the sub-Riemannian structures

associated with G and Ld,k; consequently, up to shrinking U, we obtain that

�(F(p), F(p′)) 	 �G(p, p′) 	 �(F(p), F(p′))

for all p, p′ ∈ U, where the latter equivalence readily follows from (3.20) and (3.22).

Finally, the estimate (3.18) for the volume of balls follows from (3.11), (3.16), and

(3.17) by considering separately the cases |ψ | small and |ψ | large. �

4 A Complete System of Joint Eigenfunctions

Let d, k ∈ N with 1 ≤ k < d. In this section we briefly recall the construction of a

complete system of joint eigenfunctions of �d, . . . , �k on S
d. This will give in particular

the spectral decomposition of the Grushin operator Ld,k = �d −�k.

This construction is classical and can be found in several places in the literature

(see, e.g., [56, Ch. IX] or [22, Ch. XI]), where explicit formulas for spherical harmonics

on spheres of arbitrary dimension are given, in terms of ultraspherical (Gegenbauer)

polynomials. The discussion below is essentially meant to fix the notation that will be

used later.

By the symbol P(α,β)

j we shall denote the Jacobi polynomial of degree j ∈ N and

indices α, β > −1, defined by means of Rodrigues’ formula:

P(α,β)

j (x) = (−1)j

2j j!
(1− x)−α(1+ x)−β

(
d

dx

)j (
(1− x)α+j(1+ x)β+j

)
(4.1)

for x ∈ (−1, 1). We recall, in particular, the symmetry relation

P(α,β)

j (−x) = (−1)jP(β,α)

j (x), (4.2)
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Ultraspherical Grushin Operators 17

for j ∈ N, α, β > −1 and x ∈ R. Ultraspherical polynomials correspond to Jacobi

polynomials with α = β [55,(4.7.1)].

4.1 Spectral theory of the Laplace–Beltrami operator

We first recall some well-known facts about the spectral theory of �d (see, e.g., [54, Ch.

4] or [4, Ch. 5]). The operator �d is essentially self-adjoint on L2(Sd) and has discrete

spectrum: its eigenvalues are given by

λd
� := (�+ (d− 1)/2)(�− (d− 1)/2), (4.3)

where � ∈ Nd, and

Nd = N+ (d− 1)/2. (4.4)

The corresponding eigenspaces, denoted by H�(Sd), consist of all spherical harmonics

of degree �′ = � − (d − 1)/2, that is, of all restrictions to S
d of homogeneous harmonic

polynomials on R
1+d of degree �′; they are finite-dimensional spaces of dimension

α�(S
d) =

(
�′ + d

�′

)
−
(

�′ + d− 2

�′ − 2

)
= 2�′ + d− 1

d− 1

(
�′ + d− 2

d− 2

)
(4.5)

for � ∈ Nd (the last identity only makes sense when d > 1), and in particular

α�(S
d) 	d �d−1 (4.6)

(this estimate is also valid when d = 1, provided we stipulate that 00 = 1).

Since �d is self-adjoint, its eigenspaces are mutually orthogonal, that is,

H�(Sd) ⊥ H�′(Sd)

for �, �′ ∈ Nd, � �= �′. Moreover, if Ed
� is an orthonormal basis of H�(Sd), then

∑
Z∈Ed

�

|Z(z)|2 = σ(Sd)−1 α�(S
d) (4.7)

for all z ∈ S
d [54, Ch. 4, Corollary 2.9].
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18 V. Casarino et al.

4.2 Joint eigenfunctions of �d and �d−1

We start the construction of joint eigenfunctions with the case k = d − 1, and look for

eigenfunctions of �d that are simultaneously eigenfunctions of �d−1.

Following, for example, [56, §IX.5], one can use the expression (3.9) for �d to

solve the eigenfunction equation for �d via separation of variables. More precisely, we

look for functions W on S
d of the form X ⊗ Z, that is,

W(�ω, ψ�) = X(ψ)Z(ω)

in the coordinates (3.8), such that

�dW = λd
� W and �d−1Z = λk

mZ,

for some � ∈ Nd, m ∈ Nd−1. This leads to a differential equation for X that is solved

in terms of ultraspherical polynomials. Namely, if Z ∈ Hm(Sd−1) is nonzero and � ≥ m,

then W = X ⊗ Z is in H�(Sd) if and only if X is a multiple of

Xd
�,m(ψ) = c�m(cos ψ)m−(d−2)/2P(m,m)

�−m−1/2(sin ψ). (4.8)

Here the normalization constant c�m is chosen so that

∫ π/2

−π/2
|Xd

�,m(ψ)|2 cosd−1 ψ dψ = 1, (4.9)

that is, by means of [55, (4.3.3)],

c�m =
[
��(�−m+ 1/2) �(�+m+ 1/2)

]1/2

2m �(�+ 1/2)
. (4.10)

We remark that, if � ∈ Nd and m ∈ Nd−1, then 2� and 2m have different parities (see

(4.4)), so

� ≥ m ⇐⇒ � ≥ m+ 1/2; (4.11)

this equivalence should be kept in mind in what follows.

Define

Id = {(�, m) : � ∈ Nd, m ∈ Nd−1, � ≥ m}. (4.12)
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Ultraspherical Grushin Operators 19

Then, for all (�, m) ∈ Id, we obtain an injective linear map

Hm(Sd−1) � Z �→ Xd
�,m ⊗ Z ∈ H�(Sd),

which is an isometry with respect to the Hilbert space structures of L2(Sd−1) and L2(Sd),

and a decomposition

H�(Sd) =
⊕

m∈Nd−1
m≤�

Xd
�,m ⊗Hm(Sd−1) (4.13)

(cf. [56, page 466, eq. (1)]). The summands in the right-hand side of (4.13) are joint

eigenspaces of �d and �d−1 of eigenvalues λd
� and λk

m respectively; hence they are

pairwise orthogonal in L2(Sd).

4.3 Joint eigenfunctions of �d, . . . , �k

We go back to the general case 1 ≤ k < d and we look for a complete system of joint

eigenfunctions of �d, . . . , �k.

It is natural to introduce the index set

J(k)

d = {(�d, �d−1, . . . , �k) ∈ Nd × Nd−1 × · · · × Nk : �d ≥ �d−1 ≥ · · · ≥ �k}.

For all (�d, . . . , �k) ∈ J(k)

d , let us define Xd
�d,...,�k

: [−π/2, π/2]d−k → R by

Xd
�d,...,�k

(ψ) = Xd
�d,�d−1

(ψd) · · ·Xk+1
�k+1,�k

(ψk+1),

where ψ = (ψk+1, . . . , ψd), and the functions Xr
�r ,�r−1

are defined in (4.8). Then, for all

(�d, . . . , �k) ∈ J(k)

d and Z ∈ H�k(Sk), the function Xd
�d,...,�k

⊗ Z, defined, in the coordinates

(3.10) on S
d, by

Xd
�d,...,�k

⊗ Z : �ω, ψ� �→ Xd
�d,...,�k

(ψ)Z(ω), (4.14)

is an eigenfunction of �d, . . . , �k of respective eigenvalues λd
�d

, . . . , λk
�k

. More precisely,

iterating (4.13), we obtain the orthogonal direct sum decomposition

H�(Sd) =
⊕

(�d,...,�k)∈J(k)

d
�d=�

Xd
�d,...,�k

⊗H�k(Sk).
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20 V. Casarino et al.

As a consequence, each function f ∈ L2(Sd) may be written as

f =
∑

(�d,...,�k)∈J(k)

d

∑
Z∈Ek

�k

c�d,...,�k,ZXd
�d,...,�k

⊗ Z, (4.15)

where Ek
�k

is an orthonormal basis of H�k(Sk) and

c�d,...,�k,Z = 〈 f , Xd
�d,...,�k

⊗ Z〉.

In particular, for all (�d, . . . , �k) ∈ J(k)

d , the orthogonal projection πd
�d,...,�k

of L2(Sd) onto

the joint eigenspace of �d, . . . , �k of eigenvalues λd
�d

, . . . , λk
�k

is given by

πd
�d,...,�k

: f �→
∑

Z∈Ek
�k

〈f , Xd
�d,...,�k

⊗ Z〉Xd
�d,...,�k

⊗ Z. (4.16)

Consequently, the integral kernel Kd
�d,...,�k

of πd
�d,...,�k

is given by

Kd
�d,...,�k

(�ω, ψ� ,
⌊
ω′, ψ ′⌉) = Kk

�k
(ω, ω′)Xd

�d,...,�k
(ψ) Xd

�d,...,�k
(ψ ′), (4.17)

where

Kk
�k

(ω, ω′) :=
∑

Z∈Ek
�k

Z(ω)Z(ω′)

is the integral kernel of the orthogonal projection of L2(Sk) onto H�k(Sk).

For all bounded Borel functions F : R
d−k+1 → C, we can express the operator

F(�d, . . . , �k) in the joint functional calculus of �d, . . . , �k on L2(Sd) as

F(�d, . . . , �k) =
∑

(�d,...,�k)∈J(k)

d

F(λd
�d

, . . . , λk
�k

) πd
�d,...,�k

. (4.18)

Correspondingly, the integral kernel KF(�d,...,�k) of the operator F(�d, . . . , �k) is given by

KF(�d,...,�k) =
∑

(�d,...,�k)∈J(k)

d

F(λd
�d

, . . . , λk
�k

) Kd
�d,...,�k

, (4.19)
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and in particular, by (4.7) and (4.9), for all z′ = ⌊
ω′, ψ ′⌉ ∈ S

d,

‖KF(�d,...,�k)(·, z′)‖2
L2(Sd)

= 1

σk(Sk)

∑
(�d,...,�k)∈J(k)

d

α�k
(Sk)|F(λd

�d
, . . . , λk

�k
)|2|Xd

�d,...,�k
(ψ ′)|2, (4.20)

where σk is the Lebesgue measure on S
k, and α�k

(Sk) denotes the dimension of H�k(Sk)

as in (4.5).

We note that the operators of the form (4.18) include those in the functional

calculus of the Grushin operator Ld,k = �d −�k; namely,

F(Ld,k) =
∑

(�,m)∈I(k)

d

F(λ
d,k
�,m)

∑
(�d,...,�k)∈J(k)

d
�d=�, �k=m

πd
�d,...,�k

,

where

I(k)

d = {(�, m) : � ∈ Nd, m ∈ Nk, � ≥ m+ (d− k)/2}
= {(�, m) : ∃(�d, . . . , �k) ∈ J(k)

d : �d = �, �k = m}

(see (4.11) for the latter equality) and, for all (�, m) ∈ I(k)

d ,

λ
d,k
�,m = λd

� − λk
m. (4.21)

In light of (4.21), from the positive semidefiniteness of Ld,k and (3.7) it follows that, for

all (�, m) ∈ I(k)

d ,

λd
� ≥ λk

m (4.22)

and

λd
� = λk

m if and only if λd
� = 0. (4.23)

4.4 Riesz-type bounds

In this section we prove certain weighted L2 bounds involving the joint functional

calculus of �d, . . . , �k, which, in combination with the weighted spectral cluster

estimates in Section 4.5 below, play a fundamental role in satisfying the assumptions

on the weight in the abstract theorem and proving our main result.
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A somewhat similar estimate was obtained in [13, Lemma 2.5] in the case d = 2

and k = 1. Differently from [13], the estimate in Proposition 4.1 below is proved for

arbitrarily large powers of the weight; this prevents us from using the elementary

“quadratic form majorization” method exploited in the previous paper and requires a

more careful analysis, based on the explicit eigenfunction expansion developed in the

previous sections.

For later use, it is convenient to make a change of variable in the functions Xd
�,m

defined in (4.8): namely, we introduce the functions X̃d
�,m : [−1, 1] → R defined by

X̃d
�,m(x) = c�m(1− x2)m/2−(d−2)/4P(m,m)

�−m−1/2(x), (4.24)

where (�, m) ∈ Id and c�m is given by (4.10).

Let td,d : Sd → R be defined, for all (z0, . . . , zd) ∈ S
d, by

td,d(z0, . . . , zd) = zd.

Moreover, for k = 1, . . . , d− 1, let td,k : Sd → R be defined by

td,k(�ω, ψ�) =
⎧⎨⎩tk,k(ω) if |ψ | < π/2,

0 otherwise,
(4.25)

for all (ω, ψ) ∈ S
k × [−π/2, π/2]d−k (here |ψ | = |ψ |∞ as in (3.13)). Finally, we set, for

k = 1, . . . , d− 1,

τd,k =
d∑

r=k+1

|td,r|. (4.26)

Let us fix k ∈ {1, . . . , d−1}. From the above definitions it is readily seen that, for

all (ω, ψ) ∈ S
k × (−π/2, π/2)d−k,

td,r(�ω, ψ�) = sin ψr for r = k+ 1, . . . , d

and consequently

τd,k(�ω, ψ�) 	 |ψ |. (4.27)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab007/6165007 by guest on 13 January 2022



Ultraspherical Grushin Operators 23

Proposition 4.1. Let 1 ≤ k < d. For all N ∈ [0,∞) and all f ∈ L2(Sd) such that f ⊥
ker �k+1,

‖τN
d,kf ‖L2(Sd) �N ‖(Ld,k/�k+1)N/2f ‖L2(Sd). (4.28)

Proof. By interpolation, it is enough to prove the estimate in the case N ∈ N.

Let us first prove the inequality in the case k = d − 1. From (4.24) and known

identities for Jacobi polynomials [22, §10.9, eqs. (4) and (13), pages 174–175], one easily

deduces that

xX̃d
�,m(x) = α�,mX̃d

�+1,m(x)+ α�−1,mX̃d
�−1,m(x) (4.29)

for all (�, m) ∈ Id, where

α�,m =
√

(�−m+ 1/2)(�+m+ 1/2)

4�(�+ 1)
.

We remark that, in the case (�−1, m) /∈ Id, the condition (�, m) ∈ Id forces �−m−1/2 = 0

and α�−1,m = 0; in other words, the term with X̃�−1,m in the right-hand side of (4.29)

appears only when (� − 1, m) ∈ Id too. On the other hand, if (�, m) ∈ Id, then α�,m 	√
(�−m)(�+m)/�. Consequently, by iterating (4.29), we easily obtain, for all N ∈ N and

(�, m) ∈ Id,

xNX̃d
�,m(x) =

N∑
j=0

α
N,j
�,mX̃d

�−N+2j,m(x), (4.30)

where

α
N,j
�,m 	N

⎧⎨⎩((�−m)(�+m)/�2)N/2 if (�− N + 2j, m) ∈ Id,

0 otherwise.

Let now f ∈ L2(Sd); then we can write (see (4.15))

f =
∑

(�,m)∈Id

∑
Z∈Ed−1

m

a�,m,ZXd
�,m ⊗ Z,
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where, for all m ∈ Nd−1, Ed−1
m is an orthonormal system of eigenfunctions of �d−1 on

S
d−1 of eigenvalue λd−1

m . Then from (4.30) we deduce

tN
d,df =

N∑
j=0

∑
(�,m)∈Id

∑
Z∈Ed−1

m

a�,m,Z α
N,j
�,mXd

�−N+2j,m ⊗ Z

and consequently, by the orthogonality properties of the X�,m ⊗ Z (see Section 4),

‖tN
d,df ‖2

L2(Sd)
�N

∑
(�,m)∈Id

(
(�−m)(�+m)

�2

)N ∑
Z∈Ed−1

m

a2
�,m,Z. (4.31)

Recall that �d(Xd
�,m ⊗ Z) = λd

� (Xd
�,m ⊗ Z) and �d−1(Xd

�,m ⊗ Z) = λd−1
m (Xd

�,m ⊗ Z), where

λd
� = �2 − ((d− 1)/2)2 and λd−1

m = m2 − ((d− 2)/2)2

by (4.3). From these formulas, together with (4.22) and (4.23), we deduce that, for all

(�, m) ∈ Id,

λd
� 	 �2, λd

� − λd−1
m 	 �2 −m2 whenever λd

� �= 0. (4.32)

If f ⊥ ker �d, then the coefficients a�,m,Z in (4.31) vanish unless λd
� �= 0, and from (4.32)

we deduce

‖tN
d,df ‖L2(Sd) �N ‖((�d −�d−1)/�d)N/2f ‖L2(Sd), (4.33)

which is (4.28) in the case k = d− 1.

Let now 2 ≤ r ≤ d. By the discussion in Section 3, the parametrization

(ω, ψ) �→ �ω, ψ� defined in (3.10) with k = r allows us to identify, up to null

sets, the sphere S
d with the product S

r × [−π/2, π/2]d−r, where the measure σ on S
d

corresponds to cosd−1 ψd · · · cosr ψr+1 dψ dσr(ω) on the product. Consequently the space

L2(Sd) is identified with the Hilbert tensor product of the Lebesgue spaces L2(Sr) and

L2([−π/2, π/2]d−r, cosd−1 ψd · · · cosr ψr+1 dψ). Hence the inequality (4.33), applied with

d = r, yields a corresponding inequality on the sphere S
d, namely

‖tN
d,rf ‖L2(Sd) �N ‖((�r −�r−1)/�r)

N/2f ‖L2(Sd) (4.34)

for all f ⊥ ker �r (here the relation between td,r and tr,r in (4.25) was used).
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Recall now that the operators �r for r = 1, . . . , d have a joint spectral decompo-

sition (see Section 4) and that �r1
≤ �r2

spectrally whenever 1 ≤ r1 ≤ r2 ≤ d (see (4.22)).

So (4.34) implies the inequality

‖tN
d,rf ‖L2(Sd) �N ‖((�d −�k)/�k+1)N/2f ‖L2(Sd) (4.35)

whenever k < r ≤ d and f ⊥ ker �k+1. The desired inequality (4.28) then follows by

summing the inequalities (4.35) for r = k+ 1, . . . , d. �

4.5 Weighted spectral cluster estimates

Let d, k ∈ N with 1 ≤ k < d. For (�, m) ∈ I(k)

d and x = (xd, xd−1, . . . , xk+1) ∈ [−1, 1]d−k,

define

X d,k
�,m (x) =

∑
(�d,...,�k)∈J(k)

d
�d=�, �k=m

∣∣X̃d
�d,�d−1

(xd)
∣∣2 . . .

∣∣X̃k+1
�k+1,�k

(xk+1)
∣∣2, (4.36)

where X̃d
r,s has been defined in (4.24). Here we are interested in bounds for suitable

weighted sums of the X d,k
�,m for indices �, m such that the eigenvalue

√
λ

d,k
�,m of

√
Ld,k

ranges in an interval of unit length (whence the name “spectral cluster”). The bounds

that we obtain are different in nature according to whether m ≤ ε� or m ≥ ε� for

some fixed ε ∈ (0, 1) and are presented as separate statements. We remark that, in the

case m ≤ ε�, the eigenvalue λ
d,k
�,m of Ld,k is comparable with the eigenvalue λd

� of �d;

consequently, the range m ≤ ε� will be referred to as the “elliptic regime,” while the

range m ≥ ε� will be called the “subelliptic regime.”

Proposition 4.2 (Subelliptic regime). Let ε ∈ (0, 1) and d ≥ 2. Fix 1 ≤ k ≤ d − 1. Then,

for all i ∈ N \ {0}, α ∈ [0, k/2), and x ∈ [−1, 1]d−k,

∑
(�,m)∈I(k)

d
m≥ε�

λ
d,k
�,m∈[i2,(i+1)2]

αm(Sk) X d,k
�,m (x)

[√
λ

d,k
�,m/�

]2α

�ε id−1 min{i, 1/|x|}k−2α. (4.37)
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Proposition 4.3 (Elliptic regime). Let ε ∈ (0, 1) and d ≥ 2. Fix 1 ≤ k ≤ d − 1. Then, for

all i ∈ N \ {0} and x ∈ [−1, 1]d−k,

∑
(�,m)∈I(k)

d
m≤ε�

λ
d,k
�,m∈[i2,(i+1)2]

αm(Sk) X d,k
�,m (x) �ε id−1, (4.38)

where X d,k
�,m was defined in (4.36).

Analogous estimates are proved in [13, Section 4] in the case d = 2 and k = 1; in

that case, each of the products in (4.36) reduces to a single factor. Treating the general

case, with multiple factors, presents substantial additional difficulties. In order not to

disrupt the presentation of the proof of our main theorem, the proofs of Propositions 4.2

and 4.3 are postponed to Section 6.

5 The Multiplier Theorem

Fix d, k ∈ N with 1 ≤ k < d. In this section we complete the proof of our main result,

Theorem 1.1, for the spherical Grushin operator Ld,k.

5.1 The weighted Plancherel-type estimate

By means of the estimates from Sections 4.4 and 4.5 we shall prove a “weighted

Plancherel-type estimate” for the Grushin operator Ld,k.

For all r ∈ (0,∞), we define the weight �r : Sd × S
d → [0,∞) by

�r(�ω, ψ� ,
⌊
ω′, ψ ′⌉) = |ψ |

max{r, |ψ ′|} (5.1)

for all (ω, ψ), (ω′, ψ ′) ∈ S
k × [−π/2, π/2]d−k; here |ψ | = |ψ |∞ as in (3.13).

Proposition 5.1. Let α ∈ [0, k/2) and N ∈ N \ {0}. For all Borel functions F : R → C

supported in [0, N], and all z′ ∈ S
d,

‖(1+�N−1(·, z′))α KF(
√

Ld,k)
(·, z′)‖L2(Sd) �α V(z′, N−1)−1/2‖F(N·)‖N,2.
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Proof. We shall prove the apparently weaker estimate

‖�N−1(·, z′)α KF(
√

Ld,k)
(·, z′)‖L2(Sd) �α V(z′, N−1)−1/2‖F(N·)‖N,2 (5.2)

for all z′ ∈ S
d. Proposition 5.1 follows by combining the estimate (5.2) with the analogous

one where α = 0.

Recall that Ld,k = �d −�k. Hence, by (4.19), we can write

KF(
√

Ld,k)
=

∑
(�d,...,�k)∈J(k)

d

F
(√

λ
d,k
�d,�k

)
Kd

�d,...,�k

=
∑

(�d,...,�k)∈J(k)

d
�k≤ε�d

+
∑

(�d,...,�k)∈J(k)

d
�k>ε�d

=: K1 + K2,

where ε = max{1/2, (k−1)/(d−1)} ∈ (0, 1) and λ
d,k
�d,�k

is given by (4.21). Consequently, for

all z′ = ⌊
ω′, ψ ′⌉ ∈ S

d,

‖�N−1(·, z′)αKF(
√

Ld,k)
(·, z′)‖L2(Sd)

≤ ‖�N−1(·, z′)αK1(·, z′)‖L2(Sd) + ‖�N−1(·, z′)αK2(·, z′)‖L2(Sd)

�α min{N, |ψ ′|−1}α
[
‖K1(·, z′)‖L2(Sd) + ‖τα

d,kK2(·, z′)‖L2(Sd)

]
,

(5.3)

where τd,k is the function defined in (4.26), and the estimate (4.27) was used.

We note that, due to the choice of ε, for all (�d, . . . , �k) ∈ J(k)

d with �k > ε�d,

λk+1
�k+1

	 �2
k+1 	 �2

d (5.4)

(see (4.3)). In particular, K2(·, z′) ⊥ ker(�k+1), and moreover

K2(·, z′) = L−α/2
d,k �

α/2
k+1K2,α(·, z′) (5.5)

for all z′ ∈ S
d, where

K2,α =
∑

(�d,...,�k)∈J(k)

d
�k>ε�d

(λ
d,k
�d,�k

/λk+1
�k+1

)α/2F
(√

λ
d,k
�d,�k

)
Kd

�d,...,�k
;
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indeed, recall that Kd
�d,...,�k

is the integral kernel of the orthogonal projection of the joint

eigenspace of �d, . . . , �k of eigenvalues λd
�d

, . . . , λk
�k

(see Section 4.3), so

�rKd
�d,...,�k

(·, z′) = λr
�r

Kd
�d,...,�k

(·, z′)

for all r = k, . . . , d and z′ ∈ S
d, and therefore (5.5) follows by comparing the definitions

of K2 and K2,α.

As a consequence, we can apply Proposition 4.1 with f = K2(·, z′), and from (5.3)

we deduce that

‖�N−1(·, z′)αKF(
√

Ld,k)
(·, z′)‖L2(Sd)

�α min{N, |ψ ′|−1}α [‖K1(·, z′)‖L2(Sd) + ‖K2,α(·, z′)‖L2(Sd)

]
for all z′ = ⌊

ω′, ψ ′⌉ ∈ S
d. In light of (3.18), the estimate (5.2) will follow from

‖K1(·, z′)‖2
L2(S2)

�α Nd min{N, |ψ ′|−1}k−2α‖F(N·)‖2
N,2, (5.6)

‖K2,α(·, z′)‖2
L2(Sd)

�α Nd min{N, |ψ ′|−1}k−2α‖F(N·)‖2
N,2. (5.7)

In fact, instead of (5.6), we shall prove the stronger estimate

‖K1(·, z′)‖2
L2(Sd)

� Nd‖F(N·)‖2
N,2. (5.8)

In view of (2.1), (20), and (5.4), we can rewrite (5.7) and (5.8) as

∑
(�d,...,�k)∈J(k)

d
�k>ε�d

α�k
(Sk)(λ

d,k
�d,�k

/�2
d)α

∣∣∣∣F (√
λ

d,k
�d,�k

)∣∣∣∣ 2|Xd
�d,...,�k

(ψ ′)|2

�α Nd−1 min{N, |ψ ′|−1}k−2α
N∑

i=1

sup
λ∈[i−1,i]

|F(λ)|2

and

∑
(�d,...,�k)∈J(k)

d
�k≤ε�d

α�k
(Sk)

∣∣∣∣F (√
λ

d,k
�d,�k

)∣∣∣∣ 2|Xd
�d,...,�k

(ψ ′)|2 �α Nd−1
N∑

i=1

sup
λ∈[i−1,i]

|F(λ)|2.
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So it is enough to prove that

∑
(�d,...,�k)∈J(k)

d
�k>ε�d

λ
d,k
�d,�k

∈[(i−1)2,i2]

α�k
(Sk)(λ

d,k
�d,�k

/�2
d)α|Xd

�d,...,�k
(ψ ′)|2 �α Nd−1 min{N, |ψ ′|−1}k−2α

and

∑
(�d,...,�k)∈J(k)

d
�k≤ε�d

λ
d,k
�d,�k

∈[(i−1)2,i2]

α�k
(Sk)|Xd

�d,...,�k
(ψ ′)|2 � Nd−1

for i = 1, . . . , N. For i = 1 it is easy to verify the above estimates, since each of the sums

contains at most two summands, with (�d − (d − 1)/2, �k − (k − 1)/2) ∈ {(0, 0), (1, 1)},
and the functions X�d,...,�k

are bounded. For i = 2, . . . , N, these estimates follow from

Propositions 4.2 and 4.3, applied with m = �k and � = �d. �

5.2 Properties of the weight

We shall need some properties of the weights �r : Sd × S
d → [0,∞) defined in (5.1). The

following lemma extends [13, Lemma 5.1], where only the case d = 2, k = 1 was treated.

We refer to [40, Lemma 12] and [36, Lemma 4.1] for analogous results.

Lemma 5.2. For all r > 0 and α, β ≥ 0 such that α + β > d + k and α < min{d − k, k},
and for all z′ ∈ S

d,

∫
Sd

(1+ �(z, z′)/r)−β(1+�r(z, z′))−α dσ(z) �α,β V(z′, r). (5.9)

Moreover

1+�r(z, z′) � (1+ �(z, z′)/r) (5.10)

for all r > 0 and z, z′ ∈ S
d.

Proof. Due to the compactness of Sd, both (5.9) and (5.10) are obvious for r ≥ 1. In the

following we assume therefore that r < 1.
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To prove (5.10), we observe that, for all �ω, ψ� ,
⌊
ω′, ψ ′⌉ ∈ S

d,

1+ |ψ |
max{r, |ψ ′|} 	 1+ |ψ − ψ ′|

max{r, |ψ ′|} � 1+ �(�ω, ψ� ,
⌊
ω′, ψ ′⌉)/r. (5.11)

The last inequality follows immediately from (3.16) in the case max{|ψ |, |ψ ′|} < π/4, and

it is trivial when |ψ ′| > π/8 (since |ψ |/ max{r, |ψ ′|} � 1 in that case); in the remaining

case (|ψ | ≥ π/4 and |ψ ′| ≤ π/8), the points �ω, ψ� and
⌊
ω′, ψ ′⌉ belong to disjoint compact

subsets of Sd, whence

�(�ω, ψ� ,
⌊
ω′, ψ ′⌉) 	 1 	 |ψ − ψ ′| (5.12)

and the desired inequality follows.

In order to prove (5.9), we fix z′ = ⌊
ω′, ψ ′⌉ ∈ S

d and split the integral in the

left-hand side of (5.9) into the sum
∑3

j=0 Ij, where

Ij =
∫
Sj

(1+ �(z, z′)/r)−β(1+�r(z, z′))−α dσ(z)

and

S0 =
{
�ω, ψ� ∈ S

d : max{|ψ |, |ψ ′|} ≥ π/4
}
,

S1 =
{
�ω, ψ� ∈ S

d \ S0 : ρR,Sk(ω, ω′)1/2 ≤ ρR,Sk(ω, ω′)
max{|ψ |, |ψ ′|}

}
,

S2 =
{
�ω, ψ� ∈ S

d \ (S0 ∪ S1) : |ψ ′| ≤ |ψ |/2
}

,

S3 =
{
�ω, ψ� ∈ S

d \ (S0 ∪ S1) : |ψ |/2 < |ψ ′|
}

.

We first estimate I0. In the case |ψ ′| > π/8, we use (3.17) to conclude that

I0 �
∫
Sd

(1+ �R(z, z′)/r)−β dσ(z) � rd 	 V(z′, r),

since r < 1 and β > d (cf. [20, Lemma 4.4]). In the case |ψ ′| ≤ π/8, instead, �(z, z′) 	 |ψ | 	
1 by (5.12) for all z ∈ S0, and

I0 	 rβ max{r, |ψ ′|}α = rd max{r, |ψ ′|}k rβ−d

max{r, |ψ |}k−α
� V(z′, r),

by (3.18), since β − d > k− α > 0.
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In order to estimate I1, we decompose β = β1 + β2, with β1 > d − k − α and

β2 > 2k. Thus (3.16) and (5.11) imply

I1 	
∫
S1

(1+ �(z, z′)/r)−β

(
1+ |ψ − ψ ′|

max{r, |ψ ′|}
)−α

dσ(z)

≤ (max{r, |ψ ′|}/r)α
∫
S1

(1+ �(z, z′)/r)−β
(
1+ |ψ − ψ ′|/r

)−α dσ(z)

� (max{r, |ψ ′|}/r)α
∫
S1

(1+ �R,Sk(ω, ω′)1/2
/r)−β2(1+ |ψ − ψ ′|/r)−α−β1 dσ(�ω, ψ�)

� (max{r, |ψ ′|}/r)α
∫
Sk

(1+ �R,Sk(ω, ω′)/r2)−β2/2 dσk(ω)

×
∫

[−π/4,π/4]d−k

(
1+ |ψ − ψ ′|/r

)−α−β1 dψd . . . dψk+1

� (max{r, |ψ ′|}/r)αr2krd−k = rd max{r, |ψ ′|}k(r/ max{r, |ψ ′|})k−α � V(z′, r),

since β2/2 > k and α < k.

In order to estimate I2, instead, we write β = β̃1+ β̃2, with β̃1 > d−α and β̃2 > k,

so, again by (3.16),

I2 	
∫
S2

(
1+ |ψ − ψ ′|

r
+ �R,Sk(ω, ω′)

r max{|ψ |, |ψ ′|}
)−β (

1+ |ψ |
max{r, |ψ ′|}

)−α

dσ(�ω, ψ�)

�
∫

2|ψ ′|≤|ψ |≤π/4

(
1+ |ψ |

r

)−β̃1
(

1+ |ψ |
max{r, |ψ ′|}

)−α

×
∫
Sk

(
1+ �R,Sk(ω, ω′)

r|ψ |
)−β̃2

dω dψd . . . dψk+1

� (max{r, |ψ ′|}/r)α
∫

[−π/4,π/4]d−k

(
1+ |ψ |

r

)−β̃1−α

(r|ψ |)k dψd . . . dψk+1

� (max{r, |ψ ′|}/r)αrd+k = rd max{r, |ψ ′|}k(r/ max{r, |ψ ′|})k−α � V(z′, r)

where we used the fact that max{|ψ |, |ψ ′|} 	 |ψ − ψ ′| 	 |ψ | on S2.

Finally, to estimate I3, we decompose β = β̃1 + β̃2 as above and get

I3 �
∫
S3

(
1+ |ψ − ψ ′|

r

)−β̃1
(

1+ ρR,Sk(ω, ω′)
r|ψ ′|

)−β̃2

dσ(�ω, ψ�)

� (r|ψ ′|)k
∫

[−π/4,π/4]d−k

(
1+ |ψ − ψ ′|

r

)−β̃1

dψ � rd|ψ ′|k � V(z′, r),

where we used the fact that max{|ψ |, |ψ ′|} 	 |ψ ′| on S3. �
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5.3 Proof of the main result

The previous estimates finally allow us to verify the assumptions of the abstract

theorem in Section 2 and prove our multiplier theorem for the Grushin operators Ld,k.

Proof of Theorem 1.1. Let α ∈ [0, min{d− k, k}). We apply Theorem 2.1 with (X, �, μ) =
(Sd, �, σ), L = Ld,k, q = 2, d = d+k−α, πr = (1+�r)

α. Note that the assumptions (a) and (b)

easily follow from [21]; as a matter of fact, (a) also follows from Proposition 3.1, and (b)

could be derived from Proposition 5.1 via the results of [41, 51] (cf. the discussion in [13]).

Moreover, the assumptions (c) and (d) are proved in Lemma 5.2, while the assumption

(d) is proved in Proposition 5.1. By choosing α sufficiently close to min{d− k, k}, we can

make d = d+ k− α arbitrarily close to D = max{d, 2k}, and the desired results follow.�

6 Proof of the Weighted Spectral Cluster Estimates

Here we discuss the proof of the estimates stated in Section 4.5. Specifically, the proofs

of Propositions 4.2 and 4.3 are presented in Sections 6.3 and 6.4, respectively, while

Sections 6.1 and 6.2 are devoted to the discussion of a number of preliminary results.

6.1 Estimates for ultraspherical polynomials

In this section we collect a number of estimates for the functions Xd
�,m discussed in

Section 4.2 (or rather, the X̃d
�,m from (4.24)), which play a crucial role in the proof of the

weighted spectral cluster estimates.

We first state some elementary uniform bounds that follow readily from the

discussion in Section 4 (see especially (4.7) and (4.13)). In the statement below, we

convene that 00 = 1.

Proposition 6.1. Let d ∈ N, d ≥ 2.

(i) For all � ∈ Nd and x ∈ [−1, 1],

∑
m∈Nd−1

m≤�

md−2|X̃d
�,m(x)|2 �d �d−1.

(ii) ‖X̃d
�,m‖∞ �d �(d−1)/2/m(d−2)/2 for all (�, m) ∈ Id.

More refined pointwise estimates can be derived from asymptotic approxi-

mations of ultraspherical polynomials in terms of Hermite polynomials and Bessel
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Ultraspherical Grushin Operators 33

functions, obtained in works of Olver [47] and Boyd and Dunster [11] in the regimes

m ≥ ε� and m ≤ ε�, respectively, where ε ∈ (0, 1).

Here and subsequently, for all �, m ∈ R with � �= 0 and 0 ≤ m ≤ �, a�,m and b�,m

will denote the numbers in [0, 1] defined by

b�,m = m

�
(6.1)

and

a2
�,m = 1− b2

�,m = (�−m)(�+m)

�2 . (6.2)

The points ±a�,m ∈ [−1, 1] play the role of “transition points” for the functions X̃d
�,m in

the estimates that follow.

Theorem 6.2. Let d ∈ N, d ≥ 2. Let ε ∈ (0, 1). There exists c ∈ (0, 1) such that, for all

(�, m) ∈ Id, if m ≥ ε� then

|X̃d
�,m(x)| �d,ε

⎧⎨⎩(�−1 + |x2 − a2
�,m|)−1/4 for all x ∈ [−1, 1],

|x|−1/2 exp(−c�x2) for |x| ≥ 2a�,m,
(6.3)

while, if m ≤ ε�, then

|X̃d
�,m(x)| �d,ε

⎧⎨⎩y−(d−2)/2
(

(1+m)4/3

�2 + |y2 − b2
�,m|

)−1/4
for all x ∈ [−1, 1],

�(d−1)/2 2−m if y ≤ b�,m/(2e),
(6.4)

where y = √
1− x2.

In the case d = 2, the derivation of the estimates in Theorem 6.2 from the

asymptotic approximations in [11, 47] is presented in [13, Section 3]; a number of

variations and new ideas are required in the general case d ≥ 2, and we refer to [14]

for a complete proof (indeed, in [14] a stronger decay is proved in the regime m ≥ ε� for

|x| ≥ 2a�,m than the one given in (6.3)). Here we only remark that combining the above

estimates yields the following bound.
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Corollary 6.3. Let d ∈ N, d ≥ 2. There exists c ∈ (0,∞) such that, for all (�, m) ∈ Id and

x ∈ [−1, 1],

|X̃d
�,m(x)| �d

⎧⎨⎩y−(d−2)/2
(

1+m
�2 + |y2 − b2

�,m|
)−1/4

for all x ∈ [−1, 1],

�(d−1)/2 exp(−cm) if y ≤ b�,m/(2e),
(6.5)

where y = √
1− x2.

Proof. Let ε ∈ (0, 1) be a parameter to be fixed later. If m ≤ ε�, the desired

estimates immediately follow from (6.4), by taking any c ≤ log 2 (indeed, note that

(1+m)4/3 ≥ 1+m).

On the other hand, for m ≥ ε�, we may apply the estimates (6.3). Note that m 	
� � 1 in this range, so 1/� 	 (1+m)/�2; moreover |x2 −a�,m|2 = |y2 − b�,m|2 and y ≤ 1, so

the 1st estimate in (6.5) immediately follows from the 1st estimate in (6.3).

Assume now that y ≤ b�,m/(2e). Since b�,m ≥ ε in this range, a2
�,m/(1 − ε2) ≤ 1.

Consequently

x2 = 1− y2 ≥ 1− b2
�,m

4e2 = (4e2 − 1)+ a2
�,m

4e2 ≥ min
{

4e2 − 1

4e2 ,
1− (ε/(2e))2

1− ε2 a2
�,m

}
.

This shows that, on the one side, |x| � 1; on the other side, if ε ∈ (0, 1) is chosen

sufficiently large, then |x| ≥ 2a�,m. Therefore we can apply the 2nd estimate in (6.3)

and obtain that

|X̃d
�,m(x)| � exp(−c′�)

for a suitable constant c′ ∈ (0,∞). Since � 	 m in this range, this clearly implies the 2nd

estimate in (6.5) for an appropriate choice of c. �

6.2 Estimating sums with integrals

In the proofs of the weighted spectral cluster estimates, we will need multiple times

to majorize a sum with the corresponding integral. For this purpose we will repeatedly

invoke a couple of elementary lemmas, whose statements are reproduced below for the

reader’s convenience.

The following statement can be found in [18, Lemma 5.7].
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Ultraspherical Grushin Operators 35

Lemma 6.4. Let κ ∈ [1,∞). Let � ⊆ R
n be open and convex and φ : � → (0,∞) be

locally Lipschitz and satisfying

|∇φ(u)|2 ≤ κφ(u)

for almost all u ∈ �. Let P ⊆ � be such that, for some r ∈ (0, 1],

inf
u∈P

Vol(Br(u) ∩�) ≥ κ−1

(here Br(u) is the Euclidean ball centred at u of radius r, and Vol is the Lebesgue

measure) and moreover we can decompose P = P1 ∪ · · · ∪ PN for some N ≤ κ so that

inf
j=1,...,N

inf
u,u′∈Pj
u�=u′

|u− u′|2 ≥ 2r.

Then

∑
u∈P

φ(u) ≤ eκ3
∫

�

φ(u) dx.

In the one-dimensional case, a simplified version of the above lemma can be

found in [13, Lemma 4.1] and is stated below.

Lemma 6.5. Let κ ∈ [1,∞). Let D ⊆ R be open and φ : D → R be a nonnegative

differentiable function satisfying

|φ′(x)| ≤ κφ(x)

for all x ∈ D. Let R ⊆ R be such that

inf{|x − x′| : x, x′ ∈ R, x �= x′} ≥ κ−1.

Then, for all intervals I ⊆ D with length Vol(I) ≥ κ−1,

∑
x∈R∩I

φ(x) ≤ Cκ

∫
I
φ(x) dx,

where the constant Cκ depends only on κ and not on I, R, φ.
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Both Lemmas 6.5 and 6.4 require a control of the gradient of the integrand

function in terms of the function itself. In order to verify this assumption in the

applications below, the following lemma will be useful.

Lemma 6.6. For a, t ∈ R, s ∈ (0,∞), define

�(a, s, t) = (s+ |a− t|)−1/2. (6.6)

Let κ ∈ [1,∞). Let � ⊆ R
n, and αj : � → (0,∞), βj : � → R be such that

|∇αj|2, |∇βj|2 ≤ καj

for j = 1, . . . , N. Define �̃(y, x) = ∏N
j=1 �(yj, αj(x), βj(x)) for y ∈ R

n and x ∈ �. Then, for

all y ∈ R
N and x ∈ �,

|∇x�̃(y, x)|2 ≤ Nκ �̃(y, x).

Proof. By the Leibniz rule, it is enough to consider the case N = 1. Set α = α1, β = β1.

Define X(a, s, t) = s+ |a− t| and X̃(y, x) = X(y, α(x), β(x)). Note now that

X(a, s, t) ≥ s, |∂sX(a, s, t)|, |∂tX(a, s, t)| ≤ 1,

whence, by the chain rule,

|∇xX̃(y, x)|2 ≤ |∇xα(x)|2 + |∇xβ(x)|2 ≤ 2κα(x) ≤ 2κX̃(y, x)

and

|∇x�̃(y, x)|2
�̃(y, x)

= 1

2

|∇xX̃(y, x)|2
X̃(y, x)

≤ κ,

as desired. �

6.3 The subelliptic regime

Here we prove Proposition 4.2. To this aim, we first present a couple of lemmas that will

allow us to perform a particularly useful change of variables in the proof.
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Lemma 6.7. Let w ∈ R
n and define the matrix M(w) = (mj,s(w))n

j,s=1 by

mj,s(w) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if j = s,

wj if j > s,

−wj if j < s.

Then

det M(w) =
∑

S⊆{1,...,n}
|S| even

∏
j∈S

wj.

Proof. Observe that mj,s(w) = δj,s + ρj,swj, where ρj,s = sgn(j − s). Consequently, if Sn

denotes the group of permutations of the set {1, . . . , n} and ε(σ ) denotes the signature of

the permutation σ , then

det M(w) =
∑

σ∈Sn

ε(σ )

n∏
j=1

mj,σ(j)(w)

=
∑

σ∈Sn

ε(σ )
∏

j : σ(j) �=j

ρj,σ(j)wj

=
∑

S⊆{1,...,n}

⎛⎝∏
j∈S

wj

⎞⎠ ∑
σ∈Sn

σ |Sc=id

ε(σ )
∏
j∈S

ρj,σ(j)

=
∑

S⊆{1,...,n}

⎛⎝∏
j∈S

wj

⎞⎠det(ρl,m)
|S|
l,m=1,

where Sc = {1, . . . , n} \ S. We note that (ρl,m)
|S|
l,m=1 is a skewsymmetric matrix, so its

determinant vanishes when |S| is odd; if |S| is even, instead, its determinant is the square

of its pfaffian, and using the Laplace-type expansion for pfaffians (see, e.g., [3, §III.5, p.

142]) one can see inductively that the determinant is 1. �

Lemma 6.8. Let � = {v ∈ R
n : v̂j �= −1 for all j = 1, . . . , n}, where

v̂j =
n∑

r=j+1

vr −
j−1∑
r=1

vr.
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Let v �→ w be the map from � to R
n defined by

wj =
vj

1+ v̂j

for j = 1, . . . , n. Then

det(∂vs
wj)

n
j,s=1 =

⎛⎝ n∏
j=1

1

1+ v̂j

⎞⎠ ∑
S⊆{1,...,n}
|S| even

∏
j∈S

vj

1+ v̂j
.

Moreover, for all ε ∈ (0, 1), the map v �→ w is injective when restricted to

�ε :=
⎧⎨⎩v ∈ R

n : vj ≥ 0 ∀j = 1, . . . , n,
∑

j

vj ≤ ε

⎫⎬⎭ .

Proof. From the definition it is immediate that

∂vs
wj =

1

1+ v̂j
mj,s(w),

where M(w) = {mj,s(w)}nj,s=1 is the matrix defined in Lemma 6.7, so

det(∂vs
wj)

n
j,s=1 =

⎛⎝ n∏
j=1

1

1+ v̂j

⎞⎠det M(w),

and the desired expression for the determinant follows from Lemma 6.7.

Note that, if v ∈ �ε , then 0 ≤ vj, |v̂j| ≤
∑

j vj ≤ ε < 1, so 1+ v̂j > 0 and �ε ⊆ �. In

addition, the equations wj = vj/(1+ v̂j) are equivalent to vj −wjv̂j = wj, that is,

M(w)v = w.

Since wj = vj/(1 + v̂j) ≥ 0, from Lemma 6.7 it follows that det M(w) ≥ 1, so the matrix

M(w) is invertible and the above equation is equivalent to v = M(w)−1w; in other words,

if v ∈ �ε , then v is uniquely determined by its image w via the map v �→ w, that is, the

map restricted to �ε is injective. �
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Proof of Proposition 4.2. We start by observing that, for all (�, m) ∈ I(k)

d , if we assume

ε� ≤ m, then, for all (�d, . . . , �k) ∈ J(k)

d with �d = � and �k = m,

ε�j+1 ≤ �j, j ∈ {k, . . . , d− 1}; (6.7)

in particular

�j 	 � � 1, for all j ∈ {k, . . . , d} (6.8)

and, by (4.6),

αm(Sk) 	 mk−1 	ε �k−1.

Thus, in view of (4.36), the estimate (4.37) can be equivalently rewritten as

∑
(�d,...,�k)∈J(k)

d
ε�d≤�k

λ
d,k
�d ,�k

∈[i2,(i+1)2]

�k−1−2α
d

∣∣X̃d
�d,�d−1

(xd)
∣∣2 . . .

∣∣X̃k+1
�k+1,�k

(xk+1)
∣∣2 �ε id−1−2α min{i, |x|−1}k−2α. (6.9)

We now note that, by (4.3) and (4.21),

λ
d,k
�d,�k

+ (d+ k− 2)(d− k)/4 = �2
d − �2

k, (6.10)

and therefore, for all i ∈ N \ {0},

λ
d,k
�d,�k

∈ [i2, (i+ 1)2] "⇒ �2
d − �2

k ∈ [i2, (i+ h)2],

where h is a positive integer depending only on d and k (one can take, e.g., h = #(d+ k−
2)(d− k)/4�). Thus the estimate (6.9) will follow if we prove that

∑
(�d,...,�k)∈J(k)

d
ε�d≤�k

�2
d−�2

k∈[i2,(i+1)2]

�k−1−2α
d

∣∣X̃d
�d,�d−1

(xd)
∣∣2 . . .

∣∣X̃k+1
�k+1,�k

(xk+1)
∣∣2 �ε id−1−2α min{i, |x|−1}k−2α,

(6.11)

for all i ∈ N \ {0} and x ∈ [−1, 1]d−k; indeed, to deduce (6.9) it suffices to apply (6.11) h

times, with i replaced by i, i+ 1, . . . , i+ h− 1, respectively.
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Due to (4.2), we may restrict without loss of generality to x ∈ [0, 1]d−k. In

addition, for each fixed i, the sum in the left-hand side of (6.11) is finite, since �d−�k � 1

and therefore

�d ≤ �d + �k � �2
d − �2

k ≤ (i+ 1)2;

the boundedness of the functions X̃d−j+1
�d−j+1,�d−j

(see Proposition 6.1(ii)) then shows that the

estimate (6.11) is trivially true for each fixed i (with a constant depending on i), and

therefore it is enough to prove it for i sufficiently large.

It is convenient to reindex the sum in (6.11). Let us set

p = �d + �k, qj = �d−j+1 − �d−j, for all j ∈ {1, . . . , d− k}, (6.12)

and let us introduce the notation

Q := q1 + · · · + qd−k.

We need to determine how the conditions describing the summation range in (6.11)

can be reinterpreted when using the indices p, q1, . . . , qd−k instead of �d, . . . , �k. First,

note that

�d − �k = Q,

so the condition (�d, . . . , �k) ∈ J(k)

d is equivalent to

q1, . . . , qd−k ∈ N+ 1/2, p ∈ N+ (d+ k− 2)/2, (6.13)

p ≥ Q+ k− 1, p−Q ≡ k− 1 (mod 2). (6.14)

Moreover

�2
d − �2

k = pQ,

so the condition �2
d − �2

k ∈ [i2, (i+ 1)2] is equivalent to

pQ ∈ [i2, (i+ 1)2]. (6.15)
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Furthermore

Q

p
= 1− �k/�d

1+ �k/�d

and t �→ 1−t
1+t is strictly decreasing on [0,∞); consequently, the condition ε�d ≤ �k is

equivalent to

Q ≤ ε̄4p, (6.16)

where ε̄ =
(

1−ε
1+ε

)1/4 ∈ (0, 1).

As previously discussed, it will be enough to prove the estimate (6.11) for i

sufficiently large; in the following we will assume that

1+ 1/i ≤ ε̄−1.

Under this assumption on i, from (6.15) and (6.16) we deduce that

Q ≤ ε̄2
√

pQ ≤ ε̄2(i+ 1) ≤ ε̄i. (6.17)

We also remark that, for j = 1, . . . , d− k,

�d−j+1 + �d−j = p+ q̂j, where q̂j :=
d−k∑

r=j+1

qr −
j−1∑
r=1

qr; (6.18)

in particular, by (6.2), (6.12), and (6.18),

a2
�d−j+1,�d−j

= 1−
�2

d−j

�2
d−j+1

= 4qj(p+ q̂j)

(p+ q̂j + qj)
2 	

qj

p
, (6.19)

where the latter estimate follows from (6.13)–(6.14). Moreover, by (6.12) and (6.18),

qj

p+ q̂j
= 1− �d−j/�d−j+1

1+ �d−j/�d−j+1
,

so (6.7) implies

qj ≤ ε̄4(p+ q̂j) (6.20)

for j = 1, . . . , d− k.
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To prove the estimate (6.11), we split the sum into two parts. Let us first consider

the range

|x| ≥ 2 max
j∈{1,...,d−k}

a�d−j+1,�d−j
; (6.21)

here, and in what follows,

|x| = |x|∞ = max
j∈{1,...,d−k}

|xd−j+1|.

In light of (6.3), the inequalities

|X̃d−j+1
�d−j+1,�d−j

(xd−j+1)| �ε �
1/4
d−j+1 	 p1/4

hold for all j ∈ {1, . . . , d− k}. Moreover, for one of the quantities

|X̃d
�d,�d−1

(xd)|, . . . , |X̃k+1
�k+1,�k

(xk+1)|

the better bound |x|−1/2 exp(−cp|x|2) holds for some c > 0, thanks to the 2nd estimate

in (6.3) and to (6.8). As a consequence, we obtain

∣∣X̃d
�d,�v−1

(xd)
∣∣2 · · · ∣∣X̃k+1

�k+1,�k
(xk+1)

∣∣2 �ε p(d−k−1)/2|x|−1 exp(−2cp|x|2)

�N |x|−(d−k)(p|x|2)−N

for arbitrarily large N ∈ N. Note then that the condition (6.21), together with (6.19),

implies that

|x|2 � Q/p,

which, together with �2
d − �2

k = pQ ∈ [i2, (i+ 1)2], yields

i|x| � Q � 1.
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Then

∑
(�d,...,�k)∈J(k)

d
ε�d≤�k

�2
d−�2

k∈[i2,(i+1)2]
|x|≥2 maxj a�d−j+1,�d−j

�k−1−2α
d

∣∣X̃d
�d,�d−1

(xd)
∣∣2 · · · ∣∣X̃k+1

�k+1,�k
(xk+1)

∣∣2

�ε,N |x|−(d−k)−2N
∑

Q≤ε̄4p
pQ∈[i2,(i+1)2]
|x|2�Q/p

pk−1−2α−N

� |x|−(d−k)−2N
∑

Q�i|x|

∑
p∈[i2/Q,(i+1)2/Q]

pk−1−2α−N

� |x|−(d−k)−2N
∑

Q�i|x|
(i/Q)(i2/Q)k−1−2α−N

= i2k−1−4α−2N |x|−(d−k)−2N
∑

Q�i|x|
QN−k+2α

� i2k−1−4α−2N |x|−(d−k)−2N(i|x|)N+d−2k+2α

= id−1−2α|x|−k+2α (i|x|)−N � id−1−2α min{i, |x|−1}k−2α,

since i|x| � 1 and k−2α > 0, provided N is large enough. Note that, in estimating the sum

in p, we used the fact that the interval [i2/Q, (i+ 1)2/Q] has length (2i+ 1)/Q 	 i/Q � 1.

This concludes the proof of (6.11) in the range (6.21).

Let us now discuss the range

|x| ≤ 2 max
j∈{1,...,d−k}

a�d−j+1,�d−j
. (6.22)

We first note that (6.22) and (6.18) imply

|x|2 � Q/p,

which, combined with pQ ∈ [i2, (i+ 1)2] and Q ∈ N+ (d− k)/2, implies

p � i/|x| and Q � max{1, i|x|}.
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44 V. Casarino et al.

Note that, by (6.19), for all j = 1, . . . , d− k,

(a�d−j+1,�d−j
)2 = ϕ(qj/(p+ q̂j)), (6.23)

where ϕ(w) = 4w/(1+w)2. Note that the map ϕ : [0, 1] → [0, 1] is an increasing bijection,

such that w ≤ ϕ(w) ≤ 4w; its derivative is given by ϕ′(w) = 4 1−w
(1+w)3 and vanishes only at

w = 1. As a consequence, setting x̄j =
√

ϕ−1(x2
j ), with j ∈ {1, . . . , d− k}, one has x̄j 	 |xj|;

moreover, in light of (6.23) and (6.20),

∣∣x2
d−j+1 − (a�d−j+1,�d−j

)2
∣∣ 	ε

∣∣x̄2
d−j+1 − qj/(p+ q̂j)

∣∣,
uniformly for x ∈ [0, 1]d−k. In particular, in this range, by (6.3),

∣∣X̃d−j+1
�d−j+1,�d−j

(xd−j+1)
∣∣2 �ε �(x̄2

d−j+1, 1/p, qj/(p+ q̂j))

for all j = 1, . . . , d− k, where � is defined as in (6.6). Then

∑
(�d,...,�k)∈J(k)

d
ε�d≤�k

�2
d−�2

k∈[i2,(i+1)2]
|x|≤2 maxj a�d−j+1,�d−j

�k−1−2α
d

∣∣X̃d
�d,�d−1

(xd)
∣∣2 . . .

∣∣X̃k+1
�k+1,�k

(xk+1)
∣∣2

�ε

∑
Q≤ε̄4p

pQ∈[i2,(i+1)2]
|x|2�Q/p

pk−1−2α
d−k∏
j=1

�(x̄2
d−j+1, 1/p, qj/(p+ q̂j))

�
∑

max{1,i|x|}�Q≤ε̄i

(
i2

Q

)k−1−2α ∑
p∈[i2/Q,(i+1)2/Q]

%�(x̄, p, q),

where x̄ = (x̄d, . . . , x̄k+1), q = (q1, . . . , qd−k) and

%�(x̄, p, q) =
d−k∏
j=1

�(x̄2
d−j+1, 1/p, qj/(p+ q̂j)).

We now want to bound the inner sum in p with the corresponding integral. To

justify this, we first note that

|∂p(1/p)|, |∂p(qj/(p+ q̂j))| �ε 1/p
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for all j = 1, . . . , d − k, on the range of summation; here we are using the fact that

the condition Q ≤ ε̄i implies that qj + |q̂j| ≤ Q ≤ ε̄2i2/Q ≤ ε̄2p and ε̄ < 1, whence

p+ q̂j 	ε p � qj � 1. Thus, by Lemma 6.6,

|∂p
%�(x̄, p, q)| �ε

%�(x̄, p, q).

Moreover the interval [i2/Q, (i + 1)2/Q] has length (2i + 1)/Q 	 i/Q � 1. Hence, by

Lemma 6.5,

∑
max{1,i|x|}�Q≤ε̄i

(
i2

Q

)k−1−2α ∑
p∈[i2/Q,(i+1)2/Q]

%�(x̄, p, q)

�
∑

max{1,i|x|}�Q≤ε̄i

(
i2

Q

)k−1−2α ∫ (i+1)2/Q

i2/Q

%�(x̄, p, q) dp

	 i2k−1−4α

∫ i+1

i

∑
max{1,i|x|}�Q≤ε̄i

�̂(x̄, u, q) du,

where the change of variables p = u2/Q was used, and

�̂(x̄, u, q) = Q2α−k %�(x̄, u2/Q, q)

= Q2α−k
d−k∏
j=1

�(x̄2
d−j+1, Q/u2, qjQ/(u2 + q̂jQ)).

At this point, we can also bound the remaining sum in q1, . . . , qd−k with the

corresponding integral. Indeed, it is easily checked that

|∇q(Q/u2)|, |∇q(qjQ/(u2 + q̂jQ))| �ε Q/u2

for all j = 1, . . . , d − k, on the range of summation; here we are using that |q̂j|Q ≤ Q2 ≤
ε̄2i2 ≤ ε̄2u2 and ε̄ < 1, so u2 + q̂jQ 	ε u2. Therefore, by Lemma 6.6 and the Leibniz rule,

|∇q�̂(x̄, u, q)| �ε �̂(x̄, u, q).
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46 V. Casarino et al.

Hence, by Lemma 6.4,

i2k−1−4α

∫ i+1

i

∑
max{1,i|x|}�Q≤ε̄i

�̂(x̄, u, q) du

�ε i2k−1−4α

∫ i+1

i

∫
max{1,i|x|}�Q≤ε̄i

�̂(x̄, u, q) dq du

	
�

max{1,i|x|}�Q≤ε̄i
pQ∈[i2,(i+1)2]

%�(x̄, p, q) pk−1−2α dq dp

�
�

max{i−1,|x|}2�V≤ε̄2

p2V∈[i2,(i+1)2]

%�(x̄, p, pv) pd−1−2α dp dv

where the change of variables qj = pvj was used, and V :=∑d−k
j=1 vj (note that Q ≤ ε̄i and

pQ ≥ i2 implies V = Q2/(pQ) ≤ ε̄2). Now,

�
max{i−1,|x|}2�V≤ε̄2

p2V∈[i2,(i+1)2]

%�(x̄, p, pv) pd−1−2α dp dv

�
�

max{i−1,|x|}2�V≤ε̄2

p2V∈[i2,(i+1)2]

(
i√
V

)d−1−2α d−k∏
j=1

∣∣∣∣∣x̄2
d−j+1 −

vj

1+ v̂j

∣∣∣∣∣−1/2 dp dv

� id−1−2α

∫
max{i−1,|x|}2�V≤ε̄2

V−(d−2α)/2
d−k∏
j=1

∣∣∣∣∣x̄2
d−j+1 −

vj

1+ v̂j

∣∣∣∣∣−1/2 dv,

where v̂j =
∑d−k

r=j+1 vr −
∑j−1

r=1 vj, and the fact that the interval [i/
√

V, (i + 1)/
√

V] has

length V−1/2 was used. We can now use the change of variables

wj =
vj

1+ v̂j
, j = 1, . . . , d− k;

indeed, vj, |v̂j| ∈ [0, ε̄2] for all j ∈ {1, . . . , d−k} on the domain of integration, and moreover

ε̄ < 1, whence

wj 	ε vj for all j ∈ {1, . . . , d− k}
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and (see Lemma 6.8)

det(∂vs
wj)j,s=1,...,d−k =

⎛⎝d−k∏
j=1

1

1+ v̂j

⎞⎠ ∑
S⊆{1,...,d−k}
|S| even

∏
j∈S

vj

1+ v̂j
	ε 1,

so the change of variable yields

id−1−2α

∫
max{i−1,|x|}2�V≤ε̄2

V−(d−2α)/2
d−k∏
j=1

∣∣∣∣∣x̄2
d−j+1 −

vj

1+ v̂j

∣∣∣∣∣−1/2 dv

	ε id−1−2α

∫
max{i−1,|x|}2�|w|

|w|−(d−2α)/2
d−k∏
j=1

∣∣∣x̄2
d−j+1 −wj

∣∣∣−1/2 dw.

In order to conclude, it is enough to bound the last integral with a multiple

of min{i, |x|−1}k−2α. To do this, it is convenient to split the domain of integration

according to whether wj is larger or smaller than 2x̄2
d−j+1 for each j = 1, . . . , d − k,

and according to which j corresponds to the maximum component wj of w. In

other words,

∫
max{i−1,|x|}2�|w|

|w|−(d−2α)/2
d−k∏
j=1

∣∣∣x̄2
d−j+1 −wj

∣∣∣−1/2 dw

≤
∑

J⊆{1,...,d−k}

d−k∑
j∗=1

∫
max{i−1,|x|}2�|w|

wj∗=maxj wj

wj≥2x̄2
d−j+1 ∀j∈J

wj≤2x̄2
d−j+1 ∀j∈Jc

|w|−(d−2α)/2
d−k∏
j=1

∣∣∣x̄2
d−j+1 −wj

∣∣∣−1/2 dw,

where Jc = {1, . . . , d − k} \ J. We estimate separately each summand, depending on the

choice of j∗ ∈ {1, . . . , d − k} and J ⊆ {1, . . . , d − k}, noting that, in the respective domain

of integration, |x̄2
d−j+1 −wj|−1/2 	 w−1/2

j for all j ∈ J.
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48 V. Casarino et al.

Suppose first that j∗ ∈ J, and set J ′ = J \ {j∗}. Then

∫
max{i−1,|x|}2�|w|

wj∗=maxj wj

wj≥2x̄2
d−j+1 ∀j∈J

wj≤2x̄2
d−j+1 ∀j∈Jc

|w|−(d−2α)/2
d−k∏
j=1

∣∣∣x̄2
d−j+1 −wj

∣∣∣−1/2 dw

�
∫

max{i−1,|x|}2�wj∗
w−(d−2α)/2−1/2

j∗

⎛⎝∏
j∈J ′

∫
wj≤wj∗

w−1/2
j dwj

⎞⎠ dwj∗

×
⎛⎝∏

j∈Jc

∫
wj≤2x̄2

d−j+1

∣∣∣x̄2
d−j+1 −wj

∣∣∣−1/2 dwj

⎞⎠
�

⎛⎝∏
j∈Jc

|xd−j+1|
⎞⎠∫

max{i−1,|x|}2�wj∗
w−(d−|J|−2α)/2−1

j∗ dwj∗

� |x||Jc| max{i−1, |x|}|J|−d+2α ≤ max{i−1, |x|}−k+2α = min{i, |x|−1}k−2α,

which is the desired estimate. Here we used that d− |J| − 2α ≥ k− 2α > 0.

Suppose instead that j∗ /∈ J. In this range, |x|2 � max{i−1, |x|}2 � |w| 	 wj∗ �
x2

d−j∗+1 ≤ |x|2, whence wj∗ 	 |w| 	 max{i−1, |x|}2. So

∫
max{i−1,|x|}2�|w|

wj∗=maxj wj

wj≥2x̄2
d−j+1 ∀j∈J

wj≤2x̄2
d−j+1 ∀j∈Jc

|w|−(d−2α)/2
d−k∏
j=1

∣∣∣x̄2
d−j+1 −wj

∣∣∣−1/2 dw

� max{i−1, |x|}−(d−2α)

⎛⎝∏
j∈Jc

∫
wj≤2x̄2

d−j+1

∣∣∣x̄2
d−j+1 −wj

∣∣∣−1/2 dwj

⎞⎠
×
⎛⎝∏

j∈J

∫
wj�max{i−1,|x|}2

w−1/2
j dwj

⎞⎠
� max{i−1, |x|}−(d−2α)+|J||x||Jc| ≤ min{i, |x|−1}k−2α,

and we are done. �

6.4 The elliptic regime

We now discuss the proof of Proposition 4.3. We first observe that a straightforward

iteration of Proposition 6.1(i) yields the following estimate.
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Ultraspherical Grushin Operators 49

Lemma 6.9. Fix d ∈ N, d ≥ 2, and s ∈ N, 1 ≤ s ≤ d − 1. For all �d ∈ Nd and all

(xd, . . . , xs+1) ∈ [−1, 1]d−s,

∑
(�d−1,...,�s)∈J(s)

d−1
�d−1≤�d

�s−1
s

∣∣X̃d
�d,�d−1

(xd)
∣∣2 . . .

∣∣X̃s+1
�s+1,�s

(xs+1)
∣∣2 � �d−1

d .

Proof of Proposition 4.3. Arguing as at the beginning of the proof of Proposition 4.2,

we readily see that it suffices to prove the estimate

∑
(�d,...,�k)∈J(k)

d
�k≤ε�d

�2
d−�2

k∈[i2,(i+1)2]

�k−1
k

∣∣X̃d
�d,�d−1

(xd)
∣∣2 . . .

∣∣X̃k+1
�k+1,�k

(xk+1)
∣∣2 �ε id−1 (6.24)

for all x ∈ [0, 1]d−k and i ∈ N \ {0}.
We preliminary remark that, since ε ∈ (0, 1), the conditions �k ≤ ε�d and �2

d−�2
k ∈

[i2, (i+ 1)2] imply that

�k ≤ �d 	ε i. (6.25)

We first deal with the terms in the sum with �k = 0 (observe that this may

happen only for k = 1). The condition �2
d ∈ [i2, (i+ 1)2] uniquely determines the value of

�d. Using the estimate in Proposition 6.1(ii) to bound X̃k+1
�k+1,0(xk+1) in the left-hand side

of (6.24) and then applying Lemma 6.9, we obtain

∑
(�d,...,�k+1)∈J(k+1)

d
�2

d∈[i2,(i+1)2]

∣∣X̃d
�d,�d−1

(xd)
∣∣2 . . .

∣∣X̃k+2
�k+2,�k+1

(xk+2)
∣∣2∣∣X̃k+1

�k+1,0(xk+1)
∣∣2

�
∑

�d∈Nd
�2

d∈[i2,(i+1)2]

∑
(�d−1,...,�k+1)∈J(k+1)

d−1
�d−1≤�d

�k
k+1

∣∣X̃d
�d,�d−1

(xd)
∣∣2 . . .

∣∣X̃k+2
�k+2,�k+1

(xk+2)
∣∣2

�
∑

�d∈Nd
�2

d∈[i2,(i+1)2]

�d−1
d

� id−1,
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which is the desired bound. In what follows, we shall therefore assume that �k > 0 in

the range of summation.

Define yj :=
√

1− x2
j for j = k + 1, . . . , d, and recall the notation (6.1). Fix j∗ ∈

{k+ 1, . . . , d}, and let us consider the range of the sum in (6.24) where

yj∗ ≤ b�j∗ ,�j∗−1
/(2e). (6.26)

By (6.5), in this case,

|X̃j∗
�j∗ ,�j∗−1

(xj∗)|2 � �
j∗−1
j∗ e−2c�j∗−1 ,

for a suitable c ∈ (0,∞). Hence, by (6.25),

∑
(�d,...,�k)∈J(k)

d
0<�k≤ε�d

�2
d−�2

k∈[i2,(i+1)2]
yk≤b�j∗ ,�j∗−1/(2e)

�k−1
k

∣∣X̃d
�d,�d−1

(xd)
∣∣2 . . .

∣∣X̃k+1
�k+1,�k

(xk+1)
∣∣2

�
∑

�j∗−1∈Nj∗−1

e−2c�j∗−1

×
∑

(�j∗−2,...,�k)∈J(k)

j∗−2
�j∗−2≤�j∗−1

�k�ε i

�k−1
k

∣∣X̃j∗−1
�j∗−1,�j∗−2

(xj∗−1)
∣∣2 . . .

∣∣X̃k+1
�k+1,�k

(xk+1)
∣∣2

×
∑

(�d,...,�j∗ )∈J(j∗)

d
�j∗≥�j∗−1

�d∈[
√

�2
k+i2,

√
�2

k+(i+1)2]

∣∣X̃d
�d,�d−1

(xd)
∣∣2 . . .

∣∣X̃J+1
�j∗+1,�j∗

(xj∗+1)
∣∣2�

j∗−1
j∗ .

Now, for a fixed �k �ε i, the interval [
√

�2
k + i2,

√
�2

k + (i+ 1)2] has length 	ε 1; so the sum

over �d essentially contains only one term, and moreover �d 	ε i. Thus, by applying
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Lemma 6.9 first to the sum over �j∗ , · · · , �d−1 and then to the sum over �j∗−2, . . . , �k,

we get

∑
(�d,...,�k)∈J(k)

d
0<�k≤ε�d

�2
d−�2

k∈[i2,(i+1)2]
yk≤b�j∗ ,�j∗−1/(2e)

�k−1
k

∣∣X̃d
�d,�d−1

(xd)
∣∣2 . . .

∣∣X̃k+1
�k+1,�k

(xk+1)
∣∣2

�ε id−1
∑

�j∗−1∈Nj∗−1

e−2c�j∗−1

×
∑

(�j∗−2,...,�k)∈J(k)

j∗−2
�j∗−2≤�j∗−1

�k−1
k

∣∣X̃j∗−1
�j∗−1,�j∗−2

(xj∗−1)
∣∣2 . . .

∣∣X̃k+1
�k+1,�k

(xk+1)
∣∣2

� id−1
∑

�j∗−1∈Nj∗−1

e−2c�j∗−1�j∗−1 � id−1.

This concludes the proof of the estimate (6.24) in each range (6.26) corresponding to any

j∗ ∈ {k+ 1, . . . , d}.
It remains to consider the range of the sum where

yj > b�j,�j−1
/(2e) for all j ∈ {k+ 1, . . . , d}.

Here we may assume yj > 0 for j = k + 1, . . . , d (otherwise the range is empty). We split

the range of summation further, according to the value of k∗, defined as the smallest

index in {k, . . . , d} for which one has

b�j,�j−1
/(2e) < yj ≤ 2b�j,�j−1

for all j > k∗.

Note that the above inequality implies that

�j−1 	 �jyj for all j > k∗, (6.27)

and moreover, by Corollary 6.3,

∣∣X̃j
�j,�j−1

(xj)
∣∣2 � y−(j−2)

j �(y2
j , �j−1/�2

j , �2
j−1/�2

j ) (6.28)

for k∗ < j ≤ d, where � was defined in (6.6).
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Assume first that k∗ > k. Then yk∗ > 2b�k∗ ,�k∗−1
, that is,

�k∗−1 <
1

2
yk∗�k∗ , (6.29)

whence, by Corollary 6.3,

|X̃k∗
�k∗ ,�k∗−1

(xk∗)|2 � y−(k∗−1)

k∗ .

Moreover, from (6.25), (6.27), and (6.29) we deduce that

�k∗−1 �ε iyk∗yk∗+1 · · · yd.

Hence

∑
(�d,...,�k)∈J(k)

d
0<�k≤ε�d

�2
d−�2

k∈[i2,(i+1)2]
b�j ,�j−1/(2e)<yj≤2b�j ,�j−1∀j>k∗

yk∗>2b�k∗ ,�k∗−1

�k−1
k

∣∣X̃d
�d,�d−1

(xd)
∣∣2 . . .

∣∣X̃k+1
�k+1,�k

(xk+1)
∣∣2

�
∑

(�k∗−1,...,�k)∈J(k)

k∗−1
�k∗−1�ε iyk∗yk∗+1···yd

�k−1
k

∣∣X̃d
�k∗−1,�k∗−2

(xk∗−1)
∣∣2 . . .

∣∣X̃k+1
�k+1,�k

(xk+1)
∣∣2

×
∑

(�d,...,�k∗ )∈J(k∗)

d
�j−1	�jyj ∀j>k∗

�d∈[
√

i2+�2
k,
√

(i+1)2+�2
k]

y−(k∗−1)

k∗

d∏
j=k∗+1

y−(j−2)

j �(y2
j , �j−1/�2

j , �2
j−1/�2

j ).

(6.30)

We now want to bound the inner sum with the corresponding integral. Note that,

for j = k∗ + 1, . . . , d,

|∇(�d,...,�k∗ )(�j−1/�2
j )|, |∇(�d,...,�k∗ )(�

2
j−1/�2

j )| � �j−1/�2
j

in the range of summation; moreover the interval [
√

i2 + �2
k,
√

(i+ 1)2 + �2
k] has length 	 1

and its endpoints are 	 i, because �k � i. Hence, in view of Lemma 6.6, we can apply
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Lemma 6.4 to the inner sum and obtain that

∑
(�d,...,�k∗ )∈J(k∗)

d
�j−1	�jyj ∀j>k∗

�d∈[
√

i2+�2
k,
√

(i+1)2+�2
k]

y−(k∗−1)

k∗

d∏
j=k∗+1

y−(j−2)

j �(y2
j , �j−1/�2

j , �2
j−1/�2

j )

�

⎛⎝y−1
k∗

d∏
j=k∗

y−(j−2)

j

⎞⎠∫
�d∈[

√
i2+�2

k,
√

(i+1)2+�2
k]

�j−1	�jyj ∀j>k∗

d∏
j=k∗+1

∣∣∣∣∣y2
j −

�2
j−1

�2
j

∣∣∣∣∣−1/2 d�k∗ · · · d�d.

(6.31)

The change of variables tj−1 = �j−1/(�jyj), j = k∗ + 1, . . . , d, then gives

∫
�d∈[

√
i2+�2

k,
√

(i+1)2+�2
k]

�j−1	�jyj ∀j>k∗

d∏
j=k∗+1

∣∣∣∣∣y2
j −

�2
j−1

�2
j

∣∣∣∣∣−1/2 d�k∗ · · · d�d

�
∫

�d∈[
√

i2+�2
k,
√

(i+1)2+�2
k]

∫
tk∗ ,...,td−1	1

d∏
j=k∗+1

yj+1 · · · yd i

|1− t2
j−1|1/2

dtk∗ · · · dtd−1 d�d

	
d∏

j=k∗+1

(yj+1 · · ·yd i) = id−k∗
d∏

j=k∗+2

yj−k∗−1
j ,

whence, by (6.31),

∑
(�d,...,�k∗ )∈J(k∗)

d
�j−1	�jyj ∀j>k∗

�d∈[
√

i2+�2
k,
√

(i+1)2+�2
k]

y−(k∗−1)

k∗

d∏
j=k∗+1

y−(j−2)

j �(y2
j , �j−1/�2

j , �2
j−1/�2

j ) � id−k∗(yk∗ · · · yd)1−k∗

and, by (6.30), ∑
(�d,...,�k)∈J(k)

d
0<�k≤ε�d

�2
d−�2

k∈[i2,(i+1)2]
b�j ,�j−1/(2e)<yj≤2b�j ,�j−1∀j>k∗

yk∗>2b�k∗ ,�k∗−1

�k−1
k

∣∣X̃d
�d,�d−1

(xd)
∣∣2 . . .

∣∣X̃k+1
�k+1,�k

(xk+1)
∣∣2

� id−k∗(yk∗ · · ·yd)1−k∗

×
∑

(�k∗−1,...,�k)∈J(k)

k∗−1
�k∗−1�ε iyk∗yk∗+1···yd

�k−1
k

∣∣X̃k∗−1
�k∗−1,�k∗−2

(xk∗−1)
∣∣2 . . .

∣∣X̃k+1
�k+1,�k

(xk+1)
∣∣2

�ε id−k∗(yk∗ · · · yd)1−k∗
∑

�k∗−1�ε iyk∗yk∗+1···yd

�
k∗−2
k∗−1 �ε id−1,
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where Lemma 6.9 was applied to the sum in (�k∗ , . . . , �k) and the fact that k∗ ≥ k+ 1 ≥ 2

was used. This concludes the proof of (6.24) in this range.

We now consider the case where k∗ = k. Here, by (6.25), (6.27), and (6.28),

∑
(�d,...,�k)∈J(k)

d
0<�k≤ε�d

�2
d−�2

k∈[i2,(i+1)2]
b�j ,�j−1/(2e)<yj≤2b�j ,�j−1∀j>k

�k−1
k

∣∣X̃d
�d,�d−1

(xd)
∣∣2 . . .

∣∣X̃k+1
�k+1,�k

(xk+1)
∣∣2

�
∑

(�d,...,�k)∈J(k)

d
�j−1	�jyj ∀j>k

�d	ε i

�d∈[
√

i2+�2
k,
√

(i+1)2+�2
k]

�k−1
k

d∏
j=k+1

y−(j−2)

j �(y2
j , �j−1/�2

j , �2
j−1/�2

j )

�ε ik−1

⎛⎝ d∏
j=k+1

yk+1−j
j

⎞⎠ ∑
(�d−1,...,�k)∈J(k)

d−1
�j	εyj+1···ydi ∀k≤j<d

d−1∏
j=k+1

�(y2
j , �j−1/�2

j , �2
j−1/�2

j )

×
∑

�d∈Nd

�d∈[
√

i2+�2
k,
√

(i+1)2+�2
k]

�(y2
d, �d−1/�2

d, �2
d−1/�2

d)

�ε ik−1

⎛⎝ d∏
j=k+1

yk+1−j
j

⎞⎠ ∑
(�d−1,...,�k)∈J(k)

d−1
�j	εyj+1···ydi ∀k≤j<d

d−1∏
j=k+1

�(y2
j , �j−1/�2

j , �2
j−1/�2

j )

×
∫

�d∈[
√

i2+�2
k,
√

(i+1)2+�2
k]

�(y2
d, �d−1/�2

d, �2
d−1/�2

d) d�d,

where the last inequality follows from Lemma 6.5 together with Lemma 6.6, the fact

that

|∂�d
(�d−1/�2

d)|, |∂�d
(�2

d−1/�2
d)| � �d−1/�2

d

in the range of summation and the fact that (since �k �ε i) the length of the interval

[
√

�2
k + i2,

√
�2

k + (i+ 1)2] is 	ε 1.
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The change of variables u =
√

�2
d − �2

k in the inner integral then gives

∑
(�d,...,�k∗ )∈J(k)

d
0<�k≤ε�d

�2
d−�2

k∈[i2,(i+1)2]
b�j ,�j−1/(2e)<yj≤2b�j ,�j−1∀j>k

�k−1
k

∣∣X̃d
�d,�d−1

(xd)
∣∣2 . . .

∣∣X̃k+1
�k+1,�k

(xk+1)
∣∣2

�ε ik−1

⎛⎝ d∏
j=k+1

yk+1−j
j

⎞⎠ ∑
(�d−1,...,�k)∈J(k)

d−1
�j	εyj+1···ydi ∀k≤j<d

d−1∏
j=k+1

�(y2
j , �j−1/�2

j , �2
j−1/�2

j )

×
∫ i+1

i
�(y2

d, �d−1/(u2 + �2
k), �2

d−1/(u2 + �2
k)) du

= ik−1

⎛⎝ d∏
j=k+1

yk+1−j
j

⎞⎠∫ i+1

i

∑
(�d−1,...,�k)∈J(k)

d−1
�j	εyj+1···ydi ∀k≤j<d

�̃(u, %y, %�) du,

where %� = (�d−1, . . . , �k), %y = (yd, . . . , yk+1), and

�̃(u, %y, %�) = �(y2
d, �d−1/(u2 + �2

k), �2
d−1/(u2 + �2

k))

d−1∏
j=k+1

�(y2
j , �j−1/�2

j , �2
j−1/�2

j ).

We now want to bound the inner sum with the corresponding integral. Observe

that, since u ∈ [i, i+ 1],

|∇%� (�d−1/(u2 + �2
k))|, |∇%� (�2

d−1/(u2 + �2
k))| � �d−1/(u2 + �2

k)

and

|∇%� (�j−1/�2
j )|, |∇%� (�2

j−1/�2
j )| � �j−1/�2

j for j = k+ 1, . . . , d− 1
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on the range of summation. Thanks to Lemma 6.6, we can apply Lemma 6.4 and obtain

that ∑
(�d,...,�k)∈J(k)

d
0<�k≤ε�d

�2
d−�2

k∈[i2,(i+1)2]
b�j ,�j−1/(2e)<yj≤2b�j ,�j−1∀j>k

�k−1
k

∣∣X̃d
�d,�d−1

(xd)
∣∣2 . . .

∣∣X̃k+1
�k+1,�k

(xk+1)
∣∣2

�ε ik−1

⎛⎝ d∏
j=k+1

yk+1−j
j

⎞⎠∫ i+1

i

∫
�j	εyj+1···ydi ∀k≤j<d

�̃(u, %y, %�) d�k · · · d�d−1 du

� ik−1

⎛⎝ d∏
j=k+1

yk+1−j
j

⎞⎠∫ i+1

i

∫
�j	εyj+1···ydi ∀k≤j<d

∣∣∣∣∣y2
d −

�2
d−1

u2 + �2
k

∣∣∣∣∣−1/2

×
d−1∏

j=k+1

∣∣∣∣∣y2
j −

�2
j−1

�2
j

∣∣∣∣∣−1/2 d�k · · · d�d−1 du.

The change of variables �j = uyj+1 · · · ydτj, j = k, . . . , d− 1, then gives

∑
(�d,...,�k)∈J(k)

d
0<�k≤ε�d

�2
d−�2

k∈[i2,(i+1)2]
b�j ,�j−1/(2e)<yj≤2b�j ,�j−1∀j>k

�k−1
k

∣∣X̃d
�d,�d−1

(xd)
∣∣2 . . .

∣∣X̃k+1
�k+1,�k

(xk+1)
∣∣2

�ε id−1

⎛⎝ d∏
j=k+1

yj

⎞⎠∫ i+1

i

∫
τk,...,τd−1	ε1

∣∣∣∣∣y2
d −

y2
dτ2

d−1

1+ y2
k+1 · · ·y2

dτ2
k

∣∣∣∣∣−1/2

×
d−1∏

j=k+1

∣∣∣∣∣y2
j −

y2
j τ2

j−1

τ2
j

∣∣∣∣∣−1/2 dτk · · · dτd−1 du

= id−1
∫

τk,...,τd−1	ε1

∣∣∣∣∣1− τ2
d−1

1+ y2
k+1 · · · y2

dτ2
k

∣∣∣∣∣−1/2

×
d−1∏

j=k+1

∣∣∣∣∣1− τ2
j−1

τ2
j

∣∣∣∣∣−1/2 dτk · · · dτd−1

	ε id−1
∫

τk,...,τd−1	ε1

∣∣∣∣∣ 1

τ2
d−1

+ y2
k+1 · · · y2

dτ2
k

τ2
d−1

− 1

∣∣∣∣∣−1/2

×
d−1∏

j=k+1

∣∣∣∣∣1− τ2
j−1

τ2
j

∣∣∣∣∣−1/2 dτk · · · dτd−1.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab007/6165007 by guest on 13 January 2022



Ultraspherical Grushin Operators 57

Finally, the change of variables

td−1 =
1

τd−1
, tj =

τj

τj+1
for j = k, . . . , d− 2

yields

∑
(�d,...,�k)∈J(k)

d
0<�k≤ε�d

�2
d−�2

k∈[i2,(i+1)2]
b�j ,�j−1/(2e)<yj≤2b�j ,�j−1∀j>k

�k−1
k

∣∣X̃d
�d,�d−1

(xd)
∣∣2 . . .

∣∣X̃k+1
�k+1,�k

(xk+1)
∣∣2

�ε id−1
∫

tk,...,td−1	ε1

∣∣∣t2
d−1 + y2

k+1 · · · y2
dt2

k · · · t2
d−2 − 1

∣∣∣−1/2

×
d−1∏

j=k+1

∣∣∣1− t2
j−1

∣∣∣−1/2 dtk · · · dtd−1

�ε id−1
∫

tk,...,td−2	ε1

d−1∏
j=k+1

∣∣∣1− t2
j−1

∣∣∣−1/2
∫
|v|�ε1

|v|−1/2 dv dtk · · · dtd−2 �ε id−1,

and we are done. �

7 Proof of the Abstract Multiplier Theorem

Here we give an outline proof of the multiplier theorem stated in Section 2. The proof

combines ideas from multiple works on the subject, including [13, 17, 20, 31, 36], to

which we refer for additional details.

Proof of Theorem 2.1. Similarly as in [36], for all r ∈ (0,∞), β ∈ [0,∞), p ∈ [1,∞] and

K : X × X → C, we define the norm

|||K|||p,β,r = ess supz′∈Xμ(B(z′, r))1/p′ ‖(1+ �(·, z′)/r)β K(·, z′)‖Lp(X),

where p′ = p/(p− 1) is the conjugate exponent to p; if r ∈ (0, 1], we also define the norm

|||K|||∗p,β,r = ess supz′∈Xμ(B(z′, r))1/p′ ‖(1+ �(·, z′)/r)β πr(·, z′)1/p K(·, z′)‖Lp(X).
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Let also Q denote the homogeneous dimension of (X, �, μ), that is, a positive constant

(whose existence is a consequence of the doubling condition) such that

μ(B(z, λr)) � λQμ(B(z, r))

for all z ∈ X, r > 0 and λ ≥ 1.

Due to the doubling condition and the heat kernel bounds, we can apply [36,

Theorem 6.1] to obtain that, for all ε > 0, all β ≥ 0, all R ∈ (0,∞) and all F : R → C

supported in [−R2, R2],

|||KF(L)|||2,β,R−1 �β,ε ‖F(R2·)‖L∞β+ε
, (7.1)

‖F(L)‖L1(X)→L1(X) �ε ‖F(R2·)‖L∞Q/2+ε
, (7.2)

It is worth noting that, since πr � 1 by (2.2), the estimate (2.3) trivially holds for all

β > Q, r > 0 and y ∈ X [20, Lemma 4.4]; so it is not restrictive to assume in what follows

that d ≤ Q.

Set At = exp(−t2L) if t ∈ [0,∞) and At = 0 if t = ∞. From (7.1) we deduce that,

for all t ∈ [0,∞], all ε > 0, all β ≥ 0, all R ∈ (0,∞) and all F : R → C supported in

[R/16, R],

|||KF(
√
L)(1−At)

|||2,β,R−1 �β,ε ‖F(R·)‖L∞β+ε
min{1, (Rt)2}.

Let ξ ∈ Cc((−1/16, 1/16)) be nonnegative with

∫
R

ξ(t) dt = 1 and
∫
R

tkξ(t) dt = 0 for k = 1, . . . , 2Q+ 2.

(cf. [36, eq. (18)]). Then by Young’s inequality we obtain that, for all t ∈ [0,∞], all ε > 0,

all β ≥ 0, all R ∈ [1,∞) and all F : R→ C supported in [R/8, 7R/8],

|||K
(ξ∗F)(

√
L)(1−At)

|||2,β,R−1 �β,ε ‖F(R·)‖L∞β+ε
min{1, (Rt)2}.

In particular, by (2.2) and Sobolev’s embedding, for all t ∈ [0,∞], all ε > 0, all β ≥ 0, all

N ∈ N \ {0} and all F : R→ C supported in [N/8, 7N/8],

|||K
(ξ∗F)(

√
L)(1−At)

|||∗2,β,N−1 �β,ε ‖F(N·)‖Lq
β+M0+1/q+ε

min{1, (Nt)2}. (7.3)
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On the other hand, by (2.4), for all t ∈ [0,∞], all N ∈ N \ {0} and all F : R → C

supported in [N/16, N],

|||KF(
√
L)(1−At)

|||∗2,0,N−1 � ‖F(N·)‖N,q min{1, (Nt)2}.

Hence, by [20, eq. (4.9)], for all t ∈ [0,∞], all N ∈ N \ {0} and all F : R → C supported in

[N/8, 7N/8],

|||K
(ξ∗F)(

√
L)(1−At)

|||∗2,0,N−1 � ‖F(N·)‖Lq min{1, (Nt)2}. (7.4)

Interpolation of (7.3) and (7.4) gives that, for all t ∈ [0,∞], all ε > 0, all β ≥ 0, all

N ∈ N \ {0} and all F : R→ C supported in [N/4, 3N/4],

|||K
(ξ∗F)(

√
L)(1−At)

|||∗2,β,N−1 �β,ε ‖F(N·)‖Lq
β+ε

min{1, (Nt)2}. (7.5)

By (2.3) and (7.5), we then deduce that, for all r ∈ [0,∞), all t ∈ [0,∞], all s > d/2,

all ε ∈ [0, s− d/2), all N ∈ N \ {0} and all F : R→ C supported in [N/4, 3N/4],

ess supz′∈X

∫
X\B(z′,r)

|K
(ξ∗F)(

√
L)(1−At)

(z, z′)|dμ(z)

≤ (1+ Nr)−ε |||K
(ξ∗F)(

√
L)(1−At)

|||1,ε,N−1

�s,ε (1+ Nr)−ε |||K
(ξ∗F)(

√
L)(1−At)

|||∗2,γ ,N−1

�s,ε (1+ Nr)−ε‖F(N·)‖Lq
s

min{1, (Nt)2},

(7.6)

where γ is the midpoint of (d/2 + ε, s); more specifically, the 2nd inequality follows

from (2.3) (applied with β = 2(γ − ε)) and the Cauchy–Schwarz inequality, while the 3rd

inequality is just (7.5) with γ and s in place of β and β + ε.
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On the other hand, from (2.3) and (2.4) we deduce that, for all s > d/2, all ε ∈
[0, min{s− d/2, d/2}), all N ∈ N \ {0} and all F : R→ C supported in [N/4, 3N/4],

‖(F − ξ ∗ F)(
√
L)‖1→1 = |||K

(F−ξ∗F)(
√
L)
|||1,0,N−1

�s,ε |||K(F−ξ∗F)(
√
L)
|||∗2,γ ,N−1

≤ (1+ ND)γ |||K
(F−ξ∗F)(

√
L)
|||∗2,0,N−1

�s,ε Nγ ‖(F − ξ ∗ F)(N·)‖N,q

�s,ε N−ε‖F(N·)‖Lq
ε+γ

�s,ε N−ε‖F(N·)‖Lq
s
,

(7.7)

where D is the �-diameter of X and γ is the midpoint of (d/2, min{d, s − ε}); more

specifically, the 2nd inequality follows from (2.3) (applied with β = 2γ ) and the

Cauchy–Schwarz inequality, the 4th inequality is (2.4), and the 5th follows from [20,

Proposition 4.6].

Finally, from by (2.3) and (2.4) we deduce that, if suppF ⊆ [0, 1], then

‖F(
√
L)‖1→1 = |||KF(

√
L)
|||1,0,1

� |||KF(
√
L)
|||∗2,d,1

≤ (1+ D)d|||KF(
√
L)
|||∗2,0,1

� ‖F‖1,q

≤ ‖F‖∞;

(7.8)

more specifically, the 2nd inequality follows from (2.3) (applied with β = d) and the

Cauchy–Schwarz inequality, while the 4th inequality is (2.4) applied with r = N = 1.

Combining (7.6) (applied with t = ∞, and ε = r = 0) and (7.7) (applied with ε = 0)

gives in particular that, for all s > d/2, all N ∈ N \ {0} and all F : R → C supported in

[N/4, 3N/4],

‖F(
√
L)‖1→1 �s ‖F(N·)‖Lq

s
. (7.9)
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This estimate, combined with (7.8), easily gives a weak version of part (i): namely, for all

s > d/2 and F : R→ C supported in [1/2, 1],

sup
t>0

‖F(t
√
L)‖1→1 �s ‖F‖Lq

s
. (7.10)

We now prove the full version of part (i). Fix an even cutoff function χ ∈ C∞c (R)

with χ(0) = 1 and suppχ ⊆ [−1, 1]. Let F : R → C be supported in [−1, 1] and set

F̃ = F − F(0)χ . Note that, for all k ∈ N,

‖F(0)χ(
√·)‖Ck �k ‖F(0)χ‖C2k �k |F(0)| �s ‖F‖Lq

s
,

by Sobolev’s embedding, provided s > 1/q. In particular, from (7.2) it follows that

sup
t>0

‖F(0)χ(t
√
L)‖1→1 �s ‖F‖Lq

s
(7.11)

for all s > 1/q, and moreover

‖F̃‖Lq
s
�s ‖F‖Lq

s
.

Let now ξ ∈ C∞c (R) be such that suppξ ⊆ (1/2, 2) and
∑

k∈Z ξ(2k·) = 1 on (0,∞).

Decompose F̃ = ∑
k∈N F̃k(2k·) on [0,∞), where F̃k = F̃(2−k·) ξ ; since suppF̃k ⊆ (1/2, 2),

from (7.10) we deduce that

sup
t>0

‖F̃k(t
√
L)‖1→1 �β ‖F̃k‖Lq

β

provided β > d/2. On the other hand, arguing as in the proof of [35, Lemma 4.8], one

deduces that, for all β ≥ 0 and s > max{β, 1/q}, there exists ε > 0 such that

‖F̃k‖Lq
β
�β,s ‖F̃k‖∞ + 2−kε‖F̃‖Lq

s
�s 2−kε‖F̃‖Lq

s
;

the latter estimate is due to the fact that F̃(0) = 0 and, by Sobolev’s embedding, if

‖F̃‖Lq
s

< ∞ for some s > 1/q, then F̃ is Hölder continuous. In conclusion, for all t > 0 and

s > d/2,

‖F̃(t
√
L)‖1→1 ≤

∑
k∈N

‖F̃k(2kt
√
L)‖1→1 �s

∑
k∈N

2−kε‖F̃‖Lq
s
�s ‖F‖Lq

s
; (7.12)

combining the estimates (7.11) and (7.12) gives part (i).
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As for part (ii), since the right-hand side of (2.5) is essentially independent of the

cut-off function η, we may assume that suppη ⊆ (1/4, 1) and
∑

k∈Z η(2k·) = 1 on (0,∞).

We now argue as in [20, proof of Theorems 3.1 and 3.2]. For a given F : R → C

supported in [1/2,∞), we decompose dyadically F = ∑
k∈N η(2−k·)F. By applying (7.6) to

each dyadic piece and summing the corresponding estimate, we obtain, for all s > d/2

and r > 0,

ess supz′∈X

∫
X\B(z′,r)

|K
(ξ∗F)(

√
L)(1−Ar)

(z, z′)|dμ(z) �s sup
k∈N

‖F(2k·)η‖Lq
s
.

An application of [19, Theorem 1] then gives, for all s > d/2,

‖(ξ ∗ F)(
√
L)‖L1→L1,∞ �s sup

k∈N
‖η F(2k·)‖Lq

s
. (7.13)

On the other hand, by applying (7.7) to each dyadic piece of F and summing the

corresponding estimates, we obtain, for all s > d/2,

‖(F − ξ ∗ F)(
√
L)‖L1→L1 �s sup

k∈N
‖η F(2k·)‖Lq

s
. (7.14)

Combining the estimates (7.13) and (7.14) yields, for all F : R → C supported in

[1/2,∞) and all s > d/2,

‖F(
√
L)‖L1→L1,∞ �s sup

k∈N
‖η F(2k·)‖Lq

s
. (7.15)

Via a partition of unity subordinated to {(1/2,∞), (−∞, 1)}, we can now combine (7.15)

and (7.8) and obtain part (ii). �
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