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Spectral theory for commutative algebras of differential
operators on Lie groups

Alessio Martini

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

Abstract

The joint spectral theory of a system of pairwise commuting self-adjoint left-
invariant differential operators L1, . . . , Ln on a connected Lie group G is studied,
under the hypothesis that the algebra generated by them contains a “weighted
subcoercive operator” of ter Elst and Robinson (J. Funct. Anal. 157 (1998) 88–
163). The joint spectrum of L1, . . . , Ln in every unitary representation of G is
characterized as the set of the eigenvalues corresponding to a particular class
of (generalized) joint eigenfunctions of positive type of L1, . . . , Ln. Connections
with the theory of Gelfand pairs are established in the case L1, . . . , Ln generate
the algebra of K-invariant left-invariant differential operators on G for some
compact subgroup K of Aut(G).

Keywords: functional calculus, differential operators, Lie groups, joint
spectrum, eigenfunction expansions, representation theory, Gelfand pairs

1. Introduction

Let L1, . . . , Ln be pairwise commuting smooth linear differential operators
on a smooth manifold X, which are formally self-adjoint with respect to some
smooth measure µ. Do these operators admit a joint functional calculus on
L2(X,µ)? In that case, what is the relationship between the joint L2 spectrum
of L1, . . . , Ln and their joint smooth (possibly non-L2) eigenfunctions on X?

A joint functional calculus for L1, . . . , Ln is given, via spectral integration,
by a joint spectral resolution E, i.e., a resolution of the identity of L2(X,µ) on
Rn such that ∫

Rn
λj dE(λ1, . . . , λn)

is a self-adjoint extension of Lj for j = 1, . . . , n. Existence and uniqueness of E
are related to the so-called “domain problems”, such as essential self-adjointness
of L1, . . . , Ln and strong commutativity of their self-adjoint extensions.
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Once a joint spectral resolution E is fixed, the theory of eigenfunction expan-
sions (see, e.g., [5, 42]) yields the existence, for E-almost every λ = (λ1, . . . , λn)
in the joint L2 spectrum Σ = suppE of L1, . . . , Ln, of a corresponding gener-
alized joint eigenfunction φ, which (under some hypoellipticity hypothesis on
L1, . . . , Ln) belongs to the space E(X) of smooth functions on X and satisfies

Ljφ = λjφ for j = 1, . . . , n. (1.1)

However, from the general theory, neither it is clear for which λ ∈ Σ there does
exist a corresponding smooth eigenfunction φ, nor for which φ ∈ E(X) satisfying
(1.1) the corresponding λ does belong to Σ.

In this paper, we restrict to the case of X = G being a connected Lie group,
with right Haar measure µ, and left-invariant differential operators L1, . . . , Ln.
In this context, the problem of existence and uniqueness of a joint spectral res-
olution can be stated for the operators d$(L1), . . . , d$(Ln) in every unitary
representation $ of G — the case of the operators L1, . . . , Ln on L2(G) corre-
sponding to the (right) regular representation of G — with a possibly different
joint spectrum Σ$ for each representation $.

Via techniques due to Nelson and Stinespring [48], we show in §3.1 that a
sufficient condition for the essential self-adjointness and the existence of a joint
spectral resolution in every unitary representation is that the algebra generated
by L1, . . . , Ln contains a weighted subcoercive operator. This class of hypoellip-
tic left-invariant differential operators, defined by ter Elst and Robinson [15] in
terms of a homogeneous contraction of the Lie algebra g of G, is large enough
to contain positive elliptic operators, sublaplacians and positive Rockland op-
erators (see §2 for details).

Under the same hypotheses on L1, . . . , Ln, we prove that every element of the
joint spectrum Σ corresponds to a joint (smooth) eigenfunction φ of L1, . . . , Ln
which is a function of positive type on G, i.e., of the form

φ(x) = 〈π(x)v, v〉 (1.2)

for some unitary representation π of G on a Hilbert space H and some cyclic
vector v ∈ H \ {0}. More precisely, in §4 we show that:

(a) for every unitary representation $ of G, Σ$ coincides with the set of the
eigenvalues relative to the joint eigenfunctions of L1, . . . , Ln of the form
(1.2) with π (irreducible and) weakly contained in $;

(b) if G is amenable, then Σ coincides with the set of the eigenvalues relative
to all the joint eigenfunctions of positive type;

(c) if L1(G) is a symmetric Banach ∗-algebra, then Σ coincides with the set
of the eigenvalues relative to all the bounded joint eigenfunctions.

Recall that, if G has polynomial growth, then L1(G) is symmetric, and this
in turn implies that G is amenable (see [50]). Notice moreover that, on non-
amenable groups, the previous characterization (b) of Σ cannot be expected,
because of the spectral-gap phenomenon (cf. [56]).
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If there exists a compact group K of automorphisms of G such that the op-
erators L1, . . . , Ln generate the algebra of left-invariant K-invariant differential
operators on G, then the theory of Gelfand pairs applies (see, e.g., [22, 59]),
and the joint spectral theory of L1, . . . , Ln is related to the spectral theory of
the (convolution) algebra of K-invariant L1 functions on G, i.e., to the spherical
Fourier transform. The “Gelfand pair” condition, however, is quite restrictive
on the groups G and the systems L1, . . . , Ln of operators which can be consid-
ered. Under our weaker hypotheses, we develop in §3 a notion analogous to the
spherical Fourier transform, with several similar features (Plancherel formula,
Riemann-Lebesgue lemma, ...). Finally, in §5 some examples are considered,
involving homogeneous groups and direct products, and moreover we show how
(part of) the theory of Gelfand pairs on Lie groups fits in our general setting.

Some of the results presented here can be found in the literature in the case
of a single operator (n = 1), particularly for a sublaplacian (see, e.g., [35, 36, 11,
39]), often as preliminaries for spectral multiplier theorems. It appears that our
setting is suited for developing a theory of joint spectral multipliers for a family
of commuting left-invariant differential operators on a Lie group (cf. [40, 41]).

Notation

For a topological space X, we denote by C(X) the space of continuous
(complex-valued) functions on X, whereas C0(X) and Cc(X) are the subspaces
of continuous functions vanishing at infinity and of continuous functions with
compact support respectively. If X is a smooth manifold, then E(X) and D(X)
are the spaces of smooth functions and of compactly supported smooth functions
on X; correspondingly, D′(X) and E ′(X) are the spaces of distributions and of
compactly supported distributions.

If G is a Lie group, f is a complex-valued function on G and x, y ∈ G, then
we set

Lxf(y) = f(x−1y), Rxf(y) = f(yx).

R : x 7→ Rx is the (right) regular representation of G. For a fixed right Haar
measure µ on G, Rx is an isometry of Lp(G) for 1 ≤ p ≤ ∞. With respect to
such measure, convolution and involution of functions take the form

f ∗ g(x) =

∫
G

f(xy−1)g(y) dy, f∗(x) = ∆(x)f(x−1)

(where ∆ is the modular function) and we set, for every representation π of G,

π(f) =

∫
G

f(x)π(x−1) dx,

so that in particular

R(g)f = f ∗ g, π(f ∗ g) = π(g)π(f), π(Df) = dπ(D)π(f)

for every left-invariant differential operator D.
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2. Rockland and weighted subcoercive operators

This section is devoted to summarizing and amplifying some of the results of
[15], which are the basis for ours. In order to do this, however, it is useful first
to recall some definitions and facts about homogeneous Lie groups; for more
detailed expositions, we refer to the books [21, 24, 55].

2.1. Homogeneous groups and Rockland operators

A homogeneous Lie algebra is a Lie algebra g with a fixed family of auto-
morphic dilations

δt = eB log t for t > 0,

where B is a diagonalizable derivation of g with strictly positive eigenvalues.
The eigenspaces Wλ of the derivation B determine a direct-sum decomposition

g =
⊕
λ∈R

Wλ = Wλ1
⊕ · · · ⊕Wλk (2.1)

(where λk > · · · > λ1 > 0 are the eigenvalues of B) such that

[Wλ,Wλ′ ] ⊆Wλ+λ′ for all λ, λ′ ∈ R.

Every homogeneous Lie algebra g is nilpotent, i.e., the descending central series

g[1] = g, g[n+1] = [g, g[n]]

is eventually null; in particular, g can be identified with the connected, simply
connected Lie group G whose Lie algebra is g.

Let G = g be a homogeneous Lie group, with dilations δt = eB log t. A
homogeneous norm on G is a continuous function | · |δ : G→ [0,+∞[ such that

• |x|δ = 0 if and only if x is the identity of G;

• |x−1|δ = |x|δ;

• |δt(x)|δ = t|x|δ for all t > 0.

Two homogeneous norms | · |δ, | · |′δ on G are always equivalent:

C−1|x|δ ≤ |x|′δ ≤ C|x|δ for all x ∈ G,

for some constant C ≥ 1 (see [23], §3, or [24], §1.2); moreover, there exists (see
[28]) a homogeneous norm | · |δ which is smooth off the origin and subadditive:

|xy|δ ≤ |x|δ + |y|δ for all x, y ∈ G.

The quantity

Qδ = trB =

k∑
j=1

λj dimWj
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is called the homogeneous dimension of g; in fact, we have

µ(δt(U)) = tQδµ(U)

for every measurable U ⊆ g. Modulo rescaling (i.e., replacing t with tc for some
c > 0), one can suppose that λ1 ≥ 1, which shall be always understood in the
rest of the paper, so that in particular Qδ ≥ dim g.

The degree of polynomial growth (or dimension at infinity) of G is the unique
QG ∈ N such that

µ(Kn) ∼ nQG

for every compact neighborhood K = K−1 of the identity of G. This definition
does not depend on the chosen dilations, and in fact it makes sense for every
connected Lie group G (with polynomial growth); for a nilpotent group G, we
have the following characterization, where

τK(x) = min{n ∈ N : x ∈ Kn}.

Proposition 2.1 (Guivarc’h). Suppose that G is s-step nilpotent (i.e., g[s] 6=
0 = g[s+1]) and let Vj be a complement of g[j+1] in g[j] for j = 1, . . . , s. Choose
moreover norms | · |j on the Vj and set

|x| =
s∑
j=1

|xj |1/jj , (2.2)

where x = x1 + · · ·+ xs is the decomposition of x ∈ g = V1 ⊕ · · · ⊕ Vs. Then

|x| ∼ τK(x) for large x ∈ G,

for every compact neighborhood K = K−1 of the identity. In particular, G has
polynomial growth of degree

QG =

s∑
j=1

j dimVj =

s∑
j=1

dim g[j] ≥ dim g.

Proof. See [27], particularly the proofs of Théorème II.1 and Lemme II.1.

A homogeneous Lie algebra g as in (2.1) is stratified if W1 generates g as
a Lie algebra (this implies that λ1, . . . , λk are integers). If G = g is stratified,
then in Proposition 2.1 one can take Vj = Wj , so that (2.2) is a homogeneous
norm on G and QG = Qδ. For a general homogeneous Lie group, we have the
following result (cf. also [37]).

Proposition 2.2. Let G be a homogeneous Lie group, with dilations δt and
homogeneous dimension Qδ, and let | · |δ be a homogeneous norm on G. Let | · |
be defined as in (2.2), and QG be the degree of polynomial growth of G.

(i) One has Qδ ≥ QG, with equality if and only if G is stratified.
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(ii) There exist a, b, c > 0 such that

c−1|x|aδ ≤ |x| ≤ c|x|bδ for x ∈ G large (2.3)

(i.e., off a compact neighborhood of the identity). Moreover, we can take
a = b = 1 if and only if G is stratified.

Proof. (i) Decompose g as in (2.1). Notice that the subspaces g[n] composing
the descending central series are characteristic ideals of g; since the dilations
δt are automorphisms, the g[n] are homogeneous. A homogeneous element of
g[n], being the sum of n-fold iterated commutators of homogeneous elements of
g, has a homogeneity degree which must be the sum of n of the homogeneity
degrees λ1 < · · · < λk of the elements of g; since all these degrees are not less
than 1, the sum is not less than n, therefore g[n] ∩Wλ = {0} if λ < n, so that

g[n] ⊆
⊕
λ≥n

Wλ. (2.4)

In particular, if G is s-step,

QG =

s∑
n=1

dim g[n] ≤
s∑

n=1

∑
λ≥n

dimWλ ≤
k∑
j=1

bλjc dimWλj ≤ Qδ. (2.5)

We already know that, if G is stratified, then QG = Qδ. Conversely, if
QG = Qδ, then all the inequalities in (2.5) must be equalities; this means, first
of all, that the degrees λ1, . . . , λk are integers and, secondly, that the inclusion
(2.4) is an equality, so that Wn ⊆ g[n], but then necessarily W1 generates g —
i.e., G is stratified.

(ii) By the definition of | · | and the equivalence of homogeneous norms, the
inequalities (2.3) follow easily.

If G is stratified, then also |·|δ is (modulo equivalence of homogeneous norms)
of the form (2.2), with a choice of the complements Vj possibly different to the
one defining | · |; therefore, by Proposition 2.1, | · |δ is equivalent in the large to
| · | (both being equivalent in the large to some τK). Conversely, since

µG({x ∈ G : |x| < r}) ∼ rQG , µG({x ∈ G : |x|δ < r}) ∼ rQδ

for r large, if (2.3) holds with a = b = 1, then necessarily QG = Qδ, and the
conclusion follows by (i).

The automorphic dilations δt of a homogeneous Lie algebra g extend to
automorphisms δt of its complex universal enveloping algebra U(g), which is
canonically isomorphic to the algebra D(G) of left-invariant differential opera-
tors on G. An element D ∈ U(g) = D(G) is said to be homogeneous of degree
λ if

δt(D) = tλD for all t > 0.

A Rockland operator on G is a homogeneous left-invariant differential opera-
tor D ∈ D(G) such that, for every non-trivial irreducible unitary representation
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π of G on a Hilbert space H, dπ(D) is injective on the space H∞ of the smooth
vectors of the representation. In the abelian case (G = Rn), with isotropic di-
lations, the notion of Rockland operator reduces to that of constant-coefficient
homogeneous elliptic operator on Rn. In the general case, by a theorem of Helf-
fer and Nourrigat (see [30, 44]), combined with a result by Miller (see [45, 14]),
a homogeneous L ∈ D(G) is Rockland if and only if L is hypoelliptic, i.e., for
every u ∈ D′(G) and every open set Ω ⊆ G,

(Lu)|Ω ∈ E(Ω) =⇒ u|Ω ∈ E(Ω).

2.2. Weighted bases and contraction of a Lie algebra

A weighted (algebraic) basis of a Lie algebra g is a system A1, . . . , Ad of
linearly independent elements of g which generate g as a Lie algebra, together
with the assignment of a weight wj ∈ [1,+∞[ to each Aj (j = 1, . . . , d).

Fix a weighted basis on g. We recall some notation from [15], analogous to
the multi-index notation for partial derivatives on Rn, but taking care of the
non-commutative structure. Let J(d) be the set of finite sequences of elements
of {1, . . . , d}, and J+(d) be the subset of non-empty sequences. For every α =

(α1, . . . , αk) ∈ J(d), let |α| denote the length k of α, and set ‖α‖ =
∑k
j=1 wαj ,

Aα = Aα1Aα2 · · ·Aαn (as an element of U(g)),

A[α] = [[. . . [Aα1 , Aα2 ], . . . ], Aαk ] if α ∈ J+(d).

The fixed weighted basis defines an (increasing) filtration on g:

Fλ = span{A[α] : α ∈ J+(d), ‖α‖ ≤ λ} for λ ∈ R;

we have in fact

[Fλ, Fµ] ⊆ Fλ+µ, Fλ =
⋂
µ>λ

Fµ,
⋃
λ∈R

Fλ = g.

Set F−λ =
⋃
µ<λ Fµ; the weighted basis is said to be reduced if1

span{Aj : wj = λ} ∩ F−λ = {0} for all λ. (2.6)

1Our definition of reduced basis is more restrictive than the definition given in §2 of [15],
where it is only required that Aj /∈ F−

wj ; however, without our restriction, the fundamental

Lemma 2.2 of [15], which allows to extend the reduced basis to a linear basis compatible with
the associated filtration Fλ, is false, as it is shown by the following example. On the free
3-step nilpotent Lie algebra on two generators, defined by

[X1, X2] = Y, [X1, Y ] = T1, [X2, Y ] = T2,

the weighted basis X1, X2, Y + T1, T1, T2, with weights 1, 1, 3, 3, 3, is reduced according to
[15], but it not compatible with the associated filtration, and cannot be extended since it is
already a linear basis.
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Given a weighted basis, it is always possible to remove some elements from it,
in order to obtain a reduced basis of g which defines the same filtration. A
weighted Lie algebra is a Lie algebra with a fixed reduced (weighted) basis.

Notice that, for every choice of a system of linearly independent generators
A1, . . . , Ad of a Lie algebra g, the assignment of weights all equal to 1 always
gives a reduced basis, so that every (finite-dimensional) Lie algebra admits a
weighted structure. Notice moreover that, if g is a homogeneous Lie algebra,
every system of linearly independent generators A1, . . . , Ad of g made of homo-
geneous elements, with the weights equal to the respective homogeneity degrees,
is a reduced basis of g; such a basis is said to be adapted to the homogeneous
structure of g. A weighted homogeneous Lie algebra is a homogeneous Lie alge-
bra with a fixed adapted basis.

Let g be a weighted Lie algebra, and let the filtration (Fλ)λ be defined as
before. We can then consider the associated homogeneous Lie algebra (cf. [7],
§II.4.3): the filtration determines a finite set of weights λ1, . . . , λk, with

1 ≤ λ1 < · · · < λk,

defined by the condition Fλj 6= F−λj for j = 1, . . . , k; if we put Wλ = Fλ/F
−
λ ,

then
g∗ =

⊕
λ∈R

Wλ = Wλ1
⊕ · · · ⊕Wλk

is a homogeneous Lie algebra, with weights λ1, . . . , λk.
Since the fixed weighted basis A1, . . . , Ad is reduced, the corresponding

weights w1, . . . , wd are among the weights λ1, . . . , λk of the filtration; more-
over, if Āj is the element of the quotient Wwj corresponding to Aj ∈ Fwj , then
Ā1, . . . , Ād is an adapted basis of g∗, with the same weights w1, . . . , wd (cf. [15],
Lemma 2.2 and Proposition 3.1). The homogeneous Lie algebra g∗, with the
fixed adapted basis Ā1, . . . , Ād, is said to be the contraction of the weighted Lie
algebra g.

Notice that, if g is a weighted homogeneous Lie algebra, then g∗ is canonically
isomorphic to g.

A weighted Lie group is a connected Lie group G whose Lie algebra g is
weighted. The contraction G∗ of a weighted Lie group G is the homogeneous
Lie group whose Lie algebra is g∗.

2.3. Control distance and volume growth

Let G be a weighted Lie group. Let A1, . . . , Ak be the fixed reduced basis
of its Lie algebra g, with weights w1, . . . , wk. For s ∈ {0,∞, ∗} and ε > 0, let
Cs(ε) be the set of absolutely continuous arcs γ : [0, 1]→ G such that

γ′(t) =

k∑
j=1

φj(t)Aj |γ(t) for a.e. t ∈ [0, 1],
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where

|φj(t)| <


εwj if s = 0,

ε if s =∞,

min{ε, εwj} if s = ∗,
for t ∈ [0, 1], j = 1, . . . , k; (2.7)

for x, y ∈ G, we define then

ds(x, y) = inf{ε > 0 : ∃γ ∈ Cs(ε) with γ(0) = x, γ(1) = y}.

It is not difficult to show that d0, d∞ and d∗ are left-invariant distances
on G, compatible with the topology of G. In fact, d∞ is the classical “un-
weighted” Carnot-Carathéodory distance associated with the Hörmander sys-
tem A1, . . . , Ak (cf. [57], §III.4), while d0 is a “weighted” Carnot-Carathéodory
distance (similar to the ones studied in [47]). Moreover, for x, y ∈ G, we have

d0(x, y) ≤ 1 ⇐⇒ d∞(x, y) ≤ 1 ⇐⇒ d∗(x, y) ≤ 1,

and the same holds with strict inequalities. Finally,

d∗(x, y) =

{
d0(x, y) for d∗(x, y) ≤ 1,

d∞(x, y) for d∗(x, y) ≥ 1.

We call d∗ the control distance2 on the weighted Lie group G.
The control distance d∗ induces a control modulus | · |∗ on G, given by

|g|∗ = d∗(e, g).

Moreover, if Br denotes the d∗-ball with radius r centered at the identity of G,
then

µ(Br) ∼ rQ∗ for r ≤ 1,

where Q∗ is the homogeneous dimension of the contraction g∗ (see [15], Propo-
sition 6.1). On the other hand, the growth rate of µ(Br) for r large coincides
with the (intrinsic) volume growth of the group G (cf. [57], §III.4); in particular,
if G has polynomial growth of degree QG, then

µ(Br) ∼ rQG for r ≥ 1.

2Notice that the definition of the control distance by ter Elst and Robinson in §6 of [15]
(see also [13]) is different from the one given here, and coincides with our distance d0. Their
definition has the advantage that, in the case of a homogeneous group with an adapted basis,
the modulus | · |0 induced by d0 is a homogeneous norm; on the other hand, this shows (by
taking, e.g., any non-stratified homogeneous Lie group, cf. Propositions 2.1 and 2.2) that in
general d0 is not a “connected distance” as in [57], §III.4. Nevertheless, in the whole papers
[2, 13, 15] it is understood that d0 is “connected”.

By a careful examination of their proofs, one sees that the specific properties of d0 are used
only for small distances, whereas in the large only “connectedness” is used. Therefore, our
modified definition of the control distance d fixes the problem (as it has been confirmed to us
by ter Elst in a private communication). As a side-effect, since d∗ ≥ d0 everywhere, the heat
kernel estimates obtained with this modification (see Theorem 2.3(e)) are stronger than the
ones claimed by ter Elst and Robinson (which are therefore true a posteriori).
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2.4. Weighted subcoercive forms and operators

Let G be a weighted Lie group, with reduced basis A1, . . . , Ad of its Lie
algebra g, and weights w1, . . . , wd. In this context, a form is an element of the
free (non-commutative associative unital) algebra over C on d indeterminates
X1, . . . , Xd; in other words, a form is a function C : J(d) → C null off a finite
subset of J(d), which can be thought of as the non-commutative polynomial∑

α∈J(d)

C(α)Xα.

The degree of the form C is the number

max{‖α‖ : α ∈ J(d), C(α) 6= 0}.

If C is a form of degree m, then its principal part is the form P : J(d) → C
which is given by the sum of the terms of C of degree m:

P (α) =

{
C(α) if ‖α‖ = m,

0 otherwise.

A form is said to be homogeneous if it equals its principal part. The adjoint of
a form C is the form C+ defined by

C+(α) = (−1)|α|C(α∗),

where α∗ = (αk, . . . , α1) if α = (α1, . . . , αk).
To each form C, we associate a differential operator dRG(C) ∈ D(G) by

setting

dRG(C) =
∑

α∈J(d)

C(α)Aα.

More generally, if π is a representation of G, we define

dπ(C) = dπ(dRG(C)) =
∑

α∈J(d)

C(α)dπ(A)α.

Notice that we have
dRG(C+) = dRG(C)+,

where, for D ∈ D(G), D+ denotes its formal adjoint (with respect to the right
Haar measure µ), i.e., the element of D(G) determined by

〈Df, g〉 = 〈f,D+g〉 for all f, g ∈ D(G),

where 〈f, g〉 =
∫
G
f g dµ.

If π is a representation of G on a Banach space V, we define seminorms and
norms on (subspaces of) V by

Nπ,s(x) = max
α∈J(d)
‖α‖=s

‖dπ(Xα)x‖V , ‖x‖π,s = max
α∈J(d)
‖α‖≤s

‖dπ(Xα)x‖V ,
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for s ∈ R, s ≥ 0; these quantities are certainly defined on the space V∞ of
smooth vectors of the representation. If π is the right regular representation of
G on Lp(G), we use the alternative notation Np;s, ‖ · ‖p;s for the (semi)norms,
and Lp;∞(G) for the space of smooth vectors.

A form C of degree m is said to be weighted subcoercive on G if m/wi ∈ 2N
for i = 1, . . . , d and if moreover the corresponding operator satisfies a local
G̊arding inequality : there exist µ > 0, ν ∈ R and an open neighborhood V of
the identity e ∈ G such that

<〈φ, dRG(C)φ〉 ≥ µ(N2;m/2(φ))2 − ν‖φ‖22

for all φ ∈ D(G) with suppφ ⊆ V . In this case, the operator dRG(C) is called
a weighted subcoercive operator.

Let G∗ be the contraction of G, with Lie algebra g∗. Since A1, . . . , Ad induces
a reduced basis Ā1, . . . , Ād on g∗ (with the same weights), we can associate to
a form C both a differential operator dRG(C) on G and a differential operator
dRG∗(C) on G∗: in some sense, dRG∗(C) is the “local counterpart” of the
operator dRG(C). The next theorem clarifies the relationship between the two
operators.

Theorem 2.3 (ter Elst & Robinson). Let C be a form of degree m, whose
principal part is P , such that m/wi ∈ 2N for i = 1, . . . , d. The following are
equivalent:

(i) C is a weighted subcoercive form on G;

(ii) dRG∗(P + P+) is a positive Rockland operator on G∗;

(iii) there are constants µ > 0, ν ∈ R such that, for every unitary representa-
tion π of G on a Hilbert space H,

<〈x, dπ(C)x〉 ≥ µ‖x‖2π,m/2 − ν‖x‖
2
H

for all x ∈ H∞;

(iv) there is a constant µ > 0 such that, for every unitary representation π of
G∗ on a Hilbert space H,

<〈x, dπ(P )x〉 ≥ µ(Nπ,m/2(x))2

for all x ∈ H∞.

Moreover, if these conditions are satisfied, for every representation π of G on a
Banach space V, we have:

(a) the closure of dπ(C) generates a continuous semigroup {St}t≥0 on V;

(b) for t > 0, St(V) ⊆ V∞, and moreover V∞ =
⋂∞
n=1D(dπ(C)

n
);

(c) if π is unitary, then dπ(C) = dπ(C+)∗;

11



(d) there exists a representation-independent kernel kt ∈ L1;∞ ∩ C∞0 (G) (for
t > 0) such that

dπ(Xα)Stx = π(Aαkt)x =

∫
G

(Aαkt)(g)π(g−1)x dg

for all α ∈ J(d), t > 0, x ∈ V;

(e) the kernel satisfies the following “Gaussian” estimates: for all α ∈ J(d)
there exist b, c, ω > 0 such that

|Aαkt(g)| ≤ ct−
Q∗+‖α‖

m eωte
−b

(
|g|m∗
t

)1/(m−1)

for all t > 0 and g ∈ G, where Q∗ is the homogeneous dimension of g∗
and | · |∗ is the control modulus;

(f) for all ρ ≥ 0, the map t 7→ kt is continuous ]0,+∞[ → L1;∞(G, eρ|x|∗ dx)
and, for all α ∈ J(d), there exist c, ω > 0 such that

‖Aαkt‖L1(G,eρ|x|∗ dx) ≤ ct−
‖α‖
m eωt;

(g) the function

k(t, x) =

{
0 for t ≤ 0,

kt(x) for t > 0,

on R×G satisfies
(
∂
∂t + dRG(C)

)
k = δ in the sense of distributions, where

δ is the Dirac delta at the identity of R×G.

Proof. This theorem is a summary of results contained in [15], except for (f),
since in Theorem 7.2 of [15] it is only stated that the map t 7→ kt is continuous
]0,+∞[ → L1(G, eρ|x|∗ dx). However, the weighted L1 estimates for Aαkt in
(f) are obtained by integration of the pointwise estimates (e), since the volume
growth of a connected Lie group is at most exponential (cf. [27]). Moreover, by
the semigroup property, we have

Aα(kt+s) = kt ∗ (Aαks) (2.8)

and, since Aαks ∈ L1(G, eρ|x|∗ dx), the required continuity follows from the
properties of convolution.

Corollary 2.4. With the notation of the previous theorem, if C is a weighted
subcoercive form on G, then the function k(t, x) = kt(x) is smooth off the iden-
tity of R×G, and the operator dRG(C) is hypoelliptic.

Proof. From Theorem 2.3(g) we deduce that, for every r ∈ N \ {0}, the distri-
bution

(∂rt − (−dRG(C))r)k (2.9)

12



is supported in the origin of R × G. In particular, if φ ∈ D(]0,+∞[) and
ψ ∈ D(G), by applying (2.9) to φ⊗ ψ we get

(−1)r
∫ ∞

0

〈kt, ψ〉φ(r)(t) dt =

∫ ∞
0

〈(−dRG(C))rkt, ψ〉φ(t) dt.

Since both t 7→ kt and t 7→ (−dRG(C))rkt are continuous ]0,+∞[ → L1(G) by
Theorem 2.3(f), this identity holds also for all ψ ∈ C0(G). In other words, for
all ψ ∈ C0(G), the r-th distributional derivative of the function t 7→ 〈kt, ψ〉 on
]0,+∞[ is the map

t 7→ 〈(−dRG(C))rkt, ψ〉;
since all these derivatives are continuous, the function t 7→ 〈kt, ψ〉 is smooth on
]0,+∞[, so that also the map t 7→ kt is smooth ]0,+∞[→ L1(G). But then from
(2.8) it follows easily that t 7→ kt is smooth ]0,+∞[ → L1;∞(G). By Sobolev’s
embedding, we then get that t 7→ kt is smooth ]0,+∞[→ E(G); this gives that
k is smooth on ]0,+∞[×G, and the Gaussian estimates of Theorem 2.3(e) show
that k can be extended smoothly by zero to the whole R×G \ {(0, e)}.

Notice that k∗t is the kernel of dRG(C+), which is also a weighted subcoercive
operator. If we put

k̃(t, x) =

{
0 if t ≥ 0,

k∗−t if t ≤ 0,

then k̃ is smooth on R×G\{(0, e)} and satisfies
(
− ∂
∂t + dRG(C+)

)
k̃ = δ in the

sense of distributions. By arguing analogously as in the proof of Theorem 52.1 of
[54], we obtain that ∂t+dRG(C) is hypoelliptic on R×G, and the hypoellipticity
of dRG(C) on G follows immediately.

Corollary 2.5. With the notation of Theorem 2.3, if C is a weighted subcoercive
form on G, then (kt)t>0 is an approximate identity on G for t→ 0+ (cf. [25],
§1.2.4), i.e.,

• kt ∈ L1(G) and lim supt→0+ ‖kt‖1 <∞;

• limt→0+

∫
G\U |kt(x)| dx = 0 for all neighborhoods U of the identity of G;

• limt→0+

∫
G
kt(x) dx = 1.

More generally, for every D ∈ D(G), β ≥ 0 and every neighborhood U of the
identity of G,

lim
t→0+

t−β
∫
G\U
|Dkt(x)| dx = 0. (2.10)

Proof. If R > 0 is such that

{x ∈ G : |x|∗ < R} ⊆ U,

then, by Theorem 2.3(e), for t ≤ 1 we have

t−β
∫
G\U
|Dkt(x)| dx ≤ ct−γ

∫ +∞

R

e−b(r
m/t)1/(m−1)

eσr dr

13



for some c, b, σ, γ > 0. On the other hand, for t ≤ 1 and r ≥ R,

t−γe−b(r
m/t)1/(m−1)

eσr ≤ e−b(r
m
m−1−R

m
m−1 )+σre−γ log t−bR

m
m−1 t

− 1
m−1

,

where the first factor on the right-hand side is integrable on ]R,+∞[ and does
not depend on t, whereas the second factor is infinitesimal for t→ 0+ and does
not depend on r; the limit (2.10) then follows by dominated convergence.

In particular, we have

lim
t→0+

∫
G\U
|kt(x)| dx = 0,

and moreover, by Theorem 2.3(f), the norms ‖kt‖1 are uniformly bounded for
t small. Finally, if π is the trivial representation of G on C and if c = dπ(C)1,
then by Theorem 2.3(d) we have∫

G

ht(x) dx = π(ht)1 = e−tc,

which tends to 1 as t→ 0+.

In the following, we will consider connected Lie groups G with no previously
fixed weighted structure; then, an operator L ∈ D(G) will be said weighted
subcoercive on G if L is weighted subcoercive with respect to some weighted
structure on g. In this sense, we can say that every positive Rockland operator
on a homogeneous Lie group is weighted subcoercive (see [14], Lemmata 2.2 and
2.4, and Theorem 2.5; see also [15], Example 4.4). Moreover, it is easy to check
that, for every choice of a system of linearly independent generators A1, . . . , Ad
of a Lie algebra g, the assignment of weights all equal to 1 yields a stratified
contraction g∗; in particular, the sublaplacian L = −(A2

1 + · · ·+A2
d) is weighted

subcoercive. Further, if A1, . . . , Ad linearly generate g, then the contraction g∗
is Euclidean (abelian and isotropic), and it is not difficult to see that positive
left-invariant elliptic operators on G are weighted subcoercive with respect to
this structure.

3. Algebras of differential operators

Here the existence and uniqueness of a joint spectral resolution for a commut-
ing system L1, . . . , Ln of formally self-adjoint left-invariant differential operators
on a connected Lie group G is proved, under the hypothesis that the algebra
generated by L1, . . . , Ln contains a weighted subcoercive operator. An analogue
of the (inverse) spherical Fourier transform of Gelfand pairs is also defined, and
its main properties are derived.

In this and the following sections, results from the theory of spectral inte-
gration (as presented, e.g., in [4, 51, 17]) will be used without further reference.
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3.1. Joint spectral resolution

In the following, G will be a connected Lie group.

Lemma 3.1. Let D,L ∈ D(G) and suppose that L is weighted subcoercive and
formally self-adjoint. Then, for some r̄ ∈ N, we have that, for all r ≥ r̄, Lr +D
is weighted subcoercive.

Proof. Fix a weighted structure on g with respect to which the operator L is
weighted subcoercive. Then there exists a weighted subcoercive form C such
that dRG(C) = L, and also a form B such that dRG(B) = D. In fact, since
L+ = L, we can suppose that C+ = C.

Let then P be the principal part of C, so that, by Theorem 2.3, dRG∗(P ) is
Rockland. By definition, this implies that, for every r ∈ N\{0}, P r is Rockland
too. Notice now that, if r is sufficiently large so that P r has degree greater
than that of B, then the principal part of Cr + B is P r and this implies, by
Theorem 2.3 again, that Lr +D = dRG(Cr +B) is weighted subcoercive.

For every D ∈ D(G) and every unitary representation π of G on a Hilbert
space H, the operator dπ(D) will be considered as defined on the space H∞ of
smooth vectors of π, and notions such as closure or essential self-adjointness are
understood to be referred to this domain3.

Proposition 3.2. Let A be a commutative unital subalgebra of D(G) closed by
formal adjunction and containing a weighted subcoercive operator. Then, for
every unitary representation π of G, we have

dπ(D) = dπ(D+)∗ for all D ∈ A; (3.1)

moreover, the operators dπ(D) for D ∈ A are normal and commute strongly
pairwise.

Proof. Let L ∈ A be weighted subcoercive. Since A is closed by formal ad-
junction, by replacing L with (L + L+)/2, we can suppose that L is formally
self-adjoint (see Theorem 2.3).

Let D ∈ A. By Lemma 2.3 of [48], in order to prove (3.1) it is sufficient to
show that dπ(D+D) is essentially self-adjoint. However, by Lemma 3.1, it is
possible to find r ∈ N sufficiently large so that both A = L2r and C = L2r+D+D
are weighted subcoercive, which implies by Theorem 2.3(c) that dπ(A) and
dπ(C) are essentially self-adjoint. The conclusion that dπ(D+D) = dπ(C) −
dπ(A) is essentially self-adjoint then follows as in the proof of Corollary 2.4 of
[48].

3For some particular representations π one may be interested in considering other domains
for the operators dπ(D): for instance, for the regular representation, one could consider the
space D(G) of compactly supported smooth functions. Theorem 1.1 of [48] shows that for
this and other “reasonable” choices of the domain, the closure of the dπ(D) remains unvaried,
thus results about essential self-adjointness do not change.
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From (3.1) it follows that, for every formally self-adjoint D ∈ A, dπ(D) is
essentially self-adjoint. Let now

Q = {D2 : D = D+ ∈ A}.

For all A,B ∈ Q, we have that A,B, (1 + A)(1 + B) are formally self-adjoint
elements of A, so that dπ(A), dπ(B), dπ((1 + A)(1 + B)) are essentially self-
adjoint, and moreover dπ(A + B + AB) is positive (notice that AB ∈ Q); this
implies, as in the proof of Corollary 2.4 of [48], that dπ(A) and dπ(B) commute
strongly, i.e., they have commuting spectral resolutions.

In order to conclude, it will be sufficient to show that every operator of the
form dπ(D) for some D ∈ A is the joint function of some of the operators dπ(A)
for A ∈ Q. In fact, let D = D1 + iD2, where

D1 = (D +D+)/2, D2 = (D −D+)/2i

are both formally self-adjoint elements of A. Then

D2
1, (D1 + 1/2)2, D2

2, (D2 + 1/2)2

are all elements of Q, and we can consider the joint spectral resolution E on
R4 of the corresponding operators in the representation π. We then have, for
j = 1, 2,

dπ(Dj) = dπ((Dj + 1/2)2 −D2
j − 1/4) ⊆

∫
R4

fj dE,

where fj(λ1,1, λ1,2, λ2,1, λ2,2) = λj,2 − λj,1 − 1/4, so that also

dπ(D) ⊆
∫
R4

(f1 + if2) dE, dπ(D+) ⊆
∫
R4

(f1 − if2) dE;

by passing to the adjoints in the second inclusion and using (3.1), we then get

dπ(D) =

∫
R4

(f1 + if2) dE,

and we are done.

A system L1, . . . , Ln ∈ D(G) will be called a weighted subcoercive system if
L1, . . . , Ln are formally self-adjoint and pairwise commuting, and if moreover
the unital subalgebra of D(G) generated by L1, . . . , Ln contains a weighted
subcoercive operator. From the previous proposition and the spectral theorem
we then have immediately

Corollary 3.3. Let L1, . . . , Ln ∈ D(G) be a weighted subcoercive system. For
every unitary representation π of G, the operators dπ(L1), . . . , dπ(Ln) admit a
joint spectral resolution Eπ on Rn and, for every polynomial p ∈ C[X1, . . . , Xn],

dπ(p(L1, . . . , Ln)) =

∫
Rn
p dEπ. (3.2)

In the following, the sign of closure for operators of the form (3.2) for some
weighed subcoercive system L1, . . . , Ln will be omitted.
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3.2. Kernel transform and Plancherel measure

Let G be a connected Lie group. We denote by Cv2(G) the set of the
distributions k ∈ D′(G) such that the operator f 7→ f ∗ k is bounded on L2(G).
By the Schwartz kernel theorem, there is a one-to-one correspondence between
Cv2(G) and the set of bounded linear operators T on L2(G) which commute
with left translations:

TLx = LxT for all x ∈ G;

thus we endow Cv2(G) with the C∗-algebra structure of the latter. We then have
the continuous embedding L1(G) ⊆ Cv2(G), which is not dense [46]; the closure
of L1(G) in Cv2(G) (or rather the corresponding set of convolution operators)
is known as the reduced C∗-algebra of G.

Let L1, . . . , Ln be a weighted subcoercive system on G. By applying Corol-
lary 3.3 to the (right) regular representation on L2(G), we obtain a joint spectral
resolution E of L1, . . . , Ln. In particular, for every f ∈ L∞(Rn, E), we can con-
sider the operator

f(L) = f(L1, . . . , Ln) = E[f ] =

∫
Rn
f dE,

which is a bounded left-invariant linear operator on L2(G), so that it admits a

kernel f̆ ∈ Cv2(G):

f(L)u = u ∗ f̆ for all u ∈ D(G).

In place of f̆ , we use also the notation KLf . The correspondence

KL : f 7→ KLf

will be called the kernel transform associated with the weighted subcoercive
system L1, . . . , Ln. The previous definitions and the properties of the spectral
integral then yield immediately

Lemma 3.4. (a) KL is an isometric embedding of L∞(Rn, E) into Cv2(G);
in particular, for every f ∈ L∞(Rn, E),

‖f̆‖Cv2 = ‖f‖L∞(Rn,E), f̆ = (f̆)∗.

(b) If f, g ∈ L∞(Rn, E) and ğ ∈ L2(G), then

(fg)̆ = f(L)ğ,

and in particular, if ğ ∈ D(G), then

(fg)̆ = ğ ∗ f̆ .
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(c) If f, g ∈ L∞(Rn, E), and if g(λ) = λjf(λ) for some j ∈ {1, . . . , n}, then

ğ = Lj f̆

in the sense of distributions.

The resemblance of KL with an (inverse) Fourier transform goes beyond
Lemma 3.4, and more refined properties of KL follow from the fact that the al-
gebra generated by L1, . . . , Ln contains a weighted subcoercive operator. In fact,
we can find a polynomial p∗ with real coefficients such that p∗(L) is weighted
subcoercive; by replacing p∗ with p2r

∗ for some large r ∈ N, we may suppose
that p∗ ≥ 0 on Rn and that moreover, if we set

p0(λ) = p∗(λ) +
n∑
j=1

λ2
j + 1,

pk(λ) = p0(λ) + λk for k = 1, . . . , n,

then p0(L), p1(L), . . . , pn(L) are all weighted subcoercive (see Lemma 3.1). No-
tice that the polynomials p0, p1, . . . , pn are all strictly positive on Rn and

lim
λ→∞

pk(λ) = +∞ for k = 0, . . . , n;

moreover, p0(L), . . . , pn(L) generate the same subalgebra of D(G) as L1, . . . , Ln
do.

Lemma 3.5. The subalgebra of C0(Rn) generated by the functions

e−p0 , e−p1 , . . . , e−pn .

is a dense ∗-subalgebra of C0(Rn).

Proof. Since the functions e−p0 , e−p1 , . . . , e−pn are real valued, the algebra gen-
erated by them is a ∗-subalgebra of C0(Rn).

Notice that e−p0 is nowhere null. Moreover, if λ, λ′ ∈ Rn and λ 6= λ′, then
λk 6= λ′k for some k ∈ {1, . . . , n}, hence

either e−p0(λ) 6= e−p0(λ′) or e−pk(λ) 6= e−pk(λ′).

The conclusion then follows immediately by the Stone-Weierstrass theorem.

Let now JL be the subalgebra of C0(Rn) generated by the functions of the
form e−q, where q is a non-negative polynomial on Rn such that q(L) is a
weighted subcoercive operator on G and limλ→∞ q(λ) = +∞. Set moreover

C0(L) = C0(L1, . . . , Ln) = {f̆ : f ∈ C0(Rn)}.

Finally, let Σ be the joint spectrum of L1, . . . , Ln, i.e., the support of their joint
spectral resolution E.
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Proposition 3.6. C0(L) is a sub-C∗-algebra of Cv2(G), which is isometrically
isomorphic to C0(Σ) via the kernel transform. Moreover

KL(JL) = {f̆ : f ∈ JL}

is a dense ∗-subalgebra of C0(L).

Proof. For a function f ∈ C0(Rn), we have

‖f‖L∞(Rn,E) = sup
Σ
|f | = ‖f |Σ‖C0(Σ).

Since every g ∈ C0(Σ) extends to an f ∈ C0(Rn) by the Tietze-Urysohn
extension theorem, the first part of the conclusion follows immediately from
Lemma 3.4(a). The second part follows instead from Lemma 3.5.

The results on weighted subcoercive operators and their heat kernels imply
that the elements of KL(JL) are particularly well-behaved. The next propo-
sition, which shows a sort of commutativity between joint functional calculus
of L1, . . . , Ln and unitary representations of G, is a multivariate analogue of
Proposition 2.1 of [39].

Proposition 3.7. For every f ∈ JL, we have f̆ ∈ L1;∞(G) ∩ C∞0 (G) and
moreover, for every unitary representation π of G,

π(f̆) = f(dπ(L1), . . . , dπ(Ln)).

If G is amenable, the last identity holds for every f ∈ C0(Rn) with f̆ ∈ L1(G).

Proof. Suppose first that f is one of the generators e−q of JL. Then, by Corol-
lary 3.3 and the properties of the spectral integral,

e−q(dπ(L1), . . . , dπ(Ln)) = e−dπ(q(L)),

and, since q(L) is weighted subcoercive, we obtain from Theorem 2.3(d) that
KL(e−q) ∈ L1;∞ ∩ C∞0 (G) and e−q(dπ(L1, . . . , Ln)) = π(KL(e−q)). The result
is easily extended to every f ∈ JL by Lemma 3.4, the properties of convolution
and those of the spectral integral.

Suppose now that G is amenable, f ∈ C0(Rn) and f̆ ∈ L1(G). By Proposi-
tion 3.6, we can find a sequence fj ∈ JL which converges uniformly to f on Rn.
This implies in particular, by the properties of the spectral integral, that

fj(dπ(L1), . . . , dπ(Ln))→ f(dπ(L1), . . . , dπ(Ln))

in the operator norm, but also that f̆j → f̆ in Cv2(G). Since G is amenable,
the representation π is weakly contained in the regular representation (see [26],

§3.5), so that also π(f̆j)→ π(f̆) in the operator norm. But then the conclusion
follows immediately from the first part of the proof.
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We are now going to exploit the good properties of the kernels in KL(JL)
to obtain a Plancherel formula for the kernel transform KL. It should be no-
ticed that, in the context of commutative Banach ∗-algebras, a general abstract
argument yielding this kind of results is available (see §26J of [38], and also
Theorem 1.6.1 of [22]). However, we believe that additional insight is provided
by the explicit construction presented below, which follows essentially [11], with
some modifications due to our multivariate and possibly non-unimodular set-
ting.

Proposition 3.8. If f ∈ L∞(Rn, E) is compactly supported, then

f̆ ∈ L2;∞ ∩ C∞0 (G).

Proof. Let ξt = e−tp∗ for t > 0, so that ξ̆t ∈ L1;∞(G) ∩ C∞0 (G).
Since f is compactly supported, f = g ξ1 with g = f/ξ1 ∈ L∞(Rn, E),

so that f̆ = g(L)ξ̆1 ∈ L2(G) by Lemma 3.4. Analogously, being g compactly

supported, also ğ ∈ L2(G), but then f̆ = ξ1(L)ğ = ğ ∗ ξ̆1 ∈ L2;∞ ∩ C∞0 (G), by
Lemma 3.4 and properties of convolution.

Thus we have plenty of kernels f̆ which are in L2(G); as we are going to see,
the L2-norm can be interpreted as an operator norm of a convolution operator.
Let ‖ · ‖2̂ denote the L2 norm with respect to the left Haar measure ∆µ (where
∆ is the modular function), and correspondingly ‖ · ‖2̂→∞ the operator norm
from L2(G,∆µ) to L∞(G); then it is easily shown that

Lemma 3.9. For all f ∈ L∞(E), we have f̆ ∈ L2(G) if and only if

‖f(L)‖2̂→∞ <∞,

and in this case ‖f̆‖2 = ‖f(L)‖2̂→∞.

We are now able to obtain a Plancherel formula for the kernel transform.

Theorem 3.10. The identity

σ(A) = ‖E(A)‖2
2̂→∞ for all Borel A ⊆ Rn

defines a regular Borel measure on Rn with support Σ, whose negligible sets
coincide with those of E and such that, for all f ∈ L∞(E),∫

Rn
|f |2 dσ = ‖f(L)‖2

2̂→∞ = ‖f̆‖22.

Proof. Clearly σ(∅) = 0. Moreover, σ is monotone: if A ⊆ A′ are Borel subsets
of Rn and σ(A′) <∞, then, by Lemma 3.9, χ̆A′ ∈ L2(G), so that, by Lemma 3.4,
also

χ̆A = E(A)χ̆A′ ∈ L2(G) and ‖χ̆A‖2 ≤ ‖χ̆A′‖2,

i.e., σ(A) ≤ σ(A′).

20



We now prove that σ is finitely additive. Let A,B ⊆ Rn be disjoint Borel
sets. By monotonicity, we may suppose that σ(A), σ(B) < ∞. Then, by
Lemma 3.9, both χ̆A, χ̆B ∈ L2(G), but

E(A ∪B) = E(A) + E(B),

so that clearly χ̆A∪B = χ̆A + χ̆B ∈ L2(G), and moreover, by Lemma 3.9,

σ(A ∪B) = ‖χ̆A∪B‖22 = ‖χ̆A‖22 + ‖χ̆B‖22 = σ(A) + σ(B),

since χ̆A = E(A)χ̆A ⊥ E(B)χ̆B = χ̆B in L2(G) by Lemma 3.4.
Finite additivity implies that, if Aj (j ∈ N) are pairwise disjoint Borel

subsets of Rn and A =
⋃
j Aj , then∑

j

σ(Aj) ≤ σ(A).

In particular, if the sum on the left-hand side diverges, then we have an equality.
Suppose instead that the left-hand side sum converges. Then, as before, the χ̆Aj
are pairwise orthogonal elements of L2(G), and their sum converges in L2(G)
to some k ∈ L2(G) such that ‖k‖22 =

∑
j σ(Aj). But then, if u ∈ D(G), we have

that, on one hand, by Lemma 3.9,∑
j

u ∗ χ̆Aj = u ∗ k uniformly,

and, on the other hand,∑
j

u ∗ χ̆Aj =
∑
j

E(Aj)u = E(A)u in L2(G),

which gives, by uniqueness of limits and arbitarity of u ∈ D(G),

χ̆A = k ∈ L2(G) and σ(A) = ‖k‖22 =
∑
j

σ(Aj).

It is immediate from the definition that a Borel subset of Rn is σ-negligible
if and only if it is E-negligible; in particular suppσ = suppE = Σ.

By Proposition 3.8, σ(A) = ‖χA(L)‖2
2̂→∞ = ‖χ̆A‖22 is finite if A ⊆ Rn is

relatively compact. We can then conclude, by Theorem 2.18 of [52], that σ is
regular.

Notice that, for all Borel A ⊆ Rn with σ(A) < ∞, σ coincides with the
measure 〈E(·)χ̆A, χ̆A〉 on the subsets of A: in fact, for all Borel B ⊆ Rn,

〈E(B)χ̆A, χ̆A〉 = ‖χ̆A∩B‖22 = σ(A ∩B)

by Lemmata 3.9 and 3.4. In particular, for all f ∈ L∞(E) with supp f ⊆ A,∫
Rn
|f |2 dσ =

∫
Rn
|f(λ)|2 〈E(dλ)χ̆A, χ̆A〉 = ‖f(L)χ̆A‖22 = ‖f̆‖22 = ‖f(L)‖2

2̂→∞
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by the properties of the spectral integral and Lemmata 3.9 and 3.4.
Take now a countable partition of Rn made of relatively compact Borel

subsets Aj (j ∈ N). Then, for every f ∈ L∞(Rn, E), analogously as before we
obtain

‖f(L)‖2
2̂→∞ =

∑
j

‖E(Aj)f(L)‖2
2̂→∞ =

∑
j

‖KL(fχAj )‖22,

and putting all together we get the conclusion.

The measure σ of the previous proposition is called the Plancherel measure
associated with the system L1, . . . , Ln. Notice that

L∞(Rn, E) = L∞(σ).

We now show that the estimates (for small times) on the heat kernel of
weighted subcoercive operators give information on the behaviour at infinity of
the Plancherel measure. In the following | · |2 shall denote the Euclidean norm.

Proposition 3.11. The Plancherel measure σ on Rn associated with a weighted
subcoercive system L1, . . . , Ln has (at most) polynomial growth at infinity.

Proof. If ξt(λ) = e−tp∗(λ), then, for every r > 0,

σ({p∗ ≤ r}) = ‖χ{p∗≤r}‖
2
L2(σ) ≤ e

2‖ξ1/r‖2L2(σ) = e2‖ξ̆1/r‖2L2(G).

Since ξ̆t is the heat kernel of the operator p∗(L1, . . . , Ln), Theorem 2.3(e,f) gives,
for large r,

σ({p∗ ≤ r}) ≤ CrQ∗/m,

where m is the degree of p∗(L1, . . . , Ln) with respect to a suitable weighted
structure on g, and Q∗ is the homogeneous dimension of the corresponding
contraction g∗. In particular, if d is the degree of the polynomial p∗, we get, for
large a > 0,

σ({λ : |λ|2 ≤ a}) ≤ σ({p∗ ≤ C(1 + a)d}) ≤ C(1 + a)Q∗d/m,

which is the conclusion.

The proof of Proposition 3.11 shows that the degree of growth at infinity of
the Plancherel measure σ is somehow related to the “local dimension” Q∗ of the
group with respect to the control distance associated with the chosen weighted
subcoercive operator (see §2.3). In §5.1 we will obtain more precise information
on the behaviour of σ under the hypothesis of homogeneity.

By Theorem 3.10, KL|L2∩L∞(σ) extends to an isometry from L2(σ) onto a
closed subspace of L2(G). We give now an alternative characterization of this
subspace. Namely, let Γ2

L be the closure of KL(JL) in L2(G).

Proposition 3.12. KL|L2∩L∞(σ) extends to an isometric isomorphism

L2(σ)→ Γ2
L.
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In fact, this result follows immediately from Theorem 3.10 and the following

Lemma 3.13. JL is dense in Lq(σ) for 1 ≤ q <∞.

Proof. Since σ has polynomial growth at infinity (see Proposition 3.11), whereas
the elements of JL decay exponentially, it is easily seen that JL is contained
(modulo restriction to Σ) in L1 ∩ L∞(σ). Since σ is a positive regular Borel
measure on Rn, in order to prove that the closure of JL in Lq(σ) is the whole
Lq(σ), it is sufficient to show that Cc(Rn) is contained in this closure (see [52],
Theorem 3.14).

Let then m ∈ Cc(Rn). By Lemma 3.5, we can find a sequence mk ∈ JL
converging uniformly to m, so that supk ‖mk‖∞ = C < ∞. Thus, for every
t > 0, mke

−tp0 converges uniformly to me−tp0 , dominated by Ce−tp0 ∈ Lq(σ),
and consequently mke

−tp0 → me−tp0 also in Lq(σ); we then have that me−tp0

is in the closure of JL in Lq(σ) for all t > 0, and by monotone convergence also
m is in this closure.

We now prove a sort of Riemann-Lebesgue lemma for K−1
L .

Proposition 3.14. For every bounded Borel f : Rn → C with f̆ ∈ L1(G), we
have

‖f‖L∞(σ) ≤ ‖f̆‖1,

and moreover
lim

r→+∞
‖f χ{λ : |λ|2≥r}‖L∞(σ) = 0.

Proof. The first inequality follows immediately from Lemma 3.4 and Young’s
inequality.

Let ξt = e−tp0 . Then, by Corollary 2.5, ξ̆t is an approximate identity for
t→ 0+. In particular, if f̆ ∈ L1(G), then

KL(fξt) = f̆ ∗ ξ̆t → f̆ in L1(G)

for t→ 0+, which implies, by the first inequality, that

lim
t→0+

‖f(1− ξt)‖L∞(σ) = 0.

Therefore, for every ε > 0, there exists t > 0 such that ‖f(1 − ξt)‖L∞(σ) ≤ ε;
since p0(λ)→ +∞ for λ→∞, we may find r > 0 such that

‖ξt χ{λ : |λ|2≥r}‖∞ ≤ 1/2,

but then necessarily ‖f χ{λ : |λ|2≥r}‖∞ ≤ 2ε.

An analogous (and neater) result for KL is obtained under the additional
hypothesis of unimodularity.

Proposition 3.15. If G is unimodular and f ∈ L1 ∩ L∞(σ), then f̆ ∈ C0(G)
and

‖f̆‖∞ ≤ ‖f‖L1(σ).
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Proof. Since f ∈ L1 ∩ L∞(σ), for some Borel g1, g2 : Rn → C we have

f = g1g2 and |g1|2 = |g2|2 = |f |;

in particular, g1, g2 ∈ L2 ∩ L∞(σ). Therefore ğ1, ğ2 ∈ L2(G) by Theorem 3.10
and

f̆ = ğ1 ∗ ğ2

by Lemma 3.4, which gives the conclusion by Young’s inequality (see [33], The-
orem 20.16).

3.3. Change of generators

Let L1, . . . , Ln be a weighted subcoercive system on a connected Lie group
G. Let σ be the associated Plancherel measure on Rn, and Σ = suppσ. For
given polynomials P1, . . . , Pn′ : Rn → R, consider the operators

L′1 = P1(L1, . . . , Ln), . . . , L′n′ = Pk(L1, . . . , Ln),

and suppose that they still form a weighted subcoercive system. Let σ′ be the
Plancherel measure on Rn′ associated with the system L′1, . . . , L

′
n′ , and Σ′ its

support. We may ask if there is a relationship between the transforms KL and
KL′ , and between the Plancherel measures σ and σ′.

Let P : Rn → Rn′ denote the polynomial map whose j-th component is the
polynomial Pj .

Lemma 3.16. The map P |Σ : Σ→ Rn′ is a proper continuous map.

Proof. Since L′1, . . . , L
′
n′ is a weighted subcoercive system, we can find a non-

negative polynomial Q : Rn′ → R such that Q(L′) = Q(P (L)) is a weighted
subcoercive operator. By Theorem 2.3(iii), for sufficiently large C > 0 and
k ∈ N, we have that

max
j
‖Ljφ‖2 ≤ C‖(1 +Q(P (L))k)φ‖2 for φ ∈ D(G),

which means, by the spectral theorem, that

max
j
|λj | ≤ C(1 +Q(P (λ))k) for λ ∈ Σ,

since Σ is the joint spectrum of L1, . . . , Ln.
Now, if K ⊆ Rn′ is compact, then by continuity there exists M > 0 such

that Q|K ≤M , but then

max
j
|λj | ≤ C(1 +Mk) for λ ∈ Σ ∩ P−1(K),

thus P−1(K)∩Σ is bounded in Rn, and also closed (by continuity of P ), therefore
P−1(K) is compact.
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Proposition 3.17. For every bounded Borel m : Rn′ → C, we have:

m(L′) = (m ◦ P )(L), KL′m = KL(m ◦ P ).

Moreover
σ′ = P (σ), Σ′ = P (Σ).

Proof. The first part of the conclusion follows immediately from the spectral
theorem and uniqueness of the convolution kernel. From this, the identity σ′ =
P (σ) is easily inferred by Theorem 3.10. In particular,

σ(Rn \ P−1(Σ′)) = σ′(Rn
′
\ Σ′) = 0,

i.e., by continuity of P , P (Σ) ⊆ Σ′.
In order to prove the opposite inclusion, we use the fact that P |Σ is proper

(see Lemma 3.16). Take λ′ ∈ Σ′, and let Bk be a decreasing sequence of compact
neighborhoods of λ′ in Rn′ such that

⋂
k Bk = {λ′}. By definition of support,

we then have σ(P−1(Bk)) = σ′(Bk) 6= 0, therefore P−1(Bk) ∩ Σ 6= ∅ for all k.
Since P |Σ is proper, we have a decreasing sequence P−1(Bk) ∩Σ of non-empty
compacta of Rn, which therefore has a non-empty intersection. If λ belongs to
this intersection, then clearly λ ∈ Σ and moreover P (λ) ∈ Bk for all k, that it,
P (λ) = λ′.

A particularly interesting case is when L′1, . . . , L
′
n′ generate the same subal-

gebra of D(G) as L1, . . . , Ln. In this case, there exists also a polynomial map
Q = (Q1, . . . , Qn) : Rn′ → Rn such that

L1 = Q1(L′), . . . , Ln = Qn(L′).

Notice that in general P and Q are not the inverse one of the other: from the
spectral theorem, we only deduce that (Q ◦ P )|Σ = idΣ, (P ◦ Q)|Σ′ = idΣ′ (in
fact, these identities extend to the Zariski-closures of Σ and Σ′). In particular,

P |Σ : Σ→ Σ′, Q|Σ′ : Σ′ → Σ

are homeomorphisms.
Another way of producing new weighted subcoercive systems from a given

one is via the action of automorphisms of G. Namely, if k ∈ Aut(G), then its
derivative k′ is an automorphism of g, therefore it extends to a unique filtered
∗-algebra automorphism of D(G) ∼= U(g) (which shall be still denoted by k′),
and clearly

k′(L1), . . . , k′(Ln) (3.3)

is a weighted subcoercive system on G. Notice that, for every k ∈ Aut(G), the
push-forward via k of the right Haar measure µ on G is a multiple of µ, and in
fact there is a Lie group homomorphism c : Aut(G)→ R+ such that

k(µ) = c(k)µ.
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In particular, if we set
Tkf = f ◦ k−1

for k ∈ Aut(G), then the properties of the spectral integral and those of convo-
lution give immediately

Proposition 3.18. For k ∈ Aut(G), Tk is a multiple of an isometry of L2(G);
more precisely

‖Tkf‖22 = c(k)−1‖f‖22.

Moreover, for all D ∈ D(G),

k′(D) = TkDT
−1
k .

In particular, for every bounded Borel m : Rn → C,

m(k′(L1), . . . , k′(Ln)) = Tkm(L1, . . . , Ln)T−1
k ,

and consequently
Kk′(L)m = c(k)TkKLm.

Let O be the unital subalgebra of D(G) generated by L1, . . . , Ln. For any
automorphism k ∈ Aut(G), we say that O is k-invariant if k(O) ⊆ O, or equiv-
alently, if k(O) = O (the equivalence is due to the fact that k′ is an injective
linear map preserving the filtration of D(G), which is made of finitely dimen-
sional subspaces).

Let Aut(G;O) denote the (closed) subgroup of Aut(G) made of the auto-
morphisms k such that O is k-invariant. If k ∈ Aut(G;O), then (3.3) must
be a system of generators of O; therefore, we can choose a polynomial map
Pk = (Pk,1, . . . , Pk,n) : Rn → Rn such that k′(Lj) = Pk,j(L). Hence, by putting
together Propositions 3.17 and 3.18, we get

Corollary 3.19. If k ∈ Aut(G;O), then, for every bounded Borel m : Rn → C,

(m ◦ Pk)(L1, . . . , Ln) = Tkm(L1, . . . , Ln)T−1
k

and
KL(m ◦ Pk) = c(k)TkKLm.

Moreover,
Pk(σ) = c(k)σ, Pk(Σ) = Σ.

In particular, the restrictions Pk|Σ (which are univocally determined by k)
define an action of the group Aut(G;O) on the spectrum Σ by homeomorphisms;
more precisely

Proposition 3.20. The map

Aut(G;O)× Σ 3 (k, λ) 7→ Pk−1(λ) ∈ Σ (3.4)

is continuous, and defines a continuous (left) action of Aut(G;O) on Σ.
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Proof. Recall that Σ may be identified, as a topological space, with the Gelfand
spectrum of the sub-C∗-algebra C0(L) of Cv2(G), where λ ∈ Σ corresponds to
the multiplicative linear functional ψλ defined by ψλ(m̆) = m(λ). By Corol-
lary 3.19 we then deduce

ψPk(λ) = c(k)ψλ ◦ Tk,

which clarifies that (3.4) defines a left action on Σ. Moreover, since C0(L) ∩
L1(G) is dense in C0(L) (see Proposition 3.6), and since c(k)Tk is an isometry of
Cv2(G), we obtain easily that k 7→ c(k)Tku is continuous for every u ∈ Cv2(G).
Therefore, since the topology of the Gelfand spectrum is induced by the weak-∗
topology, we immediately obtain that (3.4) is separately continuous, and also
jointly continuous since the ψλ have uniformly bounded norms.

In conclusion, the richer the group Aut(G;O) is, the more we may deduce
about the structure of the spectrum Σ and the Plancherel measure σ. An
example of this fact is illustrated in §5.1.

4. Spectrum and eigenfunctions

Let L1, . . . , Ln be a weighted subcoercive system on a connected Lie group
G. We keep the notation of §3.2. Notice that every m ∈ JL is real analytic and
admits a unique holomorphic extension to Cn, which we still denote by m.

Proposition 4.1. Let φ ∈ D′(G) be such that, for some λ = (λ1, . . . , λn) ∈ Cn,

Ljφ = λjφ for j = 1, . . . , n

in the sense of distributions. Then φ ∈ E(G), and the previous equalities hold
in the strong sense. Moreover, if φ ∈ L∞(G), then, for every m ∈ JL,

φ ∗ m̆ = m(λ)φ and 〈m̆, φ〉 = m(λ)φ(e). (4.1)

Proof. From the hypothesis, we get immediately

p∗(L)φ = p∗(λ)φ.

Since p∗(L)− p∗(λ) is hypoelliptic by Corollary 2.4, this implies that φ ∈ E(G).
Suppose now that φ is bounded. Let e−q be one of the generators of JL,

and set kt = KL(e−tq). Then, for every x ∈ G, also Lxφ is a joint eigenfunction
of L1, . . . , Ln with eigenvalue λ; therefore, by Theorem 2.3(f,g), the function

t 7→ φ ∗ kt(x) = 〈Lxφ, kt〉

is smooth on ]0,+∞[, with derivative

t 7→ 〈Lxφ,−q(L)kt〉 = −q(λ)φ ∗ kt(x).

Hence we get
φ ∗ kt = e−tq(λ)φ,
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since kt is an approximate identity for t → 0+ (see Corollary 2.5). This gives
the former identity of (4.1) when m is a generator of JL, and consequently also
for an arbitrary m ∈ JL; the latter identity follows by evaluating the former in
e.

The previous proposition shows that the joint eigenfunctions of L1, . . . , Ln
are smooth, and are also eigenfunctions of the convolution operators with kernels
in KL(JL). An analogous result holds in every unitary representation of G.

Lemma 4.2. Let π be a unitary representation of G on H. The following are
equivalent for v ∈ H \ {0}:

(i) v ∈ H∞ and v is a joint eigenvector of dπ(L1), . . . , dπ(Ln);

(ii) v is a joint eigenvector of the operators π(m̆) for m ∈ JL.

Proof. (i)⇒ (ii) follows immediately from Proposition 3.7 and the properties of
the spectral integral. For the reverse implication, takem = e−pj for j = 0, . . . , n,
so that π(m̆) = e−pj(dπ(L)) by Proposition 3.7; by the properties of the spectral
integral, kerπ(m̆) = {0}, therefore π(m̆)v = cv for some c > 0. This implies
that

v = c−1π(m̆)v ∈ H∞,

by Theorem 2.3(b), and moreover, again by the properties of the spectral inte-
gral,

pj(dπ(L))v = (log c)v,

that is, v is an eigenvector of pj(dπ(L)) for j = 0, . . . , n. Since

λj = pj(λ)− p0(λ) for j = 1, . . . , n,

it follows that v is a joint eigenvector of dπ(L1), . . . , dπ(Ln).

The link between eigenfunctions on G and eigenvectors in unitary repre-
sentations is given by the joint eigenfunctions of positive type. Recall that a
function of positive type φ : G → C is a diagonal coefficient for some unitary
representation π of G on a Hilbert space H, i.e.,

φ(x) = 〈π(x)v, v〉 (4.2)

for some vector v ∈ H, which can be supposed to be cyclic for π; in that case,
the representation π is uniquely determined by φ up to equivalence (see §3.3 of
[20] for details), and φ is said to be associated with π.

Proposition 4.3. For a function of positive type φ on G, the following are
equivalent:

(i) φ is a joint eigenfunction of L1, . . . , Ln and φ(e) = 1;

(ii) φ has the form (4.2) for some unitary representation π of G on H and
some cyclic vector v of norm 1, where v ∈ H∞ is a joint eigenvector of
dπ(L1), . . . , dπ(Ln);

28



(iii) φ 6= 0 and, for all m ∈ JL and f ∈ L1(G),

〈m̆ ∗ f, φ〉 = 〈f ∗ m̆, φ〉 = 〈f, φ〉〈m̆, φ〉;

(iv) φ 6= 0 and, for all m ∈ JL, 〈m̆ ∗ m̆∗, φ〉 = |〈m̆, φ〉|2.

In this case, moreover, the eigenvalue of Lj corresponding to φ is a real number
and coincides with the eigenvalue of dπ(Lj) corresponding to v.

Proof. (i) ⇒ (ii). Since φ is of positive type and φ(e) = 1, then φ is of the form
(4.2) for some unitary representation π of G on H and some cyclic vector v of
norm 1. From (i) we have Ljφ = λjφ for some λ = (λ1, . . . , λn) ∈ Cn. Being
L1, . . . , Ln left-invariant, if

φy(x) = Lyφ(x) = 〈π(x)v, π(y)v〉,

then also Ljφy = λjφy. Since v is cyclic, for all w ∈ H we can find a sequence
(wn)n in span{π(y)v : y ∈ G} such that wn → w in H; if

ψn(x) = 〈π(x)v, wn〉, ψ(x) = 〈π(x)v, w〉,

then the ψn are linear combinations of the φy, so that Ljψn = λjψn and, passing
to the limit, we also have Ljψ = λjψ in the sense of distributions. But then
ψ ∈ E(G) by Proposition 4.1. Since w ∈ H was arbitrary, we conclude that
v ∈ H∞; moreover

〈λjv, w〉 = λjψ(e) = Ljψ(e) = 〈dπ(Lj)v, w〉,

and again, from the arbitrariness of w, we get dπ(Lj)v = λjv for j = 1, . . . , n.
Finally, since dπ(Lj) is self-adjoint, we deduce that λj ∈ R.

(ii) ⇒ (i). Trivial.
(ii) ⇒ (iii). If m ∈ JL, by Lemma 4.2, π(m̆)∗v = π(m̆)v = cv for some

c ∈ C. Since ‖v‖ = 1, we have

〈f ∗ m̆, φ〉 = 〈π(f ∗ m̆)v, v〉 = 〈π(m̆)π(f)v, v〉 = c〈π(f)v, v〉
= 〈π(f)v, v〉〈π(m̆)v, v〉 = 〈f, φ〉〈m̆, φ〉.

The other identity is proved analogously.
(iii) ⇒ (iv). Trivial.
(iv)⇒ (ii). Being of positive type, φ has the form (4.2) for some unitary rep-

resentation π of G on H and some cyclic vector v. Then (iv) can be equivalently
rewritten as

‖π(m̆)v‖ = |〈π(m̆)v, v〉| (4.3)

for all m ∈ JL. In particular, by taking m = e−tp∗ , which is an approximate
identity for t → 0+ (see Corollary 2.5), and passing to the limit, we obtain
‖v‖ = ‖v‖2, so that ‖v‖ = 1 (since φ 6= 0). Now, for an arbitrary m ∈ JL,
(4.3) implies that π(m̆)v cannot have a component orthogonal to v, thus v is an
eigenvector of π(m̆), and (ii) follows from Lemma 4.2.
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Let PL be the set of the joint eigenfunctions φ of L1, . . . , Ln of positive
type with φ(e) = 1. For every φ ∈ PL, by Proposition 4.3 the corresponding
eigenvalue λ is in Rn; we then define ϑL : PL → Rn by setting ϑL(φ) = λ.

Lemma 4.4. If PL is endowed with the topology induced by the weak-∗ topology
of L∞(G), then the map ϑL : PL → Rn is continuous.

Proof. By Proposition 4.1, for j = 0, . . . , n, we have that

e−pj(ϑL(φ)) = 〈KL(e−pj ), φ〉,

which is continuous in φ with respect to the weak-∗ topology of L∞(G). In
particular, if ϑL,j : PL → R is the j-th component of ϑL for j = 1, . . . , n, then

e−ϑL,j(φ) = e−pj(ϑL(φ))/e−p0(ϑL(φ));

therefore the components of ϑL are continuous PL → R.

Proposition 4.5. The topologies on PL induced by the weak-∗ topology of
L∞(G), the compact-open topology of C(G) and the topology of E(G) coincide.
Moreover, the map ϑL : PL → Rn is a continuous, proper and closed map.
In particular, the image ϑL(PL) is a closed subset of Rn and its topology as a
subspace of Rn coincides with the quotient topology induced by ϑL.

Proof. Since G is second-countable, the three aforementioned topologies on PL
are all metrizable (cf. [43], Corollary 2.6.20). In particular, in order to prove
that they coincide, it is sufficient to show that they induce the same notion of
convergence of sequences.

Let (φk)k be a sequence in PL. If (φk)k converges in E(G), then a fortiori it
converges in C(G). Moreover, since ‖φk‖∞ = 1 for all k, convergence in C(G)
implies weak-∗ convergence in L∞(G) by dominated convergence.

Suppose now that φk → φ ∈ PL with respect to the weak-∗ topology of
L∞(G). Take m = e−p∗ ∈ JL, so that m > 0. By Proposition 4.1, for all
D ∈ D(G), we then have

Dφk =
φk ∗Dm̆
m(ϑL(φk))

, Dφ =
φ ∗Dm̆
m(ϑL(φ))

;

in particular, for every x ∈ G, since RxDm̆ ∈ L1(G),

Dφk(x) =
〈RxDm̆, φk〉
m(ϑL(φk))

→ 〈RxDm̆, φ〉
m(ϑL(φ))

= Dφ(x)

by Lemma 4.4. Moreover, again by Lemma 4.4, m(ϑL(φk)) ≥ c > 0 for some c
and all k, so that ‖Dφk‖∞ ≤ c−1‖Dm̆‖1. This means that, for all D ∈ D(G),
the family {Dφk}k is equibounded; but then also, for all D ∈ D(G), the family
{Dφk}k is equicontinuous, so that the previously proved pointwise convergence
Dφk → Dφ is in fact uniform on compacta. By arbitrariness of D ∈ D(G), we
have then proved that φk → φ in E(G).
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Let now K ⊆ Rn be compact, and take a sequence (φk)k in PL such that
ϑL(φk) ∈ K for all k. As before, the sequence (φk)k is equibounded and
equicontinuous, so that, by the Ascoli-Arzelà theorem (see [9], §X.2.5), we can
find a subsequence φkh which converges uniformly on compacta to a function
φ ∈ C(G), and such that moreover ϑL(φkh) converges to some λ ∈ K. It is now
easy to show that φ is of positive type and φ(e) = 1; moreover, for all η ∈ D(G),

〈Ljφ, η〉 = lim
h
〈Ljφkh , η〉 = lim

h
ϑL,j(φkh)〈φkh , η〉 = λj〈φ, η〉,

so that, by Proposition 4.1, φ is a (smooth) joint eigenfunction of L1, . . . , Ln,
hence φ ∈ PL. Since PL is metrizable, this shows that ϑ−1

L (K) is compact in
PL. By the arbitrariness of the compact K ⊆ Rn, we conclude that ϑL is proper
and closed (see [8], Propositions I.10.1 and I.10.7).

The following result, together with the Krein-Milman theorem, shows that
the image of ϑL does not change if we restrict to the joint eigenfunctions asso-
ciated with irreducible representations.

Proposition 4.6. For λ ∈ Rn, the set ϑ−1
L (λ) is a weakly-∗ compact and convex

subset of L∞(G), whose extreme points are the ones associated with irreducible
representations.

Proof. Clearly ϑ−1
L (λ) is convex, whereas compactness follows from Proposi-

tion 4.5. In order to conclude, it will be sufficient to show that the extreme
points of ϑ−1

L (λ) are also extreme points of the set P1 of the functions φ of
positive type on G such that φ(e) = 1 (see [20], Theorem 3.25).

Suppose then that φ ∈ ϑ−1
L (λ) is not extreme in P1, i.e.,

φ = θ2
0φ0 + θ2

1φ1

for some φ0, φ1 ∈ P1 different from φ and some θ0, θ1 > 0 with θ2
0 + θ2

1 = 1. For
k = 0, 1, we have φk(x) = 〈πk(x)vk, vk〉, where πk is a unitary representation of
G on Hk and vk is a cyclic vector of norm 1. If

v = (θ0v0, θ1v1) ∈ H0 ⊕H1, H = span{(π0 ⊕ π1)(x)v : x ∈ G},

and π is the restriction of π0 ⊕ π1 to H, then it is easy to see that v is a cyclic
vector for π and that φ(x) = 〈π(x)v, v〉, therefore by Proposition 4.3 it follows
that v ∈ H∞ and that dπ(Lj)v = λjv for j = 1, . . . , n.

If Pk : H → Hk is the restriction of the canonical projection H0⊕H1 → Hk,
it is immediate to check that Pk intertwines π and πk, and that Pkv = θkvk;
hence, for all w ∈ Hk and x ∈ G,

〈πk(x)vk, w〉 = θ−1
k 〈πk(x)Pkv, w〉 = θ−1

k 〈π(x)v, P ∗kw〉.

This identity, together with the arbitrariness of w ∈ Hk, shows that also vk ∈
H∞k . Moreover, since Pk intertwines π(x) and πk(x) for all x ∈ G, it is easy to
check that it intertwines also dπ(D) and dπk(D) for all D ∈ D(G), therefore

dπ(Lj)vk = θ−1
k Pkdπ(Lj)v = λjvk
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for j = 1, . . . , n. By Proposition 4.3, this shows that φ0, φ1 ∈ ϑ−1
L (λ), thus φ is

not even extreme in ϑ−1
L (λ).

In order to relate the joint spectrum of L1, . . . , Ln with (some subset of)
ϑL(PL), we recall the notion of weak containment of representations. If π,$
are unitary representations of G, then π is said to be weakly contained in $ if

‖π(f)‖ ≤ ‖$(f)‖ for all f ∈ L1(G).

Equivalent characterizations of weak containment can be given involving func-
tions of positive type (cf. also §3.5 of [26] and §3.4 of [12]):

Lemma 4.7. Let $ be a unitary representation of G. Let moreover φ be a
function of positive type, of the form (4.2) for some unitary representation π
of G on the Hilbert space H and some cyclic vector v of unit norm. Then the
following are equivalent:

(i) π is weakly contained in $;

(ii) |〈f, φ〉| ≤ ‖$(f)‖ for all f ∈ L1(G);

(iii) |〈f, φ〉| ≤ C‖$(f)‖ for some C > 0 and all f ∈ L1(G).

Proof. (i) ⇒ (ii) ⇒ (iii). Trivial.

(iii)⇒ (i). Let H̃ be the Hilbert space on which $ acts. The hypothesis (iii)
implies that φ defines a (positive) continuous functional on the sub-C∗-algebra

of B(H̃) which is the closure of $(L1(G)). By applying Proposition 2.1.5(ii) of
[12] to this functional, one obtains, for f, g ∈ L1(G),

‖π(f)π(g)v‖2 = 〈g ∗ f ∗ f∗ ∗ g∗, φ〉 ≤ ‖$(f ∗ f∗)‖〈g ∗ g∗, φ〉 = ‖$(f)‖2‖π(g)v‖2.

Since v is cyclic and L1(G) contains an approximate identity, the set

{π(g)v : g ∈ L1(G)}

is a dense subspace ofH, therefore the previously proved inequality gives (i).

For a unitary representation $ of G, we denote by PL,$ the set of the
functions φ ∈ PL which satisfy the equivalent conditions of Lemma 4.7.

Proposition 4.8. Let $ be a unitary representation of G. Then PL,$ is a
closed subset of PL. Moreover, for every λ ∈ Rn, PL,$ ∩ϑ−1

L (λ) is compact and
convex, and its extreme points are the ones associated with irreducible represen-
tations.

Proof. Condition (ii) of Lemma 4.7 is a convex and closed condition (with re-
spect to the weak-∗ topology of L∞(G)) for every f ∈ L1(G). Therefore PL,$
is closed in PL, and moreover, for λ ∈ Rn, since ϑ−1

L (λ) is compact and convex
(see Proposition 4.6), PL,$ ∩ ϑ−1

L (λ) is compact and convex too.

32



In order to conclude, again by Proposition 4.6, it is sufficient to show that an
extreme point φ of PL,$ ∩ϑ−1

L (λ) is also extreme in ϑ−1
L (λ). Suppose then that

φ = (1 − θ)φ0 + θφ1 for some φ0, φ1 ∈ ϑ−1
L (λ) and 0 < θ < 1. For f ∈ L1(G),

we have
(1− θ)|〈f, φ0〉|2 + θ|〈f, φ1〉|2 = 〈f ∗ f∗, φ〉 ≤ ‖$(f)‖2

by Lemma 4.7 and positivity, therefore

|〈f, φ0〉| ≤ (1− θ)−1/2‖$(f)‖, |〈f, φ1〉| ≤ θ−1/2‖$(f)‖,

and again by Lemma 4.7 we obtain φ0, φ1 ∈ PL,$ ∩ ϑ−1
L (λ).

Theorem 4.9. Let $ be a unitary representation of G on a Hilbert space H.
Then ϑL(PL,$) is the joint spectrum of d$(L1), . . . , d$(Ln) on H.

Proof. Let E$ be the joint spectral resolution of d$(L1), . . . , d$(Ln). The joint
spectrum of d$(L1), . . . , d$(Ln), i.e., the support of E$, can be identified with
the Gelfand spectrum of the C∗-algebra E$[C0(Rn)] (cf. the proof of Proposi-
tion 3.6), i.e., with the closure in B(H) of {$(m̆) : m ∈ JL} (see Lemma 3.5
and Proposition 3.7).

In particular, if φ ∈ PL,$, then, by Lemma 4.7,

|〈m̆, φ〉| ≤ ‖$(m̆)‖ for all m ∈ JL,

therefore φ defines a continuous functional on the C∗-algebra E$[C0(Rn)], which
is multiplicative by Proposition 4.3, and thus belongs to the Gelfand spectrum
of E$[C0(Rn)]. Since

〈m̆, φ〉 = m(ϑL(φ)) for all m ∈ JL

(see Proposition 4.1), the element of suppE$ corresponding to this functional
is ϑL(φ).

Conversely, if λ ∈ suppE$, then we can extend the corresponding character
of E$[C0(Rn)] to a positive functional ω of norm 1 on the whole B(H) (see
[12], §2.10). Since ω ◦ $ : L1(G) → C is linear and continuous, there exists
φ ∈ L∞(G) such that

〈f, φ〉 = ω($(f)) for all f ∈ L1(G);

in fact, since ω is positive, φ must be a function of positive type on G (see [20],
§3.3). Moreover, since ω extends a multiplicative functional on E$[C0(Rn)], it
must be

〈m̆1 ∗ m̆2, φ〉 = 〈m̆1, φ〉〈m̆2, φ〉 for all m1,m2 ∈ JL.

Therefore, by Proposition 4.3, φ ∈ PL, and in fact φ ∈ PL,$ since |〈f, φ〉| ≤
‖$(f)‖ (see Lemma 4.7). Finally

m(ϑL(φ)) = 〈m̆, φ〉 = ω($(m̆)) = m(λ) for all m ∈ JL,

by Proposition 4.1, since ω extends the character corresponding to λ, and con-
sequently ϑL(φ) = λ (see Lemma 3.5).
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In particular, the joint L2 spectrum Σ of L1, . . . , Ln coincides with the set
of eigenvalues ϑL(PL,R) associated with the regular representation R of G on
L2(G). When G is amenable, every unitary representation is weakly contained
in the regular representation (see [26], §3.5), hence

Corollary 4.10. We have
Σ ⊆ ϑL(PL), (4.4)

with equality when G is amenable.

Notice that, when G is not amenable, the inclusion (4.4) can be strict: for
instance, if n = 1 and L1 is a sublaplacian, then 0 ∈ ϑL(PL) \ Σ, since L1 has
a spectral gap (cf. [56]).

Under a more restrictive hypothesis than amenability, viz., the symmetry of
the Banach ∗-algebra L1(G), we can relate the joint spectrum of L1, . . . , Ln to
the Gelfand spectrum of a closed ∗-subalgebra of L1(G) (cf. [34, 35, 36] for the
case of a single operator). Namely, let Γ1

L be the closure of KL(JL) in L1(G). Γ1
L

is a commutative Banach ∗-subalgebra of L1(G), and also, by Proposition 3.6,
a dense ∗-subalgebra of the C∗-algebra C0(L).

Lemma 4.11. Suppose that L1(G) is symmetric. Then every character of Γ1
L

extends to a character of C0(L), so that the Gelfand spectra of the two Banach
∗-algebras coincide (also as topological spaces).

Proof. Since G is connected and L1(G) is symmetric, then G is also amenable
(see [50], Theorem 12.5.18(e)), so that

‖f‖Cv2 =
√
ρ(f∗f) for all f ∈ L1(G),

where ρ(f) denotes the spectral radius of f in L1(G) (see [50], Theorem 11.4.1,
and also [49], p. 695). Notice that, since Γ1

L is a closed subalgebra of L1(G), for
every f ∈ Γ1

L, the spectral radius of f in Γ1
L coincides with its spectral radius

in L1(G) (see [6], Proposition I.5.12). Moreover, since L1(G) is symmetric, also
Γ1
L is symmetric. Hence, for every character ψ ∈ G(Γ1

L),

ψ(f∗) = ψ(f) for all f ∈ Γ1
L;

since ψ(f) belongs to the spectrum of f for every f ∈ Γ1
L, we have

|ψ(f)|2 = ψ(f∗f) ≤ ρ(f∗f) = ‖f‖2Cv2 .

This shows that every character ψ ∈ G(Γ1
L) is continuous with respect to the

norm of C0(L), so that it extends by density to a unique character of C0(L).
Notice that, since Γ1

L is dense in C0(L) and the elements of G(C0(L)) have
norms bounded by 1 as functionals on C0(L), it is easy to check that the topolo-
gies of G(C0(L)) and G(Γ1

L) coincide.

Finally we obtain that, if L1(G) is symmetric, then the joint L2 spectrum
of L1, . . . , Ln is the set of eigenvalues corresponding to all the bounded joint
eigenfunctions.
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Proposition 4.12. If L1(G) is symmetric, then the map

Λ : PL 3 φ 7→ 〈·, φ〉 ∈ G(Γ1
L)

is surjective. In particular, every multiplicative linear functional on Γ1
L extends

to a bounded linear functional η on L1(G) such that

η(f ∗ g) = η(f)η(g) for all f ∈ L1(G) and g ∈ Γ1
L. (4.5)

Moreover

Σ = {λ ∈ Cn : Ljφ = λjφ for some φ ∈ L∞(G) \ {0} and all j = 1, . . . , n} .

Proof. Let ψ ∈ G(Γ1
L). By Lemma 4.11, ψ extends to a character of C0(L),

which corresponds to some λ ∈ Σ. Now, by Corollary 4.10, there exists φ ∈ PL
such that ϑL(φ) = λ, therefore, for every m ∈ JL, by Proposition 4.1,

Λ(φ)(m̆) = 〈m̆, φ〉 = m(ϑL(φ)) = m(λ) = ψ(m̆),

from which by density we deduce Λ(φ) = ψ.
In particular, if η denotes the linear functional f 7→ 〈f, φ〉 on L1(G), then η

extends ψ and, by Proposition 4.3,

η(f ∗ m̆) = η(f) η(m̆) for all f ∈ L1(G) and m ∈ JL,

from which (4.5) follows by density.
Finally, notice that every λ ∈ Σ is, by Corollary 4.10, the eigenvalue corre-

sponding to some φ ∈ PL, which is a bounded function. Vice versa, if Ljφ = λjφ
for some non-null φ ∈ L∞(G) and all j = 1, . . . , n, then φ ∈ E(G) by Proposi-
tion 4.1; moreover, modulo replacing φ with Lx−1φ/φ(x) for some x ∈ G with
φ(x) 6= 0, we may suppose that φ(e) = 1. This means, again by Proposition 4.1,
that 〈·, φ〉 is a multiplicative linear functional on Γ1

L, hence 〈·, φ〉 = 〈·, ψ〉 on
Γ1
L for some ψ ∈ PL, by surjectivity of Λ. Then necessarily λ = ϑL(ψ) ∈ Σ by

Proposition 4.1 and Corollary 4.10, since G is amenable.

5. Examples

5.1. Homogeneous groups

Let G be a homogeneous Lie group, with automorphic dilations δt and ho-
mogeneous dimension Qδ. A weighted subcoercive system L1, . . . , Ln on G will
be called homogeneous if each Lj is δt-homogeneous.

In the following, L1, . . . , Ln will be a homogeneous weighted subcoercive
system, with associated Plancherel measure σ, and rj will denote the degree of
homogeneity of Lj , i.e.,

δt(Lj) = trjLj .

The unital subalgebra of D(G) generated by L1, . . . , Ln is δt-invariant for every
t > 0. Therefore, if we set

Dtf = f ◦ δt−1 ,
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and if we denote by εt the dilations on Rn given by

εt(λ) = (tr1λ1, . . . , t
rnλn), (5.1)

then from Corollary 3.19 we immediately deduce

Proposition 5.1. For every bounded Borel m : Rn → C, we have

(m ◦ εt)(L) = Dtm(L)Dt−1 , (m ◦ εt)̆ = t−Qδm̆ ◦ δt−1 .

Moreover, the support Σ of σ is εt-invariant, and

σ(εt(A)) = tQδσ(A)

for all Borel A ⊆ Rn. In particular, the Plancherel measure σ admits a “polar
decomposition”: if S = {λ ∈ Rn : |λ|ε = 1} for some εt-homogeneous norm | · |ε,
then there exists a regular Borel measure τ on S such that∫

Rn
f dσ =

∫ +∞

0

∫
S

f(εt(ω)) dτ(ω) tQδ−1 dt.

In the context of homogeneous groups, an equivalent characterization of
homogeneous weighted subcoercive systems can be given, which is analogous to
the definition of Rockland operator.

Theorem 5.2. Let L1, . . . , Ln ∈ D(G) be homogeneous, pairwise commuting
and formally self-adjoint.

(i) If L1, . . . , Ln is a weighted subcoercive system, then the algebra generated
by L1, . . . , Ln contains a Rockland operator if and only if the degrees of
homogeneity of L1, . . . , Ln have a common multiple.

(ii) L1, . . . , Ln is a weighted subcoercive system if and only if, for every non-
trivial irreducible unitary representation π of G on a Hilbert space H, the
operators dπ(L1), . . . , dπ(Ln) are jointly injective on H∞, i.e.,

dπ(L1)v = · · · = dπ(Ln)v = 0 =⇒ v = 0

for all v ∈ H∞.

Proof. Suppose that L1, . . . , Ln is a weighted subcoercive system. Let p be
a real polynomial such that p(L) = p(L1, . . . , Ln) is a weighted subcoercive
operator. Choose moreover a system X1, . . . , Xd of generators of g made of
δt-homogeneous elements, so that δt(Xk) = tνkXk for some νk > 0. From
Theorem 2.3(iii) we deduce that, possibly by replacing p with some power pm,
there exist a constant C > 0 such that, for every unitary representation π of G
on a Hilbert space H,

‖dπ(Xk)v‖2 ≤ C(‖v‖2 + ‖dπ(p(L))v‖2) (5.2)
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for v ∈ H∞, k = 1, . . . , d. Fix a non-trivial irreducible unitary representation π
of G on a Hilbert space H, and let v ∈ H∞ be such that

dπ(L1)v = · · · = dπ(Ln)v = 0.

For t > 0, since δt ∈ Aut(G), πt = π ◦ δt is also a unitary representation of G;
moreover, it is easily checked that smooth vectors for πt coincide with smooth
vectors for π, and that

dπt(D) = dπ(δt(D)) for every D ∈ D(G).

In particular,
dπt(p(L))v = dπ((p ◦ εt)(L))v = p(0)v,

thus from (5.2) applied to the representation πt we get

‖dπ(Xk)v‖2 ≤ t−2νkC(1 + |p(0)|2)‖v‖2,

and, for t→ +∞, we obtain

dπ(X1)v = · · · = dπ(Xd)v = 0.

SinceX1, . . . , Xd generate g, this means that the function x 7→ π(x)v is constant,
i.e.,

π(x)v = v for all x ∈ G,

but π is irreducible and non-trivial, thus v = 0.
Suppose now conversely that dπ(L1), . . . , dπ(Ln) are jointly injective on H∞

for every non-trivial irreducible representation π on a Hilbert space H, and that
moreover the degrees r1, . . . , rn of homogeneity of L1, . . . , Ln have a common
multiple M . Then

∆ = L
2M/r1
1 + · · ·+ L2M/rn

n

is homogeneous of degree 2M and belongs to the subalgebra of D(G) generated
by L1, . . . , Ln. Moreover, for every irreducible unitary representation π of G on
H, and for every v ∈ H∞, we have

〈dπ(∆)v, v〉 = ‖dπ(L1)M/r1v‖2H + · · ·+ ‖dπ(Ln)M/rnv‖2H,

so that, if dπ(∆)v = 0, then also dπ(Lj)v = 0 for j = 1, . . . , n, therefore v = 0.
This proves that ∆ is a (positive) Rockland operator, and in particular it is
weighted subcoercive, so that L1, . . . , Ln is a weighted subcoercive system.

If instead dπ(L1), . . . , dπ(Ln) are jointly injective for every non-trivial irre-
ducible representation π, but the degrees of homogeneity of L1, . . . , Ln do not
have a common multiple, by the results of [45] (see in particular Proposition 1.1
and its proof), we can find another homogeneous structure on G with integral
degrees, with respect to which the operators L1, . . . , Ln are still homogeneous.
In particular the degrees of homogeneity of L1, . . . , Ln in this new structure must
have a common multiple, so that, by the previous part of the proof, L1, . . . , Ln
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is again a weighted subcoercive system, and this last notion is independent of
the homogeneous structure.

Finally, if the algebra generated by L1, . . . , Ln contains a Rockland operator,
then (see [45], Proposition 1.3; see also [14]) the homogeneity degrees of the
elements of g must have a common multiple, and a fortiori this is true also for
the degrees of L1, . . . , Ln.

Notice that, while the existence of a Rockland operator on G forces the
homogeneity degrees of g to have a common multiple, this is not the case for
the existence of a homogeneous weighted subcoercive system. For instance,
the system of the partial derivatives −i∂1, . . . ,−i∂n on Rn is a homogeneous
weighted subcoercive system with respect to any family of dilations of the form

δt(x1, . . . , xn) = (tλ1x1, . . . , t
λnxn)

for λ1, . . . , λn ∈ [1,+∞[.

5.2. Direct products

In order to have a system of commuting operators, the simplest way is to
start from operators living on different Lie groups, and then to consider them as
operators on the direct product of the groups. Here we show that the notion of
weighted subcoercive system is compatible with this construction, in the sense
that weighted subcoercive systems on different groups can be put together in a
single weighted subcoercive system on the direct product.

For l = 1, . . . , %, let Gl be a connected Lie group, and set

G× = G1 × · · · ×G%.

We then have the identification

g× = g1 ⊕ · · · ⊕ g%.

Moreover, for l = 1, . . . , %, if D ∈ D(Gl) and D× is the image of D via the
derivative of the canonical inclusion Gl → G×, then

D×(f1 ⊗ · · · ⊗ f%) = f1 ⊗ · · · ⊗ fl−1 ⊗ (Dfl)⊗ fl+1 ⊗ · · · ⊗ f%;

in this case, we say that D× is the differential operator along the l-th factor of
G× corresponding to D ∈ D(Gl).

Lemma 5.3. For l = 1, . . . , %, suppose that Al,1, . . . , Al,dl is a reduced basis of
gl, with weights wl,1, . . . , wl,dl . Then

A1,1, . . . , A1,d1 , . . . , A%,1, . . . , A%,d% (5.3)

is a reduced basis of g×, with weights

w1,1, . . . , w1,d1 , . . . , w%,1, . . . , w%,d% .
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Moreover, if (Vl,λ)λ is the filtration on gl corresponding to the chosen reduced
basis for l = 1, . . . , %, then

V ×λ = V1,λ ⊕ · · · ⊕ V%,λ

gives the filtration on g× corresponding to the reduced basis (5.3); therefore, by
passing to the quotients, we obtain for the contractions

(g×)∗ = (g1)∗ ⊕ · · · ⊕ (g%)∗.

Proof. An iterated commutator A[α] of the elements of (5.3) is not null only
if it coincides with an iterated commutator (Al)[α′] of Al,1, . . . , Al,nl for some
l ∈ {1, . . . , %} (this can be checked by induction on the length |α| of the com-
mutator). The identities involving the filtrations then follow immediately, from
which we get easily the conclusion.

Theorem 5.4. Suppose that Dl ∈ D(Gl) is a self-adjoint weighted subcoercive
operator on Gl, for l = 1, . . . , %, and let D×l ∈ D(G×) be the differential operator
on G× along the l-th factor corresponding to Dl. Then

D = (D×1 )2 + · · ·+ (D×% )2

is a positive weighted subcoercive operator on G×.

Proof. For l = 1, . . . , %, let Al,1, . . . , Al,dl be a reduced basis of gl, such that,
for some self-adjoint weighted subcoercive form Cl, we have Dl = dRGl(Cl); let
moreover Pl be the principal part of Cl. Clearly, modulo rescaling the weights
of the reduced bases, we may suppose that the forms C1, . . . , C% have the same
degree m.

By Lemma 5.3, the concatenation of the bases of g1, . . . , gl gives a reduced
basis (5.3) of g×. We can then consider, for l = 1, . . . , %, the forms C×l , P×l
corresponding to Cl, Pl but re-indexed on the basis (5.3). In particular, if

C = (C×1 )2 + · · ·+ (C×% )2, P = (P×1 )2 + · · ·+ (P×% )2,

then P = P+ is the principal part of C, and moreover

dRG×(C) = (dRG1
(C1)×)2 + · · ·+ (dRG%(C%)

×)2 = D.

On the other hand, again by Lemma 5.3, we have the identification

(G×)∗ = (G1)∗ × · · · × (G%)∗,

so that

dR(G×)∗(P ) = (dR(G1)∗(P1)×)2 + · · ·+ (dR(G%)∗(P%)
×)2.

By Theorem 2.3, we have that dR(Gl)∗(Pl) is Rockland on (Gl)∗ for l = 1, . . . , %;
in order to conclude, it is sufficient to show that dR(G×)∗(P ) is Rockland on
(G×)∗.
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If π is a non-trivial irreducible unitary representation of G× on a Hilbert
space H, then (see [20], Theorem 7.25) we may suppose that π = π1 ⊗ · · · ⊗ π%,
where πl is an irreducible unitary representation of Gl on a Hilbert space Hl for
l = 1, . . . , %, so that H = H1 ⊗̂ · · · ⊗̂H% and at least one of π1, . . . , π% is non-
trivial. Let (wl,νl)νl be a complete orthonormal system for Hl, for l = 1, . . . , %,
so that (w1,ν1 ⊗ · · · ⊗ w%,ν%)~ν is a complete orthonormal system for H. Then,
for every element v =

∑
ν1,...,ν%

aν1,...,ν%w1,ν1 ⊗ · · · ⊗ w%,ν% of H, we have

〈dπ(dR(G×)∗(P ))v, v〉H

=

%∑
l=1

∑
ν1,...,νl−1,νl+1,ν%

∥∥∥∥∥dπl(dR(Gl)∗(Pl))

(∑
νl

aν1,...,ν%wl,νl

)∥∥∥∥∥
2

Hl

;

since at least one of the dπl(dR(Gl)∗(Pl)) is injective (being dR(Gl)∗(Pl) Rockland
and πl non-trivial), this formula gives easily that

v 6= 0 =⇒ dπ(dR(G×)∗(P ))v 6= 0,

i.e., dπ(dR(G×)∗(P )) is injective.

Theorems 5.4 and 3.10, together with the properties of the spectral integral,
yield easily

Corollary 5.5. For l = 1, . . . , %, let Ll,1, . . . , Ll,nl ∈ D(Gl) be a weighted
subcoercive system. Let moreover L×l,j be the differential operator on G× along
the l-th factor corresponding to Ll,j. Then

L×1,1, . . . , L
×
1,n1

, . . . , L×%,1, . . . , L
×
%,n% (5.4)

is a weighted subcoercive system on G×. Further:

(a) if ml is a bounded Borel function on Rnl for l = 1, . . . , %, then

KL×m = KL1
m1 ⊗ · · · ⊗ KL%m%;

(b) if σl is the Plancherel measure associated with the system Ll,1, . . . , Ll,nl
for l = 1, . . . , %, and if moreover σ× is the Plancherel measure associated
with the system (5.4), then

σ× = σ1 × · · · × σ%.

5.3. Gelfand pairs

Let G be a connected Lie group. In this paragraph, we describe a particular
way of obtaining weighted subcoercive systems on G, which has been extensively
studied in the literature.

Let K be a compact subgroup of Aut(G). A function (or distribution) f on
G is said to be K-invariant if

Tkf = f for all k ∈ K.
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We add a subscript K to the symbol representing a particular space of functions
or distributions in order to denote the corresponding subspace of K-invariant
elements; for instance, LpK(G) denotes the Banach space of K-invariant Lp

functions on G. Since

Tk(f ∗ g) = (Tkf) ∗ (Tkg), Tk(f∗) = (Tkf)∗,

it is immediately proved that L1
K(G) is a Banach ∗-subalgebra of L1(G). We

also define the projection onto K-invariant elements:

PK : f 7→
∫
K

Tkf dk,

where the integration is with respect to the Haar measure on K with mass 1.
This projection satisfies

PK(f ∗ (PKg)) = PK((PKf) ∗ g) = (PKf) ∗ (PKg), PK(f∗) = (PKf)∗.

Among the left-invariant differential operators on G, we can consider those
which are K-invariant, i.e., which commute with Tk for all k ∈ K. The set
DK(G) of left-invariant K-invariant differential operators on G is a ∗-subalgebra
of D(G), which is finitely generated since K is compact (cf. [31], Corollary X.2.8
and Theorem X.5.6). Moreover, DK(G) contains an elliptic operator (e.g., the
Laplace-Beltrami operator associated with a left-invariant K-invariant metric
on G, cf. [32], proof of Proposition IV.2.2). Therefore, if one chooses a finite
system of formally self-adjoint generators of DK(G), the only property which
is missing in order to have a weighted subcoercive system is commutativity of
DK(G).

In fact, under these hypotheses, the following properties are equivalent (cf.
[53], or [59], §8.3):

• DK(G) is a commutative ∗-subalgebra of D(G);

• L1
K(G) is a commutative Banach ∗-subalgebra of L1(G).

The latter condition corresponds to the fact that (GoK,K) is a Gelfand pair4.
We now summarize in our context some of the main notions and results from
the general theory of Gelfand pairs, for which we refer mainly to [16, 59, 31, 32].
In the following, we always suppose that L1

K(G) is commutative; consequently,
G must be unimodular (cf. [32], Theorem IV.3.1).

4If S is a locally compact group, and K a compact subgroup of S, then (S,K) is said to be
a Gelfand pair if the (convolution) algebra L1(K;S;K) of bi-K-invariant integrable functions
on S is commutative. The study of a Gelfand pair (S,K) involves the K-homogeneous space
S/K. In the case S = G o K, the space S/K can be identified with G, and most of the
notions and results about Gelfand pairs can be rephrased in terms of the algebraic structure
of G (see, e.g., [10, 3]); this has to be kept in mind when comparing the results presented in
the literature with the ones mentioned here. Notice that, according to Vinberg’s reduction
theorem (see [58]), Gelfand pairs in “semidirect-product form” are one of the two structural
constituents of general Gelfand pairs.
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The K-invariant joint eigenfunctions φ of the operators in DK(G) with
φ(e) = 1 are called K-spherical functions. The set GK of bounded K-spherical
functions, with the topology induced by the weak-∗ topology of L∞(G), is identi-
fied with the Gelfand spectrum G(L1

K(G)) of the commutative Banach ∗-algebra
L1
K(G), via the correspondence which associates to a bounded K-spherical func-

tion φ the (multiplicative) linear functional f 7→ 〈f, φ〉 on L1
K(G). According to

this identification, the Gelfand transform — which is also called the K-spherical
Fourier transform — of an element f ∈ L1

K(G) is the function

GKf : GK 3 φ 7→ 〈f, φ〉 ∈ C.

Let PK denote the set of K-invariant functions φ of positive type on G
with φ(e) = 1. Then PK is a closed and convex subset of P1, whose extreme
points are the elements of G+

K = GK ∩ PK , i.e., the K-spherical functions of
positive type; in particular, by the Krein-Milman theorem, the convex hull of
G+
K is weakly-∗ dense in PK . By restricting K-spherical transforms to G+

K , one
obtains that

(GK(f∗))|G+
K

= (GKf)|G+
K
,

therefore the map f 7→ (GKf)|G+
K

is a ∗-homomorphism L1
K(G)→ C0(G+

K) with

unit norm and dense image. Moreover, there exists a unique positive regular
Borel measure σK on G+

K , which is called the Plancherel measure of the Gelfand
pair (GoK,K), such that∫

G

|f(x)|2 dx =

∫
G+
K

|GKf(φ)|2 dσK(φ)

for all f ∈ L1
K ∩L2

K(G); further, the map f 7→ (GKf)|G+
K

extends to an isomor-

phism L2
K(G)→ L2(G+

K , σK).
Choose now a finite system L1, . . . , Ln of formally self-adjoint generators of

DK(G). As we have seen before, the system L1, . . . , Ln is a weighted subcoercive
system on G. If the map ϑL of §4 is extended to all the joint eigenfunctions of
L1, . . . , Ln, then it is known (see [18]) that

ϑL|GK : GK → Cn

is a homeomorphism with its image ϑL(GK), which is a closed subset of Cn.
Notice that

G+
K ⊆ PL, ϑL(G+

K) = ϑL(PL);

consequently, for every λ ∈ ϑL(PL), there exists a unique element of ϑ−1
L (λ)∩PL

which is a K-spherical function (cf. [32], Proposition IV.2.4).
The embedding ϑL allows us to compare the notions ofK-spherical transform

GK and Plancherel measure σK of the Gelfand pair (GoK,K) with the notions
of kernel transform KL and Plancherel measure σ associated with the weighted
subcoercive system L1, . . . , Ln. Notice that, in the case of nilpotent G and
Schwartz multipliers, results similar to the following are proved in [1, 19] (cf.
also §1.7 of [22]).
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As a preliminary remark, notice that from Proposition 3.18 it follows that,
for every bounded Borel m : Rn → C, the corresponding kernel KLm is K-
invariant.

Proposition 5.6. Let f ∈ L1
K(G). Then there exists m ∈ C0(Rn) such that

GKf(φ) = m(ϑL(φ)) for φ ∈ G+
K .

For any of such m, and for every unitary representation π of G, we have

π(f) = m(dπ(L1), . . . , dπ(Ln)),

and in particular
f = KLm.

Proof. Since GKf |G+
K
∈ C0(G+

K), and since ϑL|G+
K

is a homeomorphism with

its image, which is a closed subset of Rn, then by the Tietze-Urysohn extension
theorem we can find m ∈ C0(Rn) extending (GKf) ◦ (ϑL|G+

K
)−1.

By Proposition 3.7, for every u ∈ JL and every unitary representation π of
G, we have

π(ŭ) = u(dπ(L1), . . . , dπ(Ln));

therefore the map
JL 3 u 7→ ŭ ∈ L1(G)

extends by density (see Proposition 3.6) to a ∗-homomorphism

Φ : C0(Rn)→ C∗(G),

and we have
π(Φ(u)) = u(dπ(L1), . . . , dπ(Ln))

for all u ∈ C0(Rn) and all unitary representations π of G. The conclusion will
then follow if we prove that f = Φ(m) as elements of C∗(G).

Recall that every φ ∈ P1 defines a positive continuous functional ωφ on
C∗(G) with unit norm, extending

L1(G) 3 h 7→ 〈h, φ〉 ∈ C.

In fact, the norm of an arbitrary g ∈ C∗(G) is given by

‖g‖∗ = sup
φ∈P1

ωφ(g ∗ g∗)

(see [20], Proposition 7.1); therefore, in order to conclude, it will be sufficient
to show that the set A of the φ ∈ P1 such that

ωφ((f − Φ(m)) ∗ (f − Φ(m))∗) = 0

coincides with the whole P1.
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Notice that both f and Φ(m) belong to the closure C∗K(G) of L1
K(G) in

C∗(G), and it is easily checked that, for φ ∈ P1 and g ∈ C∗K(G),

ωφ(g) = ωPKφ(g);

consequently, we are reduced to prove that PK ⊆ A. In fact, since A is a closed
convex subset of P1, it is sufficient to prove the inclusion G+

K ⊆ A.
On the other hand, the functionals ωφ for φ ∈ G+

K are multiplicative on
L1
K(G), thus they are also multiplicative on C∗K(G) by continuity, therefore

ωφ((f −Φ(m)) ∗ (f −Φ(m))∗) = |ωφ(f −Φ(m))|2 = |GKf(φ)−m(ϑL(φ))|2 = 0

for every φ ∈ G+
K , and we are done.

Thus, by applying first GK and then KL, we are back at the beginning. The
composition of the transforms in reverse order is considered in the following
statement, which gives also an improvement of Proposition 3.14 in this particular
context.

Corollary 5.7. Let m : Rn → C be a bounded Borel function such that m̆ ∈
L1(G). Then m̆ ∈ L1

K(G) and

GK(KLm)(φ) = m(ϑL(φ)) for all φ ∈ G+
K with ϑL(φ) ∈ Σ.

In particular m|Σ ∈ C0(Σ).

Proof. We already know that m̆ is K-invariant, so that m̆ ∈ L1
K(G). Therefore,

by Proposition 5.6, we can find u ∈ C0(Rn) such that

GKm̆(φ) = u(ϑL(φ))

for all φ ∈ G+
K , and we have m̆ = ŭ, i.e.,

m(L1, . . . , Ln) = u(L1, . . . , Ln),

which means that m and u must coincide on the joint spectrum Σ of L1, . . . , Ln,
and we are done.

Finally, we compare the Plancherel measures σ and σK .

Corollary 5.8. We have

σ = ϑL|G+
K

(σK), σK = (ϑL|G+
K

)−1(σ).

Proof. Recall that ϑL|G+
K

is a homeomorphism with its image, which is a closed

subset of Rn containing the support Σ of σ, thus the two equalities to be proved
are equivalent.

Set σ̃ = (ϑL|G+
K

)−1(σ). Then σ̃ is a positive regular Borel measure on G+
K .

Moreover, if f ∈ L1
K ∩ L2

K(G), then by Proposition 5.6 there is m ∈ C0(Rn)
such that

GKf(φ) = m(ϑL(φ)) for all φ ∈ G+
K
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and
f = m̆.

Since f ∈ L2(G), by Theorem 3.10 we also have m ∈ L2(σ), and∫
G

|f(x)|2 dx =

∫
Rn
|m|2 dσ =

∫
G+
K

|GKf |2 dσ̃

by the change-of-variable formula for push-forward measures. By the arbitrari-
ness of f ∈ L1

K ∩ L2
K(G) and the uniqueness of the Plancherel measure of a

Gelfand pair, we obtain that σK = σ̃, and we are done.

We have thus shown that the study of the algebra DK(G) of differential
operators associated with a Gelfand pair (GoK,K) fits into the more general
setting of weighted subcoercive systems, where in general there is no compact
group K of automorphisms which determines the algebra of operators.

It should be noticed that the hypothesis of Gelfand pair is quite restrictive.
We have already mentioned that, if L1

K(G) is commutative, then G must be
unimodular. Moreover, the algebra DK(G) always contains an elliptic operator,
while a general weighted subcoercive operator is not even analytic hypoelliptic
(see, e.g., [29]). Further, if G is solvable, then G must have polynomial growth,
and, if G is nilpotent, then G is at most 2-step (see [3]).

In this last case, notice that it is always possible to find a family of auto-
morphic dilations on G which commute with the elements of K, and any system
L1, . . . , Ln of homogeneous formally self-adjoint generators of DK(G) is a ho-
mogeneous weighted subcoercive system. On the other hand, the results of this
paper can be applied to homogeneous groups which are 3-step or more, and
which therefore do not belong to the realm of Gelfand pairs. Take for instance
the free 3-step nilpotent group N2,3 with 2 generators, defined by the relations

[X1, X2] = Y, [X1, Y ] = T1, [X2, Y ] = T2,

where X1, X2, Y, T1, T2 is a basis of its Lie algebra, and notice that the group
SO2 acts on N2,3 by automorphisms given by simultaneous rotations of RX1 +
RX2 and RT1 +RT2. Although the whole algebra of SO2-invariant left-invariant
differential operators on N2,3 cannot be commutative, the operators

−(X2
1 +X2

2 ), 2X2T1 − 2X1T2 − Y 2, −(T 2
1 + T 2

2 )

generate a non-trivial homogeneous commutative subalgebra to which our re-
sults apply, as well as they apply to the larger algebra generated by

−(X2
1 +X2

2 ), 2X2T1 − 2X1T2 − Y 2, −iT1, −iT2

(which is no longer made of SO2-invariant operators).
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