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Spectral theory for commutative algebras of differential
operators on Lie groups

Alessio Martini

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

Abstract

The joint spectral theory of a system of pairwise commuting self-adjoint left-
invariant differential operators L1, ..., L, on a connected Lie group G is studied,
under the hypothesis that the algebra generated by them contains a “weighted
subcoercive operator” of ter Elst and Robinson (J. Funct. Anal. 157 (1998) 88—
163). The joint spectrum of Ly, ..., L, in every unitary representation of G is
characterized as the set of the eigenvalues corresponding to a particular class
of (generalized) joint eigenfunctions of positive type of Ly, ..., L,. Connections
with the theory of Gelfand pairs are established in the case L1, ..., L, generate
the algebra of K-invariant left-invariant differential operators on G for some
compact subgroup K of Aut(QG).

Keywords: functional calculus, differential operators, Lie groups, joint
spectrum, eigenfunction expansions, representation theory, Gelfand pairs

1. Introduction

Let Lq,...,L, be pairwise commuting smooth linear differential operators
on a smooth manifold X, which are formally self-adjoint with respect to some
smooth measure p. Do these operators admit a joint functional calculus on
L?(X, 11)? In that case, what is the relationship between the joint L? spectrum
of Ly,..., L, and their joint smooth (possibly non-L?) eigenfunctions on X?

A joint functional calculus for Lq,..., L, is given, via spectral integration,
by a joint spectral resolution E, i.e., a resolution of the identity of L?(X,u) on
R™ such that

/ A dE(A, .. )
is a self-adjoint extension of L; for j = 1,...,n. Existence and uniqueness of £

are related to the so-called “domain problems”, such as essential self-adjointness
of Ly, ..., L, and strong commutativity of their self-adjoint extensions.
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Once a joint spectral resolution F is fixed, the theory of eigenfunction expan-
sions (see, e.g., [0, 42]) yields the existence, for E-almost every A = (A1,...,\p)
in the joint L? spectrum ¥ = supp E of L1, ..., L,, of a corresponding gener-
alized joint eigenfunction ¢, which (under some hypoellipticity hypothesis on
Ly,...,Ly) belongs to the space £(X) of smooth functions on X and satisfies

Lj(]S:quZS forj:l,...,n. (11)

However, from the general theory, neither it is clear for which A € ¥ there does
exist a corresponding smooth eigenfunction ¢, nor for which ¢ € £(X) satisfying
the corresponding A does belong to X.

In this paper, we restrict to the case of X = G being a connected Lie group,
with right Haar measure p, and left-invariant differential operators Ly, ..., L,.
In this context, the problem of existence and uniqueness of a joint spectral res-
olution can be stated for the operators dw(Ly),...,dw(Ly,) in every unitary
representation @ of G — the case of the operators Ly, ..., L, on L?(G) corre-
sponding to the (right) regular representation of G — with a possibly different
joint spectrum X, for each representation .

Via techniques due to Nelson and Stinespring [48], we show in that a
sufficient condition for the essential self-adjointness and the existence of a joint
spectral resolution in every unitary representation is that the algebra generated
by L1,..., L, contains a weighted subcoercive operator. This class of hypoellip-
tic left-invariant differential operators, defined by ter Elst and Robinson [15] in
terms of a homogeneous contraction of the Lie algebra g of G, is large enough
to contain positive elliptic operators, sublaplacians and positive Rockland op-
erators (see §2| for details).

Under the same hypotheses on L, ..., L,, we prove that every element of the
joint spectrum ¥ corresponds to a joint (smooth) eigenfunction ¢ of Ly, ..., L,
which is a function of positive type on G, i.e., of the form

¢(z) = (w(z)v,v) (1.2)

for some unitary representation m of G on a Hilbert space H and some cyclic
vector v € H \ {0}. More precisely, in §4| we show that:

(a) for every unitary representation w of G, ¥ coincides with the set of the
eigenvalues relative to the joint eigenfunctions of Lq,..., L, of the form
with 7 (irreducible and) weakly contained in w;

(b) if G is amenable, then 3 coincides with the set of the eigenvalues relative
to all the joint eigenfunctions of positive type;

(c) if L'(G) is a symmetric Banach #-algebra, then ¥ coincides with the set
of the eigenvalues relative to all the bounded joint eigenfunctions.

Recall that, if G has polynomial growth, then L!(G) is symmetric, and this
in turn implies that G is amenable (see [50]). Notice moreover that, on non-
amenable groups, the previous characterization (b) of ¥ cannot be expected,
because of the spectral-gap phenomenon (cf. [56]).



If there exists a compact group K of automorphisms of G such that the op-
erators L1,..., L, generate the algebra of left-invariant K-invariant differential
operators on G, then the theory of Gelfand pairs applies (see, e.g., [22], 59]),
and the joint spectral theory of Lq,..., L, is related to the spectral theory of
the (convolution) algebra of K-invariant L' functions on G, i.e., to the spherical
Fourier transform. The “Gelfand pair” condition, however, is quite restrictive
on the groups G and the systems Ly, ..., L, of operators which can be consid-
ered. Under our weaker hypotheses, we develop in §3|a notion analogous to the
spherical Fourier transform, with several similar features (Plancherel formula,
Riemann-Lebesgue lemma, ...). Finally, in some examples are considered,
involving homogeneous groups and direct products, and moreover we show how
(part of) the theory of Gelfand pairs on Lie groups fits in our general setting.

Some of the results presented here can be found in the literature in the case
of a single operator (n = 1), particularly for a sublaplacian (see, e.g., [35] 36} 11}
39]), often as preliminaries for spectral multiplier theorems. It appears that our
setting is suited for developing a theory of joint spectral multipliers for a family
of commuting left-invariant differential operators on a Lie group (cf. [40] 41]).

Notation

For a topological space X, we denote by C(X) the space of continuous
(complex-valued) functions on X, whereas Cy(X) and C.(X) are the subspaces
of continuous functions vanishing at infinity and of continuous functions with
compact support respectively. If X is a smooth manifold, then £(X) and D(X)
are the spaces of smooth functions and of compactly supported smooth functions
on X; correspondingly, D'(X) and £'(X) are the spaces of distributions and of
compactly supported distributions.

If G is a Lie group, f is a complex-valued function on G and z,y € G, then
we set

Lof(y) = fz™'y),  Raf(y) = flya).

R : 2 — R, is the (right) regular representation of G. For a fixed right Haar
measure 4 on G, R, is an isometry of LP(G) for 1 < p < co. With respect to
such measure, convolution and involution of functions take the form

frgla / flay Nglw) dy,  f*(x) = Alz) fz=T)

(where A is the modular function) and we set, for every representation 7 of G,

n=[ s@ v,
so that in particular

R(g)f =fxg,  w(fxg)=n(g)n(f),  7(Df)=dn(D)n(f)

for every left-invariant differential operator D.



2. Rockland and weighted subcoercive operators

This section is devoted to summarizing and amplifying some of the results of
[15], which are the basis for ours. In order to do this, however, it is useful first
to recall some definitions and facts about homogeneous Lie groups; for more
detailed expositions, we refer to the books [21] 24 [55].

2.1. Homogeneous groups and Rockland operators

A homogeneous Lie algebra is a Lie algebra g with a fixed family of auto-
morphic dilations
5, = eBlogt for t > 0,

where B is a diagonalizable derivation of g with strictly positive eigenvalues.
The eigenspaces W of the derivation B determine a direct-sum decomposition

g=PWr=Wy, & oW, (2.1)
A€ER

(where A\, > --- > Ay > 0 are the eigenvalues of B) such that
[W)\, W)\/] - WA_;_)\/ for all )\, N eR.

Every homogeneous Lie algebra g is nilpotent, i.e., the descending central series

g1 =0, Ont1] = 6 O[]

is eventually null; in particular, g can be identified with the connected, simply
connected Lie group G whose Lie algebra is g.

Let G = g be a homogeneous Lie group, with dilations 6, = eBl8t A
homogeneous norm on G is a continuous function | - |5 : G — [0, +00[ such that

e |z|s = 0 if and only if z is the identity of G;
o [ s = |z]s;
e |:(x)|s = t|z|s for all t > 0.
Two homogeneous norms | - |5, | - |5 on G are always equivalent:
Clzls < |zf5 < Clzls  forallz € G,

for some constant C' > 1 (see [23], §3, or [24], §1.2); moreover, there exists (see
[28]) a homogeneous norm | - |5 which is smooth off the origin and subadditive:

lzyls < |xls + |yls for all z,y € G.

The quantity
k

Qs =trB=> X;dimW;

j=1



is called the homogeneous dimension of g; in fact, we have

w8 (U)) = 9 u(U)

for every measurable U C g. Modulo rescaling (i.e., replacing ¢ with ¢¢ for some
¢ > 0), one can suppose that A; > 1, which shall be always understood in the
rest of the paper, so that in particular Qs > dim g.
The degree of polynomial growth (or dimension at infinity) of G is the unique
Q¢ € N such that
p(K"™) ~ n9e

for every compact neighborhood K = K~! of the identity of G. This definition
does not depend on the chosen dilations, and in fact it makes sense for every
connected Lie group G (with polynomial growth); for a nilpotent group G, we
have the following characterization, where

Tr(x) =min{n e N : z € K"}.

Proposition 2.1 (Guivarc’h). Suppose that G is s-step nilpotent (i.e., g5 #
0 = g[s+1)) and let V; be a complement of gj;41] in gj;) for j=1,...,s. Choose
moreover norms | - |; on the V; and set

»
) = 3 Jayli, (2.2)
j=1

where x = x1 + - - - + x5 15 the decomposition of t € g=V, ®--- ® Vs. Then
|z| ~ 7K (2) for large v € G,

for every compact neighborhood K = K~ of the identity. In particular, G has
polynomial growth of degree

Qo= _ jdimV; =) dimgy > dimg.

j=1 j=1
Proof. See [27], particularly the proofs of Théoréme II.1 and Lemme IL.1. O

A homogeneous Lie algebra g as in is stratified if W7 generates g as
a Lie algebra (this implies that Aq, ..., \; are integers). If G = g is stratified,
then in Proposition one can take V; = W;, so that is a homogeneous
norm on G and Qg = @s. For a general homogeneous Lie group, we have the
following result (cf. also [37]).

Proposition 2.2. Let G be a homogeneous Lie group, with dilations §; and
homogeneous dimension Qs, and let |- |5 be a homogeneous norm on G. Let | -|
be defined as in (2.2), and Qg be the degree of polynomial growth of G.

(i) One has Qs > Qq, with equality if and only if G is stratified.



(i) There exist a,b,c > 0 such that
cHlg < |z <z} for xz € G large (2.3)

(i.e., off a compact neighborhood of the identity). Moreover, we can take
a=0b=1 if and only if G is stratified.

Proof. (i) Decompose g as in . Notice that the subspaces g[,; composing
the descending central series are characteristic ideals of g; since the dilations
¢ are automorphisms, the g, are homogeneous. A homogeneous element of
g[n], being the sum of n-fold iterated commutators of homogeneous elements of
g, has a homogeneity degree which must be the sum of n of the homogeneity
degrees A1 < --- < A of the elements of g; since all these degrees are not less
than 1, the sum is not less than n, therefore gp,,) N Wy = {0} if A < n, so that

A>n

In particular, if G is s-step,

s s k
Qo =) dimgy <> > dimWy <> [N dim Wy, < Qs. (2.5)
n=1 j=1

n=1A>n

We already know that, if G is stratified, then Q¢ = @s. Conversely, if
Qg = Qs, then all the inequalities in must be equalities; this means, first
of all, that the degrees \1,..., Ay are integers and, secondly, that the inclusion
is an equality, so that W, C gj,], but then necessarily W1 generates g —
i.e., G is stratified.

(ii) By the definition of | - | and the equivalence of homogeneous norms, the
inequalities follow easily.

If G is stratified, then also |-|s is (modulo equivalence of homogeneous norms)
of the form , with a choice of the complements V; possibly different to the
one defining | - |; therefore, by Proposition | - |5 is equivalent in the large to
| - | (both being equivalent in the large to some 7k ). Conversely, since

pe({x € G : |x| < r}) ~ rQe, we({x € G : |xls <r}) ~ rQs

for r large, if (2.3) holds with @ = b = 1, then necessarily Qg = Qs, and the
conclusion follows by (i). O

The automorphic dilations §; of a homogeneous Lie algebra g extend to
automorphisms ¢; of its complex universal enveloping algebra U(g), which is
canonically isomorphic to the algebra ®(G) of left-invariant differential opera-
tors on G. An element D € U(g) = ©(G) is said to be homogeneous of degree
Aif

5:(D) =t*D for all ¢ > 0.

A Rockland operator on G is a homogeneous left-invariant differential opera-

tor D € ©(@G) such that, for every non-trivial irreducible unitary representation



7 of G on a Hilbert space H, dr(D) is injective on the space H>° of the smooth
vectors of the representation. In the abelian case (G = R™), with isotropic di-
lations, the notion of Rockland operator reduces to that of constant-coefficient
homogeneous elliptic operator on R™. In the general case, by a theorem of Helf-
fer and Nourrigat (see [30, [44]), combined with a result by Miller (see [45] [14]),
a homogeneous L € ®(G) is Rockland if and only if L is hypoelliptic, i.e., for
every u € D'(G) and every open set Q) C G,

(Lu)lo € £(Q) = ulq € E(Q).

2.2. Weighted bases and contraction of a Lie algebra

A weighted (algebraic) basis of a Lie algebra g is a system A;,..., A4 of
linearly independent elements of g which generate g as a Lie algebra, together
with the assignment of a weight w; € [1,+o0o[ to each A; (j =1,...,d).

Fix a weighted basis on g. We recall some notation from [I5], analogous to
the multi-index notation for partial derivatives on R”, but taking care of the
non-commutative structure. Let J(d) be the set of finite sequences of elements
of {1,...,d}, and J(d) be the subset of non-empty sequences. For every o =

(a1,...,a) € J(d), let || denote the length k of «, and set ||« = Zle Wa, s
A% = Ay, Aa, - - Aq,, (as an element of U(g)),
A = [ [Aass Aasls -] Ay if a € Jy(d).
The fixed weighted basis defines an (increasing) filtration on g:
Fy =span{A[) : a € J,(d), |laf| < A} for X € R;
we have in fact

[F\, Fl.] € Fagp, F\ = ﬂ F, U F\=g.
pn>A AER

Set Iy~ =, <\ Fu; the weighted basis is said to be reduced i

span{A; : w; = A} NF, ={0} for all A. (2.6)

LOur definition of reduced basis is more restrictive than the definition given in §2 of [I5],
where it is only required that A; ¢ Fuj; however, without our restriction, the fundamental
Lemma 2.2 of [I5], which allows to extend the reduced basis to a linear basis compatible with
the associated filtration Fl, is false, as it is shown by the following example. On the free
3-step nilpotent Lie algebra on two generators, defined by

[X17X2]:Y1 [X17Y}:T17 [X27Y}:T27

the weighted basis X1, Xo,Y + 11,71, Ts, with weights 1,1, 3, 3,3, is reduced according to
[I5], but it not compatible with the associated filtration, and cannot be extended since it is
already a linear basis.



Given a weighted basis, it is always possible to remove some elements from it,
in order to obtain a reduced basis of g which defines the same filtration. A
weighted Lie algebra is a Lie algebra with a fixed reduced (weighted) basis.

Notice that, for every choice of a system of linearly independent generators
Aq,..., Ay of a Lie algebra g, the assignment of weights all equal to 1 always
gives a reduced basis, so that every (finite-dimensional) Lie algebra admits a
weighted structure. Notice moreover that, if g is a homogeneous Lie algebra,
every system of linearly independent generators Ay, ..., Ay of g made of homo-
geneous elements, with the weights equal to the respective homogeneity degrees,
is a reduced basis of g; such a basis is said to be adapted to the homogeneous
structure of g. A weighted homogeneous Lie algebra is a homogeneous Lie alge-
bra with a fixed adapted basis.

Let g be a weighted Lie algebra, and let the filtration (F))x be defined as
before. We can then consider the associated homogeneous Lie algebra (cf. [7],
811.4.3): the filtration determines a finite set of weights A1, ..., \g, with

1< A <o < A
defined by the condition F, # F;7 for j = 1,...,k; if we put Wy = F\/Fy,

then
g =P =Wy, @ aW,

AER
is a homogeneous Lie algebra, with weights A1, ..., Ag.
Since the fixed weighted basis Aj,..., Ay is reduced, the corresponding
weights wq,...,wy are among the weights Aq,..., Ay of the filtration; more-

over, if flj is the element of the quotient W,,; corresponding to A; € F,;, then
Ay, ..., Aq is an adapted basis of g., with the same weights wy, ..., wq (cf. [15],
Lemma 2.2 and Proposition 3.1). The homogeneous Lie algebra g., with the
fixed adapted basis A, ..., Ag, is said to be the contraction of the weighted Lie
algebra g.

Notice that, if g is a weighted homogeneous Lie algebra, then g, is canonically
isomorphic to g.

A weighted Lie group is a connected Lie group G whose Lie algebra g is
weighted. The contraction G, of a weighted Lie group G is the homogeneous
Lie group whose Lie algebra is g..

2.8. Control distance and volume growth

Let G be a weighted Lie group. Let Aj,..., A; be the fixed reduced basis
of its Lie algebra g, with weights wy,...,wg. For s € {0,00,*} and € > 0, let
Cs(g) be the set of absolutely continuous arcs v : [0,1] — G such that

k
V()= ¢i(t) Ajlyy  forae te0,1],
j=1



where
£ if s =0,
lp;(E)| < <€ if s = o0, fort€[0,1], 5=1,...,k; (2.7)
min{e, %} if s = %,
for z,y € G, we define then
ds(z,y) =1inf{e > 0 : Iy € Cs(e) with v(0) =z, v(1) = y}.

It is not difficult to show that dy, do and d, are left-invariant distances
on G, compatible with the topology of G. In fact, do, is the classical “un-
weighted” Carnot-Carathéodory distance associated with the Hormander sys-
tem Ayp, ..., A (cf. [57], §IIL.4), while dy is a “weighted” Carnot-Carathéodory
distance (similar to the ones studied in [47]). Moreover, for z,y € G, we have

do(z,y) <1 <= deo(z,y) <1 <= di(z,y) <1,

and the same holds with strict inequalities. Finally,

dO (l’, y) for d* (I’ y)
dOO ((E, y) fOI‘ d* ((E, y)

We call d, the control distanceEI on the weighted Lie group G.
The control distance d. induces a control modulus | - |« on G, given by

<1
dy(z,y) = ="
(z,9) o1

|9l = d.(e, 9).

Moreover, if B, denotes the d.-ball with radius r centered at the identity of G,
then
w(B,) ~ 19 for r <1,

where Q) is the homogeneous dimension of the contraction g. (see [I5], Propo-
sition 6.1). On the other hand, the growth rate of u(B,) for r large coincides
with the (intrinsic) volume growth of the group G (cf. [57], §II1.4); in particular,
if G has polynomial growth of degree ¢, then

w(B,) ~ r@c for r > 1.

2Notice that the definition of the control distance by ter Elst and Robinson in §6 of [I5]
(see also [13]) is different from the one given here, and coincides with our distance dg. Their
definition has the advantage that, in the case of a homogeneous group with an adapted basis,
the modulus | - |p induced by dp is a homogeneous norm; on the other hand, this shows (by
taking, e.g., any non-stratified homogeneous Lie group, cf. Propositions and that in
general dp is not a “connected distance” as in [57], §II1.4. Nevertheless, in the whole papers
[2, 13| [15] it is understood that dg is “connected”.

By a careful examination of their proofs, one sees that the specific properties of dog are used
only for small distances, whereas in the large only “connectedness” is used. Therefore, our
modified definition of the control distance d fixes the problem (as it has been confirmed to us
by ter Elst in a private communication). As a side-effect, since d.« > dop everywhere, the heat
kernel estimates obtained with this modification (see Theorem e)) are stronger than the
ones claimed by ter Elst and Robinson (which are therefore true a posteriori).



2.4. Weighted subcoercive forms and operators

Let G be a weighted Lie group, with reduced basis Aq,..., Ay of its Lie
algebra g, and weights wy, ..., wy. In this context, a form is an element of the
free (non-commutative associative unital) algebra over C on d indeterminates
X1,...,Xg4; in other words, a form is a function C : J(d) — C null off a finite
subset of J(d), which can be thought of as the non-commutative polynomial

> Cla
acJ(d)

The degree of the form C'is the number
max{[laf| : a € J(d), C(a) # 0}.

If C is a form of degree m, then its principal part is the form P : J(d) — C
which is given by the sum of the terms of C' of degree m:

Plo) = {c<a> if llal| = m,

0 otherwise.

A form is said to be homogeneous if it equals its principal part. The adjoint of
a form C is the form C defined by

CT(a) = (-1)*C(a.),

where a, = (ag,...,a1) if o = (a1,..., k).
To each form C, we associate a differential operator dRg(C) € ©(G) b

setting
dRa(C)= > C(a)A
acJ(d)

More generally, if 7 is a representation of G, we define

dn(C) = dr(dRa(C)) = Y Cla
aeJ(d)

Notice that we have
dRg(C1) = dRg(C)T,
where, for D € D(G), D denotes its formal adjoint (with respect to the right
Haar measure ), i.e., the element of ©(G) determined by
(Df.g)=(f,D"g)  forall f,g€D(G),

where (f,g) = [, fgdu.
If 7 is a representation of G on a Banach space V, we define seminorms and

norms on (subspaces of) V by

Ny s(x) = dr(X® ; s = dm(X* )
o) = g 4 CXl el = ey Xl

10



for s € R, s > 0; these quantities are certainly defined on the space V*° of
smooth vectors of the representation. If 7 is the right regular representation of
G on LP(G), we use the alternative notation Ny, || - ||p;s for the (semi)norms,
and LP*°(G) for the space of smooth vectors.

A form C of degree m is said to be weighted subcoercive on G if m/w; € 2N
for + = 1,...,d and if moreover the corresponding operator satisfies a local
Garding inequality: there exist p > 0, v € R and an open neighborhood V of
the identity e € G such that

R(¢, dRG(C)¢) = p(Naym/2(9))* — vl|¢ll3

for all ¢ € D(G) with supp¢ C V. In this case, the operator dRg(C) is called
a weighted subcoercive operator.

Let G be the contraction of G, with Lie algebra g,. Since A1,..., Ay induces
a reduced basis Aj,..., A4 on g, (with the same weights), we can associate to
a form C both a differential operator dRg(C') on G and a differential operator
dR¢,(C) on G,: in some sense, dRg,(C) is the “local counterpart” of the
operator dRg(C). The next theorem clarifies the relationship between the two
operators.

Theorem 2.3 (ter Elst & Robinson). Let C' be a form of degree m, whose
principal part is P, such that m/w; € 2N for i = 1,...,d. The following are
equivalent:

(i) C is a weighted subcoercive form on G;
(ii) dRq, (P + P1) is a positive Rockland operator on G.;
(iii) there are constants > 0, v € R such that, for every unitary representa-
tion ™ of G on a Hilbert space H,

Rz, dn(C)z) = pllally /o = viloll3

for all x € H>;
(iv) there is a constant p > 0 such that, for every unitary representation w of
G, on a Hilbert space H,

Rz, dr(P)z) 2 (N 2(2))?

for all x € H>.

Moreover, if these conditions are satisfied, for every representation m of G on a
Banach space V, we have:
(a) the closure of dm(C') generates a continuous semigroup {S¢}i>0 on V;

dm

(b) fort >0, S¢(V) C V>, and moreover V> =\ _, D(dr(C) );

(¢c) if © is unitary, then dr(C) = dn(CT)*;

11



(d) there exists a representation-independent kernel ky, € LY N C§(G) (for
t > 0) such that

dr(X*)Six = (A% )x = / (Aakt)(g)w(gfl)x dg
G
forallaoe J(d), t >0, z € V;

(e) the kernel satisfies the following “Gaussian” estimates: for all o € J(d)
there exist b,c,w > 0 such that

m1/(m—1)
|A%k(g)] < ot e“’te_b(‘glt* )

for allt > 0 and g € G, where Q. is the homogeneous dimension of g.
and | - |« is the control modulus;

(f) for all p >0, the map t — k; is continuous |0, +o00] — LY (G, erl®!+ dx)
and, for all « € J(d), there exist c,w > 0 such that

Lol .
)

A%kl L1 (G erlein do) S 7€

(g) the function

_J0 fort <0,
Kt x) = {kt(ac) fort >0,

on RXG satisfies (% + dR¢(C)) k = & in the sense of distributions, where
0 1is the Dirac delta at the identity of R x G.

Proof. This theorem is a summary of results contained in [I5], except for (f),
since in Theorem 7.2 of [I5] it is only stated that the map ¢ — k; is continuous
10, +o00[ = LY(G,ef®l+ dz). However, the weighted L' estimates for A%k, in
(f) are obtained by integration of the pointwise estimates (e), since the volume
growth of a connected Lie group is at most exponential (cf. [27]). Moreover, by
the semigroup property, we have

A% (kyps) = ko % (A%,) (2.8)

and, since A%k, € L'(G,ef®l* dz), the required continuity follows from the
properties of convolution. O

Corollary 2.4. With the notation of the previous theorem, if C' is a weighted
subcoercive form on G, then the function k(t,x) = ki(x) is smooth off the iden-
tity of R x G, and the operator dRq(C') is hypoelliptic.

Proof. From Theorem g) we deduce that, for every r € N\ {0}, the distri-
bution

(0] = (=dRg(C))")k (2.9)
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is supported in the origin of R x G. In particular, if ¢ € D(]0,+oo[) and
¢ € D(G), by applying (2.9) to ¢ ® 1) we get

-1y / " (k) SO dt = / T ((dRG(C)) ke, ) B0 d.

Since both t + k; and t — (—dRg(C))"k; are continuous ]0, +oo[ — L'(G) by
Theorem [2.3{f), this identity holds also for all 1) € Cy(G). In other words, for
all ¥ € Cy(QG), the r-th distributional derivative of the function t — (k¢, 1) on
10, +00[ is the map
t = ((=dRa(C)) ke, ¥);

since all these derivatives are continuous, the function ¢t — (k;, ) is smooth on
10, +00[, so that also the map t + k; is smooth ]0, +oo[ — L'(G). But then from
it follows easily that ¢ +— k; is smooth ]0, +o00[ — L1°°(G). By Sobolev’s
embedding, we then get that ¢ — k; is smooth ]0, +oo[ — £(G); this gives that
k is smooth on 0, +-00[ x G, and the Gaussian estimates of Theorem [2.3](e) show
that k can be extended smoothly by zero to the whole R x G'\ {(0,¢)}.

Notice that & is the kernel of dR¢(C'T), which is also a weighted subcoercive
operator. If we put

k(t,x) =

- 0 ift>0,
kX, ift<o0,

then & is smooth on R x G\ {(0,e)} and satisfies (=& +dRg(CH)) k=6 in the
sense of distributions. By arguing analogously as in the proof of Theorem 52.1 of
[54], we obtain that 0;+dRq(C) is hypoelliptic on R x G, and the hypoellipticity
of dRG(C) on G follows immediately. O

Corollary 2.5. With the notation of Theorem[2.3, if C is a weighted subcoercive
form on G, then (ki)i>o is an approximate identity on G for t — 0% (cf. [25],
§1.2.4), i.e.,

o k€ LY(G) and limsup,_, o+ ||k:||1 < oo;
e lim;_,o+ fG\U |ki(z)|dz = 0 for all neighborhoods U of the identity of G;
o limy_,o+ [ ki(x)dz =1,

More generally, for every D € D(G), > 0 and every neighborhood U of the
identity of G,

tlirgl+t_5 /G\U |Dky(2)| dz = 0. (2.10)
Proof. If R > 0 is such that
{xeG:|z|. <R} CU,
then, by Theorem [2.3{(e), for ¢ < 1 we have

Foo b(r™ /)1 (m=1)
t*ﬁ/ |Dky(2)| dx < ct*W/ e/ e’"dr
G\U R

13



for some ¢,b,0,v > 0. On the other hand, for t <1 and r > R,

_m__ _m__ _m_ __1
t—’ye—b(r’”/t)l/(mfl)em" < e—b(r""*1 —Rm—1 )+m"e—'ylogt—bR m—1¢ m—1 ,
where the first factor on the right-hand side is integrable on |R, +o00[ and does
not depend on ¢, whereas the second factor is infinitesimal for ¢ — 07 and does
not depend on 7; the limit then follows by dominated convergence.
In particular, we have

lim |k:(z)|dz = 0,
t—0t G\U

and moreover, by Theorem (f), the norms ||k;||; are uniformly bounded for
t small. Finally, if 7 is the trivial representation of G on C and if ¢ = dn(C)1,
then by Theorem [2.3d) we have

/ hi(x) da = w(h)l = e,
G

which tends to 1 as t — 0T. O

In the following, we will consider connected Lie groups G with no previously
fixed weighted structure; then, an operator L € ©(G) will be said weighted
subcoercive on G if L is weighted subcoercive with respect to some weighted
structure on g. In this sense, we can say that every positive Rockland operator
on a homogeneous Lie group is weighted subcoercive (see [I4], Lemmata 2.2 and
2.4, and Theorem 2.5; see also [15], Example 4.4). Moreover, it is easy to check
that, for every choice of a system of linearly independent generators Ay,..., Ay
of a Lie algebra g, the assignment of weights all equal to 1 yields a stratified
contraction g,; in particular, the sublaplacian L = —(A% 4.+ AZ) is weighted
subcoercive. Further, if Ay,..., A4 linearly generate g, then the contraction g.
is Euclidean (abelian and isotropic), and it is not difficult to see that positive
left-invariant elliptic operators on G are weighted subcoercive with respect to
this structure.

3. Algebras of differential operators

Here the existence and uniqueness of a joint spectral resolution for a commut-

ing system Lq, ..., L, of formally self-adjoint left-invariant differential operators
on a connected Lie group G is proved, under the hypothesis that the algebra
generated by Ly, ..., L, contains a weighted subcoercive operator. An analogue

of the (inverse) spherical Fourier transform of Gelfand pairs is also defined, and
its main properties are derived.

In this and the following sections, results from the theory of spectral inte-
gration (as presented, e.g., in [4, [51], [I7]) will be used without further reference.

14



3.1. Joint spectral resolution

In the following, G will be a connected Lie group.

Lemma 3.1. Let D, L € ©(G) and suppose that L is weighted subcoercive and
formally self-adjoint. Then, for some ¥ € N, we have that, for allr > 7, L" + D
18 weighted subcoercive.

Proof. Fix a weighted structure on g with respect to which the operator L is
weighted subcoercive. Then there exists a weighted subcoercive form C' such
that dRg(C) = L, and also a form B such that dRg(B) = D. In fact, since
LT = L, we can suppose that C*+ = C.

Let then P be the principal part of C, so that, by Theorem dRq, (P) is
Rockland. By definition, this implies that, for every » € N\ {0}, P" is Rockland
too. Notice now that, if r is sufficiently large so that P" has degree greater
than that of B, then the principal part of C” 4+ B is P" and this implies, by
Theorem again, that L"” + D = dRg(C" + B) is weighted subcoercive. O

For every D € ©(G) and every unitary representation 7 of G on a Hilbert
space H, the operator dm (D) will be considered as defined on the space H> of
smooth vectors of 7, and notions such as closure or essential self-adjointness are
understood to be referred to this domain]

Proposition 3.2. Let A be a commutative unital subalgebra of D(G) closed by
formal adjunction and containing a weighted subcoercive operator. Then, for
every unitary representation m of G, we have

dr(D) = dr(D1)* forall D € A; (3.1)

moreover, the operators dn(D) for D € A are normal and commute strongly
pairwise.

Proof. Let L € A be weighted subcoercive. Since A is closed by formal ad-
junction, by replacing L with (L + LT)/2, we can suppose that L is formally
self-adjoint (see Theorem [2.3]).

Let D € A. By Lemma 2.3 of [48], in order to prove it is sufficient to
show that dm (DT D) is essentially self-adjoint. However, by Lemma it is
possible to find » € N sufficiently large so that both A = L?" and C' = L?"+D*D
are weighted subcoercive, which implies by Theorem c) that dm(A) and
dn(C) are essentially self-adjoint. The conclusion that dn(D*D) = dr(C) —
dm(A) is essentially self-adjoint then follows as in the proof of Corollary 2.4 of
[43].

3For some particular representations 7 one may be interested in considering other domains
for the operators dm(D): for instance, for the regular representation, one could consider the
space D(G) of compactly supported smooth functions. Theorem 1.1 of [48| shows that for
this and other “reasonable” choices of the domain, the closure of the dr (D) remains unvaried,
thus results about essential self-adjointness do not change.
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From (3.1)) it follows that, for every formally self-adjoint D € A, dn(D) is
essentially self-adjoint. Let now

Q={D?: D=D"c A}.

For all A,B € Q, we have that A, B, (1 + A)(1 4+ B) are formally self-adjoint
elements of A, so that dm(A),dn(B),dr((1 4+ A)(1 + B)) are essentially self-
adjoint, and moreover dn(A + B + AB) is positive (notice that AB € Q); this
implies, as in the proof of Corollary 2.4 of [48], that dw(A) and dr(B) commute
strongly, i.e., they have commuting spectral resolutions.

In order to conclude, it will be sufficient to show that every operator of the
form dr (D) for some D € A is the joint function of some of the operators dm(A)
for A € Q. In fact, let D = Dy 4+ iD5, where

Dy =(D+D%)/2, Dy = (D - D%)/2i

are both formally self-adjoint elements of A. Then
D, (D1 +1/2) D3, (D2 +1/2)?

are all elements of Q, and we can consider the joint spectral resolution F on
R* of the corresponding operators in the representation 7. We then have, for
J=12,

dm(D;) = dr((D;j +1/2)* — D} —1/4) C / fidE,
R4

Where fj()\l,la )\1’27 )\2,1, )\2’2) = )\j72 — )\j’1 — 1/4, SO that also

dn(D) C /R (i +if)dE,  dn(DY) /R (i ifa) A,

by passing to the adjoints in the second inclusion and using (3.1)), we then get

D) = [ (fi+if) dE,
R
and we are done. O

A system Lq,..., L, € D(G) will be called a weighted subcoercive system if
Lq,...,L, are formally self-adjoint and pairwise commuting, and if moreover
the unital subalgebra of ©(G) generated by Li,...,L, contains a weighted
subcoercive operator. From the previous proposition and the spectral theorem
we then have immediately

Corollary 3.3. Let Lq,...,L, € D(G) be a weighted subcoercive system. For

every unitary representation m of G, the operators dm(L1),...,dn(L,) admit a
joint spectral resolution E; on R™ and, for every polynomial p € C[X1,..., X,],
dr(p(Ly,...,Ly)) = / pdE;. (3.2)

In the following, the sign of closure for operators of the form (3.2)) for some
weighed subcoercive system L, ..., L, will be omitted.
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8.2. Kernel transform and Plancherel measure

Let G be a connected Lie group. We denote by Cv?(G) the set of the
distributions k € D’(G) such that the operator f — fk is bounded on L?*(G).
By the Schwartz kernel theorem, there is a one-to-one correspondence between
Cv?(G) and the set of bounded linear operators T on L?(G) which commute
with left translations:

TL, =L,T for all z € G,

thus we endow Cv?(G) with the C*-algebra structure of the latter. We then have
the continuous embedding L'(G) C Cv?(G), which is not dense [46]; the closure
of L'(@) in Cv*(G) (or rather the corresponding set of convolution operators)
is known as the reduced C*-algebra of G.

Let Lq,..., L, be a weighted subcoercive system on G. By applying Corol-
laryto the (right) regular representation on L?(G), we obtain a joint spectral
resolution E of Ly, ..., L,. In particular, for every f € L*°(R", F), we can con-
sider the operator

FL) = f(Ln.. L) = Elf] = [ fdE.

which is a bounded left-invariant linear operator on L?(G), so that it admits a
kernel f € Cv?(G):

f(Lu=uxf  foralueDG).
In place of f , we use also the notation Ky f. The correspondence
Kp:f=Krf
will be called the kernel transform associated with the weighted subcoercive

system Li,...,L,. The previous definitions and the properties of the spectral
integral then yield immediately

Lemma 3.4. (a) Ky, is an isometric embedding of L>°(R"™, E) into Cv?(G);
in particular, for every f € L®(R™, E),

fllowe = 1 fllpe@nmy, — F= ()"
(b) If f,g € L®(R™, E) and § € L*(G), then

(fg)y=f(L)g,

and in particular, if § € D(G), then

(fgy=gx /.
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(¢) If f,g € L®(R™, E), and if g(X\) = X\; f(\) for some j € {1,...,n}, then
g=1Lf
in the sense of distributions.

The resemblance of Ky with an (inverse) Fourier transform goes beyond
Lemma [3.4] and more refined properties of K, follow from the fact that the al-
gebra generated by L4, ..., L, contains a weighted subcoercive operator. In fact,
we can find a polynomial p, with real coefficients such that p.(L) is weighted
subcoercive; by replacing p, with p2" for some large r € N, we may suppose
that p. > 0 on R™ and that moreover, if we set

po(N) = pa(N) + YN +1,
j=1

pk()‘)ZPO()‘)+)‘/€ fork;:1,...,n,

then po(L),p1(L),...,pn(L) are all weighted subcoercive (see Lemma. No-
tice that the polynomials pg, p1, ..., p, are all strictly positive on R™ and

lim pg(A\) = +o0 for k=0,...,n;

A—00

moreover, po(L), ..., pn(L) generate the same subalgebra of ®(G) as Ly,..., L,
do.

Lemma 3.5. The subalgebra of Co(R™) generated by the functions
e Po TP e TP,
is a dense x-subalgebra of Co(R™).

Proof. Since the functions e ™0, e™P1 ... e P~ are real valued, the algebra gen-
erated by them is a #-subalgebra of Cy(R"™).

Notice that e7P° is nowhere null. Moreover, if A, \’ € R™ and A # )\, then
Ak # A, for some k € {1,...,n}, hence

either e PV # e PoN)  or  emPr(N) # e~ Pr(N)

The conclusion then follows immediately by the Stone-Weierstrass theorem. [

Let now Jr, be the subalgebra of Cyp(R™) generated by the functions of the
form e~?, where ¢ is a non-negative polynomial on R™ such that ¢(L) is a
weighted subcoercive operator on G and limy_, o ¢(A\) = +00. Set moreover

Co(L) = Co(L1,...,Ly) = {f : f € Co(R™M)}.

Finally, let > be the joint spectrum of L1, ..., L,, i.e., the support of their joint
spectral resolution F.
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Proposition 3.6. Cy(L) is a sub-C*-algebra of Cv?(G), which is isometrically
isomorphic to Cy(X) via the kernel transform. Moreover

Ki(Je)={J : [ € T}
is a dense *-subalgebra of Co(L).

Proof. For a function f € Co(R™), we have

Ilfllo mn,B) = Slép|f| = Iflzllcocs)-

Since every g € Cy(X) extends to an f € Cy(R™) by the Tietze-Urysohn
extension theorem, the first part of the conclusion follows immediately from
Lemma [3.4(a). The second part follows instead from Lemma O

The results on weighted subcoercive operators and their heat kernels imply
that the elements of KCp(J1) are particularly well-behaved. The next propo-
sition, which shows a sort of commutativity between joint functional calculus
of Ly,...,L, and unitary representations of G, is a multivariate analogue of
Proposition 2.1 of [39].

Proposition 3.7. For every f € J, we have f € L¥°(G) N C&(G) and
moreover, for every unitary representation w of G,

9]

m(f) = fldm(L1), ..., dm(Ln)).
If G is amenable, the last identity holds for every f € Co(R™) with f € LY(G).

Proof. Suppose first that f is one of the generators e™? of J;. Then, by Corol-
lary and the properties of the spectral integral,

e~U(dn(Ly), ..., dn(Ly,)) = e @@L,

and, since ¢(L) is weighted subcoercive, we obtain from Theorem d) that
Kr(e™9) € LY*° N C(G) and e~ 4(dn(Ly,...,Ly,)) = n(Kr(e™?)). The result
is easily extended to every f € J;, by Lemmal[3.4] the properties of convolution
and those of the spectral integral.

Suppose now that G is amenable, f € Cy(R™) and fe L'(G). By Proposi-
tion we can find a sequence f; € Jr, which converges uniformly to f on R™.
This implies in particular, by the properties of the spectral integral, that

Fi(dr(Ly), ... dr(Ly,)) — f(dr(Ly),. .. dr(Ly))

in the operator norm, but also that f] — fin Cv2(G). Since G is amenable,
the representation 7 is weakly contained in the regular representation (see [26],
83.5), so that also ﬂ(fj) — 7(f) in the operator norm. But then the conclusion
follows immediately from the first part of the proof. O

19



We are now going to exploit the good properties of the kernels in K, (J7)
to obtain a Plancherel formula for the kernel transform Kp. It should be no-
ticed that, in the context of commutative Banach x-algebras, a general abstract
argument yielding this kind of results is available (see §26J of [38], and also
Theorem 1.6.1 of [22]). However, we believe that additional insight is provided
by the explicit construction presented below, which follows essentially [11], with
some modifications due to our multivariate and possibly non-unimodular set-
ting.

Proposition 3.8. If f € L*°(R", E) is compactly supported, then
fe L nCcE(a).

Proof. Let & = e~ '+ for t > 0, so that & € L¥*°(G) N C5°(G).

Since f is compactly supported, f = ¢g& with g = f/& € L®(R™ E),
so that f = g(L)& € L2(G) by Lemma Analogously, being g compactly
supported, also § € L2(G), but then f = & (L)j = § * £ € L¥°N C§°(@), by
Lemma [3:4] and properties of convolution. O

Thus we have plenty of kernels f which are in L?(G); as we are going to see,
the L?-norm can be interpreted as an operator norm of a convolution operator.
Let || - ||5 denote the L? norm with respect to the left Haar measure Au (where
A is the modular function), and correspondingly || - ||5_,., the operator norm
from L?(G,Ap) to L°(G); then it is easily shown that

Lemma 3.9. For all f € L*™(E), we have fe L?(G) if and only if

Hf(L)HQ—)oo < 00,

and in this case ||f|l2 = || f(L)

‘We are now able to obtain a Plancherel formula for the kernel transform.

Theorem 3.10. The identity

o(A) = ||E(A)|? for all Borel A C R"

200

defines a regular Borel measure on R™ with support X, whose negligible sets
coincide with those of E and such that, for all f € L*>(F),

[ 1B o =1 = 1B

Proof. Clearly o()) = 0. Moreover, ¢ is monotone: if A C A’ are Borel subsets
of R™ and 0(A’) < oo, then, by Lemma Xa € L?(G), so that, by Lemma
also

Xa=E(A)xa € LX(G) and  [Xall2 < [[Xar]2
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We now prove that o is finitely additive. Let A, B C R" be disjoint Borel
sets. By monotonicity, we may suppose that o(A),o(B) < oo. Then, by
Lemma [3.9] both X, Y5 € L*(G), but

E(AuB) =E(A) + E(B),
so that clearly Yaup = Xa + XB € L?(G), and moreover, by Lemma
o(AUB) = [[Xaunl3 = [IXallz + [X5l3 = o(4) + o(B),

since Y4 = E(A)Ya L E(B)Xp = X5 in L*(G) by Lemma[3.4]
Finite additivity implies that, if A; (j € N) are pairwise disjoint Borel
subsets of R" and A = J; 4;, then

> a(4)) < a(A).
J
In particular, if the sum on the left-hand side diverges, then we have an equality.
Suppose instead that the left-hand side sum converges. Then, as before, the X,
are pairwise orthogonal elements of L?(G), and their sum converges in L?(G)

to some k € L*(G) such that |[k||5 = >, 0(A;). But then, if u € D(G), we have
that, on one hand, by Lemma [3.9

Z ukXa; =uxk uniformly,
J

and, on the other hand,

Zu ¥ XA, = Z E(Aj)u=E(Au  in L*(Q),

which gives, by uniqueness of limits and arbitarity of u € D(G),
Xa=keL*G) and  o(A) = k3= o(4).
J
It is immediate from the definition that a Borel subset of R™ is o-negligible
if and only if it is E-negligible; in particular suppo = supp £ = .

By Proposition o(A) = [xa(D)|3_, = IXal3 is finite if A C R™ is
relatively compact. We can then conclude, by Theorem 2.18 of [52], that o is

regular.
Notice that, for all Borel A C R™ with o(A) < oo, o coincides with the
measure (FE(-)Xa,Xa) on the subsets of A: in fact, for all Borel B C R™,

(E(B)Xa;Xa) = [XanBl3 =0(ANB)
by Lemmata and In particular, for all f € L>°(FE) with supp f C A,

[ 1= [ 1O (BN xa) = DDA = 11 = IS,
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by the properties of the spectral integral and Lemmata [3.9] and [3.4}
Take now a countable partition of R™ made of relatively compact Borel
subsets A; (j € N). Then, for every f € L>(R", E), analogously as before we

obtain
IF (D)5, ZIIE 13, ZII’CL Fxa)lls,

and putting all together we get the conclusion. O

The measure o of the previous proposition is called the Plancherel measure
associated with the system Lq,..., L,. Notice that

L®[R", E) = L®(0).

We now show that the estimates (for small times) on the heat kernel of
weighted subcoercive operators give information on the behaviour at infinity of
the Plancherel measure. In the following | - |2 shall denote the Euclidean norm.

Proposition 3.11. The Plancherel measure o on R™ associated with a weighted
subcoercive system Ly, ..., L, has (at most) polynomial growth at infinity.

Proof. If £&,(\) = e~ (N then, for every r > 0,
o({p. <r}) = ||X{p*§7‘}‘|%2(a) < 62||§1/r||%2(o) = 62||51/r||2L2(G)-

Since & is the heat kernel of the operator p, (L1, . .., L), Theorem 2 (e f) gives,
for large r,
a({p. <r}) < Oro/m,

where m is the degree of p.(L4,...,L,) with respect to a suitable weighted
structure on g, and Q. is the homogeneous dimension of the corresponding
contraction g,. In particular, if d is the degree of the polynomial p,, we get, for
large a > 0,

o({X M2 < a}) < o({p. < CA+a)"}) < C(1+a)%Ym,
which is the conclusion. =

The proof of Proposition shows that the degree of growth at infinity of
the Plancherel measure o is somehow related to the “local dimension” @, of the
group with respect to the control distance associated with the chosen weighted
subcoercive operator (see . In We will obtain more precise information
on the behaviour of ¢ under the hypothesis of homogeneity.

By Theorem Krlr2nn=(0) extends to an isometry from L?(o) onto a
closed subspace of L?(G). We give now an alternative characterization of this
subspace. Namely, let I'2 be the closure of K (Jz) in L*(G).

Proposition 3.12. ICL\Lszoo(J) extends to an isometric isomorphism

L*(o) — T2.
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In fact, this result follows immediately from Theorem and the following
Lemma 3.13. J;, is dense in Li(o) for 1 < g < oco.

Proof. Since o has polynomial growth at infinity (see Proposition, whereas
the elements of J;, decay exponentially, it is easily seen that Jj, is contained
(modulo restriction to ¥) in L' N L>(o). Since o is a positive regular Borel
measure on R, in order to prove that the closure of J;, in L9(o) is the whole
L%(o), it is sufficient to show that C.(R™) is contained in this closure (see [52],
Theorem 3.14).

Let then m € C.(R™). By Lemma we can find a sequence my € Jr,
converging uniformly to m, so that supy [|[mgllcc = C < oco. Thus, for every
t > 0, mpe 0 converges uniformly to me~'°  dominated by Ce~t° € Li(o),
and consequently mge™P0 — me~tP° also in L4(c); we then have that me=tPo
is in the closure of Jp, in L9(o) for all ¢ > 0, and by monotone convergence also
m is in this closure. O

We now prove a sort of Riemann-Lebesgue lemma for IC;l.

Proposition 3.14. For every bounded Borel f : R™ — C with f € LY(G), we
have

£l o) < 111,
and moreover
Hm | f X¢x: ao>et Lo (o) = 0.

r—-+00
Proof. The first inequality follows immediately from Lemma [3.4] and Young’s
inequality. y
Let & = e tPo, Then, by Corollary & is an approximate identity for
t — 0F. In particular, if f € L*(G), then
Ki(fé)=f+&—f  inL'(G)

for t — 0%, which implies, by the first inequality, that

1. 1 - ©(g) — 0

Jm L= &)z

Therefore, for every e > 0, there exists ¢ > 0 such that ||f(1 — &)z~ < &
since po(A) = 400 for A — oo, we may find r > 0 such that

e Xta: Az r} oo < 1/2,

but then necessarily ||f x{x:|rj>r} lloo < 26. O

An analogous (and neater) result for K is obtained under the additional
hypothesis of unimodularity.

Proposition 3.15. If G is unimodular and f € L* N L (), then f € Co(G)
and

1 lloo < 1£ 122 -
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Proof. Since f € L' N L*> (o), for some Borel g1, go : R* — C we have

f=qg and  |gi]*=|g* = |f];

in particular, g, g2 € L? N L>(o). Therefore §;,g> € L?(G) by Theorem
and

o

f=01%g2

by Lemma which gives the conclusion by Young’s inequality (see [33], The-
orem 20.16). O
3.3. Change of generators

Let Lq,..., L, be a weighted subcoercive system on a connected Lie group
G. Let o be the associated Plancherel measure on R", and ¥ = suppo. For
given polynomials Pi,..., P, : R™ — R, consider the operators

Ly =P(Ly,...,Ly), ..., L., =P(Ly,...,Lyp),

and suppose that they still form a weighted subcoercive system. Let ¢’ be the
Plancherel measure on R" associated with the system Li,...,L,, and ¥’ its
support. We may ask if there is a relationship between the transforms Ky and
K+, and between the Plancherel measures o and o’.

Let P:R™ — R"™ denote the polynomial map whose j-th component is the

polynomial P;.
Lemma 3.16. The map Pl : X — R™ is a proper continuous map.

Proof. Since L},..., L, is a weighted subcoercive system, we can find a non-

negative polynomial @ : R* — R such that Q(L) = Q(P(L)) is a weighted
subcoercive operator. By Theorem iii)7 for sufficiently large C' > 0 and
k € N, we have that

max | L[|z < CJI(1 + QP(L)*)glla  for ¢ € D(G),

which means, by the spectral theorem, that
max |\;| < C(1+ Q(P(\)¥) for A e X,
J
since X is the joint spectrum of Lq,..., L,.

Now, if K C R™ is compact, then by continuity there exists M > 0 such
that Q|x < M, but then

max [\;| < C(1+ M%) for e XN PY(K),
J

thus P~1(K)NY is bounded in R™, and also closed (by continuity of P), therefore
P7Y(K) is compact. O
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Proposition 3.17. For every bounded Borel m : R™ — C, we have:
m(L") = (mo P)(L), Krm = Kg(mo P).

Moreover

Proof. The first part of the conclusion follows immediately from the spectral
theorem and uniqueness of the convolution kernel. From this, the identity ¢’ =
P(o) is easily inferred by Theorem In particular,

o(R"\ PTH(Y)) = o (RY \ 2) =0,

i.e., by continuity of P, P(¥) C ¥'.

In order to prove the opposite inclusion, we use the fact that Ply is proper
(see Lemma. Take M € Y/, and let By, be a decreasing sequence of compact
neighborhoods of A’ in R such that N Br = {\'}. By definition of support,
we then have o(P~Y(By)) = o'(By) # 0, therefore P~Y(B) N # () for all k.
Since Py, is proper, we have a decreasing sequence P~1(Bj) NS of non-empty
compacta of R™, which therefore has a non-empty intersection. If A belongs to
this intersection, then clearly A € ¥ and moreover P(\) € By for all k, that it,

PN =N. O
A particularly interesting case is when L], ..., L!, generate the same subal-
gebra of ®(G) as Li,...,L,. In this case, there exists also a polynomial map
Q=(Q1,...,Qn) : R" — R"™ such that
Li=Qi(L), ..., L,=0Q.(L").

Notice that in general P and @ are not the inverse one of the other: from the
spectral theorem, we only deduce that (Q o P)|y = idy, (P o Q)| = idy (in
fact, these identities extend to the Zariski-closures of 3 and ¥'). In particular,

P‘EIZ*)E/, Q|g/:2/—)2

are homeomorphisms.

Another way of producing new weighted subcoercive systems from a given
one is via the action of automorphisms of G. Namely, if & € Aut(G), then its
derivative k' is an automorphism of g, therefore it extends to a unique filtered
x-algebra automorphism of ®(G) = U(g) (which shall be still denoted by k'),
and clearly

K(Ly),...,k (L) (3.3)

is a weighted subcoercive system on G. Notice that, for every k € Aut(G), the
push-forward via k of the right Haar measure p on G is a multiple of p, and in
fact there is a Lie group homomorphism ¢ : Aut(G) — RT such that



In particular, if we set
Tpf=fok™

for k € Aut(G), then the properties of the spectral integral and those of convo-
lution give immediately

Proposition 3.18. For k € Aut(G), T} is a multiple of an isometry of L*(G);
more precisely
T f1I5 = (k) 113

Moreover, for all D € D(G),
k' (D) = Ty DT} "
In particular, for every bounded Borel m : R™ — C,
m(k'(L1), ..., k' (Ly)) = Tem(La,. .., Ly)T; ',
and consequently
Kirpym = c(k)TpKrm.

Let O be the unital subalgebra of ©(G) generated by L, ..., L,. For any
automorphism &k € Aut(G), we say that O is k-invariant if £(OQ) C O, or equiv-
alently, if k(O) = O (the equivalence is due to the fact that &’ is an injective
linear map preserving the filtration of ©(G), which is made of finitely dimen-
sional subspaces).

Let Aut(G; O) denote the (closed) subgroup of Aut(G) made of the auto-
morphisms k such that O is k-invariant. If & € Aut(G;O), then must
be a system of generators of O; therefore, we can choose a polynomial map
Py = (Pra,...,Pypn) : R" — R"” such that k(L) = Py ;(L). Hence, by putting
together Propositions and we get

Corollary 3.19. If k € Aut(G; O), then, for every bounded Borel m : R" — C,
(mo Py)(Li,...,Ly) = Tum(Ly, ..., L) Ty

and
ICL(m o Pk) = c(k)TleLm.

Moreover,
Pi(o) = c(k)o, P.(X)=1%.

In particular, the restrictions Py|s (which are univocally determined by k)
define an action of the group Aut(G; O) on the spectrum ¥ by homeomorphisms;
more precisely

Proposition 3.20. The map
Awt(G;0) x X3 (k,\) = Pp1(A) € X (3.4)

is continuous, and defines a continuous (left) action of Aut(G;O) on X.
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Proof. Recall that ¥ may be identified, as a topological space, with the Gelfand
spectrum of the sub-C*-algebra Cy(L) of Cv?(G), where A € ¥ corresponds to
the multiplicative linear functional v defined by vy (m) = m(A). By Corol-
lary [3:19] we then deduce

Yp(x) = c(k)a o Tk,

which clarifies that defines a left action on 3. Moreover, since Cy(L) N
L'(G) is dense in Cy(L) (see Proposition, and since ¢(k)Ty, is an isometry of
Cv?(G), we obtain easily that k + ¢(k)Tju is continuous for every u € Cv?(G).
Therefore, since the topology of the Gelfand spectrum is induced by the weak-x
topology, we immediately obtain that is separately continuous, and also
jointly continuous since the 1) have uniformly bounded norms. O

In conclusion, the richer the group Aut(G;O) is, the more we may deduce
about the structure of the spectrum ¥ and the Plancherel measure . An
example of this fact is illustrated in

4. Spectrum and eigenfunctions

Let Lq,..., L, be a weighted subcoercive system on a connected Lie group
G. We keep the notation of §3.2] Notice that every m € Jy, is real analytic and
admits a unique holomorphic extension to C", which we still denote by m.

Proposition 4.1. Let ¢ € D'(G) be such that, for some A = (A\1,...,\,) € C™,

Lip=X\;jp forj=1,...,n

in the sense of distributions. Then ¢ € E(G), and the previous equalities hold
in the strong sense. Moreover, if ¢ € L*°(QG), then, for every m € J,,

o xm=m(\)e and (h, ¢) = m(X) ¢(e). (4.1)
Proof. From the hypothesis, we get immediately
p+(L)¢ = p(N)o.

Since p. (L) — p«(A) is hypoelliptic by Corollary this implies that ¢ € £(G).
Suppose now that ¢ is bounded. Let e~? be one of the generators of Jr,

and set k; = K1 (e ). Then, for every z € G, also L,¢ is a joint eigenfunction

of Ly,..., L, with eigenvalue \; therefore, by Theorem [2.3|f,g), the function

t— ¢ * k't(ilf) = <Lx¢7 kt>

is smooth on ]0, +oo[, with derivative

t (Leg, —q(L)k) = —q(A) ¢ * k().

Hence we get
¢ x k= e "W,
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since k; is an approximate identity for ¢ — 0 (see Corollary [2.5)). This gives
the former identity of (4.1)) when m is a generator of J;,, and consequently also
for an arbitrary m € Jr; the latter identity follows by evaluating the former in
e. O

The previous proposition shows that the joint eigenfunctions of Lq,..., L,
are smooth, and are also eigenfunctions of the convolution operators with kernels
in K£r(Jr). An analogous result holds in every unitary representation of G.

Lemma 4.2. Let m be a unitary representation of G on H. The following are
equivalent for v € H\ {0}:

(i) v € H™ and v is a joint eigenvector of dn(Ly),...,dnw(L,);
(ii) v is a joint eigenvector of the operators w(m) for m € J.

Proof. (i) = (ii) follows immediately from Proposition [3.7] and the properties of
the spectral integral. For the reverse implication, take m = e P for j = 0,...,n,
so that m(1m) = e~ (47(L) by Proposition by the properties of the spectral
integral, kerw(th) = {0}, therefore w(m)v = cv for some ¢ > 0. This implies
that

v=c tr(m)v e H>,

by Theorem b), and moreover, again by the properties of the spectral inte-
gral,
pj(dm(L))v = (logc)v,

that is, v is an eigenvector of p;(dm(L)) for j =0,...,n. Since
)‘j:pj()‘)_pO(A) fOI‘j:]_,...,TL,
it follows that v is a joint eigenvector of dm(L1),...,dmw(Ly,). O

The link between eigenfunctions on G and eigenvectors in unitary repre-
sentations is given by the joint eigenfunctions of positive type. Recall that a
function of positive type ¢ : G — C is a diagonal coefficient for some unitary
representation 7 of G on a Hilbert space H, i.e.,

¢(x) = (m(x)v,v) (4.2)

for some vector v € H, which can be supposed to be cyclic for 7; in that case,
the representation 7 is uniquely determined by ¢ up to equivalence (see §3.3 of
[20] for details), and ¢ is said to be associated with .

Proposition 4.3. For a function of positive type ¢ on G, the following are
equivalent:

(i) ¢ is a joint eigenfunction of Ly, ..., L, and ¢(e) = 1;

(i) ¢ has the form (4.2)) for some unitary representation m of G on H and
some cyclic vector v of norm 1, where v € H™ is a joint eigenvector of
dTr(Ll)7 RS dﬂ-(Ln);
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(iii) ¢ # 0 and, for allm € Jr, and f € L'(G),
(Mo f,¢) = (f xm, ¢) = (f, o){m, §);

(iv) ¢ # 0 and, for all m € Ty, (M *m*, @) = |(m, ¢)|>.

In this case, moreover, the eigenvalue of L; corresponding to ¢ is a real number
and coincides with the eigenvalue of dm(L;) corresponding to v.

Proof. (i) = (ii). Since ¢ is of positive type and ¢(e) = 1, then ¢ is of the form
for some unitary representation w of G on H and some cyclic vector v of
norm 1. From (i) we have L;j¢ = A;¢ for some A = (A,...,A,) € C". Being
Lq,..., L, left-invariant, if

by(x) = Lyd(x) = (m(x)v, 7(y)v),

then also L;¢, = \j¢,. Since v is cyclic, for all w € H we can find a sequence
(wp)r in span{m(y)v : y € G} such that w,, — w in H; if

Un(z) = (m(@)o,wn),  P(z) = (7(z)0,w),

then the 1,, are linear combinations of the ¢, so that L;i, = A;1, and, passing
to the limit, we also have L;y» = A;4 in the sense of distributions. But then
¥ € E(G) by Proposition Since w € H was arbitrary, we conclude that
v € H*; moreover

(Ajv,w) = Njp(e) = Ljyp(e) = (dm(Lj)v, w),

and again, from the arbitrariness of w, we get dm(L;)v = A\jv for j =1,...,n.
Finally, since dr(L;) is self-adjoint, we deduce that A\; € R.

(i) = (i). Trivial.

(il) = (ili). If m € Jg, by Lemma m(h)*v = m(M)v = cv for some
¢ € C. Since ||v]| =1, we have

(fxm, ¢) = (x(f xm)v,v) = (w(m)m(f)v, v) = &(r(

~
~—
<
<
~

The other identity is proved analogously.

(iii) = (iv). Trivial.

(iv) = (ii). Being of positive type, ¢ has the form for some unitary rep-
resentation 7 of G on H and some cyclic vector v. Then (iv) can be equivalently

rewritten as

[ (m)vl| = [(m(m)v, v)] (4.3)
for all m € Jr. In particular, by taking m = e~'~, which is an approximate
identity for ¢ — 0% (see Corollary , and passing to the limit, we obtain
vl = ||v]|?, so that |[v]| = 1 (since ¢ # 0). Now, for an arbitrary m € J,

(4.3) implies that 7(7m)v cannot have a component orthogonal to v, thus v is an
eigenvector of 7(m), and (ii) follows from Lemma O
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Let Pr be the set of the joint eigenfunctions ¢ of Lq,..., L, of positive
type with ¢(e) = 1. For every ¢ € Pr, by Proposition the corresponding
eigenvalue A is in R™; we then define ¥y, : Pr, — R™ by setting 91 (¢) = A.

Lemma 4.4. If Py is endowed with the topology induced by the weak-x topology
of L*(QG), then the map U : Pr, — R™ is continuous.

Proof. By Proposition for j =0,...,n, we have that
e~ Pi(PL(¢)) — (KL(e7P9), ¢),

which is continuous in ¢ with respect to the weak-x topology of L>*(G). In
particular, if 91, ; : Pr, — R is the j-th component of ¥, for j =1,...,n, then

e VL,i(®) — e*ﬁj(%((ﬁ))/e*po(%(@);

therefore the components of ¥, are continuous Pr, — R. O

Proposition 4.5. The topologies on Pr induced by the weak-x topology of
L>®(G), the compact-open topology of C(G) and the topology of E(G) coincide.
Moreover, the map ¥ : P — R™ is a continuous, proper and closed map.
In particular, the image 91, (Pr) is a closed subset of R™ and its topology as a
subspace of R™ coincides with the quotient topology induced by 9y, .

Proof. Since G is second-countable, the three aforementioned topologies on Pr,
are all metrizable (cf. [43], Corollary 2.6.20). In particular, in order to prove
that they coincide, it is sufficient to show that they induce the same notion of
convergence of sequences.

Let (¢r)r be a sequence in Pr,. If (¢)r converges in £(G), then a fortiori it
converges in C(G). Moreover, since ||¢x|lcc = 1 for all k, convergence in C(G)
implies weak-* convergence in L>°(G) by dominated convergence.

Suppose now that ¢, — ¢ € P with respect to the weak-* topology of
L>(G). Take m = e P+ € Jr, so that m > 0. By Proposition for all
D € ®(G), we then have

_ ¢rxDm _ ¢* Dm
Do = oneny P07 mne)’

in particular, for every x € G, since R,Dm € L*(Q),

(RoDin,¢n) _, (R, Din,)
m(@L(60)  m(L(0))

by Lemma Moreover, again by Lemma m(9L(¢x)) > ¢ > 0 for some c
and all k, so that ||[D¢r|lec < ¢! Drn||1. This means that, for all D € D(G),
the family { D¢y} is equibounded; but then also, for all D € D(G), the family
{D¢y } is equicontinuous, so that the previously proved pointwise convergence
D¢y, — D¢ is in fact uniform on compacta. By arbitrariness of D € D(G), we

have then proved that ¢ — ¢ in E(G).

Doy () =

= D¢(x)
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Let now K C R™ be compact, and take a sequence (¢y)r in Pr such that
U (or) € K for all k. As before, the sequence (¢r)r is equibounded and
equicontinuous, so that, by the Ascoli-Arzela theorem (see [9], §X.2.5), we can
find a subsequence ¢, which converges uniformly on compacta to a function
¢ € C(G), and such that moreover 91, (¢, ) converges to some A € K. It is now
easy to show that ¢ is of positive type and ¢(e) = 1; moreover, for all n € D(G),

so that, by Proposition ¢ is a (smooth) joint eigenfunction of Ly, ..., Ly,
hence ¢ € Pr. Since Py, is metrizable, this shows that ﬁzl(K) is compact in
Pr. By the arbitrariness of the compact K C R"™, we conclude that 9, is proper
and closed (see [§], Propositions 1.10.1 and 1.10.7). O

The following result, together with the Krein-Milman theorem, shows that
the image of 97, does not change if we restrict to the joint eigenfunctions asso-
ciated with irreducible representations.

Proposition 4.6. For A € R", the set 1951()\) 18 a weakly-x compact and convex
subset of L°(G), whose extreme points are the ones associated with irreducible
representations.

Proof. Clearly 1921()\) is convex, whereas compactness follows from Proposi-
tion In order to conclude, it will be sufficient to show that the extreme
points of ﬁzl(A) are also extreme points of the set P; of the functions ¢ of
positive type on G such that ¢(e) =1 (see [20], Theorem 3.25).

Suppose then that ¢ € 19;1()\) is not extreme in Py, i.e.,

¢ = 03¢0 + 07 n

for some ¢g, ¢1 € P; different from ¢ and some 6y, 6; > 0 with 62 +6? = 1. For
k =0,1, we have ¢ (z) = (m(x)vg, vr), where 7y is a unitary representation of
G on Hj, and vy is a cyclic vector of norm 1. If

v = (fovg, 01v1) € Ho D Ha, H = span{(m & m1)(x)v : z € G},

and 7 is the restriction of my @ w1 to H, then it is easy to see that v is a cyclic
vector for 7 and that ¢(z) = (7(z)v,v), therefore by Proposition it follows
that v € H* and that dr(L;j)v = A\jv for j =1,...,n.

If P, : H — Hj is the restriction of the canonical projection Ho ® H1 — Hi,
it is immediate to check that P, intertwines m and 7, and that Pyv = Opwvyg;
hence, for all w € Hy and = € G,

(mi(2)vg, w) = 0,6_1(7rk(ac)ka,w> = 0,:,1<7r(a:)v, Plw).

This identity, together with the arbitrariness of w € Hj, shows that also v, €
H7°. Moreover, since Py, intertwines m(x) and m(x) for all z € G, it is easy to
check that it intertwines also dr(D) and dn (D) for all D € D(G), therefore

dn(Lj)vy, = 0, ' Prdr(Lj)v = \jog
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for j =1,...,n. By Proposition this shows that ¢g, ¢; € 97 (\), thus ¢ is
not even extreme in 9, ' (\). O

In order to relate the joint spectrum of Lq,...,L, with (some subset of)
91 (Pr), we recall the notion of weak containment of representations. If 7, w
are unitary representations of GG, then 7 is said to be weakly contained in w if

lm(OIN < Nlw(HIl - for all f e LYG).

Equivalent characterizations of weak containment can be given involving func-
tions of positive type (cf. also §3.5 of [20] and §3.4 of [12]):

Lemma 4.7. Let w be a unitary representation of G. Let moreover ¢ be a
function of positive type, of the form for some unitary representation w
of G on the Hilbert space H and some cyclic vector v of unit norm. Then the
following are equivalent:

(i) ™ is weakly contained in w;

(ii) [(f: o) < @ ()] for all f € LYG);
(iii) |{f, )| < C|lw(f)| for some C >0 and all f € L*(G).

Proof. (i) = (ii) = (iii). Trivial.
(iii) = (i). Let H be the Hilbert space on which w acts. The hypothesis (iii)
implies that ¢ defines a (positive) continuous functional on the sub-C*-algebra

of B(H) which is the closure of w(L'(G)). By applying Proposition 2.1.5(ii) of
[12] to this functional, one obtains, for f,g € L*(G),

7 (f)m(g)vll* = (g f+ f*x g%, ) < lw(f * f){g*g*,¢) = [w(H)I*m(g)v]l*.

Since v is cyclic and L'(G) contains an approximate identity, the set

{m(g)v : g€ LY(G)}
is a dense subspace of H, therefore the previously proved inequality gives (i). O

For a unitary representation w of G, we denote by Pr . the set of the
functions ¢ € Py, which satisfy the equivalent conditions of Lemma [4.7]

Proposition 4.8. Let w be a unitary representation of G. Then Pr o is a
closed subset of Pr,. Moreover, for every A € R", Pr, 01921()\) is compact and
convex, and its extreme points are the ones associated with irreducible represen-
tations.

Proof. Condition (ii) of Lemma is a convex and closed condition (with re-
spect to the weak-* topology of L>(G)) for every f € L'(G). Therefore Pr,
is closed in Pr, and moreover, for A € R™, since 1921(/\) is compact and convex
(see Proposition , Pr.w NY; (N is compact and convex too.
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In order to conclude, again by Proposition [£.6] it is sufficient to show that an
extreme point ¢ of Pr, o N9¥; " (N) is also extreme in 97 (\). Suppose then that
¢ = (1—0)pg + 0¢, for some ¢y, d; € 97 (\) and 0 < 6 < 1. For f € L'(G),

we have
(L= 0)[(f,00)1> +01(f,00)[> = (f * [*,0) < [lw(f)]?
by Lemma [£.7] and positivity, therefore

[(f00)] < (1=0)"l=(Nl,  [(fro)] <02 =],
and again by Lemma we obtain ¢g, ¢1 € Pr o NI ). O

Theorem 4.9. Let w be a unitary representation of G on a Hilbert space H.
Then V1 (Pr.w) is the joint spectrum of dw(Ly),...,dw(Ly) on H.

Proof. Let E be the joint spectral resolution of dw (L), .. .,dw(L,). The joint
spectrum of dww(Lq),...,dw(L,), i.e., the support of E, can be identified with
the Gelfand spectrum of the C*-algebra F[Co(R™)] (cf. the proof of Proposi-
tion [3.6)), i.e., with the closure in B(H) of {w(m) : m € J.} (see Lemma [3.5]

and Proposition .
In particular, if ¢ € Pr &, then, by Lemma [£.7]

[(m, @) < |lw(m)|  for allm € Jr,

therefore ¢ defines a continuous functional on the C*-algebra E[Co(R™)], which
is multiplicative by Proposition and thus belongs to the Gelfand spectrum
of E5[Co(R™)]. Since

(m, d) =m(IL(9)) for all m € Jg,

(see Proposition [4.1)), the element of supp E corresponding to this functional
is ’L9L(¢)

Conversely, if A € supp F, then we can extend the corresponding character
of E5[Co(R™)] to a positive functional w of norm 1 on the whole B(H) (see
[12], §2.10). Since wo w : L'(G) — C is linear and continuous, there exists
¢ € L*=(@G) such that

(f.0) =w(w(f))  forall feLY(G);

in fact, since w is positive, ¢ must be a function of positive type on G (see [20],
§3.3). Moreover, since w extends a multiplicative functional on E[Co(R™)], it
must be

(T * Mg, @) = (1, ) (M2, @) for all my,mq € Jr.

Therefore, by Proposition ¢ € Pr, and in fact ¢ € Pr o since |(f,d)| <
| (f)|| (see Lemma[£.7). Finally

m(VL(9)) = (M, ¢) = w(@w(m)) =m(A)  forallme Ty,
by Proposition since w extends the character corresponding to A, and con-
sequently ¥7,(¢) = A (see Lemma [3.5)). O
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In particular, the joint L? spectrum ¥ of Lq,..., L, coincides with the set
of eigenvalues 91, (P r) associated with the regular representation R of G on
L?(G). When G is amenable, every unitary representation is weakly contained
in the regular representation (see [26], §3.5), hence

Corollary 4.10. We have

with equality when G is amenable.

Notice that, when G is not amenable, the inclusion can be strict: for
instance, if n = 1 and L; is a sublaplacian, then 0 € 91 (Pr) \ X, since Ly has
a spectral gap (cf. [56]).

Under a more restrictive hypothesis than amenability, viz., the symmetry of
the Banach x-algebra L'(G), we can relate the joint spectrum of Ly, ..., L, to
the Gelfand spectrum of a closed *-subalgebra of L(G) (cf. [34} 35, [36] for the
case of a single operator). Namely, let I'} be the closure of K1,(J) in L' (G). T'}
is a commutative Banach *-subalgebra of L!(G), and also, by Proposition
a dense *-subalgebra of the C*-algebra Cy(L).

Lemma 4.11. Suppose that L*(G) is symmetric. Then every character of T't
extends to a character of Co(L), so that the Gelfand spectra of the two Banach
x-algebras coincide (also as topological spaces).

Proof. Since G is connected and L!(G) is symmetric, then G is also amenable
(see [50], Theorem 12.5.18(e)), so that

Ifllcvz = V/p(f*f)  forall fe LY(G),

where p(f) denotes the spectral radius of f in L'(G) (see [50], Theorem 11.4.1,
and also [49], p. 695). Notice that, since I'} is a closed subalgebra of L(G), for
every f € 'L, the spectral radius of f in I'} coincides with its spectral radius
in LY(G) (see [6], Proposition 1.5.12). Moreover, since L(G) is symmetric, also
I'l is symmetric. Hence, for every character ¢ € &(T'}),

O(f*)=4y(f) forall fely;

since 1(f) belongs to the spectrum of f for every f € I'}, we have

W12 =D f) < p(f*f) = [1F11Z0e-

This shows that every character ¢ € &(I'}) is continuous with respect to the
norm of Cy(L), so that it extends by density to a unique character of Co(L).
Notice that, since I'} is dense in Cy(L) and the elements of &(Cy(L)) have
norms bounded by 1 as functionals on Cy(L), it is easy to check that the topolo-
gies of &(Cy(L)) and &(T'L) coincide. O

Finally we obtain that, if L!(G) is symmetric, then the joint L? spectrum
of Ly,...,L, is the set of eigenvalues corresponding to all the bounded joint
etgenfunctions.
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Proposition 4.12. If L'(G) is symmetric, then the map
A:PLo ¢ (,9) € 6(I)

is surjective. In particular, every multiplicative linear functional on Tt extends
to a bounded linear functional n on L*(G) such that

n(f=g)=n(fnlg)  forall f € LY (G) and g € T}. (4.5)

Moreover
E={XeC": Lijp=\;¢ for some ¢ € L°(G)\ {0} and all j =1,...,n}.

Proof. Let ¢ € &(I't). By Lemma [4.11] 1 extends to a character of Cyp(L),
which corresponds to some A € 3. Now, by Corollary [I.10} there exists ¢ € Py,
such that ¥, (¢) = A, therefore, for every m € Jr,, by Proposition

A()(m) = (m, ¢) = m(IL(¢)) = m(A) = (m),

from which by density we deduce A(¢) = 1.
In particular, if  denotes the linear functional f — (f, ) on L'(G), then n
extends 1) and, by Proposition

n(f xm) =n(f)n(n) for all f € L*(G) and m € J,

from which follows by density.

Finally, notice that every A € ¥ is, by Corollary [£.10] the eigenvalue corre-
sponding to some ¢ € Pr, which is a bounded function. Vice versa, if Lj¢ = \;¢
for some non-null ¢ € L>®°(G) and all j = 1,...,n, then ¢ € £(G) by Proposi-
tion moreover, modulo replacing ¢ with L,-1¢/¢(z) for some z € G with
¢(x) # 0, we may suppose that ¢(e) = 1. This means, again by Proposition
that (-,¢) is a multiplicative linear functional on I'l, hence (-, ¢) = (-,9) on
I'} for some v € Pr, by surjectivity of A. Then necessarily A = 91, (¢)) € ¥ by
Proposition and Corollary since G is amenable. O

5. Examples

5.1. Homogeneous groups
Let G be a homogeneous Lie group, with automorphic dilations §; and ho-

mogeneous dimension Qs. A weighted subcoercive system Ly, ..., L, on G will
be called homogeneous if each L; is d;-homogeneous.
In the following, Lq,...,L, will be a homogeneous weighted subcoercive

system, with associated Plancherel measure o, and 7; will denote the degree of
homogeneity of L;, i.e.,

5t(Lj) = tTij.
The unital subalgebra of ®(G) generated by Ly, ..., L, is §;-invariant for every
t > 0. Therefore, if we set

th = f © 5t*17
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and if we denote by €; the dilations on R™ given by
ec(N) = (" Aq, . 1™ A, (5.1)
then from Corollary [3.19) we immediately deduce

Proposition 5.1. For every bounded Borel m : R® — C, we have
(moe)(L) = Dym(L)Dy-1, (moe)=1t"9mod 1.
Moreover, the support 3 of o is €;-invariant, and
o(e(A)) =t a(A)

for all Borel A C R™. In particular, the Plancherel measure o admits a “polar
decomposition”: if S = {A € R™ : |\|c = 1} for some e;-homogeneous norm |- |,
then there exists a regular Borel measure T on S such that

+oo
o= €(w)) dr(w Q=1 gt
[ pao= [ [ st dr) @ a

In the context of homogeneous groups, an equivalent characterization of
homogeneous weighted subcoercive systems can be given, which is analogous to
the definition of Rockland operator.

Theorem 5.2. Let Ly,...,L, € D(G) be homogeneous, pairwise commuting
and formally self-adjoint.

(i) If Ly,..., Ly is a weighted subcoercive system, then the algebra generated
by Li,...,L, contains a Rockland operator if and only if the degrees of
homogeneity of L1, ..., Ly, have a common multiple.

(i) L1,...,L, is a weighted subcoercive system if and only if, for every non-
trivial irreducible unitary representation w of G on a Hilbert space H, the
operators dn(Ly),...,dw(Ly) are jointly injective on H, i.e.,

dr(Li)v=---=dn(Ly,)v =0 = v=0

for all v € H™.

Proof. Suppose that Ly,..., L, is a weighted subcoercive system. Let p be
a real polynomial such that p(L) = p(L1,...,L,) is a weighted subcoercive
operator. Choose moreover a system Xi,..., Xy of generators of g made of
dt-homogeneous elements, so that §;(Xy) = "+ X for some v, > 0. From
Theorem (iii) we deduce that, possibly by replacing p with some power p™,
there exist a constant C' > 0 such that, for every unitary representation 7w of G
on a Hilbert space H,

ldm (Xy)ol* < C(llo]|* + | dm(p(L)v]*) (5.2)
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forve H>, k=1,...,d. Fix a non-trivial irreducible unitary representation m
of G on a Hilbert space H, and let v € H> be such that

dm(Ly)v =--- =dn(Ly)v = 0.

For t > 0, since 0; € Aut(G), my = 7o J; is also a unitary representation of G;
moreover, it is easily checked that smooth vectors for m; coincide with smooth
vectors for 7, and that

dmy(D) = dm(6,(D)) for every D € ©(G).
In particular,

dmi(p(L))v = dn((poe)(L))v = p(0)v,
thus from (5.2]) applied to the representation m; we get

ldm (X )o]|? < 7201+ |p(0)[*)[|v]|?,
and, for ¢ — 400, we obtain
dr(X1)v =+ =dr(Xg)v = 0.

Since X1, ..., X generate g, this means that the function  — 7 (z)v is constant,
ie.,
m(x)v =v for all z € G,

but 7 is irreducible and non-trivial, thus v = 0.

Suppose now conversely that dn(Ly),...,dn(L,) are jointly injective on H>
for every non-trivial irreducible representation 7 on a Hilbert space H, and that
moreover the degrees rq,...,r, of homogeneity of Lq,..., L, have a common
multiple M. Then

A= L?M/rl T +LiM/rn

is homogeneous of degree 2M and belongs to the subalgebra of ©(G) generated
by Li,...,L,. Moreover, for every irreducible unitary representation 7 of G on
H, and for every v € H*>, we have

(dn(A)v,v) = |[dr(L)M/ " ol3; + - + [|dr (L) M oll3,,

so that, if dr(A)v = 0, then also dn(L;)v =0 for j = 1,...,n, therefore v = 0.
This proves that A is a (positive) Rockland operator, and in particular it is

weighted subcoercive, so that Lq,..., L, is a weighted subcoercive system.
If instead dm(Lq),...,dmw(L,,) are jointly injective for every non-trivial irre-
ducible representation 7, but the degrees of homogeneity of Lq,..., L, do not

have a common multiple, by the results of [45] (see in particular Proposition 1.1
and its proof), we can find another homogeneous structure on G with integral

degrees, with respect to which the operators L, ..., L, are still homogeneous.
In particular the degrees of homogeneity of L1, ..., L, in this new structure must
have a common multiple, so that, by the previous part of the proof, Lq,...,L,
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is again a weighted subcoercive system, and this last notion is independent of
the homogeneous structure.

Finally, if the algebra generated by L, ..., L, contains a Rockland operator,
then (see [45], Proposition 1.3; see also [I4]) the homogeneity degrees of the
elements of g must have a common multiple, and a fortiori this is true also for
the degrees of Lq,..., L,. O

Notice that, while the existence of a Rockland operator on G forces the
homogeneity degrees of g to have a common multiple, this is not the case for
the existence of a homogeneous weighted subcoercive system. For instance,
the system of the partial derivatives —idy, ..., —id, on R"™ is a homogeneous
weighted subcoercive system with respect to any family of dilations of the form

Sp(w1, - wn) = (M, )
for Ay,..., A\, €1, 400].

5.2. Direct products

In order to have a system of commuting operators, the simplest way is to
start from operators living on different Lie groups, and then to consider them as
operators on the direct product of the groups. Here we show that the notion of
weighted subcoercive system is compatible with this construction, in the sense
that weighted subcoercive systems on different groups can be put together in a
single weighted subcoercive system on the direct product.

Forl=1,...,p,let G; be a connected Lie group, and set

G* =Gy x - xG,.
We then have the identification
g>< 291@@99

Moreover, for I = 1,...,0, if D € ©(G;) and D* is the image of D via the
derivative of the canonical inclusion G; — G*, then

D*(fi® ®f)=f1i® @ fi.1®(Dfi)® fir1 @ ® fo

in this case, we say that D* is the differential operator along the I-th factor of
G* corresponding to D € D(G)).

Lemma 5.3. Forl=1,...,0, suppose that Ay 1,...,A;q, is a reduced basis of
g1, with weights wy1,...,wq,. Then

A, Avay, o Agts e Aga, (5.3)
s a reduced basis of g*, with weights

wlyl,...,w17d17...,wg,l,...,wg’dg.
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Moreover, if (Vi x)x is the filtration on g; corresponding to the chosen reduced
basis forl=1,...,p, then

VY =Via® @ Vpa

gives the filtration on g* corresponding to the reduced basis (5.3)); therefore, by
passing to the quotients, we obtain for the contractions

(07)s = (81)« ® -+ © (o)

Proof. An iterated commutator A, of the elements of is not null only
if it coincides with an iterated commutator (A;)jo of Ay 1,..., Ary, for some
Il €{1,...,0} (this can be checked by induction on the length || of the com-
mutator). The identities involving the filtrations then follow immediately, from
which we get easily the conclusion. O

Theorem 5.4. Suppose that D; € D(G)) is a self-adjoint weighted subcoercive
operator on Gy, forl =1,...,0, and let D} € D(G*) be the differential operator
on G* along the l-th factor corresponding to D;. Then

D =(Dy)*+ +(D;)
is a positive weighted subcoercive operator on G*.

Proof. For I =1,...,0, let Aj1,..., A4, be a reduced basis of g;, such that,
for some self-adjoint weighted subcoercive form Cj, we have D; = dR¢, (C)); let
moreover P, be the principal part of C;. Clearly, modulo rescaling the weights
of the reduced bases, we may suppose that the forms Cj,...,C, have the same
degree m.

By Lemma the concatenation of the bases of gi,...,g; gives a reduced
basis of g*. We can then consider, for [ = 1,...,p, the forms C[*, P*
corresponding to Cj, P; but re-indexed on the basis . In particular, if

C=(C) 4+ P=(E) 4 +(P)
then P = P7 is the principal part of C, and moreover
dRgx (C) = (dRg, (C1)*)* + -+ + (dRg,(Co)*)* = D.
On the other hand, again by Lemma [5.3] we have the identification
(G7)s = (Gr)s X -+ X (Gg)s,
so that
dR(gx). (P) = (dR(q,), (P1))? + - + (dR(q,). (P)*)*.

By Theorem we have that dR(q,), (P) is Rockland on (Gy). for [ =1,..., o;
in order to conclude, it is sufficient to show that dRx),(P) is Rockland on
(G7)s

39



If 7 is a non-trivial irreducible unitary representation of G* on a Hilbert
space H, then (see [20], Theorem 7.25) we may suppose that 7 = m ® - - - @ 7,
where 7; is an irreducible unitary representation of GG; on a Hilbert space H; for
l=1,...,0, 50 that H = H1®---©H, and at least one of 71,...,7, is non-
trivial. Let (wy,,),, be a complete orthonormal system for H;, for i =1,...,p,
so that (wy,, ® -+ ® wg,l,g)g is a complete orthonormal system for #. Then,
for every element v = Auy oy Wiy @ o @ wy,, of H, we have

(dm(dR gy, (P))v,v)3

=2 2

=1 v1,...,Vi—1,VI41,Vp

2
)

Ha

dﬂ-l(dR(Gl)* (]Dl)) (Z aul,...,ygwl,yl>

since at least one of the dm; (dRq,). (F1)) is injective (being dR(g,). (F;) Rockland
and 7; non-trivial), this formula gives easily that

v#0 = dr(dR gy, (P))v # 0,
i.e., dn(dR(gx),(P)) is injective. O
Theorems and together with the properties of the spectral integral,
yield easily

Corollary 5.5. For | = 1,...,0, let Li1,...,Lin, € D(G;) be a weighted
subcoercive system. Let moreover lej be the differential operator on G* along
the l-th factor corresponding to L; ;. Then

LYoo LYo LY LY (5.4)

1,ny o, 1’ QMg
is a weighted subcoercive system on G*. Further:

(a) if my is a bounded Borel function on R™ forl=1,...,0, then

Krpxm=Kp,mi @@ Kr,my;

(b) if oy is the Plancherel measure associated with the system Ly 1,...,Ljp,

forl=1,...,0, and if moreover o> is the Plancherel measure associated
with the system (5.4]), then

0¥ =01 X X 0.
5.3. Gelfand pairs

Let G be a connected Lie group. In this paragraph, we describe a particular
way of obtaining weighted subcoercive systems on G, which has been extensively
studied in the literature.

Let K be a compact subgroup of Aut(G). A function (or distribution) f on
G is said to be K -invariant if

Tp.f=f forall k € K.
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We add a subscript K to the symbol representing a particular space of functions
or distributions in order to denote the corresponding subspace of K-invariant
elements; for instance, L% (G) denotes the Banach space of K-invariant LP
functions on G. Since

Ti(f *g) = (Tnf) * (Tkg),  Te(f") = (T f)",

it is immediately proved that L} (G) is a Banach *-subalgebra of L!(G). We
also define the projection onto K-invariant elements:

Py : f }—)/ kadk,
K

where the integration is with respect to the Haar measure on K with mass 1.
This projection satisfies

P (f x (Prg)) = Pk((Px f) * g) = (P f) * (Pkg), P (f*) = (Pxf)".

Among the left-invariant differential operators on G, we can consider those
which are K-invariant, i.e., which commute with T} for all k € K. The set
Dk (G) of left-invariant K-invariant differential operators on G is a *-subalgebra
of (@), which is finitely generated since K is compact (cf. [31], Corollary X.2.8
and Theorem X.5.6). Moreover, ® i (G) contains an elliptic operator (e.g., the
Laplace-Beltrami operator associated with a left-invariant K-invariant metric
on G, cf. [32], proof of Proposition 1V.2.2). Therefore, if one chooses a finite
system of formally self-adjoint generators of © i (G), the only property which
is missing in order to have a weighted subcoercive system is commutativity of
Dk (G).

In fact, under these hypotheses, the following properties are equivalent (cf.
[53], or [59], §8.3):

e D (G) is a commutative *-subalgebra of D(G);
e L} (G) is a commutative Banach *-subalgebra of L'(G).

The latter condition corresponds to the fact that (G x K, K) is a Gelfand pahﬂ
We now summarize in our context some of the main notions and results from
the general theory of Gelfand pairs, for which we refer mainly to [16] [59] BT [32].
In the following, we always suppose that L} (G) is commutative; consequently,
G must be unimodular (cf. [32], Theorem IV.3.1).

41f S is a locally compact group, and K a compact subgroup of S, then (S, K) is said to be
a Gelfand pair if the (convolution) algebra L!(K; S; K) of bi- K-invariant integrable functions
on S is commutative. The study of a Gelfand pair (S, K) involves the K-homogeneous space
S/K. In the case S = G x K, the space S/K can be identified with G, and most of the
notions and results about Gelfand pairs can be rephrased in terms of the algebraic structure
of G (see, e.g., [10, [3]); this has to be kept in mind when comparing the results presented in
the literature with the ones mentioned here. Notice that, according to Vinberg’s reduction
theorem (see [58]), Gelfand pairs in “semidirect-product form” are one of the two structural
constituents of general Gelfand pairs.
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The K-invariant joint eigenfunctions ¢ of the operators in Dk (G) with
¢(e) = 1 are called K -spherical functions. The set & of bounded K-spherical
functions, with the topology induced by the weak-* topology of L*°(G), is identi-
fied with the Gelfand spectrum &(L} (G)) of the commutative Banach *-algebra
L} (@), via the correspondence which associates to a bounded K-spherical func-
tion ¢ the (multiplicative) linear functional f + (f, ¢) on Lk (G). According to
this identification, the Gelfand transform — which is also called the K -spherical
Fourier transform — of an element f € L1.(G) is the function

Grf: 6> ¢~ (f,¢) eC.

Let Px denote the set of K-invariant functions ¢ of positive type on G
with ¢(e) = 1. Then Pk is a closed and convex subset of Py, whose extreme
points are the elements of (’5} = &k N Pk, i.e., the K-spherical functions of
positive type; in particular, by the Krein-Milman theorem, the convex hull of
6} is weakly-* dense in Py . By restricting K-spherical transforms to 6}, one
obtains that

(Gr(FDler = Gr Dl

therefore the map f — (gKf)‘qsIt is a x-homomorphism L (G) — Co(&}) with
unit norm and dense image. Moreover, there exists a unique positive regular

Borel measure ox on (’5}, which is called the Plancherel measure of the Gelfand
pair (G x K, K), such that

/ @) de = / G F(8)[? dorke ()
G (Gt

for all f € LY. N L% (G); further, the map f (gKf)|®; extends to an isomor-
phism L% (G) — L*(&%, 0k).

Choose now a finite system L, ..., L, of formally self-adjoint generators of
Dk (G). As we have seen before, the system L, ..., L, is a weighted subcoercive
system on G. If the map 91 of §4]is extended to all the joint eigenfunctions of
Ly,..., Ly, then it is known (see [I8]) that

19L|Q5K : QSK —C"

is a homeomorphism with its image 91, (® ), which is a closed subset of C™.
Notice that
O C Py Iu(®5) =Vi(Pr);

consequently, for every A\ € 97,(Pr), there exists a unique element of ¥, ' (A\) NPy,
which is a K-spherical function (cf. [32], Proposition IV.2.4).

The embedding 9, allows us to compare the notions of K-spherical transform
Gk and Plancherel measure o of the Gelfand pair (G x K, K') with the notions
of kernel transform K, and Plancherel measure o associated with the weighted
subcoercive system Lq,...,L,. Notice that, in the case of nilpotent G and
Schwartz multipliers, results similar to the following are proved in [I], [19] (cf.
also §1.7 of [22]).
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As a preliminary remark, notice that from Proposition it follows that,
for every bounded Borel m : R™ — C, the corresponding kernel Kym is K-
invariant.

Proposition 5.6. Let f € L}.(G). Then there exists m € Co(R™) such that

G f(¢) =m(IL(d))  for ¢ € &L,

For any of such m, and for every unitary representation m of G, we have
w(f) = m(dn(Ly),...,dw(Ly)),

and in particular
f = ’CLT)’L.

Proof. Since gKf|Q5I+( € Co(6%), and since 19L|®; is a homeomorphism with
its image, which is a closed subset of R™, then by the Tietze-Urysohn extension
theorem we can find m € Cyp(R"™) extending (G f) o (19L|®;)’

By Proposition for every u € Jr and every unitary representation m of

G, we have
(@) = u(dr(L1),...,dn(Ly,));

therefore the map
jLBUHﬂGLl(G)

extends by density (see Proposition to a *-homomorphism
D: CH(R") = C*(G),

and we have
m(®(u)) = uw(dn(Ly),...,dw(Ly))

for all u € Cp(R™) and all unitary representations = of G. The conclusion will
then follow if we prove that f = ®(m) as elements of C*(G).

Recall that every ¢ € P; defines a positive continuous functional wy on
C*(G) with unit norm, extending

LYG) > h~ (h,¢) € C.
In fact, the norm of an arbitrary g € C*(G) is given by

llgll« = sup wy(g*g*)
PEPL

(see [20], Proposition 7.1); therefore, in order to conclude, it will be sufficient
to show that the set A of the ¢ € P; such that

we((f = ®(m)) * (f = P(m))*) =0

coincides with the whole P;.
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Notice that both f and ®(m) belong to the closure C%(G) of LL(G) in
C*(G), and it is easily checked that, for ¢ € Py and g € C(G),
wg(9) = wris(9);

consequently, we are reduced to prove that Px C A. In fact, since A is a closed
convex subset of Py, it is sufficient to prove the inclusion Qi;r( C A.

On the other hand, the functionals wy for ¢ € 05'}; are multiplicative on
L}, (G), thus they are also multiplicative on C(G) by continuity, therefore

wo((f = @(m)) * (f = ®(m))*) = |ws(f — (m))|* = |G f(¢) —m(IL(¢))]> =0
for every ¢ € 6}, and we are done. O

Thus, by applying first G and then Ky, we are back at the beginning. The
composition of the transforms in reverse order is considered in the following
statement, which gives also an improvement of Proposition[3.14]in this particular
context.

Corollary 5.7. Let m : R®" — C be a bounded Borel function such that m €
LY(G). Then m € LY (G) and

Gr(Krm)(p) = m(9L(¢)) for all ¢ € Qﬁ} with 91(¢) € .

In particular m|y € Co(2).

Proof. We already know that 7 is K-invariant, so that 7 € LL.(G). Therefore,
by Proposition we can find u € Cp(R™) such that

Grm(¢) = u(VL(e))
for all ¢ € QS}'(, and we have m = u, i.e.,
m(Ll, ey Ln) = U(Ll, e 7Ln),

which means that m and v must coincide on the joint spectrum ¥ of Ly, ..., Ly,
and we are done. O

Finally, we compare the Plancherel measures ¢ and o

Corollary 5.8. We have
0=0Llg:(0k), oKk = (Llsr) (o).

Proof. Recall that L‘(’fzt is a homeomorphism with its image, which is a closed
subset of R™ containing the support ¥ of o, thus the two equalities to be proved
are equivalent.

Set 6 = (ﬁL\ﬁz)*l(a). Then & is a positive regular Borel measure on &7;.
Moreover, if f € LL N L% (G), then by Proposition there is m € Cp(R™)
such that

Grf(¢) =m(I(¢))  forall ¢ € &L
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and
f=m.

Since f € L*(G), by Theorem we also have m € L?(o), and

s = [ pmias= [ ixs?as

by the change-of-variable formula for push-forward measures. By the arbitrari-
ness of f € L} N L% (G) and the uniqueness of the Plancherel measure of a
Gelfand pair, we obtain that o = &, and we are done. O

We have thus shown that the study of the algebra ® g (G) of differential
operators associated with a Gelfand pair (G x K, K) fits into the more general
setting of weighted subcoercive systems, where in general there is no compact
group K of automorphisms which determines the algebra of operators.

It should be noticed that the hypothesis of Gelfand pair is quite restrictive.
We have already mentioned that, if L} (G) is commutative, then G must be
unimodular. Moreover, the algebra © k (G) always contains an elliptic operator,
while a general weighted subcoercive operator is not even analytic hypoelliptic
(see, e.g., [29]). Further, if G is solvable, then G must have polynomial growth,
and, if G is nilpotent, then G is at most 2-step (see [3]).

In this last case, notice that it is always possible to find a family of auto-
morphic dilations on G which commute with the elements of K, and any system
Ly,..., L, of homogeneous formally self-adjoint generators of D i (G) is a ho-
mogeneous weighted subcoercive system. On the other hand, the results of this
paper can be applied to homogeneous groups which are 3-step or more, and
which therefore do not belong to the realm of Gelfand pairs. Take for instance
the free 3-step nilpotent group N» 3 with 2 generators, defined by the relations

[X17X2] =Y, [XhY] =T, [X27Y] =15,

where X7, X5,Y,T1,T5 is a basis of its Lie algebra, and notice that the group
SO acts on Ny 3 by automorphisms given by simultaneous rotations of RX; +
RX5 and RT +RT5. Although the whole algebra of SOs-invariant left-invariant
differential operators on N33 cannot be commutative, the operators

—(XT+X3), 2XoTy—2X\T,-Y?  —(T7+1T3)

generate a non-trivial homogeneous commutative subalgebra to which our re-
sults apply, as well as they apply to the larger algebra generated by

— (X7 + X3), 2XoTy —2X1To — Y72, —iT7, —iTh

(which is no longer made of SOs-invariant operators).
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