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QUATERNIONIC SPHERICAL HARMONICS AND A SHARP

MULTIPLIER THEOREM ON QUATERNIONIC SPHERES

JULIAN AHRENS, MICHAEL G. COWLING, ALESSIO MARTINI, AND DETLEF MÜLLER

Abstract. A sharp Lp spectral multiplier theorem of Mihlin–Hörmander type

is proved for a distinguished sub-Laplacian on quaternionic spheres. This is

the first such result on compact sub-Riemannian manifolds where the hori-
zontal space has corank greater than one. The proof hinges on the analysis

of the quaternionic spherical harmonic decomposition, of which we present an

elementary derivation.

1. Introduction

Let ∆ be the Laplacian in Euclidean space. The investigation of the relation
between the Lp-boundedness of functions F (∆) of the operator and the size and
smoothness of the “spectral multiplier” F is a classical but still very active area of
research of harmonic analysis, with important open problems such as the Bochner–
Riesz conjecture. Analogous problems have been investigated in non-Euclidean
settings, and a number of optimal results have been proved when the Laplacian is
replaced by a more general self-adjoint elliptic operator on a manifold, such as the
Laplace–Beltrami operator on a compact Riemannian manifold. However, weaken-
ing the ellipticity assumption on the operator by passing to sub-elliptic operators,
whose underlying geometry is considerably more complex than in the Riemannian
case, leads to substantial new challenges, and very little is known about sharp re-
sults in this context. This work is part of a programme aiming at shedding some
light on this problem. Here we consider a sub-elliptic operator in a setting that
presents several new difficulties. Despite these, we are able to prove a sharp spectral
multiplier theorem via a delicate analysis of spherical harmonics on quaternionic
spheres.

Let H be the skew field of quaternions. Recall that H is a 4-dimensional as-
sociative unital algebra over R. Each element x ∈ H may be uniquely written
as

(1.1) x = a+ bi + cj + dk,

where a, b, c, d ∈ R and the quaternionic imaginary units i, j,k satisfy the relations

(1.2) i2 = j2 = k2 = ijk = −1.

For x ∈ H as in (1.1), we denote by <x, =x, x and |x| the real part, the imaginary
part, the conjugate and the modulus of x, given by

<x = a, =x = bi + cj + dk, x = <x−=x, |x| =
√
xx.
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2 J. AHRENS, M. G. COWLING, A. MARTINI, AND D. MÜLLER

Let n ∈ N be greater than 1. We consider Hn as a left H-module. Define the
quaternionic inner product 〈·, ·〉 : Hn ×Hn → H by

〈x, y〉 =

n∑
j=1

xj yj

for all x = (x1, . . . , xn) and y = (y1, . . . , yn) in Hn. The real part <〈·, ·〉 is the usual
R-bilinear inner product on Hn, corresponding to the identification of Hn with R4n.

Let S be the unit sphere in Hn:

S = {x ∈ Hn : 〈x, x〉 = 1}.
Then S is a smooth real hypersurface in Hn, that is, dim S = 4n− 1. As usual, the
tangent space TxS at each point x ∈ S may be identified with a 1-codimensional
R-linear subspace of Hn, given by

TxS = {y ∈ Hn : <〈x, y〉 = 0}.
The restriction of the inner product <〈·, ·〉 to each tangent space determines a
Riemannian metric on S. Unless otherwise specified, integration on S is considered
with respect to the rotation-invariant probability measure σ on S.

Let HS be the tangent distribution on S of corank 3 defined by

HxS = {y ∈ Hn : 〈x, y〉 = 0}
for all x ∈ S. It may be shown that HS is bracket-generating (see [7, 3, 5]). So,
together with the Riemannian metric, it determines a sub-Riemannian structure
on S, whose horizontal distribution is HS. We denote the corresponding intrinsic
sub-Laplacian (see [28, 1]) by L.

A more explicit description of the horizontal distribution HS and the sub-
Laplacian L may be given. It is easily checked that the vector fields

(1.3) Ti : x 7→ −ix, Tj : x 7→ −jx, Tk : x 7→ −kx
are tangent to the sphere S, and that we have the orthogonal decomposition

TxS = HxS⊕ RTi|x ⊕ RTj|x ⊕ RTk|x
for all x ∈ S. Indeed Ti|x, Tj|x, Tk|x form an orthonormal basis of the orthogonal
complement of HxS in TxS for all x ∈ S. Correspondingly, for all real-valued smooth
functions f on the sphere S, the Riemannian gradient ∇Sf may be written as

∇Sf = ∇Hf + (Tif)Ti + (Tjf)Tj + (Tkf)Tk,

where ∇H denotes the horizontal gradient associated with HS (that is, the pro-
jection onto HS of the Riemannian gradient) and the vector fields Ti, Tj, Tk are
identified with first-order differential operators as usual. In particular,

<〈∇Sf,∇Sg〉 = <〈∇Hf,∇Hg〉+
∑

u∈{i,j,k}

(Tuf)(Tug)

for all real-valued smooth functions f, g on S. Taking integrals over S and then
integrating by parts finally gives that

∆S = L + Γ,

where ∆S is the Laplace–Beltrami operator on S and Γ = −(T 2
i + T 2

j + T 2
k).

The sub-Laplacian L is a nonnegative essentially self-adjoint hypoelliptic oper-
ator on L2(S). Hence a functional calculus for L may be defined via the spectral
theorem and, for all bounded Borel functions F : R → C, the operator F (L) is
bounded on L2(S). Here we are interested in the problem of finding sufficient con-
ditions on the function F so that the operator F (L), initially defined on L2(S),
extends to a bounded operator on Lp(S) for some p 6= 2.
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For all s ∈ [0,∞), let L2
s(R) denote the L2 Sobolev space on R of (fractional)

order s. We also define a local scale-invariant Sobolev norm as follows: for a Borel
function F : R→ C, set

‖F‖L2
s,sloc

= sup
t≥0
‖F (t·)χ‖L2

s(R),

for any fixed nonzero cutoff function χ ∈ C∞c ((0,∞)). Note that different choices
of χ give rise to equivalent norms. Note moreover that ‖F‖L2

s,sloc
& |F (0)|, since

the value t = 0 is included in the supremum above.
By Sobolev’s embedding theorem, if ‖F‖L2

s,sloc
< ∞ for some s > 1/2, then F

agrees almost everywhere with a continuous function on (0,∞). It is this continuous
version of F that features in the first of our main results, which is an Lp spectral
multiplier theorem of Mihlin–Hörmander type for the sub-Laplacian L.

Theorem 1.1. If F : R → C is a Borel function which is continuous on (0,∞),
and ‖F‖L2

s,sloc
< ∞ for some s > (4n − 1)/2, then the operator F (L) is of weak

type (1, 1) and bounded on Lp(S) for all p ∈ (1,∞), and moreover

‖F (L)‖L1→L1,∞ ≤ Cs ‖F‖L2
s,sloc

, ‖F (L)‖Lp→Lp ≤ Cs,p ‖F‖L2
s,sloc

.

Note that L1-boundedness of F (L) in general does not hold under the assump-
tions of the previous theorem. However we can recover L1-boundedness in the case
F is compactly supported.

Theorem 1.2. If F : R → C is a continuous function supported in [−1, 1] and
‖F‖L2

s
<∞ for some s > (4n− 1)/2, then the operator F (tL) is bounded on Lp(S)

for all t ∈ (0,∞) and p ∈ [1,∞], and moreover

sup
t>0
‖F (tL)‖Lp→Lp ≤ Cs,p ‖F‖L2

s
.

Consequently, via complex interpolation, we immediately obtain an Lp bound-
edness result for the Bochner–Riesz means associated to the sub-Laplacian L.

Corollary 1.3. For all p ∈ [1,∞] and α > (4n− 2)|1/2− 1/p|, the Bochner–Riesz
means (1− tL)α+ are bounded on Lp(S) uniformly in t ∈ [0,∞).

One reason of interest of the above results is that the critical index (4n − 1)/2
in the statements of Theorems 1.1 and 1.2 is sharp, in the sense that it cannot be
replaced by any smaller number.

Indeed it would be relatively straightforward to derive from the general results of
[20, 12, 13] a weaker version of Theorems 1.1 and 1.2, where the L2 Sobolev norm
is replaced by an L∞ Sobolev norm and the critical index (4n − 1)/2 is replaced
by (4n + 2)/2. Here the value 4n + 2 is the “local dimension” associated with
the sub-Riemannian structure on S; more precisely, if % is the sub-Riemannian (or
Carnot–Carathéodory) distance function on S, then

σ(B(x, r)) ' min{1, r4n+2}

for all x ∈ S and r ∈ (0,∞), where B(x, r) = {y ∈ S : %(x, y) < r} denotes the
sub-Riemannian ball of centre x and radius r (see Proposition 1.4(i) below). The
fact that the local dimension associated with % is strictly larger than the topological
dimension 4n − 1 of the manifold S is connected with the lack of ellipticity of the
sub-Laplacian L [16].

Note that the statements of Theorems 1.1 and 1.2 remain true (and sharp)
when the sub-Laplacian L is replaced by the Laplace–Beltrami operator ∆S on
S. However the results for ∆S are particular instances of more general results for
elliptic operators on compact manifolds [32]. In contrast to the elliptic case, the
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problem of obtaining analogous sharp results for sub-Laplacians, with a similar
degree of generality to [32], appears to be still wide open.

Sharp multiplier theorems for sub-Laplacians are known in a few particular cases.
Among these, the results of [10] for a distinguished sub-Laplacian on the unit sphere
in Ck are a natural predecessor of ours. When k = 2n, the sphere considered in [10]
coincides with our S as a manifold; however here we study a different sub-Laplacian,
associated with a different sub-Riemannian structure. Indeed in [10] the horizontal
distribution has corank 1, rather than 3. Actually, our result is the first that we are
aware of that applies to a sub-Laplacian on a compact sub-Riemannian manifold
of corank greater than 1.

Another case where sharp multiplier theorems are known is that of homogeneous
sub-Laplacians on certain classes of 2-step stratified groups [19, 29, 22, 24, 25].
Homogeneous sub-Laplacians on stratified groups are of particular relevance, in that
they serve as “local models” for more general sub-Laplacians on sub-Riemannian
manifolds (in much the same way as the Euclidean Laplace operator is a local model
for second-order elliptic operators on manifolds). Indeed the sub-Laplacian on the
sphere in Ck studied in [10] is locally modelled on a homogeneous sub-Laplacian
on the (2k − 1)-dimensional Heisenberg group Hk−1, while the sub-Laplacian L
on S considered here corresponds to a homogeneous sub-Laplacian on the (4n −
1)-dimensional quaternionic Heisenberg group HHn−1 (see [3, Theorem 2.7]). In
particular, by means of a transplantation argument [23, Section 5], the sharpness
of Theorems 1.1 and 1.2 may be derived from the results of [25].

The basic approach to the proof of Theorems 1.1 and 1.2 will follow the scheme
of [10]. Namely, since L has finite propagation speed with respect to % [27, 11],
Theorems 1.1 and 1.2 may be reduced, by means of general results proved in [12]
(see also [9, Theorems 2.1 and 2.2]), to a certain set of estimates, that are listed in
Proposition 1.4 below.

To state the required estimates, it is convenient to introduce some notation. For
all Borel functions F : R→ C supported in [0, 1] and all N ∈ N \ {0}, define

‖F‖N,2 =

(
1

N

N∑
k=1

sup
λ∈[(k−1)/N,k/N ]

|F (λ)|2
)1/2

(see [12, eq. (2.5)]). Moreover, for all bounded operators T on L2(S), denote by
KT the distributional Schwartz kernel of T , formally viewed as an integral kernel,
so that

〈Tf, g〉L2(S) =

∫
S

∫
S
KT (x, y) f(y) g(x) dσ(x) dσ(y)

for all f, g ∈ C∞(S) when the kernel is indeed a function; in general the double
integral in the right-hand side is intended in the sense of distributions.

Proposition 1.4. Let $ : S× S→ R be defined by

(1.4) $(x, y) =
√

1− |〈x, y〉|2

for all x, y ∈ S. Then the following estimates hold.

(i) For all α ∈ [0, 3), all x ∈ S and all r ∈ (0,∞),∫
B(x,r)

$(x, y)−α dσ(y) ≤ Cα min{r4n+2−α, 1}.

(ii) For all α ∈ [0, 3), all N ∈ N\{0}, and all bounded Borel functions F : R→
C vanishing outside [0, N),

ess sup
y∈S

∫
S
|KF (

√
L)(x, y)|2$(x, y)α dσ(x) ≤ CαN4n+2−α‖F (N ·)‖2N,2.
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(iii) For all sufficiently large ` ∈ N, and for all x ∈ S and r ∈ (0,∞),

σ(B(x, r))1/2‖(1 + r2L)−`‖L2→L∞ ≤ C`.
(iv) For all x ∈ S and r ∈ (0,∞),

σ(B(x, 2r)) ≤ Cσ(B(x, r)).

The proof of Proposition 1.4 may be found in Section 5 below. As in [10], the
“weighted Plancherel-type estimate” for L, appearing as part (ii) of Proposition
1.4, is the most demanding. Its proof requires a careful analysis of the spectral
decomposition of L, which is developed throughout the paper.

Since L and the Laplace–Beltrami operator ∆S commute, the spectral decompo-
sition of L may be obtained by refining and recombining the spectral decomposition
of ∆S. The latter is nothing else than the well-known decomposition into spher-
ical harmonics, that is, the decomposition of L2(S) into spaces of homogeneous
harmonic polynomials.

A similar observation holds true for complex spheres. In [10] a decomposition into
“complex spherical harmonics” is considered, that refines the classical (or “real”)
spherical harmonic decomposition on the unit sphere in Ck and yields the joint
spectral decomposition of the Laplace–Beltrami operator and the sub-Laplacian
studied there. This complex spherical harmonic decomposition may be easily de-
scribed in terms of “complex homogeneity”, once polynomials on Ck ∼= R2k are
represented as polynomials in the “complex indeterminates” z1, . . . , zk, z̄1, . . . , z̄k.
Namely, the space of homogeneous harmonic polynomials of a given degree h ∈ N
is decomposed into spaces of (p, q)-bihomogeneous polynomials, where p + q = h
and p and q denote the degrees with respect to the “holomorphic indeterminates”
z1, . . . , zk and the “antiholomorphic indeterminates” z̄1, . . . , z̄k respectively.

One of the main difficulties in dealing with the quaternionic case is that there
does not seem to be a comparably straightforward way of describing the “quater-
nionic spherical harmonic decomposition” (that is, the joint spectral decomposition
of L and ∆S) in terms of homogeneity properties of polynomials, as in the real and
complex cases. In addition, despite the fact that C embeds into H as a subfield and
Hn may be identified with C2n, the quaternionic spherical harmonic decomposition
is not itself a refinement of the complex spherical harmonic decomposition of L2(S)
resulting from this identification. In other words, the passage from the complex
case to the quaternionic case is substantially different from the passage from the
real case to the complex case.

Nevertheless, as it turns out, the complex and quaternionic decompositions are
compatible (that is, they admit a common refinement). More is true: the action
of the differential operators Ti, Tj, Tk on the space of polynomials on Hn defines a
representation of the Lie algebra su(2) which “intertwines” the two decompositions.
This makes it possible to derive a sufficiently detailed description of the quaternionic
decomposition from the already known properties of the complex decomposition.
Below we outline such an approach to the quaternionic spherical harmonic decom-
position, which is developed in full detail in the thesis of the first-named author
[2].

An important role in our analysis is naturally played by invariance properties
with respect to certain isometries of the sphere. As a matter of fact, the afore-
mentioned real, complex and quaternionic spherical harmonic decompositions cor-
respond to the decomposition of the space of square-integrable functions on the
sphere into irreducible representations of certain groups of isometries of the sphere,
and may be subsumed in the analysis of the compact Gelfand pairs (O(d),O(d−1)),
(U(k),U(k−1)), (Sp(n)×Sp(1),Sp(n−1)×Sp(1)) respectively. In particular, sev-
eral of the properties of the quaternionic spherical harmonic decomposition that we
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present below may be deduced from more general results about the representation
theory of the group Sp(n) × Sp(1) and, as such, may be found elsewhere in the
literature (see, for example, [31, 21, 8]).

In contrast, the approach described here does not rely heavily on representa-
tion theory, except perhaps a few elementary and well-known facts about su(2).
Therefore our presentation is likely to be more readily accessible to a wider au-
dience. Moreover, despite the lack of an evident notion of “quaternionic homo-
geneity”, here the quaternionic spherical harmonic decomposition is derived as a
byproduct of a more general decomposition of the space of all polynomials on Hn
(see Section 2). This differs from the previous approaches of [31, 21], which focus
on functions on the sphere and zonal harmonics, and instead is consistent with the
homogeneity-based approaches to the real and complex cases. For all these reasons,
the elementary approach to quaternionic spherical harmonics presented below may
be of independent interest.

Notation. The letter C and variants such as Cs denote constants, always assumed
to be positive, which may vary from one occurrence to the next. The expressions
a ' b and a . b mean that there are constants C and C ′ such that Ca ≤ b ≤ C ′a
and a ≤ Cb respectively. N denotes the set of natural numbers, including 0.

Post scriptum. After this paper was submitted, the results of [26] were discovered;
these show that half the topological dimension is a lower bound for the Mihlin–
Hörmander critical index for any sub-Laplacian on a sub-Riemannian manifold of
arbitrary step. In particular, the sharpness of Theorems 1.1 and 1.2 follows directly
from [26].

2. Quaternionic spherical harmonics

The Riemannian structure on S is clearly rotation-invariant, that is, it is invariant
under the natural action of the orthogonal group O(4n) on Hn ∼= R4n. In fact O(4n)
may be viewed as the group of R-linear automorphisms of Hn that preserve the real
inner product <〈·, ·〉. In particular, the Laplace–Beltrami operator ∆S is O(4n)-
invariant.

The sub-Riemannian structure determined by HS has a smaller symmetry group.
Indeed an arbitrary element of O(4n) need not preserve the quaternionic inner
product 〈·, ·〉 on Hn. However two subgroups of O(4n) that preserve the sub-
Riemannian structure are easily identified. One is the compact symplectic group
Sp(n), that is, the group of the H-linear elements of O(4n). The elements of Sp(n)
preserve the quaternionic inner product. The other is the group, that we denote
by Sp(1), of R-linear transformations of Hn given by left multiplication by unit
quaternions, that is, of the form

Hn 3 x 7→ cx ∈ Hn,

where c ∈ H and |c| = 1. Not all the elements of Sp(1) preserve the quaternionic
inner product; however, they do preserve orthogonality with respect to it.

Recall that Hn has been given the structure of a left H-module. Since multipli-
cation in H is not commutative, the elements of Sp(1) need not be H-linear. On
the other hand, the elements of Sp(n) are H-linear and therefore commute with the

elements of Sp(1), by definition of H-linearity.
Note that, if we consider the elements of Hn as row vectors, then H-linear en-

domorphisms of Hn may be represented by n × n matrices with coefficients in H,
acting by right multiplication. In this matrix representation, elements of Sp(n)
correspond to quaternionic matrices whose rows form an orthonormal H-basis of
Hn. From this it follows easily that Sp(n) acts transitively on S, and that Sp(1) is
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isomorphic to (the opposite group of) the group Sp(1) of H-linear isometries of H1.
We remark that, in the sequel, the quaternionic matrix representation of Sp(n) will
not be used, and, for all x ∈ Hn, we will write Ax to denote the action on x of any
element A of Sp(n) — or, more generally, any element A of O(4n).

From the above considerations, it is immediate that the subgroup Sp(1) · Sp(n)

of O(4n) generated by Sp(1) and Sp(n) is compact. Moreover, since Sp(1) · Sp(n)
preserves orthogonality with respect to the quaternionic inner product on Hn, the
horizontal distribution HS is Sp(1) · Sp(n)-invariant as well. Consequently both L

and Γ are Sp(1) · Sp(n)-invariant.
Note that, for all u ∈ {i, j,k},

(2.1) Tuf(x) =
d

dt

∣∣∣∣
t=0

f(exp(−tu)x),

where exp : H → H denotes the quaternionic exponential map. Since ∆S is Sp(1)-
invariant, each of the vector fields Ti, Tj, Tk commutes with ∆S, and in particular
∆S and Γ = −(T 2

i + T 2
j + T 2

k) commute as well. Hence the analysis of the spec-
tral decomposition of L = ∆S − Γ may be reduced to that of the joint spectral
decomposition of ∆S and Γ.

The main result of this section is the description of this joint spectral decompo-
sition, which is stated in the proposition below. The set of indices

IH = {(h,m) ∈ N2 : 2m ≤ h}

will be of use in this description.

Proposition 2.1. There is a Hilbert space orthogonal direct sum decomposition

(2.2) L2(S) =
⊕̂

(h,m)∈IH

Hh,m

with the following properties.

(i) Hh,m is Sp(1) · Sp(n)-invariant and finite-dimensional, and

dimHh,m =
(h− 2m+ 1)2(h+ 2n− 1)

(2n− 2)(2n− 1)

(
h−m+ 2n− 2

2n− 3

)(
m+ 2n− 3

2n− 3

)
.

(ii) The elements of Hh,m are joint eigenfunctions of ∆S and Γ of eigenvalues

λ∆S
h,m = h(h+ 4n− 2), λΓ

h,m = (h− 2m)(h− 2m+ 2)

respectively. In particular, they are eigenfunctions of L of eigenvalue

λLh,m = 4m(h−m+ 1) + 4(n− 1)h.

Note that Ti, Tj, Tk do not commute with one another. Indeed from the commu-
tation relations (1.2) between i, j,k it follows that

(2.3) [Ti, Tj] = 2Tk, [Tj, Tk] = 2Ti, [Tk, Ti] = 2Tj.

However these relations imply that each of Ti, Tj, Tk commutes with Γ. Hence it is
possible to relate the joint spectral decomposition of ∆S,Γ and that of ∆S, Ti via
their common refinement, that is, the joint spectral decomposition of ∆S,Γ, Ti.

As we shall see, in order to describe the joint spectral decomposition of ∆S, Ti, it
is useful to consider Hn as a complex vector space. Note however that there is more
than one complex structure on Hn. Indeed every u ∈ {i, j,k} may be viewed as a
complex structure on Hn, because u2 = −1: namely, u induces the structure of a C-
vector space on Hn, where multiplication by the imaginary unit i ∈ C corresponds
to left multiplication by u. This complex structure is orthogonal, in the sense
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that multiplication by i is a linear isometry of Hn. Moreover, with respect to this
complex structure, Tu is the same as the vector field z 7→ −iz, that is,

(2.4) Tuf(z) =
d

dt

∣∣∣∣
t=0

f(e−itz).

The various spectral decompositions that we are interested in will be described in
terms of spaces of polynomials on Hn. Hence it is convenient to consider extensions
of the differential operators on S introduced so far. Extend the Laplace–Beltrami
operator ∆S to a differential operator on Hn \{0} as follows: for a smooth function
f on Hn \ {0}, ∆Sf(x) is defined by applying ∆S to the restriction of y 7→ f(|x| y)
to the sphere S and evaluating the result at x/|x|. If ∆ is the usual (nonnegative)
Laplace operator on Hn ∼= R4n, then the well-known formula for the Laplacian in
spherical coordinates gives that

(2.5) ∆S = | · |2∆ + Θ2 + (4n− 2)Θ,

where Θ is the Euler operator (or degree operator) given by

Θf(x) =
d

dt

∣∣∣∣
t=1

f(tx),

and | · |2 is the multiplication operator given by

(| · |2f)(x) = |x|2f(x).

Moreover the operators Ti, Tj, Tk are naturally extended to differential operators
on Hn (indeed the formulas (1.3) define global vector fields on Hn), hence the same
holds for Γ = −

∑
u∈{i,j,k} T

2
u.

Let P denote the space of (complex valued) polynomial functions on Hn ∼= R4n.
Any system ξ1, . . . , ξ4n of real orthonormal coordinates on Hn may be used as a
system of indeterminates for P; in other words, any element of P may be uniquely
written in the form

∑
α∈N4n cαξ

α for some coefficients cα ∈ C (all but finitely many

of which are zero), where ξα = ξα1
1 · · · ξ

α4n
4n for all multiindices α ∈ N4n.

For a polynomial p =
∑
α∈N4n cαξ

α ∈ P, let p(∂) denote the constant-coefficient
differential operator

∑
α∈N4n cα∂

α
ξ , where ∂αξ = ∂α1

ξ1
· · · ∂α4n

ξ4n
. Note that the operator

p(∂) does not depend on the choice of orthonormal coordinates.
For any given orthogonal complex structure on Hn, one may choose real orthonor-

mal coordinates ξ1, . . . , ξ4n in such a way that the expressions zj = ξ2j−1 + iξ2j
define C-linear functionals on Hn for j = 1, . . . , 2n. If we set z̄j = ξ2j−1 − iξ2j
for j = 1, . . . , 2n, then every polynomial p ∈ P may be uniquely written in the
form p =

∑
α,β∈N2n cα,βz

αz̄β for some coefficients cα,β ∈ C (all but finitely many

of which are zero), where zα = zα1
1 · · · z

α2n
2n and z̄β = z̄β1

1 · · · z̄
β2n

2n . The system
z1, . . . , z2n, z̄1, . . . , z̄2n will be called a system of complex indeterminates for P com-
patible with the given complex structure.

Note that each of the operators ∆,Θ, Ti, Tj, Tk,Γ, | · |2 maps P into P.

Lemma 2.2 (see [33, §IV.2]). Let B : P × P → C be the sesquilinear form on P
defined by

B(p, q) = p(∂)q(0).

Then B is a (positive definite, hermitian) inner product on P. With respect to this
inner product, the operators Γ,Θ are self-adjoint, the operators Ti, Tj, Tk are skew-
adjoint, and the operator | · |2 is the adjoint of −∆. Moreover each of the operators
Ti, Tj, Tk,Γ, | · |2∆ commutes with Θ.

Proof. Let (ξ1, . . . , ξ4n) be real orthonormal coordinates on Hn. It is easily seen
that

B(ξα, ξα
′
) = δα,α′ α!
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for all α, α′ ∈ N4n. Since {ξα}α∈N4n is a basis of P, this shows that the sesquilinar

form B is hermitian and positive definite, and that {ξα/
√
α!}α∈N4n is an orthonor-

mal basis with respect to B.
With respect to this orthonormal basis, the operator Θ is diagonal, with non-

negative eigenvalues, since

(2.6) Θξα = |α| ξα,

where |α| = α1 + · · ·+α4n is the length of the multiindex α. Hence Θ is self-adjoint,
and its eigenspaces in P correspond to the subspaces of homogeneous polynomials.

Note also that

B(| · |2p, q) = (| · |2p)(∂)q(0) = −∆p(∂)q(0) = p(∂)(−∆q)(0) = B(p,−∆q)

for all p, q ∈ P, whence | · |2 is the adjoint of −∆.
Take now u ∈ {i, j,k}. Introduce complex indeterminates z1, . . . , z2n, z̄1, . . . , z̄2n

for P which are compatible with the orthogonal complex structure u on Hn. Then

B(zαz̄β , zα
′
z̄β
′
) = δα,α′ δβ,β′ 2

4n α!β!,

so {zαz̄β/
√

24nα!β!}α,β∈N2n is an orthonormal basis of P with respect to B. More-
over Tu is diagonal with respect to this basis, with purely imaginary eigenvalues,
since, by (2.4),

(2.7) Tu(zαz̄β) = i(|β| − |α|)zαz̄β .

Hence Tu is skew-adjoint with respect to B.
Consequently Γ = −

∑
u∈{i,j,k} T

2
u is self-adjoint with respect to B.

Clearly each the operators Ti, Tj, Tk,Γ, | · |2∆ preserves homogeneity and degree
of polynomials; in other words, each of them preserves the eigenspaces of Θ, and
therefore commutes with Θ. �

The previous lemma allows us to recover immediately a few basic results about
the classical decomposition in spherical harmonics (see, for example, [33, 4]).

Let H be the subspace of P of harmonic polynomials, that is, the p ∈ P such
that ∆p = 0. For all h ∈ N, let Ph denote the subspace of P of polynomials that
are homogeneous of degree h, and set Hh = H ∩ Ph. Clearly

dimPh =

(
h+ 4n− 1

4n− 1

)
.

By (2.6), the decomposition

P =
⊕
h∈N
Ph

corresponds to the decomposition of P into eigenspaces of Θ; since Θ and | · |2∆
commute, we have the corresponding decomposition

H =
⊕
h∈N
Hh.

From the identity (2.5), it follows immediately that the elements of Hh are eigen-
functions of ∆S of eigenvalue h(h+ 4n− 2).

For notational convenience we set Ph = Hh = {0} for h ∈ Z \ N. Then

(2.8) Ph = Hh ⊕ | · |2Ph−2

for all h ∈ Z: indeed | · |2 : Ph−2 → Ph is the adjoint of −∆ : Ph → Ph−2 with
respect to the inner product B defined in Lemma 2.2, so Ph may be written as the
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direct sum of the kernel Hh of −∆ and the range of its adjoint. In particular

dimHh = dimPh − dimPh−2

=
2h+ 4n− 2

4n− 2

(
h+ 4n− 3

4n− 3

)
.

Denote by P|S,H|S,Hh|S the sets of restrictions to S of elements of P,H,Hh
respectively. Iteration of (2.8) shows that P|S = H|S. In particular, by the Stone–
Weierstraß theorem, H|S is dense in L2(S). Moreover, by the maximum principle
for harmonic functions, each element of H is uniquely determined by its restriction
to S. Hence

(2.9) H|S =
⊕
h∈N
Hh|S.

Since ∆S is self-adjoint on L2(S) and the eigenvalues h(h+ 4n− 2) are distinct, the
spaces Hh|S are mutually orthogonal in L2(S). Taking the closure in L2(S) of (2.9)
then yields the direct sum decomposition

(2.10) L2(S) =
⊕̂
h∈N
Hh|S,

which is the spectral decomposition of ∆S.
Due to the injectivity of the restriction map H 3 f 7→ f |S ∈ L2(S), henceforth we

shall generally identify subspaces of H with the corresponding subspaces of L2(S)
and omit the restriction notation.

Introduce the ladder operators

T→ = iTi, T↑ = iTj − Tk, T↓ = iTj + Tk.

It is worth remarking that Γ, T→, T↑, T↓ commute with the degree operator Θ.
Therefore, as in the case of real spherical harmonics, we will first study the decom-
position of P into joint eigenspaces of Θ,Γ, T→, and then consider its intersection
with H (where, by (2.5), ∆S and Θ2 + (4n− 2)Θ coincide).

The decomposition of P into joint eigenspaces of Θ and T→ is then easily obtained
and well-known [17, 30, 10]. Take complex indeterminates z1, . . . , z2n, z̄1, . . . , z̄2n

corresponding to the complex structure i on Hn. For all p, q ∈ N, we may then
define the space Qp,q to be the space of bihomogeneous polynomials of degree p in
z1, . . . , z2n and of degree q in z̄1, . . . , z̄2n. Clearly

(2.11) dimQp,q =

(
p+ 2n− 1

2n− 1

)(
q + 2n− 1

2n− 1

)
and

(2.12) Ph =
⊕
p,q∈N
p+q=h

Qp,q.

Moreover, by (2.7), every element of Qp,q is an eigenfunction of T→ of eigenvalue
λT→p,q = p− q.

Correspondingly

Hh =
⊕
p,q∈N
p+q=h

Yp,q,

where Yp,q = Qp,q ∩ H. This decomposition is orthogonal in L2(S), because the
Yp,q are contained in distinct eigenspaces of the self-adjoint operator T→. So from
(2.10) it follows that

L2(S) =
⊕̂
p,q∈N

Yp,q.
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Moreover from (2.8) we deduce that

Qp,q = Yp,q ⊕ | · |2Qp−1,q−1

(note that λT→p,q = λT→p−1,q−1 and | · |2 and T→ commute, because | · |2 is rotation-

invariant). In particular

dimYp,q = dimQp,q − dimQp−1,q−1

=
p+ q + 2n− 1

2n− 1

(
p+ 2n− 2

2n− 2

)(
q + 2n− 2

2n− 2

)
.

We are now going to use the above information about the joint spectral decompo-
sition of Θ and T→ to give a precise description of the joint spectral decomposition
of Θ and Γ. The link between them is given by the following, well-known elementary
results about the representation theory of the Lie algebra su(2).

Lemma 2.3. Let V be a minimal finite-dimensional {Ti, Tj, Tk}-invariant subspace
of P. Then there exists a basis v0, . . . , vd−1 of V such that

(2.13) T→vj = (d− 1− 2j)vj , T↑vj = 2j(d− j)vj−1, T↓vj = 2vj+1,

for j = 0, . . . , d− 1, where v−1 = vd = 0, and in particular

(2.14) Γ|V = (d− 1)(d+ 1) idV .

Proof. Because of the commutation rules (2.3), a minimal {Ti, Tj, Tk}-invariant
subspace of P is an irreducible representation of the Lie algebra su(2), and the above
description follows by the (elementary) characterisation of such representations (see,
for example, [18]). �

Lemma 2.4. Let V be a finite-dimensional {Ti, Tj, Tk}-invariant subspace of P.
Then

(2.15) V =
⊕
`∈N

EVΓ (`(`+ 2)) =
⊕
m∈Z

EVT→(m),

where, for all λ ∈ C, EVΓ (λ) and EVT→(λ) denote the eigenspaces of Γ|V and T→|V
of eigenvalue λ. Moreover, for all m ∈ Z,

(2.16) EVT→(m) =
⊕
j∈N

EVT→(m) ∩ EVΓ ((|m|+ 2j)(|m|+ 2j + 2)),

and correspondingly, for all ` ∈ N,

(2.17) EVΓ (`(`+ 2)) =
⊕̀
j=0

EVΓ (`(`+ 2)) ∩ EVT→(`− 2j).

Moreover

T↑ : EVΓ (`(`+ 2)) ∩ EVT→(`− 2j)→ EVΓ (`(`+ 2)) ∩ EVT→(`− 2(j − 1)),(2.18)

T↓ : EVΓ (`(`+ 2)) ∩ EVT→(`− 2(j − 1))→ EVΓ (`(`+ 2)) ∩ EVT→(`− 2j)(2.19)

are isomorphisms for all j = 1, . . . , ` and ` ∈ N. In particular, for all ` ∈ N,

(2.20) dimEVΓ (`(`+ 2)) = (`+ 1)(dimEVT→(`)− dimEVT→(`+ 2)).

Proof. Note that, if W is a {Ti, Tj, Tk}-invariant subspace of V, then its orthog-
onal complement W ′ in V with respect to the inner product B of Lemma 2.2 is
{Ti, Tj, Tk}-invariant as well (because Ti, Tj and Tk are skew-adjoint with respect
to B), and V = W ⊕ W ′. Iteration of this observation shows that V may be
decomposed as a direct sum of minimal {Ti, Tj, Tk}-invariant subspaces.

By Lemma 2.3, for each of these subspaces one may choose a basis so that the
behaviour of T→, T↑, T↓ and Γ is prescribed by (2.13) and (2.14). These bases
together constitute a basis of V, and inspection of the behaviour of T→, T↑, T↓ and
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Γ on this basis immediately yields the validity of the decompositions (2.15), (2.16)
and (2.17), as well as the fact that (2.18) and (2.19) are isomorphisms.

In particular, the summands in the right-hand side of (2.17) have all the same
dimension, and therefore

dimEVΓ (`(`+ 2)) = (`+ 1) dim(EVΓ (`(`+ 2)) ∩ EVT→(`)).

On the other hand, by applying (2.16) with m = `,

dimEVT→(`) =
∑
j∈N

dim(EVT→(`) ∩ EVΓ ((`+ 2j)(`+ 2j + 2))),

and also, by applying (2.16) with m = `+ 2 and using the isomorphism (2.18) with
` replaced by `+ 2j and then j replaced by j + 1, we find that

dimEVT→(`+ 2) =
∑
j∈N

dim(EVT→(`+ 2) ∩ EVΓ ((`+ 2j + 2)(`+ 2j + 4)))

=
∑
j∈N

dim(EVT→(`) ∩ EVΓ ((`+ 2j + 2)(`+ 2j + 4))).

Thus, by looking at the difference, we obtain that

dimEVT→(`)− dimEVT→(`+ 2) = dim(EVT→(`) ∩ EVΓ (`(`+ 2))),

and (2.20) follows. �

We may now apply Lemma 2.4 to Ph. From the decomposition (2.12), we know
that the only eigenvalues of T→ that appear in Ph are

−h,−h+ 2, . . . , h− 2, h,

that is, they have the form ±(h − 2m) for some m ∈ {0, . . . , bh/2c}. Hence, by
(2.14) and (2.20), the only eigenvalues of Γ that may appear in Ph are of the form
λΓ
h,m = (h− 2m)(h− 2m+ 2) for some m ∈ {0, . . . , bh/2c}.

Define now Ph,m to be the subspace of Ph made of eigenfunctions of Γ of eigen-
value λΓ

h,m. Observe that λT→p,q = p− q = h− 2q whenever h = p+ q; so, by (2.15)

to (2.17), putting ` = h− 2m and j = q −m, we find that

Ph =

bh/2c⊕
m=0

Ph,m, Ph,m =
h−m⊕
q=m

Ph,m ∩Qh−q,q,

and moreover, by (2.20) and (2.11),

dimPh,m = (h− 2m+ 1)(dimQh−m,m − dimQh−m+1,m−1)

=
(h− 2m+ 1)2

2n− 1

(
h−m+ 2n− 1

2n− 2

)(
m+ 2n− 2

2n− 2

)
.

Correspondingly, if we define Hh,m = Ph,m ∩H, then

(2.21) Hh =

bh/2c⊕
m=0

Hh,m, Hh,m =

h−m⊕
q=m

Hh,m ∩ Yh−q,q.

Moreover from (2.8) it follows that

Ph,m = Hh,m ⊕ | · |2Ph−2,m−1

(note that | · |2 and Γ commute and λΓ
h,m = λΓ

h−2,m−1), and therefore

dimHh,m = dimPh,m − dimPh−2,m−1

=
(h− 2m+ 1)2(h+ 2n− 1)

(2n− 2)(2n− 1)

(
h−m+ 2n− 2

2n− 3

)(
m+ 2n− 3

2n− 3

)
.
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Orthogonality in L2(S) of the decompositions (2.21) follows because the sum-
mands are contained in distinct eigenspaces of the self-adjoint operators Γ and T→.
By (2.10) we then conclude that

L2(S) =
⊕̂

(h,m)∈IH

Hh,m,

so in particular the spaces Hh,m are the joint eigenspaces of ∆S,Γ in L2(S), and

therefore they are Sp(1) · Sp(n)-invariant. This proves Proposition 2.1.

3. Zonal harmonics

In this section, we obtain explicit formulas for the integral kernels of the or-
thogonal projection operators associated with the quaternionic spherical harmonic
decomposition (2.2). These kernels may be characterised by their invariance prop-

erties with respect to subgroups of Sp(1) ·Sp(n) and may be thought of the quater-
nionic analogue of “zonal spherical harmonics”.

The explicit formulas for these kernels are given in terms of classical orthogonal
polynomials. For all q ∈ N, let Uq denote the qth Chebyshev polynomial of the
second kind, that is,

Uq(t) =

bq/2c∑
j=0

(−1)j
(
q − j
j

)
(2t)q−2j

[15, §10.11, p. 185, eq. (23)]. Moreover, for all m,α, β ∈ N, define the polynomial

J
(α,β)
m by

J (α,β)
m (t) = P (α,β)

m (2t− 1)

=
(β +m)!

m!(α+ β +m)!

m∑
l=0

(−1)l
(
m

l

)
(α+ β + 2m− l)!

(β +m− l)!
tm−l,

where P
(α,β)
m is a Jacobi polynomial (see [15, §10.8, p. 170, eq. (16)] and [14, §2.8,

p. 101]).
For later use, we record here some useful identities involving the above polyno-

mials. First of all,

(3.1) Uq(1) = q + 1, J (α,β)
m (1) =

(
α+m

m

)
(see [15, §10.11, p. 184, eq. (2)] and [15, §10.8, p. 169, eq. (3)]). Moreover,

t J (α,β)
m (t) =

(m+ 1)(m+ α+ β + 1)

(2m+ α+ β + 2)(2m+ α+ β + 1)
J

(α,β)
m+1 (t)

+
1

2

(
1− (α− β)(α+ β)

(2m+ α+ β + 2)(2m+ α+ β)

)
J (α,β)
m (t)

+
(m+ α)(m+ β)

(2m+ α+ β + 1)(2m+ α+ β)
J

(α,β)
m−1 (t);

(3.2)

see [15, §10.8, p. 173, eqs. (33) and (36)].
This section is devoted to the proof of the following result, which should be

compared to [21, Theorem 3.1(4)].

Proposition 3.1. For all (h,m) ∈ IH, the following hold.
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(i) The integral kernel Zh,m of the orthogonal projection of L2(S) onto Hh,m
is given by

Zh,m(x, y) =
(h− 2m+ 1)(h+ 2n− 1)

(2n− 2)(2n− 1)

(
h−m+ 2n− 2

2n− 3

)
× |〈x, y〉|h−2m J (2n−3,h−2m+1)

m (|〈x, y〉|2)Uh−2m

(
<〈x, y〉
|〈x, y〉|

)
for all x, y ∈ S.

(ii) For all e ∈ S, if Sp(1) · Sp(n)e is the stabiliser of e in Sp(1) · Sp(n), then

the space of Sp(1) ·Sp(n)e-invariant elements of Hh,m is 1-dimensional and
spanned by Zh,m(·, e).

The symbol Zh,m will denote the zero function whenever the indices h,m are
out of the range h,m ∈ N, m ≤ bh/2c.

In order to prove Proposition 3.1, it will be first useful to determine the form of
a polynomial which is invariant with respect to a group of isometries.

Lemma 3.2. Let 〈·|·〉 denote the standard inner product on Rd. Let G be a subgroup
of the group O(d) of linear isometries of Rd. Suppose that we have an orthogonal
decomposition

Rd = V ⊕
m⊕
j=1

Wj ,

where G fixes V , and the spaces Wj are G-invariant. Moreover, for all k = 1, . . . ,m,
assume that the subgroup Gk of G defined by

Gk = {T ∈ G : Tx = x for all x ∈Wj and j = 1, . . . , k − 1}

acts transitively on the unit sphere {x ∈ Wk : |x| = 1} of Wk. Let b1, . . . , bl be a
basis of V , and let Pj be the orthogonal projection onto Wj for j = 1, . . . ,m. Then
a polynomial p on Rd is G-invariant if and only if p is of the form

(3.3) p(x) = g(〈b1|x〉, . . . , 〈bl|x〉, |P1x|2, . . . , |Pmx|2)

for some polynomial g on Rl+m.

Proof. Clearly a polynomial p of the form (3.3) is G-invariant. Indeed, if P0 denotes
the orthogonal projection of Rd onto V , then P0Tx = TP0x = P0x, 〈bj |x〉 =
〈bj |P0x〉, PkTx = TPkx, and therefore 〈bj |Tx〉 = 〈bj |x〉, |PkTx|2 = |Pkx|2 for all
T ∈ G, x ∈ Rd, j = 1, . . . , l, and k = 1, . . . ,m. So it remains to prove the converse,
that is, that every G-invariant polynomial on Rd is of the form (3.3).

We proceed by induction on m ∈ N. The case m = 0 is trivial, since every
polynomial f on Rd may be written in the form f(x) = g(〈b1|x〉, . . . , 〈bl|x〉) (the
correspondence x 7→ (〈b1|x〉, . . . , 〈bl|x〉) is a linear automorphism of Rd). Suppose
instead that m > 0. Then we apply the inductive hypothesis to the group G2 and
the decomposition Rd = Ṽ ⊕

⊕m−1
j=1 W̃j , where Ṽ = V ⊕ W1 and W̃j = Wj+1.

In this way, if b̃1, . . . , b̃r is an orthonormal basis of W1, then we obtain that every
G2-invariant polynomial p is of the form

p(x) = h(〈b1|x〉, . . . , 〈bl|x〉, 〈b̃1|x〉, . . . , 〈b̃r|x〉, |P2x|2, . . . , |Pmx|2)

for some polynomial h on Rl+r+m−1. Note that every such polynomial p may be
uniquely written as a sum:

p(x) =
∑

s=(s2,...,sm)∈Nm−1

t=(t1,...,tl)∈Nl

hs,t(〈b̃1|x〉, . . . , 〈b̃r|x〉)
l∏

j=1

〈bj |x〉tj
m∏
k=2

|Pkx|2sk ,
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for some polynomials hs,t on Rr (all but finitely many of which are zero); in par-
ticular, if p is G-invariant, it follows at once (since the 〈bj |x〉 and the |Pkx|2 are

G-invariant) that each of the polynomials hs,t(〈b̃1|x〉, . . . , 〈b̃r|x〉) is G-invariant as
well.

Since b̃1, . . . , b̃r is an orthonormal basis of W1, the correspondence

W1 3 x 7→ (〈b̃1|x〉, . . . , 〈b̃r|x〉) ∈ Rr

is a linear isometric isomorphism. Since G acts transitively on the unit sphere of W1

(and therefore, by linearity, on any sphere centred at the origin), we deduce that, if

hs,t(〈b̃1|x〉, . . . , 〈b̃r|x〉) is G-invariant, then hs,t(y) = hs,t(y
′) for all y, y′ ∈ Rr with

|y| = |y′|. In other words, hs,t is O(r)-invariant. So, if we decompose hs,t into its
homogeneous components,

hs,t =
∑
u∈N

hs,t,u,

then each hs,t,u is O(r)-invariant as well. On the other hand, by homogeneity,
hs,t,u is uniquely determined by its values on the unit sphere of Rr; so, if hs,t,u is
constant on the unit sphere of Rr, then hs,t,u(y) = cs,t,u|y|u for some cs,t,u ∈ C,
and in particular u must be even, unless cs,t,u = 0. From this it follows that
hs,t(y) = qs,t(|y|2) for some polynomial qs,t on R; hence, in this case,

hs,t(〈b̃1|x〉, . . . , 〈b̃r|x〉) = qs,t

 r∑
j=1

〈b̃j |x〉2
 = qs,t(|P1x|2),

and we are done. �

We now apply the previous lemma to the subgroup of O(4n) considered in Propo-
sition 3.1.

Proposition 3.3. Let G = Sp(1) ·Sp(n)e be the stabilizer of e ∈ S in Sp(1) ·Sp(n).
Then a polynomial f ∈ P is G-invariant if and only if f is of the form

f(x) =
∑

j,k,l∈N
cj,k,l (<〈x, e〉)j |〈x, e〉|2k |x|2l

for some coefficients cj,k,l ∈ C (all but finitely many of which are zero).

Proof. The conclusion would follow if we could apply Lemma 3.2 to the group G and
the orthogonal decomposition Hn = V ⊕W1⊕W2, where V = Re and W1 = (=H)e;
indeed a polynomial in <〈x, e〉, |〈x, e〉|2 − (<〈x, e〉)2, |x|2 − |〈x, e〉|2 is the same as
a polynomial in <〈x, e〉, |〈x, e〉|2, |x|2.

So we must show that the hypotheses of Lemma 3.2 are satisfied. Recall that an
element A of Sp(1) · Sp(n) is an R-linear map on Hn of the form

(3.4) A : x 7→ cTx,

where c is a unit quaternion and T ∈ Sp(n). In particular, for all q ∈ H,

(3.5) A(qe) = cT (qe) = cqc cTe = cqcAe.

This immediately shows that, if A ∈ G, that is, Ae = e, then A fixes V = Re as
well, and moreover V ⊕W1 = He is A-invariant. Since A is an isometry, it follows
that W1 = He ∩ V ⊥ and W2 = (He)⊥ are A-invariant too.

Note that the unit sphere in W1 is the set of elements of the form qe, where q
is an imaginary unit quaternion. Moreover, for all unit quaternions c, there exists
T ∈ Sp(n) such that Te = c̄e (indeed Sp(n) acts transitively on S), so the map
A defined by (3.4) with this T belongs to G and A(qe) = (cqc̄)e by (3.5). Note
now that unit quaternions act transitively by conjugation on the unit sphere of =H:



16 J. AHRENS, M. G. COWLING, A. MARTINI, AND D. MÜLLER

indeed, for all t ∈ R, the matrices of q 7→ exp(ti)q exp(−ti), q 7→ exp(tj)q exp(−tj),
and q 7→ exp(tk)q exp(−tk) with respect to the R-basis {i, j,k} of =H are1 0 0

0 c(t) −s(t)
0 s(t) c(t)

 ,

 c(t) 0 s(t)
0 1 0
−s(t) 0 c(t)

 ,

c(t) −s(t) 0
s(t) c(t) 0
0 0 1

 ,

where c(t) = cos(2t) and s(t) = sin(2t). Hence we conclude that G acts transitively
on the unit sphere of W1.

Finally, it is clear that the stabilizer Sp(n)e of e in Sp(n) is contained in G,
Sp(n)e fixes He = V ⊕W1 and Sp(n)e ∼= Sp(n − 1) acts transitively on the unit
sphere of W2 = (He)⊥. �

We can now determine a more precise expression for the quaternionic zonal
harmonics.

Proposition 3.4. Let e ∈ S and G = Sp(1) · Sp(n)e. Let (h,m) ∈ IH. Let f ∈ P.

(i) f is G-invariant and in Ph,m if and only if f is of the form

f(x) = |〈x, e〉|h−2m Uh−2m

(
<〈x, e〉
|〈x, e〉|

) m∑
l=0

al|x|2l|〈x, e〉|2(m−l),

for some coefficients a0, . . . , am ∈ C.
(ii) f is G-invariant and in Hh,m if and only if f is of the form

f(x) = a |x|2m|〈x, e〉|h−2m J (2n−3,h−2m+1)
m

(
|〈x, e〉|2

|x|2

)
Uh−2m

(
<〈x, e〉
|〈x, e〉|

)
,

for some a ∈ C.

Proof. Let ∇ denote the usual (Euclidean) gradient on Hn ∼= R4n. Then it is not
difficult to compute that, for all j, k, l ∈ N,

∇(<〈x, e〉)j = j(<〈x, e〉)j−1e, −∆(<〈x, e〉)j = j(j − 1)(<〈x, e〉)j−2,

∇|〈x, e〉|2k = 2k|〈x, e〉|2k−2〈x, e〉e, −∆|〈x, e〉|2k = 4k(k + 1)|〈x, e〉|2k−2,

∇|x|2l = 2l|x|2l−2x, −∆|x|2l = 4l(l + 2n− 1)|x|2l−2,

(differentiation is always meant with respect to x) from which one may derive that

−∆
(
(<〈x, e〉)j |〈x, e〉|2k |x|2l

)
= j(j − 1)(<〈x, e〉)j−2 |〈x, e〉|2k |x|2l

+ 4k(k + j + 1)(<〈x, e〉)j |〈x, e〉|2k−2 |x|2l

+ 4l(l + 2k + j + 2n− 1)(<〈x, e〉)j |〈x, e〉|2k |x|2l−2.

(3.6)

Similarly, for all j, k, l ∈ N and all u ∈ {i, j,k},

Tu|〈x, e〉|2k = 0, Tu|x|2l = 0,

Tu(<〈x, e〉)j = j(<〈x, e〉)j−1<〈x,ue〉,
−Γ(<〈x, e〉)j = j(j − 1)(<〈x, e〉)j−2|〈x, e〉|2 − j(j + 2)(<〈x, e〉)j ,

so

−Γ
(
(<〈x, e〉)j |〈x, e〉|2k |x|2l

)
= j(j − 1)(<〈x, e〉)j−2 |〈x, e〉|2k+2 |x|2l

− j(j + 2)(<〈x, e〉)j |〈x, e〉|2k |x|2l.
(3.7)
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Let now f ∈ Ph be G-invariant, where G = Sp(1) · Sp(n)e. By Proposition 3.3,
f has the form

(3.8) f(x) =
∑
k,l∈N

2k+2l≤h

ck,l (<〈x, e〉)h−2k−2l |〈x, e〉|2k |x|2l

for some coefficients ck,l ∈ C. We now want to obtain conditions on the coefficients
that correspond to f being in Ph,m and in Hh.

Indeed, from (3.7), we easily deduce that f ∈ Ph,m if and only if

(h− 2k − 2l + 2)(h− 2k − 2l + 1)ck−1,l = −4(k + l −m)(h−m− k − l + 1)ck,l,

for all k, l ∈ N with 2k+ 2l ≤ h, where we stipulate that c−1,l = 0. This recurrence
relation implies that ck,l may be chosen arbitrarily for k + l = m, that ck,l = 0 for
k + l < m, and that the coefficients ck,l for k + l > m are uniquely determined by
the previous choices (in particular ck,l = 0 for l > m). In other words, if we set

(3.9) cm−l,l = 2h−2mal,

and define

bq0 = 2q, bqj = − (q − 2j + 2)(q − 2j + 1)

4j(q − j + 1)
bqj−1,

that is,

bqj = (−1)−j2q−2j

(
q − j
j

)
,

then

cm−l+j,l = bh−2m
j al,

and we may rewrite f as

(3.10) f(x) =

b(h−2m)/2c∑
j=0

bh−2m
j

(
<〈x, e〉
|〈x, e〉|

)h−2m−2j m∑
l=0

al |〈x, e〉|h−2l |x|2l.

Note that, in the above expression, the coefficients al are freely chosen.
On the other hand, from (3.6), we deduce that the polynomial f given by (3.8)

belongs to H if and only if

(h− 2k − 2l)(h− 2k − 2l − 1)ck,l + 4(k + 1)(h− k − 2l)ck+1,l

+ 4(l + 1)(h− l + 2n− 2)ck,l+1 = 0
(3.11)

for all k, l ∈ N, where we stipulate that ck,l = 0 whenever k < 0 or l < 0 or
2k + 2l > h. If we assume as before that f ∈ Ph,m, so f is given by (3.10), and
specialize the identity (3.11) to the case where k = m − l − 1 (so k + l < m and
ck,l = 0), we obtain that

4(m− l)(h−m+ 1− l)cm−l,l + 4(l + 1)(h− l + 2n− 2)cm−l−1,l+1 = 0,

that is, by (3.9),

4(m− l)(h−m+ 1− l)al + 4(l + 1)(h− l + 2n− 2)al+1 = 0.

This shows that all the al (0 ≤ l ≤ m) in this case are determined by the choice of
a0. In other words, if we set

a0 =

(
h+ 2n− 2

m

)
a,

and we define

An,h,m0 =

(
h+ 2n− 2

m

)
, An,h,ml+1 = − (m− l)(h−m− l + 1)

(l + 1)(h− l + 2n− 2)
An,h,ml ,
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that is,

An,h,ml = (−1)l
(h−m+ 1)!

(h+ 2n− 2−m)!

(h− l + 2n− 2)!

l!(m− l)!(h−m− l + 1)!
,

then

f(x) = a

bh/2−mc∑
j=0

bh−2m
j

(
<〈x, e〉
|〈x, e〉|

)h−2m−2j

×
m∑
l=0

An,h,ml

(
|〈x, e〉|
|x|

)2(m−l)

|〈x, e〉|h−2m |x|2m.

The conclusion follows by comparing An,h,ml and bh−2m
j with the coefficients of

Qh−2m and J
(2n−3,h−2m+1)
m . �

In order to complete the proof of Proposition 3.1, it remains to determine the
correct normalization factors for kernels of orthogonal projections.

Lemma 3.5. Let V be a finite-dimensional, Sp(1) · Sp(n)-invariant subspace of
L2(S) of continuous functions. Let K be the integral kernel of the orthogonal pro-
jection of L2(S) onto V. Then

(3.12) K(·, x) ∈ V

for all x ∈ S,

(3.13) K(Tx, Ty) = K(x, y)

for all T ∈ Sp(1) · Sp(n) and x, y ∈ S, and

(3.14) K(x, x) = ‖K(·, x)‖22 = dimV

for all x ∈ S.

Proof. If {φj}j is any orthonormal basis of V, then

K(x, y) =
∑
j

φj(x)φj(y),

and (3.12) follows. Moreover (3.13) is an immediate consequence of the Sp(1)·Sp(n)-
invariance of V.

By (3.13) and the transitivity of Sp(1) · Sp(n) on S, we obtain that K(x, x) does
not depend on x ∈ S. Integration over S then gives that

K(x, x) =

∫
S
K(y, y) dσ(y) =

∑
j

‖φj‖22 = dimV

for all x ∈ S. Similarly, for all y ∈ S,∫
S
|K(x, y)|2 dσ(x) =

∑
j

|φj(y)|2,

but the left-hand side does not depend on y, again by (3.13) and transitivity;
therefore, by integration over S,∫

S
|K(x, y)|2 dσ(x) =

∑
j

‖φj‖22 = dimV.

This gives (3.14). �
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We now prove Proposition 3.1. Let Zh,m be the integral kernel of the orthogonal
projection of L2(S) onto Hh,m. For all e ∈ S, by (3.12) and (3.13), Zh,m(·, e)
is a nonzero Sp(1) · Sp(n)e-invariant element of Hh,m. This, in conjunction with
Proposition 3.4, proves part (ii).

As for part (i), again from Proposition 3.4 we obtain that

Zh,m(x, e) = a |〈x, e〉|h−2m J (2n−3,h−2m+1)
m (|〈x, e〉|2)Uh−2m

(
<〈x, e〉
|〈x, e〉|

)
for some a ∈ C. On the other hand, by (3.14), Zh,m(e, e) = dimHh,m. By Propo-
sition 2.1(i) and (3.1) we then deduce that

a =
(h− 2m+ 1)(h+ 2n− 1)

(2n− 2)(2n− 1)

(
h−m+ 2n− 2

2n− 3

)
,

and part (i) follows as well.

4. Weighted Plancherel estimates

Thanks to the explicit formulas obtained in Proposition 3.1(i), we may now
precisely describe the effect of multiplication by $4 on the kernels Zh,m, where $
is the weight defined in (1.4).

Proposition 4.1. Let (h,m) ∈ IH.

(i) For all x, y ∈ S,

|〈x, y〉|2Zh,m(x, y) = c→h,mZh,m(x, y)

+ c↑h,mZh+2,m+1(x, y) + c↓h,mZh−2,m−1(x, y),

where

c↑h,m =
(m+ 1)(h−m+ 2)

(h+ 2n)(h+ 2n+ 1)
,

c→h,m =
1

2

(
1− (2n− 4− h+ 2m)(h− 2m+ 2n− 2)

(h+ 2n)(h+ 2n− 2)

)
,

c↓h,m =
(m+ 2n− 3)(h−m+ 2n− 2)

(h+ 2n− 3)(h+ 2n− 2)
.

(ii) For all x, y ∈ S,

$(x, y)4Zh,m(x, y) = γ→h,mZh,m(x, y)

+ γ↑h,mZh+2,m+1(x, y) + γ↓h,mZh−2,m−1(x, y)

+ γ↑↑h,mZh+4,m+2(x, y) + γ↓↓h,mZh−4,m−2(x, y),

where γ→h,m, γ
↑
h,m, γ

↓
h,m, γ

↑↑
h,m, γ

↓↓
h,m ∈ R and

γ→h,m = (1− c→h,m)2 + c↑h,mc
↓
h+2,m+1 + c↓h,mc

↑
h−2,m−1

(here c↑h−2,m−1 = 0 when h < 2 or m < 1).

(iii) There exists cn ∈ (1,∞) such that

c−1
n

(
m+ 1

h+ 1

)2

≤ γ→h,m ≤ cn
(
m+ 1

h+ 1

)2

.
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Proof. From (3.2) we obtain that

t J (2n−3,h−2m+1)
m (t)

=
(m+ 1)(h−m+ 2n− 1)

(h+ 2n)(h+ 2n− 1)
J

(2n−3,h−2m+1)
m+1 (t)

+
1

2

(
1− (2n− 4− h+ 2m)(h− 2m+ 2n− 2)

(h+ 2n)(h+ 2n− 2)

)
J (2n−3,h−2m+1)
m (t)

+
(m+ 2n− 3)(h−m+ 1)

(h+ 2n− 1)(h+ 2n− 2)
J

(2n−3,h−2m+1)
m−1 (t).

If we write the expression for |〈x, y〉|2Zh,m(x, y) given by Proposition 3.1(i) and
employ the above identity with t = |〈x, y〉|2, simple manipulations give part (i).

From this we deduce in particular that

$(x, y)2Zh,m(x, y) = (1− c→h,m)Zh,m(x, y)

− c↑h,mZh+2,m+1(x, y)− c↓h,mZh−2,m−1(x, y),

and iteration of this identity gives part (ii).
From the formulas in part (i), it is easily seen that

c↑h,m '
m+ 1

h+ 1
, c↓h,m '

m+ 1

h+ 1
,

(note that 0 ≤ 2m ≤ h), hence also

c↑h,mc
↓
h+2,m+1 + c↓h,mc

↑
h−2,m−1 '

(
m+ 1

h+ 1

)2

.

Moreover

1− c→h,m =
1

2

(
1 +

(2n− 4− h+ 2m)(h− 2m+ 2n− 2)

(h+ 2n)(h+ 2n− 2)

)
=

(h+ 2n)(2n− 4) + 2(m+ 1)(h−m+ 2)

(h+ 2n)(h+ 2n− 2)

' m+ 1

h+ 1
.

Hence part (iii) follows from the formula for γ→h,m in part (ii). �

We define a “kernel polynomial” to be any finite linear combination of the kernels
Zh,m; in other words, a kernel polynomial K is an expression of the form

(4.1) K =
∑

(h,m)∈IH

ah,m Zh,m,

for some coefficients ah,m ∈ C, all but finitely many of which are zero. Note that,
by (3.12) and (3.14), if K is given by (4.1) then

(4.2)

∫
S
|K(x, y)|2 dσ(x) =

∑
(h,m)∈IH

dimHh,m |ah,m|2

for all y ∈ S.
Proposition 4.1 tells us that the operator of multiplication by $4 does not act

diagonally on the basis {Zh,m}(h,m)∈IH of kernel polynomials; however only a few
parallels to the main diagonal in the matrix of this multiplication operator are
nonzero. Hence, as we shall show below, this multiplication operator may be ma-
jorized (in L2) by its diagonal component, and for the latter we may clearly describe
the fractional powers.



A SHARP MULTIPLIER THEOREM ON QUATERNIONIC SPHERES 21

For a kernel polynomial K of the form (4.1) and all α ∈ [0,∞), we define MαK
by

(4.3) MαK =
∑

(h,m)∈IH

(5γ→h,m)α/4ah,m Zh,m,

where the coefficients γ→h,m are as in Proposition 4.1.

Proposition 4.2. For all kernel polynomials K, all α ∈ [0, 2], and all y ∈ S,

(4.4) ‖$(·, y)αK(·, y)‖2 ≤ ‖MαK(·, y)‖2.

Proof. Let T be the linear operator that, to a sequence (ah,m)(h,m)∈IH of complex
numbers, all but finitely many of which are zero, associates the kernel polynomial
K given by (4.1). Then, by (4.2), it is easily seen that the the estimate (4.4) is
equivalent to the statement that, for all y ∈ S, the linear operator T is bounded
from

`2α(IH) =

(ah,m)(h,m)∈IH :
∑

(h,m)∈IH

dimHh,m (5γ→h,m)α/2 |ah,m|2 <∞


to

L2
α(S) =

{
f ∈ L0(S) :

∫
S
$(x, y)2α |f(x)|2 dσ(x) <∞

}
with operator norm at most 1. By complex interpolation between weighted L2-
spaces, it is then sufficient to show (4.4) for α = 0 and α = 2. Indeed the case
α = 0 is trivial (since equality holds in (4.4) in that case), so we are reduced to
proving the inequality for α = 2.

Let K be a kernel polynomial as in (4.1). Decompose K =
∑4
j=0Kj , where

Kj =
∑

(h,m)∈IH
m≡j

ah,mZh,m

for j = 0, 1, 2, 3, 4 and ≡ denotes congruence modulo 5. Then by (4.3) and Propo-
sition 4.1(ii) it is easily seen that

5$4Kj = M4Kj + K̃j ,

where K̃j(·, y) is orthogonal to Kj(·, y) in L2(S). Hence, by the Cauchy–Schwarz
inequality and orthogonality,

‖$(·, y)2K(·, y)‖22 ≤ 5

4∑
j=0

‖$(·, y)2Kj(·, y)‖22

= 5

4∑
j=0

〈$(·, y)4Kj(·, y),Kj(·, y)〉

=

4∑
j=0

〈M4Kj(·, y),Kj(·, y)〉

=

4∑
j=0

‖M2Kj(·, y)‖22 = ‖M2K(·, y)‖22,

and we are done. �
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5. The multiplier theorem

We are now ready to prove Proposition 1.4, from which our main theorems follow.
The next statement collects a few estimates that will be useful in the proof.

Lemma 5.1. The following estimates hold.

(i) For all (h,m) ∈ IH,

dimHh,m ' (h+ 1)2n−2(m+ 1)2n−3(h− 2m+ 1)2.

(ii) The sub-Riemannian distance % on S satisfies

(5.1) %(x, y) ' |1− 〈x, y〉|1/2

for all x, y ∈ S.
(iii) The sub-Riemannian balls B(x, r) satisfy

σ(B(x, r)) ' min{r4n+2, 1}

for all x ∈ S and r ∈ (0,∞).

Proof. (i). This is an immediate consequence of Proposition 2.1(i).

(ii). Since both sides of (5.1) are Sp(1)·Sp(n)-invariant, it is sufficient to consider
the case where y = e = (1, 0, . . . , 0). Hence, if we write x = (x1, . . . , xn) ∈ Hn, then
we must prove that

%(x, e) ' |1− x1|1/2.
Note that the above expressions are both continuous in x and vanish on S only if
x = e. Hence, by compactness of S, we only need to prove the equivalence when x
is in a small neighbourhood of e. In this case,

|1− x1|1/2 ' |1−<x1|1/2 + |=x1|1/2

' |1− (<x1)2|1/2 + |=x1|1/2 ' |x′|+ |=x1|1/2,

where x′ = (x2, . . . , xn). Moreover, in a neighbourhood of e, (x′,=x1) is a system of
local coordinates of x on the manifold S, which are “linearly adapted coordinates”
for the 2-step sub-Riemannian structure on S [6, §4.2] and therefore %(x, e) '
|x′|+ |=x1|1/2 as well.

(iii). As before, by Sp(1) ·Sp(n)-invariance, we are reduced to proving the result
for x = e = (1, 0, . . . , 0) and, by compactness of S, it is sufficient to consider the
case where r is small. If x ∈ B(e, r) for r sufficiently small, then (x′,=x1) is a
system of local coordinates for x on the manifold S and %(x, e) ' |x′|+ |=x1|1/2, so

σ(B(e, r)) '
∫

(y,u)∈Hn−1×=H, |y|+|u|1/2≤r
dy du ' r4n+2,

and we are done. �

Proof of Proposition 1.4. Recall that in the proofs of statements (i) and (ii) we are
assuming that 0 ≤ α < 3.

(i). By Sp(1) · Sp(n)-invariance of $ and σ, it is sufficient to prove that∫
B(e,r)

$(e, x)−α dσ(x) ≤ Cα min{r4n+2−α, 1},

for all r > 0, where e = (1, 0, . . . , 0). For all x = (x1, . . . , xn) ∈ H, if we write

x′ = (x2, . . . , xn), then $(e, x) =
√

1− |x1|2 = |x′|. From this it follows easily that∫
S
|x′|−α dσ(x) .

∫
y∈Hn−1, |y|≤1

|y|−α dy <∞,
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since α < 4(n−1). Hence it is sufficient to consider the case where r is small. In this
case, (x′,=x1) is a system of local coordinates on the manifold S for x ∈ B(e, r),
and moreover, by Lemma 5.1(ii), %(x, e) ' |x′|+ |=x1|1/2; therefore∫

B(e,r)

|x′|−α dσ(x) .
∫

(y,u)∈Hn−1×=H, |y|+|u|1/2≤r
|y|−α dy du . r4n+2−α.

(ii). By Propositions 2.1 and 3.1,

(5.2) KF (
√
L) =

∑
(h,m)∈IH

F (
√
λLh,m)Zh,m

for all compactly supported bounded Borel functions F : R→ C, and moreover

(5.3) λLh,m/4 = (h−m+ n)(m+ n− 1)− n(n− 1).

If F : R → C vanishes outside [0, N), then, for all y ∈ S, by Proposition 4.2,
formulas (4.2) and (4.3), Proposition 4.1(iii), and Lemma 5.1(i),

‖$α/2(·, y)KF (
√
L)(·, y)‖22

≤ ‖Mα/2KF (
√
L)(·, y)‖22

=
∑

(h,m)∈IH

(5γ→h,m)α/4 dimHh,m |F (
√
λLh,m)|2

'
∑

(h,m)∈IH

(m+ 1)2n−3+α/2(h+ 1)2n−2−α/2

× (h− 2m+ 1)2 |F (
√
λLh,m)|2

≤
N∑
j=1

∑
(h,m)∈Ij

(m+ 1)2n−3+α/2(h+ 1)2n−α/2 sup
[j−1,j)

|F |2,

where Ij = {(h,m) ∈ IH : (j − 1)2 ≤ λLh,m < j2}.
Therefore, in order to prove (ii), it is sufficient to show that, for all j ∈ N \ {0},∑

(h,m)∈Ij

(m+ 1)2n−3+α/2(h+ 1)2n−α/2 ≤ Cα j4n+1−α.

Note that, if (h,m) ∈ Ij , then, by (5.3),

(j − 1)2/4 ≤ ab− n(n− 1) < j2/4,

where a = h−m+ n and b = m+ n− 1; this implies that

m+ 1 ≤ b, (h+ 1)/2 ≤ a ≤ ab ≤ 2n(n− 1)j2,

and moreover, for each choice of a, the number of values of b satisfying the above
inequality is at most

j2/4 + n(n− 1)

a
− (j − 1)2/4 + n(n− 1)

a
≤ j

2a
.
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In conclusion,∑
(h,m)∈Ij

(m+ 1)2n−3+α/2(h+ 1)2n−α/2

≤ Cn,α
∑
a,b∈N

(j−1)2/4≤ab−n(n−1)<j2/4

b2n−3+α/2a2n−α/2

≤ Cn,α j4n−6+α
∑
a,b∈N

(j−1)2/4≤ab−n(n−1)<j2/4

a3−α

≤ Cn,α j4n−5+α

2n(n−1)j2∑
a=1

a2−α

≤ Cn,α j4n+1−α,

and we are done; notice that in the very last step the condition α < 3 becomes
crucial.

(iii). By (5.2) and (4.2),

‖(1 + r2L)−`‖2L2→L∞ = ‖(1 + r2L)−`‖2L1→L2

= ess sup
y∈S

∫
S
|K(1+r2L)−`(x, y)|2 dσ(x)

=
∑

(h,m)∈IH

dimHh,m(1 + r2λLh,m)−2`.

Hence, as before,

‖(1 + r2L)−`‖2L2→L∞ .
∑

(h,m)∈IH

(h+ 1)2n(m+ 1)2n−3(1 + r2λLh,m)−2`

.
∞∑
j=1

∑
(h,m)∈Ij

j4n−6(h+ 1)3(1 + r2(j − 1)2)−2`

.
∞∑
j=1

j4n−6(1 + r2(j − 1)2)−2`

2n(n−1)j2∑
a=1

a3 j

a

.
∞∑
j=1

j4n+1(1 + r2(j − 1)2)−2`

. max{1, r−(4n+2)}
whenever ` ≥ n+ 1, and the conclusion follows from Lemma 5.1(iii).

(iv). This is an immediate consequence of Lemma 5.1(iii). �
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[14] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Func-

tions. Vol. I, Robert E. Krieger Publishing Co. Inc., Melbourne, Fla., 1981.
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