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SPECTRAL MULTIPLIERS ON 2-STEP GROUPS:
TOPOLOGICAL VERSUS HOMOGENEOUS DIMENSION

Alessio Martini and Detlef Müller

Abstract. Let G be a 2-step stratified group of topological dimension d and
homogeneous dimension Q. Let L be a homogeneous sub-Laplacian on G. By a
theorem due to Christ and to Mauceri and Meda, an operator of the form F (L) is of
weak type (1, 1) and bounded on Lp(G) for all p ∈ (1,∞) whenever the multiplier F
satisfies a scale-invariant smoothness condition of order s > Q/2. It is known that,
for several 2-step groups and sub-Laplacians, the threshold Q/2 in the smoothness
condition is not sharp and in many cases it is possible to push it down to d/2.
Here we show that, for all 2-step groups and sub-Laplacians, the sharp threshold is
strictly less than Q/2, but not less than d/2.

1 Introduction

Let L = −Δ be the Laplace operator on R
d. Since L is essentially self-adjoint on

L2(G), a functional calculus for L is defined via the spectral theorem and an operator
of the form F (L) is bounded on L2(Rd) whenever the Borel function F : R → C

is bounded. The investigation of necessary and sufficient conditions for F (L) to be
bounded on Lp for some p �= 2 in terms of properties of the “spectral multiplier” F
is a traditional and very active area of research of harmonic analysis.

Among the classical results, a corollary of the Mihlin–Hörmander multiplier the-
orem gives a sufficient condition for the Lp-boundedness of F (L) in terms of a local
scale-invariant Sobolev condition of the form

‖F‖Lq
s,sloc

:= sup
t≥0

‖F (t·) η‖Lq
s

< ∞ (1)

for appropriate q ∈ [1, ∞], s ∈ [0, ∞); here η ∈ C∞
c ((0, ∞)) is any nonzero cutoff

and Lq
s is the Lq Sobolev space of order s.

Theorem 1 (Mihlin–Hörmander). Let L be the Laplace operator on R
d. Suppose

that the function F : R → C satisfies ‖F‖L2
s,sloc

< ∞ for some s > d/2. Then the
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operator F (L) is of weak type (1, 1) and bounded on Lp(Rd) for all p ∈ (1, ∞).
Further, the associated operator norms are bounded by multiples of ‖F‖L2

s,sloc
.

Actually this result is usually stated by restricting the supremum in (1) to t > 0.
However, with the above definition,

‖F‖Lq
s,sloc

∼ |F (0)| + sup
t>0

‖F (t·) η‖Lq
s

and, since the Laplace operator L on R
d has trivial kernel, the usual statement is

recovered by applying Theorem 1 to the multiplier FχR\{0}. On the other hand,
given that we will also discuss operators with nontrivial kernel, the definition in (1)
seems more convenient here.

The threshold d/2 on the order of smoothness s in Theorem 1 is sharp. More
precisely, if we define the sharp threshold ς(L) as the infimum of the s ∈ [0, ∞) such
that

∃C ∈ (0, ∞) : ∀F ∈ B : ‖F (L)‖L1→L1,∞ ≤ C ‖F‖L2
s,sloc

, (2)

where B is the set of the bounded Borel functions on R, then ς(L) = d/2. This can
be seen, e.g., by taking F (λ) = |λ|iα, α ∈ R\{0} (see, e.g., [CM79,CHR91,SW01]).
The same example shows that the threshold d/2 remains sharp even if we consider
a weaker version of the result, without the weak type (1, 1) endpoint and with a
stronger assumption on the multiplier, in terms of an L∞ Sobolev norm. Namely, if
ς−(L) is defined as the infimum of the s ∈ [0, ∞) such that

∀p ∈ (1, ∞) : ∃C ∈ (0, ∞) : ∀F ∈ B : ‖F (L)‖Lp→Lp ≤ C ‖F‖L∞
s,sloc

, (3)

then it is also ς−(L) = d/2. Further, the endpoint result in Theorem 1 can be
strengthened in the case of compactly supported multipliers F : if ς+(L) is the infi-
mum of the s ∈ [0, ∞) such that

∃C ∈ (0, ∞) : ∀F ∈ Bc : sup
t>0

‖F (tL)‖L1→L1 ≤ C ‖F‖L2
s
, (4)

where Bc = {F ∈ B : suppF ⊆ [−1, 1]}, then again ς+(L) = d/2. By taking
F (λ) = (1 − λ)α

+, this strengthened result yields the sharp range of α (namely,
α > d/2 − 1) for which the Bochner–Riesz means of order α are L1-bounded (see,
e.g., [STE93, p. 389]).

Results of this type have been obtained in more general contexts than R
d, particu-

larly when L is a second-order self-adjoint elliptic differential operator on a manifold
M . For instance, when M is a compact manifold, then ς(L) = d/2, where d is the
dimension of M [SS89]. Things can be very different on noncompact manifolds and
it may even happen that ς(L) = ∞ (see, e.g., [CS74,CM96]). However the lower
bound ς(L) ≥ d/2 is always true. In fact, locally, at each point of M , L “looks like”
the Laplacian L0 on R

d and one can prove that ς(L) ≥ ς(L0) and ς±(L) ≥ ς±(L0)
by a transplantation argument [KST82].



682 A. MARTINI AND D. MÜLLER GAFA

Much less is known about sharp thresholds when the ellipticity assumption is
weakened. Consider the case of a homogeneous sub-Laplacian L on an m-step strat-
ified group G of homogeneous dimension Q. In other words, G is a simply connected
nilpotent Lie group, whose Lie algebra g is decomposed as a direct sum g =

⊕m
j=1 gj

of linear subspaces, called layers, so that [gj , g1] = gj+1 for j = 1, . . . , m − 1 and
[gm, g1] = {0}. Moreover Q =

∑m
j=1 j dim gj and L = −∑k

l=1 X2
l , where X1, . . . , Xk

are left-invariant vector fields on G that form a basis of the first layer g1. The
sub-Laplacian L is a left-invariant second-order self-adjoint hypoelliptic differential
operator on G, which is not elliptic unless m = 1, i.e., unless G is abelian and L is
a Euclidean Laplacian.

Homogeneous sub-Laplacians on stratified groups have been extensively studied,
also because of their role as local models for more general hypoelliptic operators
(see, e.g., [RS76,FOL77,NRS90,ER98]). Several generalizations of Theorem 1 to
this context have been obtained [MM79,FOL82,MM87], culminating in the following
result independently proved by Christ [CHR91] and by Mauceri and Meda [MM90].

Theorem 2 (Christ, Mauceri and Meda). Let L be a homogeneous sub-Laplacian
on a stratified group G of homogeneous dimension Q. Then ς(L) ≤ Q/2.

Note that Q ≥ d, where d = dim g is the topological dimension of G. In fact
Q = d if and only if m = 1. Hence Theorem 2 reduces to Theorem 1 when G is
abelian and in this case it is sharp. Note also that Q coincides both with the local
dimension (associated to the optimal control distance for L) and the dimension at
infinity (i.e., degree of polynomial growth) of G. Therefore, for many purposes, the
homogeneous dimension Q of a stratified group G plays the role that the dimension
d plays for the Laplace operator on R

d.
Also for these reasons, the threshold Q/2 in Theorem 2 was expected to be

sharp in any case and the discovery of counterexamples came initially as a surprise.
Consider the simplest case of nonabelian stratified groups G, i.e., the Heisenberg
groups, where m = 2 and Q − d = dim g2 = 1. Müller and Stein [MS94] proved
that, for all homogeneous sub-Laplacians L on Heisenberg groups, ς(L) = d/2.
Independently Hebisch [HEB93] proved that ς(L) ≤ d/2 on the larger class of groups
of Heisenberg type.

After this discovery, in the last twenty years several other improvements to Theo-
rem 2 in particular cases have been obtained and the inequality ς(L) ≤ d/2 has been
proved for many classes of 2-step groups [HZ95,MAR12,MAR13,MAR15,MM14].
However, to the best of our knowledge, the upper bound ς(L) ≤ Q/2 of Theorem 2
has been so far the best available result for arbitrary stratified groups, or even for
arbitrary 2-step stratified groups. Moreover, apart from the abelian case, the lower
bound ς(L) ≥ d/2 has been proved only for the Heisenberg groups.

The result that we present here applies instead to all 2-step groups and homo-
geneous sub-Laplacians thereon.
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Theorem 3. Let L be a homogeneous sub-Laplacian on a 2-step stratified group
G of topological dimension d and homogeneous dimension Q. Then

d/2 ≤ ς−(L) ≤ ς(L) ≤ ς+(L) < Q/2.

Note that the intermediate inequalities ς−(L) ≤ ς(L) and ς(L) ≤ ς+(L) follow
from standard arguments (the former is a consequence of the Marcinkiewicz inter-
polation theorem; for the latter, see, e.g., [MAR12, Theorem 4.6]). The extreme
inequalities are the ones that need a proof.

The inequality ς−(L) ≥ d/2 is obtained by studying operators closely related to
the Schrödinger propagator eitL. As we show in Section 2, via a Mehler-type formula
we can write the convolution kernels of these operators as oscillatory integrals on
the dual g∗

2 of the second layer and lower bounds for the corresponding operator
norms can be obtained via the method of stationary phase. In these respects, our
approach is not dissimilar to the one of [MS94], where stationary phase is used to
study the imaginary powers Liα of the sub-Laplacian. However the analysis of the
oscillatory integrals associated to Liα turns out to be quite complicated already
on the Heisenberg groups, where g∗

2 is 1-dimensional, and a generalization of the
argument of [MS94] to arbitrary 2-step groups seems very difficult. In comparison,
the method presented here is much simpler, when applied to Heisenberg (or even
Heisenberg-type) groups, and the greater complexity involved with more general
2-step groups becomes manageable.

For arbitrary 2-step groups, the main difficulty in applying stationary phase is
showing that the phase function admits nondegenerate critical points. In the case
of groups of Heisenberg type, the origin of g∗

2 is such a point, but this need not be
the case for more general 2-step groups. Nevertheless, as we show in Section 3, the
Hessian of the phase function becomes nondegenerate if we move slightly away from
the origin in a “generic” direction. One of the ingredients of the proof is the fact
that certain Hankel determinants of Bernoulli numbers are strictly positive, which
in turn is related to properties of the Riemann zeta function.

The inequality ς+(L) < Q/2 is proved in Section 4. The proof follows the method
developed in [MAR15,MM14] to show that ς+(L) ≤ d/2 for particular classes of
2-step groups G. Here we show that a suitable variation of the method, using ele-
mentary estimates for algebraic functions, can be applied to arbitrary 2-step groups
and sub-Laplacians and always yields an improvement to Theorem 2.

The lower bound in Theorem 3 shows that all the multiplier theorems for ho-
mogeneous sub-Laplacians on 2-step groups with threshold d/2 obtained so far
[HEB93,MAR13,MAR15,MM14] are sharp. Moreover, by transplantation, it gives
a lower bound to ς(L) and ς±(L) for all sub-Laplacians L on 2-step sub-Riemannian
manifolds and all other operators L locally modeled on homogeneous sub-Laplacians
on 2-step groups.

An interesting open question is whether Theorem 3 extends to stratified groups
of step m > 2. Indeed Theorem 3 yields, via transference [BPW96], the lower bound
ς−(L) ≥ (dim g1 + dim g2)/2 for all homogeneous sub-Laplacians L on all stratified
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groups. Moreover improvements to the upper bound Q/2 in Theorem 2 are known
for particular stratified groups of step m > 2 [HZ95,MAR12]. However the methods
used in the present paper do not apply directly to stratified groups of step higher
than 2 and new methods and ideas appear to be necessary.

2 The Stationary Phase Argument

Let G be a 2-step stratified group and g = g1 ⊕ g2 the stratification of its Lie
algebra; in other words, [g1, g1] = g2 and [g, g2] = {0}. Let d1 = dim g1, d2 = dim g2,
d = d1+d2 and Q = d1+2d2. Let X1, . . . , Xd1 be a basis of g1 and let L = −∑d1

l=1 X2
l

be the corresponding sub-Laplacian. Let 〈·, ·〉 be the inner product on g1 that turns
X1, . . . , Xd1 into an orthonormal basis.

Let g∗
2 be the dual of g2 and define, for all μ ∈ g∗

2, the skew-symmetric endomor-
phism Jμ on g1 by

〈Jμx, x′〉 = μ([x, x′]) for all x, x′ ∈ g1. (5)

Consider the space so(g1) of skew-symmetric linear endomorphisms of g1, endowed
with the Hilbert–Schmidt inner product determined by the inner product on g1.
Since [g1, g1] = g2, the linear map μ �→ Jμ is injective, so we can define an inner
product on g∗

2 by pulling back the inner product on so(g1), and endow g2 with the
dual inner product.

As usual, we identify g with G via exponential coordinates, so the Haar measure
on G coincides with the Lebesgue measure on g. If f ∈ L1(G) and μ ∈ g∗

2, then we
denote by fμ the μ-section of the partial Fourier transform of f along g2, given by

fμ(x) =
∫

g2

f(x, u) e−i〈μ,u〉 du

for all x ∈ g1.
If A is a left-invariant operator on L2(G), then we denote by KA its convolution

kernel. Denote for t > 0 by pt = Ke−tL the heat kernel associated to the sub-Laplacian
L. Notice that the family of contraction operators e−tL, t > 0, admits an analytic
extension e−zL for z in the complex right half-plane �z > 0; the corresponding
convolution Schwartz kernels will be denoted by pz.

Let T and S be the even meromorphic functions defined by

T(z) =
z

tan z
, S(z) =

z

sin z
, z ∈ C\{kπ : 0 �= k ∈ Z}. (6)

Note that Jμ is naturally identified with a skew-symmetric endomorphism of the
complexification (g1)C of g1, endowed with the corresponding hermitian inner prod-
uct, and, for all z ∈ C, zJμ is a normal endomorphism of (g1)C. Then the following
Mehler-type formula holds.
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Proposition 4. For all z ∈ C with �z > 0, and for all μ ∈ g∗
2,

pμ
z (x) =

1
(4πz)d1/2

det1/2 S(zJμ) exp
(

− 1
4z

〈T(zJμ)x, x〉
)

, (7)

where roots are meant to be determined by the principal branch.

Proof. Several instances and variations of this formula can be found in the literature;
see, e.g., [HUL76,GAV77,MR90,MR96,RAN96,LUS03] and particularly [CYG79,
Corollary (5.5)]. Alternatively, for all μ ∈ g∗

2, one can apply the general formula of
[MR03, Theorem 5.2] (which indeed applies to much wider classes of second order
operators than sub-Laplacians) to the symplectic form μ([·, ·]) on (kerJμ)⊥ and
observe that, on kerJμ, μ-twisted convolution reduces to Euclidean convolution and
the heat kernel reduces to the Euclidean heat kernel. ��

For all finite-dimensional normed vector spaces V , for all v ∈ V , and for all
ε > 0, denote by CV (v, ε) the set of the smooth functions χ : V → R whose support
is contained in the closed ball of center v and radius ε.

For all χ ∈ C∞
c (R) and t ∈ R, define mχ

t : R → C by

mχ
t (λ) =

∫

R

χ(s) ei(t−s)λ ds = eitλ χ̂(λ), (8)

where χ̂ is the Fourier transform of χ. In particular mχ
t is in the Schwartz class and

moreover, for all t ∈ R and α ≥ 0,

‖mχ
t ‖L∞

α,sloc
≤ Cα,χ (1 + |t|)α. (9)

Choose orthonormal coordinates (ud1 , . . . , ud2) on g2 and let

U = (−i∂u1 , . . . ,−i∂ud2
)

be the corresponding vector of central derivatives on G. For all χ ∈ C∞
c (R), θ ∈

C∞
c (g∗

2), and t ∈ R, define Ωχ,θ
t by

Ωχ,θ
t = Kmχ

t (L) θ(tU) . (10)

Proposition 5. For all χ ∈ CR(0, 1/2), θ ∈ Cg∗
2
(0, 1), t ≥ 1, y ∈ g1, v ∈ g2,

Ωχ,θ
t (2ty, t2v) = t−Q/2 eiπd1/4

(4π)d1/2(2π)d2

∫

R

χ(s) Iθ(t, s, t−1, y, v) ds, (11)

where

Iθ(t, s, r, y, v) =
∫

g∗
2

exp(itΦ(y, v, μ) − isΣ(y, μ) − irR(s, r, y, μ))B(sr, μ) θ(μ) dμ
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and

Φ(y, v, μ) = −〈T(iJμ)y, y〉 + 〈μ, v〉,
B(σ, μ) = (1 − σ)−d1/2 det1/2 S ((1 − σ) iJμ) ,

Σ(y, μ) = 〈S(iJμ)2y, y〉 = |S(iJμ)y|2,
R(s, r, y, μ) = s2〈R0(sr, iJμ)y, y〉,

and R0 is the analytic function on {(σ, z) ∈ C
2 : σ �= 1, (1−σ)z/π /∈ Z\{0}} defined

by the following Maclaurin expansion in σ:

(1 − σ)−1T((1 − σ)z) = T(z) + S(z)2σ + R0(σ, z)σ2. (12)

Proof. For all ε > 0 and λ ∈ R, define mχ
t,ε(λ) = e−ελ mχ

t (λ) and let Kt,ε = Kmχ
t,ε(L),

Ωχ,θ
t,ε = Kmχ

t,ε(L) θ(tU). Then, by (8), for all ε > 0 and μ ∈ g∗
2,

Kμ
t,ε =

∫

R

χ(s) pμ
ε−i(t−s) ds,

and so, for all x ∈ g1,

(Ωχ,θ
t,ε )μ(x) = Kμ

t,ε(x) θ(tμ) =
∫

R

χ(s) pμ
ε−i(t−s)(x) θ(tμ) ds.

In the last integral, the cutoff θ gives the localization |tμ| ≤ 1 and χ gives
|s| ≤ 1/2; moreover t ≥ 1, so |s/t| ≤ 1/2 and ‖i(t − s)Jμ‖ = |1 − s/t||tμ| ≤ 3/2 < π.
In particular, if we apply formula (7) and take the limit as ε → 0, then, by dominated
convergence,

(Ωχ,θ
t )μ(x) =

1
(4π)d1/2

∫

R

χ(s) exp
(

− i

4(t − s)
〈T(i(t − s)Jμ)x, x〉

)

× eiπd1/4

(t − s)d1/2
det1/2 S(i(t − s)Jμ) θ(tμ) ds.

Inversion of the partial Fourier transform and a change of variables gives

Ωχ,θ
t (2ty, t2v) =

1
(4π)d1/2(2π)d2

∫

g∗
2

∫

R

exp
(

− it2

t − s
〈T(i(t − s)Jμ)y, y〉

)

× eiπd1/4

(t − s)d1/2
det1/2 S(i(t − s)Jμ) θ(tμ)χ(s) ei〈μ,t2v〉 ds dμ

=
eiπd1/4

(4πt)d1/2(2πt)d2

∫

R

χ(s)
∫

g∗
2

B(s/t, μ) θ(μ)

× exp
(

−it

(
1

1 − s/t
〈T ((1 − s/t) iJμ) y, y〉 − 〈μ, v〉

))

dμ ds.
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It is easily checked that ∂
∂σ ((1 − σ)−1T((1 − σ)z))|σ=0 = S(z)2, so (12) is indeed

a Maclaurin expansion and R0 is well-defined. Moreover (12) yields immediately

t

(
1

1 − s/t
〈T ((1 − s/t) iJμ) y, y〉 − 〈μ, v〉

)

= − tΦ(y, v, μ) + sΣ(y, μ)

+ t−1R(s, t−1, y, μ),

where Φ and R are the functions defined above, and the conclusion follows. ��
We are going to use the method of stationary phase to obtain estimates from below
of |Ωχ,θ

t |. For this we need nondegenerate critical points of the phase function.

Proposition 6. Let Φ be defined as in Proposition 5. There exist y0 ∈ g1, v0 ∈ g2,
μ0 ∈ g∗

2 such that

|μ0| < 1, ∇μΦ(y0, v0, μ0) = 0, det ∇2
μΦ(y0, v0, μ0) �= 0. (13)

The proof of Proposition 6 is postponed to the next section. We now see how
this fact can be used to obtain the desired estimates.

Proposition 7. Let y0 ∈ g1, v0 ∈ g2, μ0 ∈ g∗
2 be satisfying (13). Then there exist

χ ∈ CR(0, 1/2), θ ∈ Cg∗
2
(0, 1), and neighborhoods U ⊆ g1 of y0 and V ⊆ g2 of v0 such

that, for all t ≥ 1, y ∈ U , v ∈ V ,

tQ−d/2Ωχ,θ
t (2ty, t2v) = eiπd/4eitΨ(y,v)Aχ,θ(y, v) + O(t−1), (14)

where Ψ, Aχ,θ ∈ C∞(U ×V ) are real-valued, Aχ,θ(y0, v0) �= 0, and O(t−1) is uniform
in (y, v) ∈ U × V .

Proof. Since ∇2
μΦ(y0, v0, μ0) is nondegenerate and ∇μΦ(y0, v0, μ0) = 0, by the im-

plicit function theorem there exist neighborhoods U0 ⊆ g1 of y0 and V0 ⊆ g2 of v0

such that there is a (unique) smooth function μc : U0 × V0 → g∗
2 such that

μc(y0, v0) = μ0, ∇μΦ(y, v, μc(y, v)) = 0, det ∇2
μΦ(y, v, μc(y, v)) �= 0

for all (y, v) ∈ U0 × V0.
For all sufficiently small ε ∈ (0, 1−|μ0|) and all sufficiently small compact neigh-

borhoods U ⊆ U0 of y0 and V ⊆ V0 of v0, if θ ∈ Cg∗
2
(μ0, ε) and Iθ is defined as in

Proposition 7, then the method of stationary phase [HOR90, Theorem 7.7.6] yields

Iθ(t, s, r, y, v) = (2πi/t)d2/2 det−1/2(∇2
μΦ(y, v, μc(y, v))) eitΦ(y,v,μc(y,v))θ(μc(y, v))

× B(sr, μc(y, v)) exp(−isΣ(y, μc(y, v))) exp(−irR(s, r, y, μc(y, v)))

+ O(t−d2/2−1)

for all t ≥ 1, |s|, |r| < ε, y ∈ U, v ∈ V .
Note now that

exp(−irR(s, r, y, μc(y, v))) = 1 + O(r)
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and

B(σ, μc(y, v)) = det1/2 S
(
iJμc(y,v)

)
+ O(σ).

Consequently, for all t > ε−1, |s| < ε, (y, v) ∈ U × V ,

Iθ(t, s, t−1, y, v) = (2πi/t)d2/2 det−1/2(∇2
μΦ(y, v, μc(y, v))) eitΦ(y,v,μc(y,v))θ(μc(y, v))

× det1/2 S
(
iJμc(y,v)

)
exp(−isΣ(y, μc(y, v))) + O(t−d2/2−1).

Therefore, by (11), if χ ∈ CR(0, ε), then, for all t > ε−1 and (y, v) ∈ U × V ,

tQ−d/2Ωχ,θ
t (2ty, t2v) =

eiπd/4

(4π)d1/2(2π)d2/2
eitΦ(y,v,μc(y,v))θ(μc(y, v)) det1/2 S

(
iJμc(y,v)

)

× det−1/2(∇2
μΦ(y, v, μc(y, v))) χ̂(Σ(y, μc(y, v))) + O(t−1).

By compactness of U and V , the last identity is trivial for 1 ≤ t ≤ ε−1. Therefore
(14) holds for all t ≥ 1, y ∈ U , v ∈ V , if we define Aχ,θ and Ψ by

Ψ(y, v) = Φ(y, v, μc(y, v)),

Aχ,θ(y, v) = (4π)−d1/2(2π)−d2/2 det1/2 S
(
iJμc(y,v)

)
θ(μc(y, v))

× det−1/2(∇2
μΦ(y, v, μc(y, v))) χ̂(Σ(y, μc(y, v))).

In particular

Aχ,θ(y0, v0) = (4π)−d1/2(2π)−d2/2 det1/2 S (iJμ0) θ(μ0)

× det−1/2(∇2
μΦ(y0, v0, μ0)) χ̂(|S(iJμ0)y0|2).

The conclusion follows by choosing θ ∈ Cg∗
2
(μ0, ε) so that θ(μ0) �= 0, and χ ∈ CR(0, ε)

so that χ̂ is real-valued and χ̂(|S(iJμ0)y0|2) �= 0; the latter condition is easily satisfied
by taking χ = χ0(λ−1 ·) for some even χ0 ∈ CR(0, 1) with χ̂0(0) �= 0 and λ > 0
sufficiently small. ��
Theorem 8. There exists χ ∈ CR(0, 1/2) such that, for all p ∈ [1, 2], there exists
Cp,χ > 0 such that, for all t ≥ 1,

‖mχ
t (L)‖p→p ≥ Cp,χ td(1/p−1/2). (15)

Proof. Let y0 ∈ g1, v0 ∈ g2, μ0 ∈ g∗
2 be given by Proposition 6. Let neighborhoods

U ⊆ g1 of y0, V ⊆ g2 of v0, χ ∈ CR(0, 1/2), θ ∈ Cg∗
2
(0, 1), Ψ ∈ C∞(U × V ) be given

by Proposition 7.
Note that mχ

t (L) �= 0 for all t ≥ 1, because χ �= 0; hence it is sufficient to prove
the estimate (15) for t large.

Set

Ft(u) = (2π)−d2

∫

g∗
2

θ(tμ) ei〈μ,u〉 dμ.
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Then Ft = t−d2F1(t−1·) and

Ωχ,θ
t = (δ0 ⊗ Ft) ∗ Kt,

where Kt = Kmχ
t (L) as before.

Choose χ̃ ∈ Cg1(0, c), where c > 0 is a small parameter to be fixed later. Define

Ω̃t = (χ̃ ⊗ δ0) ∗ Ωχ,θ
t = (χ̃ ⊗ Ft) ∗ Kt = mχ

t (L)(χ̃ ⊗ Ft).

Note that

Ω̃t(x, u) =
∫

g1

χ̃(x′) Ωχ,θ
t (x − x′, u + [x, x′]/2) dx′,

i.e.,

Ω̃t(2ty, t2v) =
∫

g1

χ̃(x′) Ωχ,θ
t (2t(y − x′/2t), t2(v + [y, x′]/t)) dx′.

We would like to apply (14) to estimate Ωχ,θ
t in the above integral and get a

lower bound for |Ω̃t(2ty, t2v)| for all sufficiently large t ≥ 1 and all y, v ranging in
sufficiently small neighborhoods of y0, v0. The problem is that the oscillation coming
from the factor eitΨ could produce cancellation by integrating in x′. On the other
hand |∇Ψ(y, v)| � 1 when y, v range in compact sets. Consequently

eitΨ(y−x′/2t,v+[y,x′]/t) = eitΨ(y,v)+ic O(1)

for all x′ ∈ supp χ̃. By taking c sufficiently small, one obtains that there cannot
be too much cancellation (the integrand remains in a convex cone in the complex
plane whose aperture is independent of t). So from (14) we conclude that there exist
sufficiently small neighborhoods U ⊆ g1 of y0 and V ⊆ g2 of v0 such that, for all
sufficiently large t ≥ 1, y ∈ U and v ∈ V ,

|Ω̃t(2ty, t2v)| � td/2−Q.

In particular

‖Ω̃t‖p ∼ tQ/p

(∫

G
|Ω̃t(2ty, t2v)|p dy dv

)1/p

� td/2−Q/p′

where p′ = p/(p − 1), while

‖χ̃ ⊗ Ft‖p ∼ t−d2/p′
.

Consequently

‖mχ
t (L)‖p→p ≥ ‖Ω̃t‖p

‖χ̃ ⊗ Ft‖p
� td(1/2−1/p′) = td(1/p−1/2)

and we are done. ��
Corollary 9. ς−(L) ≥ d/2.

Proof. This follows by comparison of (9) and (15). ��
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3 Nondegenerate Critical Points of the Phase Function

This section is devoted to the proof of Proposition 6.
Recall that T is defined by (6). Hence

T(z) = 1 −
∑

k>0

bkz
2k,

where, for all nonzero k ∈ N,

bk = (−1)k−122kB2k/(2k)! = 2π−2kζ(2k), (16)

the B2k are Bernoulli numbers, and ζ is the Riemann zeta function (see, e.g.,
[AAR99, proof of Theorem 1.2.4]). So

〈T(iJμ)y, y〉 = |y|2 −
∑

k>0

bk|Jk
μy|2. (17)

Consequently, if Φ is defined as in Proposition 5, then

Φ(y, v, μ) = −|y|2 + Φ0(y, μ) + 〈v, μ〉,
where

Φ0(y, μ) =
∑

k>0

bk|Jk
μy|2, (18)

and moreover

∇μΦ(y, v, μ) = ∇μΦ0(y, μ) + v, ∇2
μΦ(y, v, μ) = ∇2

μΦ0(y, μ).

In particular, the proof of Proposition 6 is reduced to showing that there exist y0 ∈ g1

and μ0 ∈ g∗
2 such that |μ0| < 1 and ∇2

μΦ0(y0, μ0) is nondegenerate, because then by
choosing v0 = −∇μΦ0(y0, μ0) we have that (13) is satisfied.

Since the linear map μ �→ Jμ is injective, g∗
2 can be identified with the subspace

V of so(g1) given by

V = {Jμ : μ ∈ g∗
2}.

So in the following we will consider Φ0 as a function g1 × V → R. Let Vgen be
the homogeneous Zariski-open subset of V whose elements have maximal number of
distinct eigenvalues among the elements of V .

Lemma 10. Let S ∈ Vgen and let e ∈ g1 be such that the orthogonal projection of e
on each eigenspace of S2 is nonzero. Let N be the number of distinct eigenvalues of
S2. For all T ∈ V , if

TSje = 0 for j = 0, . . . , 2N − 1, (19)

then T = 0.
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Proof. For all t ∈ R, let St = S+tT and let qt be the minimal polynomial of S2
t . Since

S2
t is a symmetric linear endomorphism, qt has no multiple roots and, by definition

of Vgen, the degree of qt is at most N .
From (19) we easily obtain that

Sj
t e = Sje for all j = 0, . . . , 2N.

In particular

qt(S2)e = qt(S2
t )e = 0.

For all eigenvalues λ of S2, if Pλ is the corresponding spectral projection, then

qt(λ)Pλe = qt(S2)Pλe = Pλqt(S2)e = 0,

but Pλe �= 0 by assumption and consequently

qt(λ) = 0.

This means that the roots of qt include all the roots of q0. However q0 has N distinct
roots and qt has degree at most N , therefore qt = q0. In particular

q0((S + tT )2) = 0

for all t ∈ R. By expanding the left-hand side and considering the term that contains
the highest power of t, one obtains that

T 2N = 0

and since T is skew-symmetric this implies that T = 0. ��
Fix S ∈ Vgen and e ∈ g1 as in Lemma 10. For all j ∈ N, define

Vj = {T ∈ V : TSle = 0 for l = 0, . . . , j − 1}.

Note that V0 = V . Moreover Vj ⊇ Vj+1 and, by Lemma 10, Vj = {0} for j sufficiently
large. Let r ∈ N be minimal so that Vr = 0 (note that r may be smaller than the
value 2N given by Lemma 10, and in fact r = 1 if G is of Heisenberg type). Choose
a linear complement Wj of Vj+1 in Vj . So Vj = Wj ⊕ Vj+1 and

V = W0 ⊕ · · · ⊕ Wr−1. (20)

In addition, for all nonzero T ∈ Wj , TSle = 0 for l < j but TSje �= 0, and in
particular the map Wj � T �→ TSje ∈ g1 is injective.

Let Φ00(μ) = Φ0(e, μ) and define, for all sufficiently small ε > 0, the bilinear
form H(ε) : V × V → R by

H(ε) =
1
2
∇2Φ00(εS).

Let moreover Hij(ε) be the restriction of H(ε) to Wi × Wj for all i, j = 0, . . . , r − 1.
If we identify bilinear forms with their representing matrices, then we can think of
Hij(ε) as the (i, j)-block of H(ε) with respect to the decomposition (20) of V . Note
that H(ε) is an analytic function of ε.
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Lemma 11. For all i, j = 0, . . . , r − 1, and all small ε ∈ R,

Hij(ε)(A, B)=

{
O(εi+j+1) if i + j is odd,

(−1)(i−j)/2b1+(i+j)/2ε
i+j〈ASie, BSje〉 + O(εi+j+2) if i + j is even.

Proof. Note that, by (18),

∇2Φ00(εS) =
∑

k>0

bk∇2Φk(εS),

where Φk(T ) = |T ke|2. Moreover the Hessian ∇2Φk(εS)(A, B) is the bilinear part in
(A, B) of the Maclaurin expansion of Φk(εS + A + B) with respect to (A, B).

Let k > 0. In the expansion of |(εS + A + B)ke|2, the bilinear part in (A, B) is

2(−1)kε2k−2
∑

α+β+γ=2k−2

〈SαASβBSγe, e〉. (21)

If we assume that A ∈ Wi and B ∈ Wj , then the sum can be restricted to the indices
α, β, γ such that α ≥ i and γ ≥ j, because the other summands vanish. In particular
the entire sum vanishes unless 2k − 2 ≥ i + j.

Hence, if i+j is odd, then (21) vanishes unless 2k−2 ≥ i+j+1, and in particular
(21) is O(εi+j+1) for all k.

Suppose now that i + j is even. If 2k − 2 > i + j, then 2k − 2 ≥ i + j + 2 and
consequently (21) is O(εi+j+2). If instead 2k − 2 = i + j, then it must be α = i,
β = 0, and γ = j, thus (21) can be rewritten as

2(−1)k+i+1εi+j〈BSje, ASie〉
and we are done, because k + i + 1 ≡ (i − j)/2 modulo 2. ��

The following result completes the proof of Proposition 6.

Proposition 12. For all sufficiently small ε �= 0, H(ε) is positive definite.

Proof. Let Mε : V → V be the linear map defined by Mε|Wj
= (−1)�j/2�εj idWj

for
all j = 0, . . . , r − 1. Then, by Lemma 11, we can write H(ε) as

H(ε)(A, B) = H̃(ε)(MεA, MεB)

for all A, B ∈ V , where H̃(ε) : V ×V → R is a bilinear form whose restriction H̃ij(ε)
to Wi × Wj satisfies

H̃ij(ε)(A, B) =

{
O(ε) if i + j is odd,
b1+(i+j)/2〈ASie, BSje〉 + O(ε2) if i + j is even.

In particular

H̃ij(0)(A, B) =

{
0 if i + j is odd,
b1+(i+j)/2〈ASie, BSje〉 if i + j is even.
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We are then reduced to showing that H̃(0) is positive definite; in fact, if H̃(0) is
positive definite, then H̃(ε) is positive definite for all sufficiently small ε �= 0 and,
for such ε �= 0, H(ε) is positive definite too, because Mε is invertible.

Since the linear map

V = W0 ⊕ · · · ⊕ Wr−1 � (T0, . . . , Tr−1) �→ (TjS
je)r−1

j=0 ∈ gr
1

is injective, we can consider H̃(0) as the restriction to a suitable subspace of the
bilinear form K : gr

1 × gr
1 → R given by

K((v0, . . . , vr−1), (w0, . . . , wr−1)) =
r−1∑

i,j=0

cij 〈vi, wj〉,

where

cij =

{
0 if i + j is odd,
b1+(i+j)/2 if i + j is even.

So it is sufficient to show that K is positive definite.
Let e1, . . . , ed1 be an orthonormal basis of g1. Then, in the basis

(e1, 0, . . . , 0), . . . , (0, . . . , 0, e1), . . . , (ed1 , 0, . . . , 0), . . . , (0, . . . , 0, ed1)

of gr
1, the matrix of K is a d1 × d1 block diagonal matrix, whose diagonal blocks are

all equal to the matrix C = (cij)r−1
i,j=0. In other words, the matrix of K is of the form

C ⊗ Id1 . Hence K is positive definite if and only if C is positive definite.
Since cij = 0 when i+ j is odd, one can also consider C as a 2× 2 block diagonal

matrix, where the first block is determined by the even rows/columns and the second
block by the odd rows/columns. In order to show that C is positive definite, it is
sufficient to show the positive definiteness of each diagonal block.

In conclusion, by Sylvester’s criterion, we are reduced to showing that matrices
of the form

Zm,s =

⎛

⎜
⎜
⎜
⎝

bm+1 bm+2 · · · bm+s

bm+2 bm+3 · · · bm+s+1
...

...
. . .

...
bm+s bm+s+1 · · · bm+2s−1

⎞

⎟
⎟
⎟
⎠

have positive determinant for all m, s. Determinants involving Bernoulli numbers
have been studied since long time and explicit formulas for some of them can be
found in the literature (see, e.g., [AC59,ZC14]). However for us it is sufficient to
show that the determinant of the above matrices is positive, which can be easily
seen by means of properties of the Riemann zeta function ζ.
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In fact, from the identity bk = 2 π−2kζ(2k), we obtain

det Zm,s =
2s

π2s(s+m)
det

⎛

⎜
⎜
⎜
⎝

ζ(2m + 2) ζ(2m + 4) · · · ζ(2m + 2s)
ζ(2m + 4) ζ(2m + 6) · · · ζ(2m + 2s + 2)

...
...

. . .
...

ζ(2m + 2s) ζ(2m + 2s + 2) · · · ζ(2m + 4s − 2)

⎞

⎟
⎟
⎟
⎠

.

If Ss denotes the permutation group of {1, . . . , s} and ε(σ) denotes the sign of a
permutation σ ∈ Ss, then the last determinant can be rewritten as

∑

σ∈Ss

ε(σ)
s∏

i=1

ζ(2(i + σ(i) + m − 1))

=
1
s!

∑

σ,τ∈Ss

ε(σ) ε(τ)
s∏

i=1

ζ(2(σ(i) + τ(i) + m − 1))

=
1
s!

∑

σ,τ∈Ss

ε(σ) ε(τ)
∞∑

k1=1

· · ·
∞∑

ks=1

k
−2(σ(1)+τ(1)+m−1)
1 · · · k−2(σ(s)+τ(s)+m−1)

s

=
1
s!

∞∑

k1=1

· · ·
∞∑

ks=1

(k1 · · · ks)−2(2s+m−1)

(
∑

σ∈Ss

ε(σ) k
2(s−σ(1))
1 · · · k2(s−σ(s))

s

)2

=
1
s!

∞∑

k1=1

· · ·
∞∑

ks=1

(k1 · · · ks)−2(2s+m−1)
∏

1≤i<j≤s

(k2
i − k2

j )
2,

where in the last passage the Vandermonde determinant formula was used. In par-
ticular

det Zm,s =
2s

s! π2s(s+m)

∞∑

k1=1

. . .

∞∑

ks=1

(k1 . . . ks)−2(2s+m−1)
∏

1≤i<j≤s

(k2
i − k2

j )
2 > 0,

and we are done. ��

4 Improvement of the Sufficient Condition

We now demonstrate how some estimates obtained in [MM14], combined with el-
ementary estimates for multivariate algebraic functions, can be used to obtain an
improvement to Theorem 2 for all 2-step groups.

Since the skew-symmetric endomorphism Jμ defined by (5) depends linearly on

μ, we can write a spectral decomposition of
√

−J2
μ where eigenvalues and spectral

projections are algebraic functions of μ. More precisely, as discussed in [MM14, §2],
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there exist nonzero M, r1, . . . , rM ∈ N and a nonempty Zariski-open homogeneous
subset g∗

2,r ⊆ g∗
2 such that, for all μ ∈ g∗

2,r, we can write

√
−J2

μ =
M∑

j=1

bμ
j Pμ

j (22)

for distinct bμ
1 , . . . , bμ

M ∈ (0, ∞) and mutually orthogonal projections Pμ
1 , . . . , Pμ

M

of rank 2r1, . . . , 2rM , which are algebraic functions of μ and are real-analytic for
μ ∈ g∗

2,r. Let moreover Pμ
0 = I − (Pμ

1 + · · · + Pμ
M ) be the projection onto kerJμ for

all μ ∈ g∗
2,r and r0 be its rank.

In terms of the eigenvalues bμ
j and projections Pμ

j it is possible to write a fairly
explicit formula for the Euclidean Fourier transform K̂F (L) of the convolution kernel
of the operator F (L), for all F ∈ C∞

c (R). Namely, for all ξ ∈ g1 and μ ∈ g∗
2,r,

K̂F (L)(ξ, μ) =
∑

n∈NM

F

⎛

⎝
M∑

j=1

(2nj + rj)b
μ
j + |Pμ

0 ξ|2
⎞

⎠
M∏

j=1

�(rj−1)
nj

(|Pμ
j ξ|2/bμ

j ), (23)

where �
(k)
m (t) = 2k+1(−1)me−tL

(k)
m (2t) and L

(k)
m is the mth Laguerre polynomial

of type k, for all t ∈ R and m, k ∈ N (cf. [MM14, Proposition 6]). As shown in
[MM14, §4], by means of this formula it is possible to estimate μ-derivatives of
K̂F (L)(ξ, μ) in terms of expressions analogous to the right-hand side of (23), but
involving derivatives of F , provided that suitable estimates for μ-derivatives of the
bμ
j and Pμ

j hold.
For the reader’s convenience, we now state as a lemma a particular case of [MM14,

Corollary 19], that will be sufficient for our purpose. For technical reasons, the
estimate stated below involves a cutoff in the variable μ.

As in §2 above, fix orthonormal coordinates (u1, . . . , ud2) on g2 and dual coordi-
nates (μ1, . . . , μd2) on g∗

2, and let U be the corresponding vector of central derivatives
on G. Moreover set 〈t〉 = 1 + |t| for all t ∈ R.

Lemma 13. Let D be a smooth vector field on g∗
2,r, thought of as a first-order dif-

ferential operator in the variable μ ∈ g∗
2,r. Suppose that there exists κ ∈ (0, ∞) such

that

|Dbμ
1 | ≤ κbμ

1 , . . . , |Dbμ
M | ≤ κbμ

M ,

‖DPμ
0 ‖ ≤ κ, . . . , ‖DPμ

M‖ ≤ κ

for all μ ∈ g∗
2,r. Then, for all F ∈ C∞

c (R), all χ ∈ C∞
c (g∗

2,r), and all α ∈ {0, 1},
∫

g1

∣
∣
∣DαK̂F (L) χ(U)(ξ, μ)

∣
∣
∣
2
dξ ≤ Cκ,α

∑

ι∈Iα

∫

[0,∞)

∫

Rι

∑

n∈NM

|Dkιχ(μ)|2

×
∣
∣
∣
∣
∣
∣
F (γι)

⎛

⎝
M∑

j=1

(2(nj + sj) + rj)b
μ
j + η

⎞

⎠

∣
∣
∣
∣
∣
∣

2
M∏

j=1

[
(bμ

j )1+aι
j 〈nj〉aι

j

]
dνι(s) dσι(η),
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for all μ ∈ g∗
2,r, where Iα is a finite set and, for all ι ∈ Iα,

• aι, βι ∈ N
M , γι, kι ∈ N, γι + kι ≤ α,

• Rι =
∏M

j=1[0, βι
j ] and νι is a Borel probability measure on Rι,

• σι is a regular Borel measure on [0, ∞).

In view of the above lemma, we are interested in estimates for μ-derivatives of bμ
j

and Pμ
j . Indeed in [MM14] very precise estimates are obtained for particular classes

of 2-step groups, which eventually lead to proving that ς+(L) ≤ d/2 in those cases.
Here however a simpler estimate will be sufficient, that holds for all 2-step groups
and sub-Laplacians and comes from the very fact that the bμ

j and Pμ
j are algebraic

functions of μ.

Lemma 14. There exists a nonzero homogeneous polynomial H : g∗
2 → R such that,

for all μ ∈ g∗
2,r,

|∂μk
bμ
j /bμ

j | ≤ |μ|h−1|H(μ)|−1, j = 1, . . . , M, k = 1, . . . , d2,

‖∂μk
Pμ

j ‖ ≤ |μ|h−1|H(μ)|−1, j = 0, . . . , M, k = 1, . . . , d2,

where h = deg H.

Proof. Note that the expressions ∂μk
bμ
j /bμ

j and ∂μk
Pμ

j are algebraic functions of μ
and are homogeneous of degree −1. The conclusion follows by a simple adaptation
of the proof of [MR96, Lemma 4.2], taking into consideration the homogeneity (the
∂μk

Pμ
j are matrix-valued functions, but one can argue componentwise). ��

We can now combine the two lemmas above to obtain weighted L2-estimates and
L1-estimates for KF (L) and eventually prove that ς+(L) < Q/2.

Proposition 15. Let H and h be as in Lemma 14 and set h0 = max{h, 1}.

(i) For all compact sets K ⊆ R, for all β ≥ 0, for all α ∈ [0, (2h0)−1), for all
s > β + α, if F : R → C is supported in K, then

∫

G

∣
∣
∣(1 + |x| + |u|1/2)β (1 + |u|)α KF (L)(x, u)

∣
∣
∣
2
dx du ≤ CK,α,β,s‖F‖2

W s
2
.

(ii) For all compact sets K ⊆ R, for all s > Q/2 − (2h0)−1, if F : R → C is
supported in K, then

‖ KF (L) ‖1 ≤ CK,s‖F‖W s
2
.

Proof. Without loss of generality, we may assume that F is smooth.
Set H̃(μ) = |μ|−h|H(μ)|. Fix k ∈ {1, . . . , d2}. Define the first-order differential

operator D on g∗
2,r by

D = |μ| H̃(μ) ∂μk
.
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By Lemma 14,

|Dαbμ
j | � bμ

j , ‖DαPμ
j ‖ � 1

for α = 0, 1. Moreover, by homogeneity considerations,

|Dα|μ|| � |μ|, |Dα(H̃(μ))| � H̃(μ)

for α = 0, 1. In particular, if we choose nonnegative functions χ, χ̃ ∈ C∞
c ((0, ∞))

such that ∑

k∈Z
χ(2kλ) = 1 (24)

for all λ ∈ (0, ∞) and χ̃χ = χ, and if we define, for all ρ, δ ∈ (0, ∞),

χρ,δ(μ) = χ(ρ−1|μ|)χ(δ−1H̃(μ)), χ̃ρ,δ(μ) = χ̃(ρ−1|μ|) χ̃(δ−1H̃(μ)),

then

|Dαχρ,δ|2 � χ̃ρ,δ

for α = 0, 1, uniformly in ρ, δ ∈ (0, ∞).
Therefore Lemma 13 gives that, for all ρ, δ ∈ (0, ∞),

∫

g1

∣
∣
∣DαK̂F (L) χρ,δ(U)(ξ, μ)

∣
∣
∣
2
dξ ≤ Cα

∑

ι∈Iα

∫

[0,∞)

∫

Rι

∑

n∈NM

χ̃ρ,δ(μ)

×
∣
∣
∣
∣
∣
∣
F (γι)

⎛

⎝
M∑

j=1

(2(nj + sj) + rj)b
μ
j + η

⎞

⎠

∣
∣
∣
∣
∣
∣

2
M∏

j=1

[
(bμ

j )1+aι
j 〈nj〉aι

j

]
dνι(s) dσι(η),

for α = 0, 1, where K̂F (L) χρ,δ(U) is the Euclidean Fourier transform of KF (L) χρ,δ(U),
Iα is a finite set and, for all ι ∈ Iα,

• aι, βι ∈ N
M , γι ∈ N, γι ≤ α,

• Rι =
∏M

j=1[0, βι
j ] and νι is a Borel probability measure on Rι,

• σι is a regular Borel measure on [0, ∞).

If we assume that supp F ⊆ K for some compact set K ⊆ R, then in the above
integral the quantities bμ

j 〈nj〉 are bounded where the integrand does not vanish. The
previous inequality and the Plancherel formula then yield

∫

G

∣
∣
∣uα

k KF (L) χρ,δ(U)(x, u)
∣
∣
∣
2
dx du ≤ CK,α

∑

ι∈Iα

∫

[0,∞)

∫

Rι

∑

n∈NM

∫

g∗
2

χ̃ρ,δ(μ)

×
∣
∣
∣
∣
∣
∣
F (γι)

⎛

⎝
M∑

j=1

(2(nj + sj) + rj)b
μ
j + η

⎞

⎠

∣
∣
∣
∣
∣
∣

2

(|μ| H̃(μ))−2α
M∏

j=1

bμ
j dμ dνι(s) dσι(η).
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Passing to polar coordinates in the inner integral in μ and rescaling gives

∫

G

∣
∣
∣uα

k KF (L) χρ,δ(U)(x, u)
∣
∣
∣
2
dx du ≤ CK,α ρM+d2−2α δ−2α

×
∑

ι∈Iα

∫

[0,∞)

∫

Rι

∫

Sg∗
2

∫ ∞

0

∑

n∈NM

χ̃

(
ρ−1λ

∑M
j=1(2(nj + sj) + rj)bω

j

)

×
∣
∣
∣F (γι) (λ + η)

∣
∣
∣
2

χ̃(δ−1H̃(ω))
M∏

j=1

bω
j

dλ

λ
dω dνι(s) dσι(η),

where Sg∗
2

is the unit sphere in g∗
2. In the above sum in n, the number of nonvanishing

summands is bounded by a constant times (ρ−1λ)M
∏M

j=1(b
ω
j )−1, hence

∫

G

∣
∣
∣uα

k KF (L) χρ,δ(U)(x, u)
∣
∣
∣
2
dx du ≤ CK,α ρd2−2α δ−2α

∫

Sg∗
2

χ̃(δ−1H̃(ω)) dω

×
∑

ι∈Iα

∫

[0,∞)

∫ ∞

0

∣
∣
∣F (γι) (λ + η)

∣
∣
∣
2
λM−1 dλ dσι(η).

By using again the fact that suppF ⊆ K, we finally obtain

∫

G

∣
∣
∣|u|α KF (L) χρ,δ(U)(x, u)

∣
∣
∣
2
dx du (25)

≤ CK,α‖F‖2
W α

2
ρd2−2α δ−2α

∫

Sg∗
2

χ̃(δ−1H̃(ω)) dω (26)

for all ρ, δ ∈ (0, ∞) and for α = 0, 1. Interpolation then gives the inequality (25) for
all α ∈ [0, 1].

Note now that, by (24),

F (L) =
∑

m∈Z
m≥m0

∑

l∈Z
l≥l0

F (L)χ2−m,2−l(U),

where m0 ∈ Z depends on the compact set K (cf. [MM14, proof of Proposition 22])
and l0 ∈ Z on maxSg∗

2
H̃. In particular, from (25) and Minkowski’s inequality we

obtain that, for all α < min{1, d2/2},

(∫

G

∣
∣
∣|u|α KF (L)(x, u)

∣
∣
∣
2
dx du

)1/2

≤ CK,α‖F‖W α
2

∑

l∈Z
l≥l0

2αl

(∫

Sg∗
2

χ̃(2lH̃(ω)) dω

)1/2

.
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On the other hand, for all ε > 0, by the Cauchy–Schwarz inequality,

∑

l∈Z
l≥l0

2αl

(∫

Sg∗
2

χ̃(2lH̃(ω)) dω

)1/2

≤ Cε

(
∑

l∈Z
22(α+ε)l

∫

Sg∗
2

χ̃(2lH̃(ω)) dω

)1/2

≤ Cε

(∫

Sg∗
2

H̃(ω)−2(α+ε) dω

)1/2

.

Since H is a homogeneous polynomial of degree h, the last integral is finite when
α + ε < (2h)−1 (see, e.g., [MUL84, Lemma 2.1]). Hence, for all α < (2h0)−1,

(∫

G

∣
∣
∣|u|α KF (L)(x, u)

∣
∣
∣
2
dx du

)1/2

≤ CK,α‖F‖W α
2
. (27)

Interpolation of (27) with the standard estimate of [MM90, Lemma 1.2] (see, e.g,
the proof of [MAR15, Proposition 12]) then gives (i), and (ii) follows by Hölder’s
inequality (see, e.g., the proof of [MAR15, Proposition 3]). ��

Corollary 16. If h0 is defined as in Proposition 15, then

ς+(L) ≤ Q/2 − 1/(2h0) < Q/2.

Proof. This follows from Proposition 15(ii) and the fact that, by homogeneity of L,

‖ KF (tL) ‖1 = ‖ KF (L) ‖1

for all t > 0. ��
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