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WEIGHTED PLANCHEREL ESTIMATES AND SHARP SPECTRAL

MULTIPLIERS FOR THE GRUSHIN OPERATORS

Alessio Martini and Adam Sikora

Abstract. We study the Grushin operators acting on Rd1
x′ × Rd2

x′′ and defined by the

formula

L = −
d1∑
j=1

∂2
x′j
−

 d1∑
j=1

|x′
j |2

 d2∑
k=1

∂2
x′′
k
.

We obtain weighted Plancherel estimates for the considered operators. As a consequence

we prove Lp spectral multiplier results and Bochner-Riesz summability for the Grushin

operators. These results are sharp if d1 ≥ d2. We discuss also an interesting phenomenon
for weighted Plancherel estimates for d1 < d2. The described spectral multiplier theorem

is the analogue of the result for the sublaplacian on the Heisenberg group obtained by

D. Müller and E.M. Stein and by W. Hebisch.

1. Introduction

Let (X, µ) be a measure space and L be a (possibly unbounded) self-adjoint op-
erator on L2(X). If E denotes the spectral resolution of L on R, then a functional
calculus for L can be defined via spectral integration and, for every Borel function
F : R→ C, the operator

F (L) =

∫
R
F (λ) dE(λ)

is bounded on L2(X) if and only if the “spectral multiplier” F is an (E-essentially)
bounded function. Characterizing, or at least giving (non-trivial) sufficient conditions
for the Lp-boundedness of the operator F (L), for some p 6= 2, in terms of properties of
the multiplier F , is a much more complicated issue, and a huge amount of literature
is devoted to instances of this problem (we refer the reader to [4, 6, 10, 11, 13, 14, 18,
21, 24, 26] for a detailed discussion of the relevant literature).

Here we are interested in the case where X = Rd1 × Rd2 , with Lebesgue measure,
and L is the Grushin operator, that is,

L = −∆x′ − |x′|2∆x′′ ,

where x′, x′′ denote the two components of a point x ∈ Rd1 ×Rd2 , while ∆x′ ,∆x′′ are
the corresponding partial Laplacians, and |x′| is the Euclidean norm of x′.

Let W s
q (R) denote the Lq Sobolev space on R of (fractional) order s, and define a

“local Sobolev norm” by the formula

‖F‖MW s
q

= sup
t>0
‖η F(t)‖W s

q
,

where F(t)(λ) = F (tλ), and η ∈ C∞c (]0,∞[) is a not identically zero auxiliary function;
note that different choices of η give rise to equivalent local norms. Next set D =
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max{d1 + d2, 2d2}. Then our main result is the following Mihlin-Hörmander-type
multiplier theorem.

Theorem 1. Suppose that a function F : R→ C satisfies

(1) ‖F‖MW s
2
<∞

for some s > D/2. Then the operator F (L) is of weak type (1, 1) and bounded on
Lp(X) for all p ∈ ]1,∞[; in addition,

(2) ‖F (L)‖L1→L1,w ≤ Cs‖F‖MW s
2
, ‖F (L)‖Lp→Lp ≤ Cs,p‖F‖MW s

2
.

Our approach allows us to consider also the Bochner-Riesz means associated to the
Grushin operator, for which we obtain the following result.

Theorem 2. Suppose that κ > (D − 1)/2 and p ∈ [1,∞]. Then the Bochner-Riesz
means (1− tL)κ+ are bounded on Lp(X) uniformly in t ∈ [0,∞[.

The main point of interest of Theorems 1 and 2 is that they are sharp, at least if
d1 ≥ d2; namely, the lower bounds on the order of differentiability s in Theorem 1
and on the order κ of the Bochner-Riesz means in Theorem 2 cannot be decreased.
Determining the “critical” orders s and κ is commonly regarded as a crucial aspect
of the theory of spectral multipliers. For instance, the analogue of Theorem 1 for a
sublaplacian on the Heisenberg group has a long history [8, 12, 21, 4] of results requir-
ing a lower and lower order of differentiablity, culminating with the work of Müller
and Stein [24] which shows that the critical order is half the topological dimension
of the group; see also the independent result by Hebisch [13] for the wider class of
Heisenberg-type groups.

The sharpness of Theorems 1 and 2 when d1 ≥ d2 is due to the fact that D in this
case coincides with the topological dimension d1 +d2 of X; since the Grushin operator
L is elliptic in the region where x′ 6= 0, one can use the transplantation argument
described in [17] to deduce the sharpness of the above theorems from the sharpness
of the analogous results for the Laplace operator on RD (see also [26] for a different
argument). In the case d2 > d1, instead, a gap of d2− d1 remains between D and the
topological dimension.

If one disregarded the constraints on s and κ, then the above results would follow
from a general theorem [14, 11] proved in the context of a doubling metric-measure
space (X, %, µ), with an operator L satisfying Gaussian-type heat kernel bounds:
namely, the weak type (1, 1) and Lp-boundedness for p ∈ ]1,∞[ of F (L) hold whenever
‖F‖MW s

∞
<∞ for some s > Q/2, where Q denotes the “homogeneous dimension” of

the metric-measure space; correspondingly, the uniform Lp-boundedness for p ∈ [1,∞]
of the Bochner-Riesz means (1 − tL)κ+ holds whenever κ > Q/2. As shown in [25],

in the case X is Rd1 × Rd2 with Lebesgue measure and L is the Grushin operator,
a “control distance” % associated to L can be introduced, and the general theorem
applies with Q = d1 + 2d2.

An alternative approach for the case d2 = 1 is presented in the recent work [16],
where the smoothness condition in the Mihlin-Hörmander-type theorem is essentially
the same as in [25], while some improvement is obtained for the Bochner-Riesz means
(in our notation, their condition is κ > D/2 + 1/6). However the method used in
[16] apparently does not yield the weak type (1, 1) in the multiplier theorem, nor the
L1-boundedness of the Bochner-Riesz means.
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Our theorems improve all the mentioned results. In particular, Theorem 1 gives
an improvement with respect to both the order of differentiability required on the
multiplier (since D < Q, even in the case d2 > d1) and the type of Sobolev norm
used (L2 instead of L∞). The use of an L2 Sobolev norm is also crucial to obtain
(D − 1)/2 as the lower bound in Theorem 2.

When d1 = d2 = 1, Theorem 1 proves the conjecture stated on page 5 of [22].

2. The Grushin operator

As above, let X be Rd1×Rd2 with Lebesgue measure. In order to study the Grushin
operator L on X, it is convenient to introduce at the same time a family of operators
which commute with L.

Given a point x = (x′, x′′) ∈ X, we denote by x′j and x′′k the j-th component of x′

and the k-th component of x′′. For all j ∈ {1, . . . , d1} and k ∈ {1, . . . , d2}, let then
Lj , Tk, Pj be the differential operators on X given by

Lj = (−i∂x′j )
2 + (x′j)

2
d2∑
l=1

(−i∂x′′l )2, Tk = −i∂x′′k , Pj = x′j .

If (δr)r>0 is the family of dilations on X defined by

δr(x
′, x′′) = (rx′, r2x′′),

then ‖f ◦ δr‖2 = r−Q/2‖f‖2, where Q = d1 + 2d2. We also note that

Pj(f ◦ δr) = r−1(Pjf) ◦ δr, Lj(f ◦ δr) = r2(Ljf) ◦ δr,
Tk(f ◦ δr) = r2(Tkf) ◦ δr.

(3)

The Grushin operator L on X is the sum L1 + · · · + Ld1 . L is a second-order
subelliptic differential operator with smooth coefficients. For such operators, several
ways of introducing a control distance % are available in the literature, and we refer
the reader to [15] for a survey. In particular, L belongs to the class of operators
studied in [25], where the following estimates are obtained.

Proposition 3. The control distance % of the Grushin operator L on X is homoge-
neous with respect to the dilations δr, that is,

%(δr(x), δr(y)) = r%(x, y)

for all r > 0 and x, y ∈ X, and moreover

(4) %(x, y) ∼ |x′ − y′|+

{
|x′′−y′′|
|x′|+|y′| if |x′′ − y′′|1/2 ≤ |x′|+ |y′|,
|x′′ − y′′|1/2 if |x′′ − y′′|1/2 ≥ |x′|+ |y′|.

Consequently, if |B(x, r)| denotes the Lebesgue measure of the %-ball of center x ∈ X
and radius r ≥ 0, then

(5) |B(x, r)| ∼ rd1+d2 max{r, |x′|}d2 ,

and in particular, for all λ ≥ 0,

(6) |B(x, λr)| ≤ C(1 + λ)Q|B(x, r)|.
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Moreover, there exist constants b, C > 0 such that, for all t > 0, the integral kernel pt
of the operator exp(−tL) is a function satisfying

(7) |pt(x, y)| ≤ C|B(y, t1/2)|−1e−b%(x,y)
2/t

for all x, y ∈ X.

Proof. The homogeneity of % follows immediately from its definition [25, §4] and the
homogeneity of L. For the remaining estimates, see [25, Proposition 5.1 and Corollary
6.6]. �

The inequality (6) says that X with the distance % and the Lebesgue measure is
a doubling metric-measure space of homogeneous dimension Q (cf. [10, §2] or [11,
formula (2.2)]), whereas (7) expresses Gaussian-type heat kernel bounds for L.

3. The Heisenberg-Reiter group

Several properties of L and the other operators introduced above can be easily
recovered by considering X as the quotient of a suitable stratified Lie group (cf.
[2, 1]). Denote by Rd1×d2 the set of (d1 × d2)-matrices with real coefficients. Both
Rd1×d2 and Rd1 ×Rd2 are abelian Lie groups with respect to addition. Let Hd1,d2 be
the semidirect product group Rd1×d2 n (Rd1 × Rd2), with multiplication

(x, y, t) · (x0, y0, t0) = (x+ x0, y + y0, t+ t0 − (xT y0 − xT0 y)/2).

This is a particular instance of Heisenberg-Reiter group (see [30] and references

therein). If {X̃1,1, . . . , X̃d1,d2 , Ỹ1, . . . , Ỹd1 , T̃1, . . . , T̃d2} is the standard basis of the
Lie algebra of Hd1,d2 (i.e., the set of the left-invariant vector fields extending the
standard basis of Rd1×d2 × Rd1 × Rd2 at the identity), then the only non-trivial Lie
brackets among the elements of the basis are

[X̃j,k, Ỹj ] = −[Ỹj , X̃j,k] = −T̃k for all j = 1, . . . , d1, k = 1, . . . , d2.

Hd1,d2 is a 2-step stratified Lie group, with dilations (δ̃r)r>0 defined by

δ̃r(X̃j,k) = rX̃j,k, δ̃r(Ỹj) = rỸj , δ̃r(T̃k) = r2T̃k,

and the homogeneous sublaplacian L̃ on Hd1,d2 is given by

L̃ = −
∑
j,k

X̃2
j,k −

∑
j

Ỹ 2
j .

Note that, when d2 = 1, Hd1,d2 is the (2d1 + 1)-dimensional Heisenberg group.
When d2 > 1, Hd1,d2 is not an H-type group (in the sense of Kaplan), nor a Métivier
group. Nevertheless, in the terminology of [18, 20], Hd1,d2 is h-capacious where
h = min{d1, d2}. In particular, the following multiplier theorem holds: the operator

F (L̃) is of weak type (1, 1) and bounded on Lp(Hd1,d1) for all p ∈ ]1,∞[ whenever
‖F‖MW s

2
< ∞ for some s > (dim Hd1,d2 + (d2 − d1)+)/2, where dim Hd1,d2 is the

topological dimension d1d2 + d1 + d2 [20, Corollary 6.1].
X can be identified with the left quotient Rd1×d2\Hd1,d2 via the projection map

(x, y, t) 7→ (y, t+ xT y/2). Hence Hd1,d2 acts by right translations on X, that is,

τ(x,y,t) : X 3 (z′, z′′) 7→ (z′ − y, z′′ − xT z′ − t+ xT y/2) ∈ X
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is a measure-preserving affine transformation of X for all (x, y, t) ∈ Hd1,d2 , and τgh =
τgτh. This in turn induces a unitary representation σ of Hd1,d2 on L2(X), given by
σ(g)f = f ◦ τ−1g , and

Tk = dσ(−iT̃k), PjTk = dσ(−iX̃j,k),

Lj = dσ

(
−Ỹ 2

j −
∑
k

X̃2
j,k

)
, L = dσ(L̃).

(8)

This shows in particular that the operators L1, . . . , Ld1 , T1, . . . , Td2 (and all the poly-
nomials in L1, . . . , Ld1 , T1, . . . , Td2) are essentially self-adjoint on C∞c (X) and com-
mute strongly (that is, their spectral resolutions commute), so they admit a joint
functional calculus on L2(X) in the sense of the spectral theorem [19, §3.1]. Arguing
analogously, by the use of the unitary representation $ of Rd1 ×Rd2 on L2(X) given
by

($(u′, u′′)f)(x′, x′′) = ei〈x
′,u′〉f(x′, x′′ + u′′),

one obtains that the operators P1, . . . , Pd1 , T1, . . . , Td2 are essentially self-adjoint on
C∞c (X) and commute strongly.

Because of the mentioned commutation properties, it is convenient to introduce in
our notation the following “vectors of operators”:

L = (L1, . . . , Ld1), T = (T1, . . . , Td2), P = (P1, . . . , Pd1).

Thus, for instance, |T| stands for the operator (|T1|2 + · · · + |Td2 |2)1/2, that is, the
square root (−∆x′′)

1/2 of minus the second partial Laplacian on Rd1 × Rd2 , while

|P| is the operator of multiplication by |x′|. The subellipticity of L̃ then yields the
following estimate.

Proposition 4. For all γ ∈ [0,∞[ and f ∈ L2(X),

(9) ‖ |P|γf‖2 ≤ Cγ‖Lγ/2|T|−γf‖2,

where the L2 norm on each side of (9) is understood to be +∞ when f does not belong
to the domain of the corresponding operator.

Proof. We may assume γ > 0. Let PT denote the double-indexed vector of operators
(PjTk)j,k, and note that |PT|γ = |P|γ |T|γ (modulo closures). Moreover the spectrum
[0,+∞[ of |T|γ is purely continuous, so |T|γ is injective and its image is dense in
L2(X). Therefore (9) is reduced to the proof of the inequality

(10) ‖ |PT|γg‖2 ≤ Cγ‖Lγ/2g‖2

for all g ∈ L2(X).

By (8), the differential operator W̃ = −
∑
j,k X̃

2
j,k on Hd1,d2 corresponds to the

operator |PT|2 on X. Since W̃ is δ̃r-homogeneous, with the same homogeneity degree

as the sublaplacian L̃, from (8) and [28, Theorem 2.5] we deduce (10) for all γ ∈ 2N and
g ∈ L2(X). The extension of (10) to all the real γ ≥ 0 is an immediate consequence
of the Löwner-Heinz inequality (see, e.g., [5, Section I.5] and references therein). �
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4. Weighted Plancherel estimates

As in many other works on the subject, the proof of our results is based on the
analysis of the integral kernel KF (L) : X × X → C of the operator F (L), defined by
the identity

(11) F (L)f(x) =

∫
X

KF (L)(x, y) f(y) dy.

To be precise, if F is bounded and compactly supported, then there exists a Borel
function KF (L) such that (11) holds for all f ∈ L2(X) and for almost all x ∈ X (cf. [11,
Lemma 2.2]). However, a multiplier F satisfying (1) need not be compactly supported,
and the integral kernel KF (L) in general exists only as a distribution; nevertheless the
Calderón-Zygmund theory of singular integral operators allows one to derive the weak
type (1, 1) of F (L) from suitable estimates on the integral kernels corresponding to
the compactly supported pieces in a dyadic decomposition of F .

As highlighted in [11], a crucial step in this approach is a “Plancherel estimate”,
which in its basic form is the inequality

(12) ess sup
y∈X

|B(y,R−1)|1/2 ‖KF (L)(·, y)‖L2(X) ≤ C‖F(R2)‖L∞(R),

for all R > 0 and all F : R→ C supported in the interval
[
R2, 4R2

]
. Such an estimate

holds, mutatis mutandis, for any operator L satisfying Gaussian heat kernel bounds,
but usually it does not lead to optimal spectral multiplier results. In the present paper
we obtain for the Grushin operator L an improvement of (12), that is, a “weighted
Plancherel estimate” of the form

(13) ess sup
y∈X

|B(y,R−1)|1/2 ‖(1 + wR(·, y))γ KF (L)(·, y)‖L2(X) ≤ Cγ‖F(R2)‖L2(R),

where γ ∈ [0, d2/2[ and

(14) wR(x, y) = min{R, |y′|−1}|x′|.
The improvement of the Plancherel estimate yields, via the interpolation technique
of [21], a sharp multiplier theorem, at least for d1 ≤ d2. In the case d1 > d2, an inter-
esting phenomenon occurs: although (13) holds for all γ ∈ [0, d2/2[, we can exploit it
only when γ < d1/2; whence the gap between the threshold D/2 in Theorem 1 and
half the topological dimension. The rest of this section is devoted to the derivation
of (13).

From the previous section we know that the operators L1, . . . , Ld1 , T1, . . . , Td2 have
a joint functional calculus. In fact one can obtain a quite explicit formula for the
integral kernel KG(L,T) of an operator G(L,T) in the functional calculus, in terms of
the Hermite functions (cf. [22, Proposition 3.1] for the case d1 = d2 = 1, and [27] for
the analogue on the Heisenberg groups). Namely, for all ` ∈ N, let h` denote the `-th
Hermite function, that is,

h`(t) = (−1)`(`! 2`
√
π)−1/2et

2/2

(
d

dt

)`
e−t

2

,

and set, for all n ∈ Nd1 , u ∈ Rd1 , ξ ∈ Rd2 ,

h̃n(u, ξ) = |ξ|d1/4hn1
(|ξ|1/2u1) · · ·hnd1 (|ξ|1/2ud1).
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Proposition 5. For all bounded Borel functions G : Rd1 × Rd2 → C compactly
supported in Rd1 × (Rd2 \ {0}),

KG(L,T)(x, y)

= (2π)−d2
∫
Rd2

∑
n∈Nd1

G(|ξ|(2n+ 1̃), ξ) h̃n(y′, ξ) h̃n(x′, ξ) ei〈ξ,x
′′−y′′〉 dξ

for almost all x, y ∈ X, where 1̃ = (1, . . . , 1) ∈ Nd1 . In particular

(15) ‖KG(L,T)(·, y)‖22 = (2π)−d2
∫
Rd2

∑
n∈Nd1

|G(|ξ|(2n+ 1̃), ξ)|2 h̃2n(y′, ξ) dξ

for almost all y ∈ X.

Proof. Let F : L2(Rd1 × Rd2)→ L2(Rd1 × Rd2) be the isometry defined by

Fφ(x′, ξ) = (2π)−d2/2
∫
Rd2

φ(x′, x′′) e−i〈ξ,x
′′〉 dx′′,

i.e., the Fourier transform with respect to x′′. Then

FLjφ(x′, ξ) = Lj,ξ Fφ(x′, ξ), FTkφ(x′, ξ) = ξk Fφ(x′, ξ),

at least for φ in the Schwartz class, where

Lj,ξ = (−i∂x′j )
2 + |ξ|2(x′j)

2.

For all ξ 6= 0, {h̃n(·, ξ)}n∈Nd1 is a complete orthonormal system for L2(Rd1) made of
real-valued functions and

Lj,ξ h̃n(x′, ξ) = (2nj + 1)|ξ| h̃n(x′, ξ).

In particular, if G : L2(Rd1 × Rd2)→ L2(Nd1 × Rd2) is the isometry defined by

Gψ(n, ξ) =

∫
Rd1

ψ(x′, ξ) h̃n(x′, ξ) dx′,

then

GFLjφ(n, ξ) = (2nj + 1)|ξ| GFφ(n, ξ), GFTkφ(n, ξ) = ξk GFφ(n, ξ).

The isometry GF intertwines the operators Lj and Tk with some multiplication op-
erators on Nd1 × Rd2 , hence it intertwines the corresponding functional calculi:

GF G(L,T)φ(n, ξ) = G(|ξ|(2n+ 1̃), ξ)GFφ(n, ξ).

The inversion formulae for F and G and some easy manipulations then give the above
expression for KG(L,T). Moreover, if we set

Gy(n, ξ) = (2π)−d2/2G(|ξ|(2n+ 1̃), ξ) h̃n(y′, ξ) e−i〈ξ,y
′′〉,

then the formula for KG(L,T) can be rewritten as

KG(L,T)(·, y) = (GF)−1Gy,

and since GF : L2(X)→ L2(Nd1 × Rd2) is an isometry we obtain (15). �
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If we restrict to the joint functional calculus of L, T1, . . . , Td2 , the formula (15) can
be rewritten as follows. For all positive integers d, set Nd = 2N + d, and define, for
all N ∈ Nd and u ∈ Rd,

Hd,N (u) =
∑

n1,...,nd∈N
2n1+···+2nd+d=N

h2n1
(u1) · · ·h2nd(ud).

Corollary 6. For all bounded Borel functions G : R×Rd2 → C compactly supported
in R× (Rd2 \ {0}),

(16) ‖KG(L,T)(·, y)‖22 = (2π)−d2
∫
Rd2

∑
N∈Nd1

|G(N |ξ|, ξ)|2 |ξ|d1/2Hd1,N (|ξ|1/2y′) dξ

for almost all y ∈ X.

We can now combine (9) and (16) to get the following weighted inequalities.

Proposition 7. For all γ ≥ 0 and for all compactly supported bounded Borel functions
F : R→ C,

(17) ‖ |P|γ KF (L)(·, y)‖22 ≤ Cγ
∫ ∞
0

|F (λ)|2
∑

N∈Nd1

λQ/2−γ

NQ/2−2γ Hd1,N

(
λ1/2y′

N1/2

)
dλ

λ

for almost all y ∈ X.

Proof. Let G : R×Rd2 → C be as in Corollary 6. In particular KG(L,T)(·, y) ∈ L2(X)
for almost all y ∈ X, and from [9, Theorem III.6.20] and the definition of integral
kernel one may deduce

Lγ/2|T|−γ
(
KG(L,T)(·, y)

)
= KLγ/2|T|−γG(L,T)(·, y)

for all γ ≥ 0 and almost all y ∈ X. This equality, together with (16) and (9), implies
that

‖ |P|γ KG(L,T)(·, y)‖22 ≤ Cγ
∑

N∈Nd1

∫
Rd2
|G(N |ξ|, ξ)|2Nγ |ξ|d1/2−γ Hd1,N (|ξ|1/2y′) dξ.

Choose now an increasing sequence (ζn)n∈N of nonnegative Borel functions on R,
compactly supported in R \ {0} and converging pointwise on R \ {0} to the constant
1, and define Gn(λ, ξ) = F (λ) ζn(|ξ|). Note that KF (L)(·, y) ∈ L2(X) for almost all
y ∈ X [11, Lemma 2.2], hence

KGn(L,T)(·, y) = ζn(|T|)(KF (L)(·, y))

for almost all y ∈ X, as before, and KGn(L,T)(·, y)→ KF (L)(·, y) in L2(X) for almost
all y, because |T| has trivial kernel. The conclusion then follows by applying the
previous inequality when G = Gn and letting n tend to infinity. �

Now we recall some well-known estimates for the Hermite functions, which we need
in the sequel.

Lemma 8. For all N = 2n+ 1 ∈ N1,

(18) H1,N (u) = h2n(u) ≤

{
C(N1/3 + |u2 −N |)−1/2 for all u ∈ R.

C exp(−cu2) when u2 ≥ 2N ,
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Moreover, if d ≥ 2, then, for all N ∈ Nd,

(19) Hd,N (u) ≤

{
CNd/2−1 for all u ∈ Rd,

C exp(−c|u|2∞) when |u|2∞ ≥ 2N ,

where |u|∞ = max{|u1|, . . . , |ud|}.

Proof. For the bounds (18), see [23, (2.3), p. 435] or [29, Lemma 1.5.1]. For the first
inequality in (19), see [29, Lemma 3.2.2]; the second inequality is an easy consequence
of (18). �

These bounds allow us to obtain the following crucial estimate.

Lemma 9. For all fixed d ∈ N \ {0} and ε ∈ ]0,∞[, the sum

(20)
∑
N∈Nd

max{1, |u|}ε

Nd/2+ε
Hd,N

( u

N1/2

)
has a finite upper bound, independent of u ∈ Rd.

Proof. We split the sum into several parts, and use the bounds (18), (19).
The part where N ≤ |u|/2 is empty unless |u| ≥ 1; in this case, moreover,

|N−1/2u|2 ≥ 4N , hence Hd,N (N−1/2u) ≤ C exp(−c|u|2/N), and

sup
u

∑
N≤|u|/2

|u|εN−d/2−ε exp(−c|u|2/N) ≤
∑
N∈Nd

sup
t≥4N

tε/2 exp(−ct),

which is finite.
If N ≥ |u|/2 and d ≥ 2, then Hd,N (N−1/2u) ≤ CNd/2−1, and

sup
u

∑
N≥|u|/2

max{1, |u|}εN−1−ε <∞.

When d = 1, the same argument works for the part where N ≥ 2|u|, because in this
case |N−1/2u|2 ≤ N/4 and the bound HN (N−1/2u) ≤ CN−1/2 holds. However the
part where |u|/2 < N < 2|u| requires a different estimate.

Namely, the part of (20) where |u|/2 < N ≤ |u| − 1 is majorized by

Cε |u|−1
∑

|u|/2<N≤|u|−1

|1−N/|u||−1/2 ≤ Cε
∫ 1

1/2

|1− t|−1/2 dt,

which is finite and independent of u. Analogously one bounds the part of (20) where
|u| + 1 ≤ N < 2|u|. The remaining part, where |u| − 1 < N < |u| + 1, contains at
most one summand, which moreover is bounded by a constant. �

The previous inequality allows us to simplify (17) considerably and to obtain the
announced weighted Plancherel estimates. Recall that wR denotes the weight function
defined by (14) for all R > 0.

Proposition 10. For all γ ∈ [0, d2/2[ and all bounded compactly supported Borel
functions F : R→ C,

‖ |P|γ KF (L)(·, y)‖22 ≤ Cγ
∫ ∞
0

|F (λ)|2 λ(d1+d2)/2 min{λd2/2−γ , |y′|2γ−d2} dλ
λ
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for almost all y ∈ X. In particular, for all R > 0, if suppF ⊆
[
R2, 4R2

]
, then

ess sup
y∈X

|B(y,R−1)|1/2 ‖(1 + wR(·, y))γ KF (L)(·, y)‖2 ≤ Cγ‖F(R2)‖L2 ,

where the constant Cγ does not depend on R.

Proof. In view of (17), the first inequality follows immediately from Lemma 9 with
d = d1 and ε = d2 − 2γ. In the case suppF ⊆

[
R2, 4R2

]
, a simple manipulation,

together with (14) and (5), gives the second inequality. �

5. The multiplier theorems

We now show how the weighted Plancherel estimates obtained in the previous sec-
tion can be used to improve the known multiplier theorems for the Grushin operator.
First we recall the basic known estimates for operators satisfying Gaussian-type heat
kernel bounds in a doubling metric-measure space.

Proposition 11. For all R > 0, α ≥ 0, β > α, and for all functions F : R→ C such
that suppF ⊆ [−4R2, 4R2],

(21) ess sup
y∈X

|B(y,R−1)|1/2‖(1 +R%(·, y))αKF (L)(·, y)‖2 ≤ Cα,β‖F(R2)‖Wβ
∞
,

where the constant Cα,β does not depend on R. If in addition β > α+Q/2, then

(22) ess sup
y∈X

‖(1 +R%(·, y))αKF (L)(·, y)‖1 ≤ Cα,β‖F(R2)‖Wβ
∞
,

where again Cα,β does not depend on R.

Proof. For the first inequality, see [14] or [11, Lemma 4.3]; note that the statement in
[11] seems to require that the multiplier F is supported away from the origin, but its
proof clarifies that this is not necessary, because here we do not perform the change
of variable λ 7→

√
λ in the multiplier function. The second inequality is an immediate

consequence of the first, via Hölder’s inequality and [11, Lemma 4.4]. �

These inequalities can be improved by means of the weighted Plancherel estimates.
For this, some properties of the weight functions wR are needed.

Lemma 12. Suppose that 0 ≤ γ < min{d1, d2}/2 and β > Q/2 − γ. For all y ∈ X
and R > 0,

(23)

∫
X

(1 + wR(x, y))−2γ(1 +R%(x, y))−2β dx ≤ Cγ,β |B(y,R−1)|.

Moreover, for all x, y ∈ X and R > 0,

(24) wR(x, y) ≤ C(1 +R%(x, y)).

Proof. By exploiting the homogeneity properties of the distance % and the weights
wR, we may suppose that R = 1. Then (24) immediately follows from the fact that

min{1, |y′|−1}|x′| ≤ 1 + |x′ − y′| ≤ C(1 + %(x, y)),

by (4).
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To show (23) we note that by translation-invariance we may also suppose that
y′′ = 0. By (5), we must then prove that∫

X

(
1 +
|x′ − y′|
1 + |y′|

)−2γ
(1 + %(x, y))−2β dx ≤ Cγ,β(1 + |y′|)d2 .

We split the integral into two parts, according to the asymptotics (4). In the region
X1 = {x ∈ X : |x′′|1/2 ≥ |x′|+ |y′|}, we decompose β = β1 +β2 so that β1 > d1/2−γ
and β2 > d2, whence the integral on X1 is at most

Cβ(1 + |y′|)2γ
∫
Rd1

(1 + |x′ − y′|)−2(γ+β1) dx′
∫
Rd2

(1 + |x′′|1/2)−2β2 dx′′.

In the region X2 = {x ∈ X : |x′′|1/2 < |x′|+ |y′|}, instead, we decompose β = β̃1 + β̃2
so that β̃1 > (d1 + d2)/2− γ and β̃2 > d2/2, whence the integral on X2 is at most

Cβ

∫
X

(
1 +
|x′ − y′|
1 + |y′|

)−2γ
(1 + |x′ − y′|)−2β̃1

(
1 +

|x′′|
|x′|+ |y′|

)−2β̃2

dx

≤ Cγ,β
∫
Rd1

(
1 +

|u|
1 + |y′|

)−2γ
(1 + |u|)−2β̃1(|u+ y′|+ |y′|)d2 du

≤ Cγ,β
(

(1 + |y′|)2γ
∫
Rd1

(1 + |u|)−2ν du+ |y′|d2
∫
Rd1

(1 + |u|)−2β̃1 du

)
,

where ν = β̃1 + γ − d2/2 > d1/2. The conclusion follows. �

A strengthened weighted version of (21) can now be obtained using the Mauceri-
Meda interpolation trick [21] (see also [20, §3] and [11, Lemma 4.3]).

Proposition 13. For all R > 0, α ≥ 0, β > α, γ ∈ [0, d2/2[, and for all functions
F : R→ C such that suppF ⊆

[
R2, 4R2

]
,

(25) ess sup
y∈X

|B(y,R−1)|1/2 ‖(1 +R%(·, y))α(1 + wR(·, y))γ KF (L)(·, y)‖2

≤ Cα,β,γ‖F(R2)‖Wβ
2
,

where the constant Cα,β,γ does not depend on R.

Proof. The estimate (21), together with (24) and a Sobolev embedding, immediately
implies (25) in the case β > α+d2/2+1/2. On the other hand, in the case α = 0, (25)
is given by Proposition 10 for all β > 0. The conclusion then follows by interpolation
(see, e.g., [3, 7]). �

An alternative proof of Proposition 13 can be obtained using minor adjustments
of the technique developed in [6].

Let D = Q−min{d1, d2} = max{d1 + d2, 2d2}. Proposition 13, together with (23)
and Hölder’s inequality, then yields an improvement of (22).

Corollary 14. For all R > 0, α ≥ 0, β > α+D/2, and for all functions F : R→ C
such that suppF ⊆

[
R2, 4R2

]
,

(26) ess sup
y∈X

‖(1 +R%(·, y))αKF (L)(·, y)‖1 ≤ Cα,β‖F(R2)‖Wβ
2
,
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where the constant Cα,β does not depend on R. In particular, under the same hy-
potheses,

(27) ess sup
y∈X

∫
X\B(y,r)

| KF (L)(x, y)| dx ≤ Cα,β(1 + rR)−α‖F(R2)‖Wβ
2
.

We are finally able to prove our main results.

Proof of Theorem 1. We can follow the lines of the proof of [11, Theorem 3.1], where
the inequality (4.18) there is replaced by our (27). �

Proof of Theorem 2. Choose β ∈ ]D/2, κ+ 1/2[. Let η ∈ C∞c (R) be supported in
[−1/2, 1/2] and equal to 1 in a neighborhood of the origin, and set F (λ) = (1−|λ|)κ+.
The function ηF is smooth and compactly supported, while (1 − η)F is compactly

supported away from the origin and belongs to W β
2 . The inequalities (22) and (26)

then imply that the operators η(tL)F (tL) and (1−η(tL))F (tL) are bounded on L1(X),
uniformly in t > 0, and the same holds for their sum (1−tL)κ+. The conclusion follows
by self-adjointness and interpolation. �
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