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Abstract
We prove several results about the best constants in the Hausdorff–Young inequality
for noncommutative groups. In particular, we establish a sharp local central version for
compact Lie groups, and extend known results for the Heisenberg group. In addition,
we prove a universal lower bound to the best constant for general Lie groups.

Mathematics Subject Classification 22E30 · 43A15 · 43A30

1 Introduction

For f ∈ L1(Rn), define the Fourier transform f̂ of f by

f̂ (ξ) =
∫
Rn

f (x) e2π iξ ·x dx ∀ξ ∈ R
n .

Then the Riemann–Lebesgue lemma states that f̂ ∈ C0(R
n) and

‖ f̂ ‖∞ ≤ ‖ f ‖1.

Further, the Plancherel theorem entails that if f ∈ L2(Rn), then

‖ f̂ ‖2 = ‖ f ‖2.
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Suppose that 1 ≤ p ≤ 2 and p′ is the conjugate exponent to p, that is, 1/p′ = 1−1/p.
Then interpolation implies the Hausdorff–Young inequality, namely,

‖ f̂ ‖p′ ≤ C‖ f ‖p (1.1)

for all f ∈ L p(Rn), where C ≤ 1. We denote the best constant for this inequality, that
is, the smallest possible value of C , by Hp(R

n). This was found many years after the
original result. We define the Babenko–Beckner constant Bp by

Bp = p1/2p

(p′)1/2p′ .

Then Bp < 1 when 1 < p < 2.

Theorem 1.1 (Babenko [3], Beckner [6]) For all p ∈ [1, 2],

Hp(R
n) = (Bp)

n .

Babenko treated the case where p′ ∈ 2Z, and Beckner proved the general case. The
extremal functions are gaussians; see [46] for an alternative proof.

One can extend the Babenko–Beckner theorem to more general contexts than R
n ,

such as locally compact abelian groups G. For instance, the best constant Hp(G) for
the inequality (1.1) when G = R

a ×T
b ×Z

c is (Bp)
a . The extremal functions are of

the form γ ⊗ χ ⊗ δ, where γ is a gaussian on Ra , χ is a character of Tb, and δ is the
characteristic function of a point in Z

c.
For nonabelian groups, matters are more complicated, in part because the interpre-

tation of the Lq norm of the Fourier transform for q ∈ (2,∞) is trickier. We refer the
reader to Sect. 2 below for details. General versions of theHausdorff–Young inequality
(1.1) were obtained by Kunze [43] and Terp [63] for arbitrary locally compact groups
G, and a number of works in the literature are devoted to the study of the corresponding
best constants Hp(G). It is known, at least in the unimodular case, that Hp(G) < 1
for p ∈ (1, 2) if and only if G has no compact open subgroups [25,56]. On the other
hand, when Hp(G) is not 1, its value is known only in few cases, and typically only
for exponents p whose conjugate exponent is an even integer; in addition, as shown
by Klein and Russo, extremal functions need not exist [38].

Recently, various authors considered local versions of the Hausdorff–Young
inequality. Namely, for each neighbourhoodU of the identity e ∈ G, define Hp(G;U )

as the best constant in the inequality (1.1) with the additional support constraint
supp f ⊆ U , and let H loc

p (G) be the infimum of the constants Hp(G;U ). Clearly
H loc

p (G) ≤ Hp(G), and equality holds whenever G has a contractive automorphism.
For other groups, however, the inequality may be strict, which makes the study of
H loc

p (G) interesting also for groups where Hp(G) = 1, such as compact groups.
Indeed, in the case of the torus G = T

n , the value of H loc
p (G) is known and is strictly

less than 1 for p ∈ (1, 2).
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The Hausdorff–Young inequality on Lie groups 95

Theorem 1.2 (Andersson [1,2], Sjölin [61], Kamaly [35]) For all p ∈ [1, 2],

H loc
p (Tn) = (Bp)

n .

Here we are interested in analogues of the above result for noncommutative Lie
groups G. We also study what happens when additional symmetries are imposed by
restricting to functions f on G which are invariant under a compact group K of
automorphisms of G. Let us denote by Hp,K (G) and H loc

p,K (G) the corresponding
global and local best Hausdorff–Young constants. Note that the original constants
Hp(G) and H loc

p (G) correspond to the case where K is trivial. When K is nontrivial,
a priori the new constants Hp,K (G) and H loc

p,K (G) might be smaller. However we can
prove a universal lower bound, which is independent of the symmetry group K and
depends only on p and the dimension of G.

Theorem 1.3 Let G be a Lie group and K be a compact group of automorphisms of
G. For all p ∈ [1, 2],

H loc
p,K (G) ≥ (Bp)

dim(G).

Recall that a function f on a group G is central if f (xy) = f (yx), that is, if f
is invariant under the group Inn(G) of inner automorphisms of G. García-Cuerva,
Marco and Parcet [28] and García-Cuerva and Parcet [29] studied the Hausdorff–
Young inequality for compact semisimple Lie groupsG restricted to central functions;
in particular, they obtained the inequality H loc

p,Inn(G)(G) > 0, which they applied to
answer questions about Fourier type and cotype of operator spaces (see also [52]).
Theorem 1.3 gives a substantially more precise lower bound to H loc

p,Inn(G)(G). As a
matter of fact, in this case we can prove that equality holds.

Theorem 1.4 Suppose that G is a compact connected Lie group. Then, for all p ∈
[1, 2],

H loc
p,Inn(G)(G) = (Bp)

dim(G).

Note on the one hand that, in the abelian case G = T
n , all functions are central, so

Theorem 1.4 extends Theorem 1.2. On the other hand, it would be interesting to know
whether the result holds also without the restriction to central functions.

More generally, one may ask whether the inequality in Theorem 1.3 is actually an
equality for an arbitrary Lie group G. As a matter of fact, the equality

H loc
p,K (G) = (Bp)

dim(G)

holds for arbitrary G and K whenever p′ ∈ 2Z, as a consequence of a recent result
of Bennett, Bez, Buschenhenke, Cowling and Flock [7] and the relation between the
best constants for the Young and the Hausdorff–Young inequalities (see Proposition
2.2 below). In particular, by interpolation,

H loc
p,K (G) < 1
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96 M. G. Cowling et al.

for all p ∈ (1, 2) and arbitrary G and K with dim(G) > 0. Moreover, the equality

Hp(G) = H loc
p (G) = (Bp)

dim(G) (1.2)

holds when p′ ∈ 2Z for all Lie groups G with a contractive automorphism (which
are nilpotent—see [60]), and also for all solvable Lie groups G admitting a chain of
closed subgroups

{e} = G0 < G1 < · · · < Gn−1 < Gn = G,

where G j is normal in G j+1 and G j+1/G j is isomorphic to R (here n = dim(G)).
For many of those groups G, the upper bound Hp(G) ≤ (Bp)

dim(G) for p′ ∈ 2Z was
proved in [38], but the question of the lower bound was left open there, except for the
Heisenberg groups. Hence Theorem 1.3 proves the sharpness of a number of results
in [38].

The Heisenberg groupsHn are among the simplest examples of groups in the above
class. Nevertheless, determining the value of Hp(Hn) = H loc

p (Hn) appears to be a
nontrivial problem when p′ /∈ 2Z, and is related to a similar problem for the so-called
Weyl transform. Recall that the Weyl transform ρ on C

n maps functions on C
n to

integral operators on L2(Rn) [22], and an inequality of Hausdorff–Young type can be
proved for ρ [38,57]: for all p ∈ [1, 2],

‖ρ( f )‖S p′ (L2(Rn))
≤ C‖ f ‖L p(Cn), (1.3)

where Sq(H) denotes the qth Schatten class of operators on the Hilbert spaceH, and
C ≤ 1. As above, we can defineWp(C

n) as the best constant in (1.3), as well as corre-
sponding local and symmetric versions W loc

p (Cn),Wp,K (Cn),W loc
p,K (Cn). A scaling

argument (see Proposition 5.1 below) then shows that, for all compact subgroups K
of the unitary group U(n),

Hp,K (Hn) = Bp Wp,K (Cn) (1.4)

(hereU(n) acts naturally onCn and thefirst layer ofHn). So the problemof determining
the best Hausdorff–Young constants for the Heisenberg group Hn is equivalent to the
analogous problem for the Weyl transform. In particular, (1.4) and Theorem 1.3 yield
that

Wp,K (Cn) ≥ (Bp)
2n

for all p ∈ [1, 2]. As an indication that equality may well hold, here we prove the
following local result.

Theorem 1.5 Let K be a compact subgroup of U(n). Then, for all p ∈ [1, 2],

W loc
p,K (Cn) ≥ (Bp)

2n .
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The Hausdorff–Young inequality on Lie groups 97

Moreover, if K ⊇ U(1) × · · · × U(1), then, for all p ∈ [1, 2],

W loc
p,K (Cn) = (Bp)

2n .

Functions on C
n or Hn that are invariant under U(1) × · · · × U(1) are called

polyradial. Equality in Theorem 1.5 is obtained as a consequence of the following
weighted Hausdorff–Young inequality for polyradial functions f :

‖ρ( f )‖S p′ (Rn)
≤ (Bp)

2n‖ f e(π/2)|·|2‖L p(Cn). (1.5)

Unfortunatelywe have not found away to remove theweight and obtain the equality
Wp,K (Cn) = W loc

p,K (Cn) for arbitrary p ∈ [1, 2]; note however that Wp,K (Cn) =
W loc

p,K (Cn) = (Bp)
2n when p′ ∈ 2Z, as proved in [38].

Both cases where we can prove equalities in Theorems 1.4 and 1.5 for general
p ∈ [1, 2] correspond to Gelfand pairs (see, for example, [12]): indeed, central func-
tions on a compact groupG and polyradial functions on the Heisenberg groupHn form
commutative subalgebras of the respective convolution algebras L1(G) and L1(Hn). It
seems a reasonable intermediate question to ask for best constants inHausdorff–Young
inequalities in the context of Gelfand pairs, since here the group Fourier transform
reduces to the Gelfand transform for the corresponding commutative algebra of invari-
ant functions, whichmakes the Lq norm of the Fourier transform in these settingsmore
accessible. Indeed, in both the proofs of Theorems 1.4 and 1.5, this additional commu-
tativity allows one to relate the group Fourier transform and the Weyl transform with
the Euclidean Fourier transform, for which the Babenko–Beckner result is available.
Regrettably, even in the case of polyradial functions on the Heisenberg group we are
not able yet to fully answer the question. Indeed, as we discuss in Sect. 5, in this case
it seems unlikely that the best Hausdorff–Young constant on the Heisenberg group can
be obtained by a direct reduction to the corresponding sharp Euclidean estimate, and
new ideas appear to be needed.

As for the universal lower bound of Theorem 1.3, the intuitive idea behind its proof
is that, at smaller and smaller scales, the group structure of a Lie group G looks more
andmore like the abelian group structure of its Lie algebra g, whence H loc

p (G) is likely

to be related to Hp(g) = (Bp)
dim(G). Indeed, a scaling argument based on this idea

readily yields the analogue of Theorem 1.3 for Young’s convolution inequality (see
the discussion in Sect. 2 below). This appears to have been overlooked in [38], where
a number of upper bounds for Young constants on Lie groups are proved, which are
actually equalities in view of this observation.

The additional complication with the Hausdorff–Young inequality is that it involves
the Lq norm of the Fourier transform.While it is reasonably clear that, at small scales,
the noncommutative convolution on G approximates the commutative convolution on
g, the same is not so evident for the Fourier transform: indeed, if the group Fourier
transform is defined, as it is common, in terms of irreducible unitary representations,
then it is not immediately clear how to relate the representation theories of G and
g for an arbitrary Lie group G, let alone the corresponding Fourier transforms and
Lq norms thereof. Here we completely bypass the problem, by characterising the Lq
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98 M. G. Cowling et al.

norm of the Fourier transform in terms of an operator norm of a fractional power of
an integral operator, acting on functions on G:

‖ f̂ ‖qq = ‖|L f �
1/q |q‖1→∞. (1.6)

Here L f is the operator of convolution on the left by f and � is the operator of
multiplicationby themodular functionofG.A transplantation argument, not dissimilar
from those in [36,49,51], allows us to relate the operator L f �

1/q onG to its counterpart
on g and obtain the desired lower bound.

Although it might be evident to some experts in noncommutative integration, we
are not aware of the characterisation (1.6) being explicitly observed before. What is
interesting about (1.6) is that it allows one to access the Lq norm of the Fourier trans-
form through properties of a more “geometric” convolution-multiplication operator
on G, which appears to be more tractable. As a matter of fact, when dealing with con-
volution, one can use induction-on-scales methods to completely determine the best
local constants for the Young convolution inequality on any Lie group G; this result
has been recently proved in [7], as a corollary of a more general result for nonlinear
Brascamp–Lieb inequalities. It would be interesting to know whether similar methods
could be applied to the Hausdorff–Young inequality on noncommutative Lie groups
as well.

Plan of the paper

In Sect. 2 we discuss the definition of the Lq norm of the Fourier transform for an
arbitrary Lie group, by comparing a number of definitions available in the literature,
and prove the characterisation (1.6); we also present a proof of the universal lower
bound ofTheorem1.3, aswell as its analogue for theYoung convolution inequality, and
discuss relations between best constants for Young and Hausdorff–Young inequalities.
The sharp local central Hausdorff–Young inequality for arbitrary compact Lie groups
(Theorem1.4) is proved in Sect. 4; to better explain the underlying ideawithout delving
into technicalities, the proof of the abelian case (Theorem 1.2) is briefly revisited in
Sect. 3. Finally, in Sect. 5we discuss the relations betweenHausdorff–Young constants
for the Heisenberg group and the Weyl transform and prove Theorem 1.5, together
with the weighted inequality (1.5) for polyradial functions.

2 Lq norm of the Fourier transform

Let G be a Lie group (or, more generally, a separable locally compact group) with a
fixed left Haar measure. In order to discuss best Hausdorff–Young constants in this
generality, we first need to clarify what is meant by the “Fourier transform” in this
setting and how Hausdorff–Young inequalities — even the endpoint ones, such as the
Plancherel formula — can be stated in this context.

A common way to generalise the Fourier transformation to this setting exploits
irreducible unitary representations of G (see, for example, [47] or [23, Chapter 7] for
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The Hausdorff–Young inequality on Lie groups 99

a survey). Namely, let Ĝu be the “unitary dual” of G, that is, the set of (equivalence
classes of) irreducible unitary representations of G, endowed with the Fell topology
and the Mackey Borel structure. The (unitary) Fourier transform Fu f of a function
f ∈ L1(G) is then defined as the operator-valued function on Ĝu given by

Ĝu  π �→ π( f ) =
∫
G

f (x)π(x) dx ∈ L(Hπ );

hereL(Hπ ) denotes the space of bounded linear operators on the Hilbert spaceHπ on
which the representation π acts, and integration is with respect to the Haar measure.
In case G is unimodular and type I (this includes the cases where G is abelian or
compact), the Plancherel formula can be stated in the form

‖ f ‖2L2(G)
=

∫
Ĝu

‖π( f )‖2HS(Hπ ) dπ (2.1)

for all f ∈ L1 ∩ L2(G). Here HS(Hπ ) denotes the space of Hilbert–Schmidt oper-
ators on Hπ , and integration on Ĝu is with respect to a suitable measure, called the
Plancherel measure, which is uniquely determined by the above formula; in addition,
the Fourier transformation f �→ Fu f extends to an isometric isomorphism between
L2(G) and the direct integral L2

u(Ĝ) := ∫ ⊕
Ĝu

HS(Hπ ) dπ . Interpolation then leads to
the Hausdorff–Young inequality

‖Fu f ‖L p′
u (Ĝ)

:=
(∫

Ĝu

‖π( f )‖p′
S p′ (Hπ )

dπ

)1/p′

≤ C‖ f ‖L p(G) (2.2)

when 1 < p < 2, where C = 1; here, for all q ∈ [1,∞], Sq(Hπ ) denotes the
qth Schatten class of operators onHπ , and the operator-valued Lq -spaces Lq

u(Ĝ) are
defined in terms of measurable fields of operators as in [47]. The fact that the spaces
Lq
u(Ĝ) constitute a complex interpolation family, that is,

[Lq0
u (Ĝ), Lq1

u (Ĝ)]θ = Lq
u(Ĝ) (2.3)

with equal norms for q0, q1, q ∈ [1,∞], θ ∈ (0, 1), 1/q = (1 − θ)/q0 + θ/q1,
readily follows from standard interpolation results for vector-valued Lebesgue spaces
and Schatten classes (see, for example, [31,54,66]) and the structure of the measurable
field of separable Hilbert spaces π �→ Hπ [23, Proposition 7.19].

In the case where G is not unimodular, under suitable type I assumptions it is
possible to prove a Plancherel formula similar to (2.1), where the right-hand side
is adjusted by means of “formal dimension operators” [19,26,39,40,62]. Analogous
modifications of (2.2) lead to a version of the Hausdorff–Young inequality that has
been studied in a number of works [4,21,27,32,57].

When G is not type I, the above approach to the Plancherel formula based on irre-
ducible unitary representation theory does not work as neatly. This however does not
prevent one from studying the Hausdorff–Young inequality. Indeed, what is possibly
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the first appearance in the literature of the Hausdorff–Young inequality in a non-
commutative setting, that is, the work of Kunze [43] for arbitrary unimodular locally
compact groups (not necessarily of type I), does not express the Fourier transform in
terms of irreducible unitary representations, but uses instead the theory of noncom-
mutative integration (the same theory was used in earlier works of Mautner [50] and
Segal [58] to express the Plancherel formula). This point of view was subsequently
developed by Terp [63] to cover the case of non-unimodular groups and more recently
has been further extended to the context of locally compact quantum groups [13,15].

One way of thinking of noncommutative Lq spaces is as complex interpolation
spaces between a von Neumann algebra M and its predual M∗ (which play the role
of L∞ and L1 respectively) [33,42,54,64]. In general this requires establishing a
“compatibility” between M and M∗, which may involve a number of choices, but in
our case there appears to be a naturalway to proceed (see also [17,24]).Namely, the von
Neumann algebra VN(G) of G (that is, the weak∗-closed ∗-subalgebra of L(L2(G))

of the operators which commute with right translations) can be identified with the
space Cv2(G) of left convolutors of L2(G), that is, those distributions on G which are
left convolution kernels of L2(G)-bounded operators. Moreover, the predual VN(G)∗
can be identified with the Fourier algebra A(G), an algebra of continuous functions
on G defined by Eymard [20] for arbitrary locally compact groups G. Now A(G) and
Cv2(G) are naturally compatible as spaces of distributions onG (see [20, Propositions
(3.26) and (3.27)]), so we can use complex interpolation to define Fourier–Lebesgue
spaces of distributions on G: for q ∈ [1,∞], we set

FLq(G) =
⎧⎨
⎩

A(G) if q = 1,
Cv2(G) if q = ∞,

[A(G),Cv2(G)]1−1/q if 1 < q < ∞.

One can check that this definition corresponds to Izumi’s left L p spaces [33,34] for
the vonNeumann algebraVN(G)with respect to thePlancherelweight, and therefore it
matches the construction given in [13,15] for quantumgroups. In particularFL2(G) =
L2(G) with equality of norms (see [34, Section 5] and [13, Proposition 2.21(iii)]; this
corresponds to the Plancherel theorem), while clearly L1(G) ⊆ Cv2(G) with norm-
decreasing embedding. Interpolation then leads to the following formulation of the
Hausdorff–Young inequality: L p(G) ⊆ FL p′

(G) and

‖ f ‖FL p′ (G)
≤ C‖ f ‖L p(G) (2.4)

where C = 1 and p ∈ [1, 2].
We then define the L p Hausdorff–Young constant Hp(G) on the group G as the

minimal constant C for which (2.4) holds for all f ∈ L p(G). Similarly, if U is a
neighbourhood of the identity in G, we let Hp(G;U ) be the minimal constant C in
(2.4) when f is constrained to have support in U , and define the local L p Hausdorff–
Young constant H loc

p (G) as the infimum of the constants Hp(G;U ) where U ranges
over the neighbourhoods of the identity of G.

The approach to Hausdorff–Young constants via FLq spaces is consistent with
the unitary Fourier transformation approach described above, when the latter is appli-
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cable. Indeed, as discussed in [47, Theorems 2.1 and 3.1], in the case where G is
unimodular and type I, the unitaryFourier transformationFu induces isometric isomor-
phisms Cv2(G) ∼= L∞

u (Ĝ) and A(G) ∼= L1
u(Ĝ), besides the Plancherel isomorphism

L2(G) ∼= L2
u(Ĝ) (analogous results in the nonunimodular case can be found in [26,

Theorems 3.48 and 4.12]); so by interpolation Fu induces an isometric isomorphism
between FLq(G) and Lq

u(Ĝ) for all q ∈ [1,∞]. Hence defining Hausdorff–Young
constants in terms of the inequality (2.2) would lead to the same constants Hp(G) and
H loc

p (G) as those we have defined in terms of FLq spaces. On the other hand, the
approach via FLq spaces does not require type I assumptions, or even separability,
and can be applied to every locally compact group G.

There is an alternative characterisation of the noncommutative Lq spaces associ-
ated to VN(G), namely as certain spaces Lq

VN(Ĝ) of (closed, possibly unbounded)
operators on L2(G). This characterisation, which is that originally used in the works of
Kunze andTerp on theHausdorff–Young inequality, corresponds toHilsum’s approach
to noncommutative Lq spaces [30] based on Connes’s “spatial derivative” construc-
tion [14] (the work of Kunze is actually based on an earlier version of the theory
[18,59] that only applies to semifinite von Neumann algebras). We will not enter into
the details of this construction and only recall two important properties. First, if the
operator T belongs to Lq

VN(Ĝ) for some q ∈ [1,∞), then |T |q = (T ∗T )q/2 belongs
to L1

VN(Ĝ) and

‖T ‖q
Lq
VN(Ĝ)

= ‖|T |q‖L1
VN(Ĝ). (2.5)

Moreover, for all q ∈ [1,∞], an isometric isomorphism from FLq(G) to Lq
VN(Ĝ) is

given by

f �→ L f �
1/q , (2.6)

where L f is the left-convolution operator by f , and we identify the modular function
� ofG with the corresponding multiplication operator (see [13, Proposition 2.21(ii)]).
Recall that convolution on G is given by

L f φ(x) = f ∗ φ(x) =
∫
G

f (xy) φ(y−1) dy,

at least when f and φ are in Cc(G).
Note that, when q = p′, (2.6) matches the definitions by Kunze and by Terp of the

L p Fourier transformation Fp : L p(G) → L p′
VN(Ĝ) for p ∈ [1, 2] [43,63]. In other

words, the L p Fourier transformationFp : L p(G) → L p′
VN(Ĝ) factorises as the inclu-

sion map L p(G) → FL p′
(G) and the isometric isomorphismFL p′

(G) → L p′
VN(Ĝ),

whence the compatibility with the Kunze–Terp approach of the above definition of the
best Hausdorff–Young constants based on (2.4).

Another consequence of the above discussion is the following characterisation of
the FLq(G) norm in terms of a more “concrete” operator norm.
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Proposition 2.1 For all q ∈ [1,∞) and f ∈ FLq(G),

‖ f ‖FLq (G) = ‖|L f �
1/q |q‖1/q

L1(G)→L∞(G)
. (2.7)

Proof By (2.5) and (2.6),

‖ f ‖FLq (G) = ‖L f �
1/q‖Lq

VN(Ĝ) = ‖|L f �
1/q |q‖1/q

L1
VN(Ĝ)

= ‖g‖1/qA(G),

where g ∈ A(G) satisfies Lg� = |L f �
1/q |q . On the other hand, the operator Lg�

is given by

Lg�φ(x) =
∫
G
g(xy)�(y−1) φ(y−1) dy =

∫
G
g(xy−1) φ(y) dy;

since Lg� = |L f �
1/q |q is a positive operator, the kernel g must be a function of

positive type (see, for example, [23, Section 3.3]), whence

‖g‖A(G) = g(e) = ‖g‖∞ = ‖Lg�‖L1(G)→L∞(G)

and we are done. ��

A classical way of accessing Hausdorff–Young constants is through their relations
with best constants in the Young convolution inequalities. Recall that, for a possibly
nonunimodular groupG, the k-linear version of Young’s inequality takes the following
form: for all p1, . . . , pk, r ∈ [1,∞] such that

∑k
j=1 1/p

′
j = 1/r ′,

∥∥∥ k
˚
j=1

( f j�
∑ j−1

l=1 1/p′
l )

∥∥∥
Lr (G)

≤ C
k∏
j=1

‖ f j‖L p j (G) (2.8)

where C ≤ 1 (see [63, Lemma 1.1], or [38, Corollary 2.3] where the inequality is
written for the right Haar measure). As in the case of the Hausdorff–Young inequality,
we can define the Young constant Yp1,...,pk (G) for G as the smallest constant C for
which (2.8) holds for all f1 ∈ L p1(G), . . . , fk ∈ L pk (G), as well as the localised
versions Yp1,...,pk (G;U ) for neighbourhoods U of the identity of G (corresponding
to the constraint supp f1, . . . , supp fk ⊆ U ) and Y loc

p1,...,pk (G).
Note that the above Young inequality (2.8) is “dual” to the following Hölder-type

inequality for FL p-spaces: for all p1, . . . , pk, r ∈ [1,∞] such that
∑k

j=1 1/p j =
1/r ,

∥∥∥ k
˚
j=1

( f j�
∑ j−1

l=1 1/pl )

∥∥∥FLr (G)
≤

k∏
j=1

‖ f j‖FL p j (G); (2.9)
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this is a rephrasing of Hölder’s inequality for Hilsum’s noncommutative L p spaces,

‖T1 · · · Tk‖LrVN(Ĝ) ≤
k∏
j=1

‖Tj‖L p j
VN(Ĝ)

[30, Proposition 8], via the isomorphism (2.6) from FLq(G) to Lq
VN(Ĝ) and the

identities

�α( f ∗ g) = (�α f ) ∗ (�αg) and L�α f = �αL f �
−α, (2.10)

valid for all α ∈ C. Let us also recall that

L f ∗ = L∗
f , (2.11)

where f �→ f ∗ is the isometric conjugate-linear involution of L1(G) given by

f ∗(x) = �−1(x) f (x−1).

The proposition below summarises a number of relations between Young and
Hausdorff–Young constants that can be found in the literature, at least in particular
cases (see, for example, [6] and [38]), as well as corresponding local versions.

Proposition 2.2 Let G be a locally compact group.

(i) For all p1, . . . , pk, q ∈ [1, 2] such that
∑

j 1/p
′
j = 1/q,

Yp1,...,pk (G) ≤ Hq(G) Hp1(G) · · · Hpk (G),

Y loc
p1,...,pk (G) ≤ H loc

q (G) H loc
p1 (G) · · · H loc

pk (G).

(ii) For all p ∈ [1, 2) such that p′ = 2k, k ∈ Z, if p1 = · · · = pk = p, then

Hp(G) = Yp1,...,pk (G)1/k,

H loc
p (G) = Y loc

p1,...,pk (G)1/k .

(iii) If N is a closed normal subgroup of G, then, for all p1, . . . , pk ∈ [1,∞] such that∑k
j=1 1/p

′
j ∈ [0, 1],

Yp1,...,pk (G) ≤ Yp1,...,pk (N ) Yp1,...,pk (G/N ),

Y loc
p1,...,pk (G) ≤ Y loc

p1,...,pk (N ) Y loc
p1,...,pk (G/N ),

with equality when G ∼= N × (G/N ).
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Proof (i). For all f1, . . . , fk, g ∈ Cc(G), by (2.4) and (2.9),

〈
k
˚
j=1

( f j�
∑ j−1

l=1 1/p′
l ), g

〉
≤

∥∥∥∥
k
˚
j=1

( f j�
∑ j−1

l=1 1/p′
l )

∥∥∥∥
FLq

‖g‖FLq′

≤ ‖ f1‖FL p′1 · · · ‖ fk‖FL p′k ‖g‖FLq′

≤ Hq(G)Hp1(G) · · · Hpk (G)‖ f1‖L p1 · · · ‖ fk‖L pk ‖g‖Lq ,

which proves that

∥∥∥∥
k
˚
j=1

( f j�
∑ j−1

l=1 1/p′
l )

∥∥∥∥
Lq′

≤ Hq(G)Hp1(G) · · · Hpk (G)‖ f1‖L p1 · · · ‖ fk‖L pk ,

that is, Yp1,...,pk (G) ≤ Hq(G) Hp1(G) · · · Hpk (G). Note now that, if f1, . . . , fk are

supported in a neighbourhoodU of the identity, then˚k
j=1( f j�

∑ j−1
l=1 1/p′

l ) is supported

in Uk and, to estimate its Lq ′
norm, it is enough to test it against functions g that are

also supported in Uk ; the same argument as above then also gives

Yp1,...,pk (G;U ) ≤ Hq(G;Uk) Hp1(G;U ) · · · Hpk (G;U )

and Y loc
p1,...,pk (G) ≤ H loc

q (G) H loc
p1 (G) · · · H loc

pk (G).
(ii). Part (i) gives us the inequality Hp(G) ≥ Yp1,...,pk (G)1/k and its local version.

On the other hand, for all f ∈ Cc(G), if we define f̃ = �1/p′
f ∗, then

‖ f̃ ‖p = ‖ f ‖p

and, by (2.10) and (2.11),

L f̃ �
1/p′ = (L f �

1/p′
)∗.

For all j = 1, . . . , k, let f j be either f̃ or f , according to whether k − j is odd or
even, and define g = ˚k

j=1( f j�
( j−1)/p′

). Then, since p′ = 2k,

|L f �
1/p′ |p′ = [(L f �

1/p′
)∗(L f �

1/p′
)]k

= (L f̃ �
1/p′

)(L f �
1/p′

) · · · (L f̃ �
1/p′

)(L f �
1/p′

)

= |(L f1�
1/p′

) · · · (L fk�
1/p′

)|2

and, by (2.10),

(L f1�
1/p′

) · · · (L fk�
1/p′

) = Lg�
1/2.

So |L f �
1/p′ |p′ = |Lg�

1/2|2 and, by (2.7) and (2.8),
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‖ f ‖p′
FL p′ = ‖g‖2FL2 = ‖g‖2L2

≤ Yp1,...,pk (G)2‖ f1‖2L p · · · ‖ fk‖2L p = Yp1,...,pk (G)2‖ f ‖p′
L p ,

which gives the inequality Hp(G) ≤ Yp1,...,pk (G)1/k . The same argument also gives
Hp(G;U ) ≤ Yp1,...,pk (G;U )1/k and H loc

p (G) ≤ Y loc
p1,...,pk (G)1/k .

(iii). The inequalities are proved by a simple extension of Klein and Russo’s argu-
ment for the case of semidirect products [38, proof of Lemma 2.4], using the “measure
disintegration” in [23, Theorem (2.49)]. In the case of direct products, equalities follow
by testing on tensor product functions (see [6, Lemma 5]). ��

The next lemma contains the fundamental approximation results that allow us to
relate Hausdorff–Young constants on a Lie group G and on its Lie algebra g by means
of a “transplantation” or “blow-up” technique. The Lie algebra g will be considered
as an abelian group with addition, and the Lebesgue measure on g is normalised so
that the Jacobian determinant of the exponential map exp : g → G is equal to 1 at the
origin. The context will make clear whether the notation for convolution, involution
and convolution operators ( f ∗ g, f ∗, L f ) refers to the group structure of G or the
abelian group structure of g.

Denote by Cpg([0,∞)) the space of continuous functions � : [0,∞) → Cwith at
most polynomial growth, that is, |�(u)| ≤ C(1 + u)N for some C, N ∈ (0,∞) and
all u ∈ [0,∞).

Lemma 2.3 Let G be a Lie group with Lie algebra g of dimension n, and let exp :
g → G be the exponential map. Let  be an open neighbourhood of the origin in g
such that = − and exp | :  → exp() is a diffeomorphism. For all f ∈ Cc(g),
λ ∈ (0,∞), α ∈ R and p ∈ [1,∞], define f λ,p,α : G → C by

f λ,p,α(x) =
{

λ−n/p�(x)−α f (λ−1 exp |−1
 (x)) if x ∈ exp(),

0 otherwise.
(2.12)

Set also f λ,p = f λ,p,0. Then the following hold.

(i) For all f ∈ Cc(g), α ∈ R and p ∈ [1,∞],

‖ f λ,p,α‖L p(G) ≤ Cα,p, ‖ f ‖L p(g) (2.13)

for all λ ∈ (0,∞), and

‖ f λ,p,α‖L p(G) → ‖ f ‖L p(g) (2.14)

as λ → 0.
(ii) For all k ∈ N, α1, . . . , αk, β ∈ R, f1, . . . , fk, g ∈ Cc(g),

〈 f λ,1,α1
1 ∗ · · · ∗ f λ,1,αk

k , gλ,∞,β〉L2(G) → 〈 f1 ∗ · · · ∗ fk, g〉L2(g) (2.15)

as λ → 0.
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(iii) For all α ∈ R, f , g, h ∈ Cc(g), � ∈ Cpg([0,∞)),

〈�(�αL( f λ,1)∗∗ f λ,1�α)gλ,2, hλ,2〉L2(G) → 〈�(L f ∗∗ f )g, h〉L2(g) (2.16)

as λ → 0.
(iv) For all α ∈ R, f , g, h ∈ Cc(g) and q ∈ [0,∞),

λ−n(q−1)〈|L f λ,∞�α|qgλ,1, hλ,1〉L2(G) → 〈|L f |qg, h〉L2(g)

as λ → 0.

Proof Let J : g → R denote the modulus of the Jacobian determinant of exp, and
define �e : g → (0,∞) to be � ◦ exp.

(i). Note that

‖ f λ,p,α‖p
p = λ−n

∫


| f (λ−1X)|p(J�
−α p
e )(X) dX

= ∫
λ−1

| f (X)|p(J�
−α p
e )(λX) dX .

From this, (2.13) follows (with C p
α,p, = sup J�

−α p
e ), and (2.14) follows as well

because f is compactly supported and limX→0(J�
−α p
e )(X) = J (0)�(e)−α p = 1.

(ii). By the Baker–Campbell–Hausdorff formula,

exp(X1) · · · exp(Xk) = exp(X1 + · · · + Xk + B(X1, . . . , Xk)),

where B(X1, . . . , Xk) = ∑
m≥2 Bm(X1, . . . , Xk) and, for allm ≥ 2, Bm(X1, . . . , Xk)

is a homogeneous polynomial function of X1, . . . , Xk of degreem; indeed we can find
a sufficiently small neighbourhood ̃ ⊆ of the origin ing so that, if X1, . . . , Xk ∈ ̃,
then X1 + · · · + Xk + B(X1, . . . , Xk) ∈ .

Note that

〈 f λ,1,α1
1 ∗ · · · ∗ f λ,1,αk

k , gλ,∞,β〉L2(G)

=
∫
Gk

f λ,1,α1
1 (x1) · · · f λ,1,αk

k (xk) gλ,∞,β(x1 · · · xk) dx1 . . . dxk

If λ is sufficiently small that
⋃k

j=1 λ supp f j ⊆ exp(̃), then the last integral may be
rewritten as

∫
gk

ḡ

( k∑
j=1

X j + λ−1B(λX1, . . . , λXk)

) k∏
j=1

( f j (X j )(J�
−α j−β
e )(λX j )) dX1 · · · dXk .

Since λ−1B(λX1, . . . , λXk) = λ
∑

m≥2 λm−2Bm(X1, . . . , Xk) tends to 0 as λ → 0,
the last integral tends to 〈 f1 ∗ · · · ∗ fk, g〉L2(g).

(iii). Note first that �αL( f λ,1)∗∗ f λ,1�α is a nonnegative self-adjoint operator on
L2(G) (which may be unbounded when G is nonunimodular) and that, for all N ∈ N,
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the L2-domain of (�αL( f λ,1)∗∗ f λ,1�α)N contains all compactly supported functions
in L2(G), so the left-hand side of (2.16) is well-defined. Note moreover that

( f λ,p,α)∗ = ( f ∗)λ,p,1−α (2.17)

whence, by (2.10),

〈(�αL( f λ,1)∗∗ f λ,1�α)N gλ,2, hλ,2〉L2(G)

=
〈(

N
˚
j=1

(( f ∗)λ,1,1−(2 j−1)α ∗ f λ,1,−(2 j−1)α)

)
∗ gλ,1,−2Nα, hλ,∞

〉
.

So, in the case where �(u) = uN for some N ∈ N, (2.16) follows from (2.15).
Note that, by shrinking  if necessary, we may assume that  and exp() have

compact closures in g and G, and moreover the topological boundary of exp() has
null Haar measure (indeed shrinking  does not change the left-hand side of (2.16)
for λ sufficiently small). As in [49, proof of Theorem 5.2], we can now extend the
diffeomorphism φ := exp |−1

 : exp() →  to a diffeomorphism φ∗ : U → V ,
where U and V are open sets in G and g containing exp() and , and moreover
G \ U has null Haar measure. Finally, let J∗ : V → (0,∞) be the density of the
push-forward via φ∗ of the Haar measure with respect to the Lebesgue measure (so
J∗ = J on ), and define an isometric isomorphism � : L2(G) → L2(V ) by

�(F) = (F ◦ φ−1∗ ) J 1/2∗ .

Since Aλ := �αL( f λ,1)∗∗ f λ,1�α is a self-adjoint operator on L2(G), we can define

a self-adjoint operator Ãλ on L2(g) = L2(V ) ⊕ L2(g \ V ) by

Ãλ =
(

�Aλ�
−1 0

0 0

)

and another self-adjoint operator Âλ on L2(g) by Âλ = T−1
λ ÃλTλ, where Tλ is the

isometry on L2(g) defined by

Tλ f (X) = λ−n/2 f (X/λ).

It is now not difficult to check that, for all � ∈ Cpg([0,∞)) and g, h ∈ Cc(g),

〈�( Âλ)g, h〉L2(g) = 〈�(Aλ)g
λ,2, hλ,2〉L2(G) (2.18)

for all λ sufficiently small that supp Tλg ∪ supp Tλh ⊆ .
For all N ∈ N, from the cases �(u) = uN and �(u) = u2N of (2.16) and (2.18) it

follows that, for all g, h ∈ Cc(g),

〈 ÂN
λ g, h〉L2(g) → 〈AN g, h〉L2(g), ‖ ÂN

λ g‖L2(g) → ‖AN g‖L2(g) (2.19)

as λ → 0, where A := L f ∗∗ f . In particular, from this and the density of Cc(g) in
L2(g) it is not difficult to conclude that, for all g ∈ Cc(g),
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ÂN
λ g → AN g (2.20)

in L2-norm asλ → 0 [10, Proposition 3.32]. Since A is a bounded self-adjoint operator
on L2(g), Cc(g) is a core for A and [67, Theorem 9.16] implies that

Âλ → A

in the sense of strong resolvent convergence as λ → 0. In turn this implies that, for
all bounded continuous functions � : [0,∞) → C,

�( Âλ) → �(A) (2.21)

in the sense of strong operator convergence as λ → 0 [67, Theorem 9.17].
Suppose now that� ∈ Cpg([0,∞)). Then we can write�(u) = �̃(u) (1+uN ) for

some bounded continuous function �̃ : [0,∞) → C and N ∈ N. For all g, h ∈ Cc(g),
by (2.18),

〈�(Aλ)g
λ,2, hλ,2〉L2(G) = 〈�( Âλ)g, h〉L2(g)

= 〈�̃( Âλ)g, h〉L2(g) + 〈�̃( Âλ)g, Â
N
λ h〉L2(g)

for all λ sufficiently small, and the last quantity tends to

〈�̃(A)g, h〉L2(g) + 〈�̃(A)g, ANh〉L2(g) = 〈�(A)g, h〉L2(g)

as λ → 0, by (2.20) and (2.21).
(iv). This is just a restatement of part (iii) in the case where �(u) = uq/2. ��
We can finally prove the enunciated relation between Hausdorff–Young constants

of a Lie group and its Lie algebra. We find it convenient to state the result together
with its analogue for Young constants, since both follow by the approximation results
of Lemma 2.3. Part (ii) of Proposition 2.4, together with the following Remark 2.5
and the Babenko–Beckner theorem for Rn , prove Theorem 1.3.

As in [60], we define a contractive automorphism of a locally compact group G as
an automorphism τ such that limk→∞ τ k(x) = e for all x ∈ G.

Proposition 2.4 Let G be a locally compact group.

(i) For all p1, . . . , pk ∈ [1,∞] such that
∑k

j=1 1/p
′
j ∈ [0, 1],

Yp1,...,pk (G) ≥ Y loc
p1,...,pk (G), (2.22)

with equality when G has a contractive automorphism; moreover, if G is a Lie
group with Lie algebra g,

Y loc
p1,...,pk (G) ≥ Yp1,...,pk (g). (2.23)
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(ii) For all p ∈ [1, 2],

Hp(G) ≥ H loc
p (G), (2.24)

with equality if G has a contractive automorphism. Moreover, when G is an n-
dimensional Lie group with Lie algebra g,

H loc
p (G) ≥ Hp(g). (2.25)

Proof (i). The first inequality is obvious. Moreover, in case G has a contractive auto-
morphism, the reverse inequality follows from a scaling argument. Indeed, for all
automorphisms γ of G, there exists κγ ∈ (0,∞) such that the push-forward via γ of
the Haar measure on G is κγ times the Haar measure. So, if Rγ f = f ◦ γ −1, then

‖Rγ f ‖L p(G) = κ−1/p
γ ‖ f ‖L p(G), Rγ � = �, Rγ

(
k
˚
j=1

f j

)
= κk−1

γ

k
˚
j=1

Rγ f j ,

whence it is immediate that both sides of Young’s inequality (2.8) are scaled by
the same factor when each f j is replaced with Rγ f j . Now, by density, the value
of the best constant Yp1,...,pk (G) may be determined by testing (2.8) on arbitrary
f1, . . . , fk ∈ Cc(G). Moreover, if τ is a contractive automorphism of G andU is any
neighbourhood of the identity, then, for all compact subsets K ⊆ G, there exists N ∈ N

such that τ N (K ) ⊆ U [60, Lemma 1.4(iv)]; in particular, for all f1, . . . , fk ∈ Cc(G),
by taking γ = τ N for sufficiently large N ∈ N, we see that supp Rγ f j ⊆ U . This
shows that Yp1,...,pk (G) ≤ Yp1,...,pk (G;U ) for all neighbourhoods U of e ∈ G, and
consequently Yp1,...,pk (G) ≤ Y loc

p1,...,pk (G).
As for the second inequality, let U be an arbitrary neighbourhood of e ∈ G. To

conclude, it is sufficient to show that Yp1,...,pk (g) ≤ Yp1,...,pk (G;U ).
Let r ∈ [1,∞] be defined by

∑
j 1/p

′
j = 1/r ′. Consider g, f1, . . . , fk ∈ Cc(g).

For all λ ∈ (0,∞), α ∈ C and p ∈ [1,∞], define gλ,p, f λ,p
j , f λ,p,α

j as in Lemma

2.3. Then
⋃k

j=1 supp f λ,1
j ⊆ U for all sufficiently small λ, and therefore, by (2.8),

〈
k
˚
j=1

( f λ,1
j �

∑ j−1
l=1 1/p′

l ), gλ,∞
〉
L2(G)

≤ Yp1,...,pk (G;U ) ‖ f λ,1
1 ‖L p1 (G) · · · ‖ f λ,1

k ‖L pk (G)‖gλ,∞‖Lr ′ (G)
.

Note that
∑k

j=1 1/p j + 1/r ′ = k. So the last inequality can be rewritten as

〈
f λ,1,α1
1 ∗ · · · ∗ f λ,1,αk

k , gλ,∞〉
L2(G)

≤ Yp1,...,pk (G;U ) ‖ f λ,p1
1 ‖L p1 (G) · · · ‖ f λ,pk

k ‖L pk (G)‖gλ,r ′ ‖Lr ′ (G)
,
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where α j = −∑ j−1
l=1 1/p′

l . Hence, by Lemma 2.3, by taking the limit as λ → 0, we
obtain

〈 f1 ∗ · · · ∗ fk, g〉L2(g) ≤ Yp1,...,pk (G;U ) ‖ f1‖L p1 (g) · · · ‖ fk‖L pk (g)‖g‖Lr ′ (g)
.

Thearbitrariness of f1, . . . , fk, g ∈ Cc(g) implies thatYp1,...,pk (g) ≤ Yp1,...,pk (G;U ).
(ii). Much as in part (i), the first inequality is obvious, and equality follows from a

rescaling argument when G has a contractive automorphism, since

‖Rγ f ‖FLq (G) = κ−1/q ′
γ ‖ f ‖FLq (G)

for all automorphisms γ of G.
As for the second inequality, we need to show that Hp(g) ≤ Hp(G;U ) for all

neighbourhoods U of e ∈ G. Set q = p′ and note that, by (2.7),

‖ f ‖qFFq (G)
= sup

‖g‖L1(G)
,‖h‖L1(G)

≤1
〈|L f �

1/q |qg, h〉L2(G).

For λ ∈ (0,∞), r ∈ [1,∞] and f , g, h ∈ Cc(g), we define f λ,r , gλ,r , hλ,r : G →
C as in Lemma 2.3. For all sufficiently small λ, supp f λ,r ⊆ U and therefore

〈|L f λ,∞�1/q |qgλ,1, hλ,1〉L2(G) ≤ Hp(G;U )q‖ f λ,∞‖qL p(G)‖gλ,1‖L1(G)‖hλ,1‖L1(G),

that is,

λ−n(q−1)〈|L f λ,∞�1/q |qgλ,1, hλ,1〉L2(G)

≤ Hp(G;U )q‖ f λ,p‖qL p(G)‖gλ,1‖L1(G)‖hλ,1‖L1(G).

As λ → 0, by Lemma 2.3 we then deduce that

〈|L f |qg, h〉L2(g) ≤ Hp(G;U )q‖ f ‖qL p(g)‖g‖L1(g)‖h‖L1(g).

By the arbitrariness of g, h ∈ Cc(g),

‖ f ‖FLq (g) ≤ Hp(G;U )‖ f ‖L p(g)

and finally, by the arbitrariness of f ∈ Cc(g), Hp(g) ≤ Hp(G;U ). ��
Remark 2.5 The argument in Proposition 2.4 can be extended to the case of inequalities
restricted to particular classes of functions on G. In particular, suppose that the class
of functions is determined by invariance with respect to the action of a compact group
K of automorphisms of G. Then it is possible to choose a positive inner product on
g so that K acts on g by isometries (take any inner product on g and average it with
respect to the action of K ), and the correspondence (2.12) preserves K -invariance
whenever  is a ball centred at the origin. Moreover the class of functions on g
under consideration contains all radial functions. Since the extremisers for Young and
Hausdorff–Young constants on g are centred gaussians [6,9], which may be assumed
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to be radial, the resulting lower bounds do not change. This observation completes the
proof of Theorem 1.3.

Remark 2.6 While the inequalities (2.22) and (2.24)maybe strict for certainLie groups
G (note that, when G is compact, the global Young and Hausdorff–Young constants
are equal to 1), it appears natural to ask whether the inequalities (2.23) and (2.25) are
actually equalities. We are not aware of any counterexample. As a matter of fact, a
particular case of a recent result of Bennett, Bez, Buschenhenke, Cowling and Flock
about nonlinear Brascamp–Lieb inequalities [7] entails that equality always holds in
(2.23) for all Lie groups G:

Y loc
p1,...,pk (G) = Yp1,...,pk (g)

for all p1, . . . , pk ∈ [1,∞] such that
∑k

j=1 1/p
′
j ∈ [0, 1]. By Proposition 2.2(ii),

this in turn implies that

H loc
p (G) = Hp(g) = (Bp)

dimG

for all p ∈ [1, 2] such that p′ is an even integer, and a fortiori the same equality holds
for the K -invariant version of the constants for any compact group of automorphisms
K .

As a consequence of the above results, we strengthen some results of Klein and
Russo [38, Corollaries 2.5’ and 2.8], where upper bounds for Young and Hausdorff–
Young constants are obtained for particular solvable Lie groups. Klein and Russo
explicitly remark that they are able to obtain equalities instead of upper bounds in the
particular case of the Heisenberg groups and only for special exponents (through a
different argument, involving the analysis of the Weyl transform) and seem to leave
the general case open. Here instead we obtain equality for all the Young constants, as
well as a lower bound for the Hausdorff–Young constants (which becomes an equality
in the case of Babenko’s exponents).

Corollary 2.7 Let G be a n-dimensional solvable Lie group admitting a chain of closed
subgroups

{e} = G0 < · · · < Gn = G,

where G j is normal in G j+1 and G j+1/G j is isomorphic to R. Denote by Bp the
Babenko–Beckner constant. Then the following hold.

(i) For all p1, . . . , pk, r ∈ [1,∞] such that
∑k

j=1 1/p
′
j = 1/r ′,

Yp1,...,pk (G) = Y loc
p1,...,pk (G) = (Br ′ Bp1 · · · Bpk )

n .

(ii) For all p ∈ [1, 2],

Hp(G) ≥ H loc
p (G) ≥ (Bp)

n,

with equalities if p′ ∈ 2Z.
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Proof (i). The inequality Yp1,...,pk (G) ≤ (Br ′ Bp1 · · · Bpk )
n can be obtained, as in

[38], by iteratively applying Proposition 2.2(iii) and the fact that Yp1,...,pk (R) =
Br ′ Bp1 · · · Bpk [6,9]. On the other hand, by Propositions 2.4(i) and 2.2(iii),

Yp1,...,pk (G) ≥ Y loc
p1,...,pk (G) ≥ Yp1,...,pk (g) = Yp1,...,pk (R)n = (Br ′ Bp1 · · · Bpk )

n,

and we are done.
(ii). From part (i) and Proposition 2.2(ii), we deduce immediately that Hp(G) =

(Bp)
n whenever q is an even integer. On the other hand, by Proposition 2.4(ii),

Hp(G) ≥ H loc
p (G) ≥ Hp(g) = (Bp)

n,

by [6], and we are done. ��

3 The n-torus Tn revisited

The proof of the central local Hausdorff–Young theorem on a compact Lie group
mimics that of the local Hausdorff–Young theorem on T

n , and we present this case
first to make the proof of the general case more evident.

Proof of Theorem 1.2 There is no loss of generality in supposing functions smooth;
this ensures that all the sums and integrals that occur in the proof below converge.

Let us identifyTn with the subset (−1/2, 1/2]n ofRn . For f ∈ L1(Tn), the Fourier
transform f̂ : Zn → C of f is given by

f̂ (μ) =
∫
Tn

f (x) e2π iμ·x dx .

for all μ ∈ Z
n . We denote by V the open subset (−1/2, 1/2)n ofRn . For any function

f ∈ L1(Tn) such that supp f ⊆ V , we define F on R
n by

F(x) =
{
f (x) when x ∈ V ,

0 otherwise;

we say that F corresponds to f . Clearly F ∈ L1(Rn) and F̂ |Zn = f̂ ; further, if f is
smooth, so is F . We are going to transfer the sharp Hausdorff–Young theorem for F
to f .

The Plancherel formulae for Fourier series and Fourier integrals imply that

‖ f̂ ‖�2(Zn) = ‖ f ‖L2(Tn) = ‖F‖L2(Rn) = ‖F̂‖L2(Rn).

In particular, since F̂ |Zn = f̂ ,

‖F̂ |Zn‖�2(Zn) ≤ ‖F̂‖L2(Rn). (3.1)
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Further, trivially,

‖F̂ |Zn‖�∞(Zn) ≤ ‖F̂‖L∞(Rn).

If we could interpolate between these inequalities, then it would follow that

‖F̂ |Zn‖�q (Zn) ≤ ‖F̂‖Lq (Rn) (3.2)

for all q ∈ [2,∞] and F̂ in Lq(Rn), whence

‖ f̂ ‖
�p

′
(Zn)

= ‖F̂ |Zn‖
�p

′
(Zn)

≤ ‖F̂‖L p′ (Rn)
≤ (Bp)

n‖F‖L p(Rn) = (Bp)
n‖ f ‖L p(Tn),

andwewould be done. But we can not interpolate, because (3.1) does not hold for all F̂
in L2(Rn), or even for all F̂ in a dense subspace of L2(Rn), but only for those F̂ where
supp F ⊆ V ; inter alia, this ensures that F̂ is smooth so that F̂ |Zn is well-defined. So
we prove a variant of (3.2).

LetU be a small neighbourhoodU of 0 inTn such thatU ⊆ V , and take φ ∈ A(Rn)

such that suppφ ⊆ V and φ(x) = 1 for all x ∈ U . We now define

TG = (φ̂ ∗ G)|Zn ∀G ∈ L1(Rn) + L∞(Rn).

We claim that when q ∈ [2,∞],

‖TG‖�q (Zn) ≤ ‖φ̂‖L1(Rn)‖G‖Lq (Rn) ∀G ∈ Lq(Rn). (3.3)

To prove the claim, observe that the inverse Fourier transform of φ̂ ∗G is supported
in V , whence

‖TG‖�2(Zn) = ‖(φ̂ ∗ G)|Zn‖�2(Zn) ≤ ‖φ̂ ∗ G‖L2(Rn) ≤ ‖φ̂‖L1(Rn)‖G‖L2(Rn),

for all G ∈ L2(Rn), by (3.1) and a standard convolution inequality. Similarly, since
φ̂ ∗ G is continuous, the same inequalities hold when 2 is replaced by ∞. Thus (3.3)
holds when q is 2 or ∞. The Riesz–Thorin interpolation theorem establishes (3.3) for
all q ∈ [2,∞].

To conclude the proof, take f ∈ C∞(Tn) such that supp f ⊆ U , and let F corre-
spond to f . Then F̂ ∈ L1(Rn) ∩ L∞(Rn) and φ̂ ∗ F̂ = F̂ . Thus

‖ f̂ ‖�q (Zn) = ‖T F̂‖�q (Zn) ≤ ‖φ̂‖L1(Rn)‖F̂‖Lq (Rn)

by (3.3). This now gives

‖ f̂ ‖
�p

′
(Zn)

≤ ‖φ̂‖L1(Rn)‖F̂‖L p′ (Rn)

≤ ‖φ̂‖L1(Rn)(Bp)
n‖F‖L p(Rn) = ‖φ̂‖L1(Rn)(Bp)

n‖ f ‖L p(Zn).

This proves that Hp(T
n;U ) ≤ ‖φ̂‖L1(Rn)(Bp)

n .
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By choosing U small enough, we may make ‖φ̂‖L1(Rn) as close to 1 as we like
(see [45]): indeed, we can take φ = |K |−11U+K ∗ 1K , where K = −K is a fixed
small neighbourhood of the origin (here 1 denotes the characteristic function of a
measurable set  ⊆ R

n and || its Lebesgue measure), so that suppφ ⊆ U + 2K
and

1 = φ(0) ≤ ‖φ̂‖L1(Rn) ≤ |K |−1‖1K ‖L2(Rn)‖1U+K ‖L2(Rn) = (|U + K |/|K |)1/2.

So H loc
p (Tn) ≤ (Bp)

n , and the converse inequality is given by Theorem 1.3. ��

4 Compact Lie groups

Before entering into the proof of Theorem 1.4, we present a summary of the theory of
representations and characters of compact connected Lie groups G. For more details,
the reader may consult, for example, [11,41]. We assume throughout that G is not
abelian, since the abelian case was treated in Theorem 1.2.

A compact connected Lie group G comes with a set �+ of dominant weights,
which parametrise the collection of irreducible unitary representationsπλ ofGmodulo
equivalence. Each such representation πλ is of finite dimension dλ and has a character
χλ given by traceπλ(·).

Assume that the Haar measure on G is normalised so as to have total mass 1. The
Peter–Weyl theory gives us the Plancherel formula: if f ∈ L2(G), then

‖ f ‖22 =
∑

λ∈�+
dλ‖πλ( f )‖2HS.

In other words, the group Plancherel measure on the unitary dual of G can be iden-
tified with the discrete measure on �+ that assigns mass dλ to the point λ. From the
discussion in Sect. 2, we deduce that

‖ f ‖FLq =
⎛
⎝ ∑

λ∈�+
dλ‖πλ( f )‖qSq

⎞
⎠

1/q

.

for all q ∈ [1,∞). If f is a central function, then πλ( f ) is a multiple of the identity
and

f̃ (λ) :=
∫
G

f (x) χλ(x) dx = traceπλ( f ),

whence

‖ f ‖FLq =
⎛
⎝ ∑

λ∈�+
d2−q
λ | f̃ (λ)|q

⎞
⎠

1/q

.
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For q = 2, this corresponds to the fact that the characters χλ form an orthonormal
basis for the space of square-integrable central functions.

A more precise description of the set �+ of dominant weights and the characters
χλ can be given as follows. Recall that the conjugation action of the group G on itself
determines the adjoint representation of G on g:

exp(Ad(x)Y ) = x exp(Y )x−1 ∀x ∈ G ∀Y ∈ g.

Since G is compact, there exists an Ad(G)-invariant inner product on g, which in turn
determines a Lebesgue measure on g; we scale the inner product so that the Jacobian
determinant J : g → R of the exponential mapping is 1 at the origin. Clearly J is an
Ad(G)-invariant function.

The group G contains a maximal torus T , that is, a maximal closed connected
abelian subgroup, which is unique up to conjugacy; its Lie algebra t is a maximal
abelian Lie subalgebra of g. The set � of X in t such that exp X = e is a lattice in t,
and T may be identified with t/�. The weight lattice � is the dual lattice to �, that
is, the set of elements λ of the dual space t∗ taking integer values on �: equivalently,
� is the set of the λ ∈ t∗ such that X �→ e2π iλ(X) descends to a character κλ of T . We
say that a weight λ ∈ � occurs in a unitary representation π of G if the character κλ

of T is contained in the restriction of π to T . Weights occurring in the (complexified)
adjoint representation are called roots. A choice of an ordering splits roots into into
positive and negative roots. We denote by ρ half the sum of the positive roots. The set
�+ of dominant weights is the set of the λ ∈ � having nonnegative inner product with
all positive roots. The irreducible representation πλ of G corresponding to λ ∈ �+ is
determined, up to equivalence, by the fact that λ is the highest weight occurring in πλ

(that is, λ occurs in πλ, while λ + α does not occur in πλ for any positive root α).
Via the orthogonal projection of g onto t, we can identify t∗ with a subspace of g∗.

Given λ in g∗, we write Oλ for the compact set Ad(G)∗λ, usually called the orbit of
λ. Kirillov’s character formula [37, p. 459] states that, for all X ∈ g and all λ ∈ �+,

J (X)1/2 χλ(exp(X)) =
∫
Oλ+ρ

exp(2π iξ · X) dσ(ξ), (4.1)

where σ is a canonical Ad(G)∗-invariant measure on Oλ+ρ , and ξ · X denotes the
duality pairing between ξ ∈ g∗ and X ∈ g. When X = 0, this formula becomes the
normalisation

∫
Oλ+ρ

dσ(ξ) = dλ.

Proof of Theorem 1.4 Take a small connected conjugation-invariant neighbourhoodU
of the identity in G that is also symmetric, that is,U−1 = U . ThenU = ⋃

x∈G x(U ∩
T )x−1. Let V be the small connected neighbourhood of 0 in g such that U = exp V
and exp is a diffeomorphism from a neighbourhood of V onto a neighbourhood of U
in G.
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To a function f on G supported in U , we associate the function F on g supported
in V by the formula

F(X) =
{
J (X)1/2 f (exp(X)) when X ∈ V ,

0 otherwise.

Then ‖J 1/p−1/2F‖p = ‖ f ‖p. We define the Fourier transform F̂ of F as follows:

F̂(ξ) =
∫
g
F(X) exp(2π iξ · X) dX ∀ξ ∈ g∗.

The following conditions are equivalent: f is central on G; F is Ad(G)-invariant on
g; and F̂ is Ad(G)∗-invariant on g∗.

Assume that f is central and supported in U , and let F be the associated function
on g. From the character formula (4.1), a change of variables, and a change of order
of integration,

f̃ (λ) =
∫
G

f (x) χλ(x) dx =
∫
g
F(X)

∫
Oλ+ρ

exp(2π iξ · X) dσ(ξ) dX

=
∫
Oλ+ρ

∫
g
F(X) exp(2π iξ · X) dX dσ(ξ) =

∫
Oλ+ρ

F̂(ξ) dσ(ξ)

= dλ F̂(λ + ρ).

This, combined with the Plancherel theorems for central functions on G and for func-
tions on g, implies that

∑
λ∈�+

d2λ |F̂(λ + ρ)|2 = ‖ f ‖22 = ‖F‖22 = ‖F̂‖22.

For such functions, moreover, F̂ is continuous and so

sup
λ∈�+

|F̂(λ + ρ)|∞ ≤ ‖F̂‖∞.

For a function H on g∗, we define

HG(λ) =
∫
G
H(Ad(g)∗λ) dg.

Much as in the case ofTn , we choose an Ad(G)-invariant function φ ∈ A(g)which
vanishes off V and takes the value 1 on the open Ad(G)-invariant subset W of V . For
H in L1(g∗) + L∞(g∗), we define the function T H by

T H(λ) = φ̂ ∗ HG(λ + ρ) ∀λ ∈ �+.
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For such functions H , the inverse Fourier transform F of φ̂ ∗ HG is supported in V
and is Ad(G)-invariant, so the corresponding function f onG is central and supported
in U . From our previous discussion,

⎛
⎝ ∑

λ∈�+
d2λ |T H(λ)|2

⎞
⎠

1/2

= ‖φ̂ ∗ HG‖2 ≤ ‖φ̂‖1‖HG‖2 ≤ ‖φ̂‖1‖H‖2

and

sup
λ∈�+

|T H(λ)| ≤ ‖T H‖∞ ≤ ‖φ̂‖1‖HG‖∞ ≤ ‖φ̂‖1‖H‖∞.

By Riesz–Thorin interpolation, when 2 ≤ q < ∞,

⎛
⎝ ∑

λ∈�+
d2λ |T H(λ)|q

⎞
⎠

1/q

≤ ‖φ̂‖1‖H‖q .

Much as in the proof of Theorem 1.2, if f is a central function on G supported in
exp(W ) ⊆ U , and F is the Ad(G)-invariant function on g corresponding to f , then
T F̂(λ) = φ̂ ∗ F̂(λ + ρ) = F̂(λ + ρ) for all λ ∈ �+. Hence, if n = dimG, from the
Hausdorff–Young inequality on R

n we deduce that

‖ f ‖FL p′ =
⎛
⎝ ∑

λ∈�+
d2−p′
λ | f̃ (λ)|p′

⎞
⎠

1/p′

=
⎛
⎝ ∑

λ∈�+
d2λ |F̂(λ + ρ)|p′

⎞
⎠

1/p′

≤ ‖φ̂‖1‖F̂‖p′ ≤ ‖φ̂‖1(Bp)
n‖F‖p ≤ ‖φ̂‖1(Bp)

n sup
X∈W

J (X)1/2−1/p‖ f ‖p,

which shows that Hp,Inn(G)(G; exp(W )) ≤ ‖φ̂‖1(Bp)
n supX∈W J (X)1/2−1/p. By

taking W small, we may make both supX∈W J (X)1/2−1/p and ‖φ̂‖1 close to 1. So
H loc

p,Inn(G)(G) ≤ (Bp)
n , and the converse inequality is given by Theorem 1.3. ��

5 TheWeyl transform

In this section, we shall mostly adopt the notation from Folland’s book [22]. TheWeyl
transform ρ( f ) of a function f ∈ L1(Cn) can be written as the operator

ρ( f ) =
∫
Rn

∫
Rn

f (u + iv) e2π i(uD+vX) du dv
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on L2(Rn), where uD = ∑n
j=1 u j D j and vX = ∑n

j=1 v j X j , and where Dj and X j

denote the operators

Djφ(x) = 1

2π i

∂

∂x j
f (x) and X jφ(x) = x jφ(x).

Explicitly, ρ( f ) is the integral operator given by

ρ( f )φ(x) =
∫
Rn

K f (x, y) φ(y) dy,

with integral kernel given by

K f (x, y) =
∫
Rn

f (y − x + iv) eπ iv(x+y) dv.

As Folland points out on page 24 of his monograph, this notion of “Weyl transform”
is historically incorrect—the Weyl transform of f should rather be ρ( f̂ ), the pseu-
dodifferential operator associated to the symbol f in the Weyl calculus [22, Chapter
2]. Nevertheless, we shall use the definition of Weyl transform above.

In [38], the authors consider the operator ν( f ) given by

ν( f ) =
∫
Rn

∫
Rn

f (u + iv) e2π iuD e2π ivX du dv,

and call this theWeyl operator associated to f—this appears to be even more inappro-
priate, as ν( f ) is actually more closely related to the Kohn–Nirenberg calculus (see,
for example, [22, (2.32)]). In any case, it is easily seen that the operators ν( f ) and
ρ( f ) are related by the identity

ν( f ) = ρ(eiπu·v f ) (5.1)

(compare also [22, Proposition 2.33]).
We are interested in best constants in Hausdorff–Young inequalities of the form

‖ρ( f )‖S p′ ≤ C‖ f ‖L p(Cn), (5.2)

for suitable functions f , for instanceSchwartz functions. In light of (5.1),wemaywork
with ν( f ) in place of ρ( f ) equally well. As discussed in the introduction, we denote
by Wp(C

n) the best constant C in (5.2), and use the symbols W loc
p (Cn), Wp,K (Cn)

and W loc
p,K (Cn) for the corresponding local and K -invariant variants.

If p = 2, then ρ is indeed isometric from L2(Cn) onto the space of Hilbert–Schmidt
operators [22, Theorem (1.30)], and thus the following “Plancherel identity” for the
Weyl transform holds true:

‖ρ( f )‖HS = ‖ f ‖2. (5.3)
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This tells us that W2(C
n) = 1 and, by interpolation, Wp(C

n) ≤ 1 for all p ∈ [1, 2].
However, as Klein and Russo have shown, Wp(C

n) < 1 when 1 < p < 2. Indeed,
[38, Theorem 1] may be restated by saying that

Wp(C
n) = (Bp)

2n (5.4)

when p′ ∈ 2Z. Moreover, in contrast with the Euclidean case, there are no extremal
functions for the optimal estimate—the best constant can only be found as a limit,
for instance along a suitable family of Gaussian functions f . This raises the question
whether (5.4) holds for more general p ∈ [1, 2].

Besides being of interest in its own right, the determination of the best constants in
the Hausdorff–Young inequality (5.2) for the Weyl transform on Cn is relevant to the
analysis of the analogous inequality on the Heisenberg group Hn . Indeed, the proof
of Klein and Russo [38, Theorem 3] that

Hp(Hn) = (Bp)
2n+1 (5.5)

when p′ ∈ 2Z is based on a reduction, via a scaling argument, to the correspond-
ing result (5.4) for the Weyl transform. A somewhat refined version of the scaling
argument, presented below, shows that the problem of determining the best Hausdorff–
Young constants for the Heisenberg group is completely equivalent to the analogous
problem for the Weyl transform, irrespective of the exponent p ∈ [1, 2], and also in
case of restriction to functions with symmetries.

Proposition 5.1 For all compact subgroups K of U(n) and all p ∈ [1, 2],

Hp,K (Hn) = BpWp,K (Cn).

Proof Let us identify Hn with Cn × R with group law

(z, t) · (z′, t ′) = (z + z′, t + t ′ + �(z̄ · z′)/2).

The Lebesgue measure onCn ×R is a Haar measure onHn , which we fix throughout.
The Schrödinger representation π of Hn on L2(Rn) is given by

π(u + iv, t)φ(x) = e2π i t+2π iv·x+π iu·vφ(u + x)

[22, (1.25)]. For all λ ∈ R \ {0}, the map Aλ : Hn → Hn , given by

Aλ(z, t) =
{

(
√|λ| z, λt) if λ > 0,

(
√|λ| z̄, λt) if λ < 0,

is an automorphism of Hn . The representations πλ = π ◦ Aλ form a family of pair-
wise inequivalent irreducible unitary representations ofHn , in terms of which we can
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express the Plancherel formula for Hn :

‖F‖2L2(Hn)
=

∫
R\{0}

‖πλ(F)‖2HS |λ|n dλ

[22, p. 39]. Hence, by the discussion in Sect. 2, for all q ∈ [1,∞),

‖F‖qFLq =
∫
R\{0}

‖πλ(F)‖qSq |λ|n dλ. (5.6)

For all F ∈ L1(Hn) and λ ∈ R, let us set

Fλ(z) =
∫
R

F(z, t) e2π i tλ dt .

Then

πλ(F) = ρ(ZλF
λ), (5.7)

where, for all functions f on C
n ,

Zλ f (z) =
{

|λ|−n f (|λ|−1/2z) if λ > 0,

|λ|−n f (|λ|−1/2 z̄) if λ < 0.

From the definition of ρ, it is not difficult to show that

ρ(Z−1 f ) = Sρ( f )∗S,

where S f (z) = f ∗(z) = f (−z). From this it readily follows that

‖ρ(Z−λ f )‖Sq = ‖ρ(Zλ f )‖Sq (5.8)

for all λ ∈ R \ {0} and q ∈ [1,∞].
Let F ∈ C∞

c (Hn) be K -invariant. Then ZλFλ is also K -invariant for all λ > 0.
Hence, by (5.6) to (5.8),

‖F‖FL p′ =
(∫

R\{0}
‖ρ(Z|λ|Fλ)‖p′

S p′ |λ|n dλ

)1/p′

≤ Wp,K (Cn)

(∫
R\{0}

‖Z|λ|Fλ‖p′
p |λ|n dλ

)1/p′

= Wp,K (Cn)

(∫
R\{0}

‖Fλ‖p′
p dλ

)1/p′
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≤ Wp,K (Cn)

(∫
Cn

(∫
R

|Fλ(z)|p′
dλ

)p/p′

dz

)1/p

≤ Wp,K (Cn)Bp‖F‖p,

where we applied, in order, the sharp Hausdorff–Young inequality for the Weyl trans-
form and K -invariant functions, a scaling, the Minkowski integral inequality (note
that p′/p ≥ 1) and the sharp Hausdorff–Young inequality on R. This shows that
Hp,K (Hn) ≤ BpWp,K (Cn).

Conversely, let f ∈ C∞
c (Cn) be K -invariant and φ : R → C be in the Schwartz

class, and let F = f ⊗ φ. Then F is also K -invariant, and moreover Fλ = φ̂(λ) f .
So, by applying the sharp Hausdorff–Young inequality on Hn to F we obtain that

(∫
R\{0}

‖ρ(Zλ f )‖p′
S p′ |φ̂(λ)|p′ |λ|n dλ

)1/p′

≤ Hp,K (Hn)‖ f ‖p‖φ‖p. (5.9)

For μ ∈ (0,∞) and λ0 ∈ R \ {0}, take

φ(t) = e−πμt2−2π i tλ0 ,

so that

φ̂(λ) = μ−1/2e−(π/μ)(λ−λ0)
2

and ‖φ̂‖p′ = Bp‖φ‖p,

since gaussians are extremal functions for the Hausdorff–Young inequality onR. With
this choice of φ, the inequality (5.9) can be rewritten as

Bp(R f ∗ �μ(λ0))
1/p′ ≤ Hp,K (Hn)‖ f ‖p,

where ∗ denotes convolution on R and

R f (λ) = ‖ρ(Zλ f )‖p′
S p′ |λ|n, �μ(λ) = e−(π p′/μ)λ2∫

R
e−(π p′/μ)s2 ds

.

Note thatλ �→ Zλ f is continuousR\{0} → L p(Cn) andρ : L p(Cn) → S p′
(L2(Rn))

is continuous too, so R f is a continuous function on R \ {0}. Moreover �μ is an
approximate identity as μ → 0. Hence, by taking the limit as μ → 0, we obtain

Bp sup
λ∈R\{0}

‖ρ(Zλ f )‖S p′ |λ|n/p′ ≤ Hp,K (Hn)‖ f ‖p,

which for λ = 1 gives

Bp‖ρ( f )‖S p′ ≤ Hp,K (Hn)‖ f ‖p,

that is, BpWp,K (Cn) ≤ Hp,K (Hn). ��
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Let us come back to the question whether the identity (5.4) holds for arbitrary
p ∈ [1, 2]. The following result, which allows for arbitrary p but restricts the class
of functions f and, regrettably, also requires a weight in the p-norm, gives another
indication that this might be true. Recall that a function f on Cn is polyradial if

f (z) = f0(|z1|, . . . , |zn|),

or, equivalently, if f is invariant under the n-fold product group U(1) × · · · × U(1).

Proposition 5.2 If f ∈ C∞
c (Cn) is polyradial, then, for all p ∈ [1, 2],

‖ρ( f )‖S p′ ≤ (Bp)
2n‖ f e(π/2)|·|2‖L p(Cn). (5.10)

As observed in the introduction, this inequality implies that W loc
p,K (Cn) ≤ (Bp)

2n

for K = U(1) × · · · × U(1), and a fortiori also for any larger group K .

Proof We present a proof of Proposition 5.2 which follows the philosophy of the proof
of Theorem 1.4. The key is the following identity relating Laguerre polynomials to
Bessel functions:

Lα
k (x) = ex x−α/2

k!
∫ ∞

0
tk+α/2 Jα(2

√
xt) e−t dt ∀x > 0, (5.11)

where α ∈ (−1,∞) [44, (4.19.3)]. In order to avoid technicalities, let us concentrate
on the case where n = 1; we shall later indicate the straightforward changes in the
argument which are needed to deal with general n ≥ 1.

If f (z) = f0(|z|) is a radial L1-function on C, then one may use the orthonormal
basis of Hermite functions hk (k ∈ N) of L2(R) to represent the operator ρ( f ) as an
infinite diagonal matrix, with diagonal elements given by

f̃ (k) := 〈ρ( f )hk, hk〉 =
∫
C

f (z) χk(z) dz ∀k ∈ N, (5.12)

where χk is the Laguerre function

χk(z) = e−(π/2)|z|2L0
k(π |z|2).

(see [22, (1.45) and (1.104)]; see also [65, (1.4.32)]). In particular,

‖ρ( f )‖Sq = ‖ f̃ ‖�q (5.13)

for all q ∈ [1,∞].
Recall also that the Euclidean Fourier transform of any radial L1-function g on

C ∼= R
2 can be written in polar coordinates as

ĝ(ζ ) = 2π
∫ ∞

0
g0(r) J0(2π |ζ |r)r dr , (5.14)
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The Hausdorff–Young inequality on Lie groups 123

where g(z) = g0(|z|). We assume that f has compact support, and put F(z) =
e(π/2)|z|2 f (z). Since also F̂ is radial, we may write F̂(ζ ) = F̂0(|ζ |). Combining
(5.11) and (5.14), we obtain

f̃ (k) =
∫ ∞

0
F̂0

(√
t/π

) tk
k!e

−t dt, (5.15)

which can be rewritten as

f̃ (k) =
∫
C

F̂(ζ )
πk |ζ |2k

k! e−π |ζ |2 dζ =
∫
C

F̂(ζ ) dμk(ζ ), (5.16)

where the measures dμk , k ∈ N, are probability measures on C. Combining the
aforementioned Plancherel identity for the Weyl transform, which leads to

∑
k∈N

∣∣∣∣
∫
C

F̂(ζ ) dμk(ζ )

∣∣∣∣
2

= ‖ f ‖22 ≤ ‖F‖22 = ‖F̂‖22,

with the trivial estimate

sup
k∈N

∣∣∣∣
∫
C

F̂(ζ ) dμk(ζ )

∣∣∣∣ ≤ ‖F̂‖∞,

we see that from here on we can easily modify the argument in the proof of Theorem
1.4 in order to arrive at (5.10).

Indeed, an even simpler interpolation argument is possible here, which avoids any
smallness assumption on the support of f . For suitable functions φ on the positive
real line, let us write

φ̆(k) =
∫ ∞

0
φ(t)

tk

k! e
−t dt

for all k ∈ Z. We claim that

‖φ̆‖�q ≤ ‖φ‖Lq (R+,dt) (5.17)

for all q ∈ [1,∞]. Indeed, this estimate is trivial for q = ∞, since the tk
k! e

−t dt are
probability measures, and for q = 1 we may estimate as follows:

∞∑
k=0

|φ̆(k)| ≤
∫ ∞

0
|φ(t)|

∞∑
k=0

tk

k! e
−t dt = ‖φ‖1.

Thus, (5.17) follows by Riesz–Thorin interpolation. From (5.17) and (5.15),

‖ f̃ ‖�q ≤
(∫ ∞

0

∣∣∣F̂0(√t/π
)∣∣∣q dt

)1/q

= ‖F̂‖q ,
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and thus, by (5.13) and the sharp Hausdorff–Young inequality on R
2, we obtain

‖ρ( f )‖S p′ = ‖ f̃ ‖
�p

′ ≤ (Bp)
2‖F‖p,

whence (5.10) follows.
Let us finally indicate the changes needed to deal with the case of arbitrary n. The

Laguerre functions must be replaced by the n-fold tensor products

χk(z1, . . . , zn) = χk1(z1) . . . χk1(z1),

where k = (k1, . . . , kn) ∈ N
n , and thus, in place of (5.12),

f̃ (k) =
∫
Cn

f (z1, . . . , zn) χk(z1, . . . , zn) dz1 . . . dzn

where k ∈ N
n . Accordingly, the measures dμk must be replaced by the n-fold tensor

products dμk = dμk1 ⊗ · · · ⊗ dμkn , which are again probability measures, and so
on. It then becomes evident that the proof carries over without any difficulty to this
general case. ��
Remark 5.3 There are indications that it may not be possible to establish (5.10)without
the presence of the weight e(π/2)|·|2 by means of a reduction to the Euclidean Fourier
transform and the Babenko–Beckner estimate, and that new techniques are required.
Let us again restrict our discussion for simplicity to the case n = 1.

There is another interesting identity relating Laguerre functions and Bessel func-
tions, namely

e−x/2xα/2Lα
k (x) = (−1)k

2

∫ ∞

0
Jα(

√
xy) e−y/2 yα/2 Lα

k (y) dy ∀x > 0,

where α ∈ (−1,∞) [44, (4.20.3)]. For α = 0, this in combination with (5.14) implies
the well-known identity

χk(z) = e−(π/2)|z|2L0
k(π |z|2) = (−1)k

2
χ̂k(z/2) (5.18)

(see [22, Remark after Theorem (1.105)], which is based on a more conceptual
approach based on the Wigner transform). This easily leads to the identity

f̃ (k) =
∫
C

f̂ (ζ ) (−1)k 2χk(2ζ ) dζ =
∫
C

f̂ (ζ ) dνk(ζ ). (5.19)

In contrast with (5.16), the signed measure dνk oscillates when k ≥ 1 and is no longer
a probability measure. Indeed, by [48, Lemma 1], we have

‖χk‖1 ∼ k1/2 as k → ∞.
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Thuswe cannot use (5.19) in place of (5.16) as before in order to get a sharpHausdorff–
Young estimate for ρ( f ) without a weight.

Even the case where p′ = 2m for somem ∈ Z does not seem to allow one to reduce
to the Euclidean estimate. Indeed, note that, for all f ∈ L1(Cn),

ρ( f ∗) = ρ( f )∗ and ρ( f ) ρ(g) = ρ( f × g), (5.20)

where f ∗(z) = f (−z) and f × g denotes the twisted convolution of f and g, that is,

f × g(z) =
∫
Cn

f (z − w) g(w) eπ i�(z̄·w) dw (5.21)

[22, (1.32)]. In particular, if f is radial and real-valued, then f = f ∗ and therefore

‖ρ( f )‖2mS2m = ‖ρ( f )m‖2HS = ‖ρ( f × · · · × f )‖2HS = ‖ f × · · · × f ‖22,

withm factors f . A reduction to the sharp estimate for the Euclidean Fourier transform
f̂ of f would therefore require the validity of an estimate of the form

‖ f × · · · × f ‖2 ≤ ‖ f̂ ‖m2m = ‖ f ∗ · · · ∗ f ‖2, (5.22)

where ∗ denotes the Euclidean convolution. However this estimate is false, even when
m = 2.

Indeed, it is sufficient to test the estimate (5.22) when f = χk . Note that, from
(5.12) and the orthogonality of Laguerre polynomials,

χ̃k(l) = 〈ρ(χk)hl , hl〉 = 〈χk, χl〉 = δkl .

In particular ρ(χk × χk) = ρ(χk), that is,

χk × χk = χk .

Therefore

‖χk × χk‖2 = ‖χk‖2 = 1,

while

‖χ̂k‖4 = 2−1/2‖χk‖4 ∼ k−1/4(log k)1/4 as k → ∞,

by (5.18) and [48, Lemma 1]. This shows that (5.22) cannot hold when m = 2 and
for all radial real-valued functions f (not even with some constant larger than one
multiplying the right-hand side). ��

In order to conclude the proof of Theorem 1.5, we need to prove the lower bound

W loc
K (Cn) ≥ (Bp)

2n (5.23)
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for any compact subgroup K of U(n). As we will see, this can be done much as in
Sect. 2. For a function f ∈ L1(Cn) + L2(Cn), let T f denote the operator of twisted
convolution on the left by f , that is,

T f φ = f × φ.

In analogy with Proposition 2.1, we can characterise the Schatten norms of Weyl
transforms ρ( f ) as follows.

Proposition 5.4 For all q ∈ [2,∞] and f ∈ Cc(C
n),

‖ρ( f )‖qSq = ‖|T f |q‖L1(Cn)→L∞(Cn).

Proof From the Plancherel formula (5.3) for theWeyl transform, together with (5.20),
it is easily seen that, for all f ∈ L1(G),

‖ρ( f )‖L2(Rn)→L2(Rn) = ‖T f ‖L2(Cn)→L2(Cn).

This corresponds to the well-known fact that the norm of a linear operator on
L2(Rn) is the same as the norm of the corresponding left-multiplication operator on
HS(L2(Rn)). Note, moreover, that the analogue of (5.20) holds:

T f ∗ = T ∗
f and T f ×g = T f Tg.

Hence the correspondence ρ( f ) �→ T f induces an isometric ∗-isomorphism
between L(L2(Rn)) and the von Neumann algebra of operators on L2(Cn) gener-
ated by {T f : f ∈ L1(Cn)}.

Take now f ∈ Cc(C
n). Then ρ( f ) ∈ Sq(Cn) and

‖ρ( f )‖qSq (Cn)
= ‖|ρ( f )|q/2‖2HS.

Since |ρ( f )|q/2 ∈ HS(L2(Rn)), by the Plancherel theorem for the Weyl transform
there exists g ∈ L2(Cn) such that

ρ(g) = |ρ( f )|q/2.

Since isomorphisms between vonNeumann algebras preserve the polar decomposition
and the functional calculus,

Tg = |T f |q/2.

In order to conclude, then, it is enough to show that

‖ρ(g)‖2HS = ‖T 2
g ‖L1(Cn)→L∞(Cn).
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On the other hand, Tg = |T f |q/2 is a nonnegative self-adjoint operator, so

‖T 2
g ‖L1(Cn)→L∞(Cn) = ‖Tg‖2L1(Cn)→L2(Cn)

and, according to (5.21), Tg is an integral operator with kernel K̃g given by

K̃g(z, w) = g(z − w) eπ i�(z̄·w),

whence

‖Tg‖L1(Cn)→L2(Cn) = ess supw∈Cn ‖K̃g(·, w)‖2 = ‖g‖2 = ‖ρ(g)‖HS,

and we are done. ��
Given the above characterisation, the proof of the inequality (5.23) proceeds, much

as in Sect. 2, via a “blow-up” argument. Themain observation here is that, if Sλ denotes
the L1-isometric scaling on C

n ,

Sλ f (z) = λ−2n f (z/λ),

then

(Sλ f ) × (Sλg) = Sλ( f ×λ g),

where

f ×λ g(z) =
∫
Cn

f (z − w) g(w) eπ iλ2�(z̄·w) dw;

moreover, from the above formula it is clear that, as λ → 0, the scaled twisted convo-
lution ×λ tends to the standard convolution on C

n ∼= R
2n (see also [16]). Following

this idea, it is not difficult to prove the analogues of Lemma 2.3 and Proposition 2.4,
where the twisted convolution × and the standard convolution on C

n take the place
of the convolutions on the Lie group and the Lie algebra respectively. In addition, the
action of U(n) on functions on C

n commutes with the scaling operators Sλ and the
twisted convolution, so the analogue of Remark 2.5 applies here. We leave the details
to the interested reader.

Remark 5.5 Given the noncommutative subject of this paper, it is natural to askwhether
the best constants Hp(G), H loc

p (G), . . . are the same in the category of operator spaces
(that is, quantized or noncommutative Banach spaces). To be more precise, let us
equip the (commutative and noncommutative) Lq -spaces involved in the correspond-
ingHausdorff–Young inequalitywith their natural operator space structures [53]. Does
the complete L p → L p′

norm of the Fourier transform coincide with the correspond-
ing norm Hp(G) in the category of Banach spaces? In the Euclidean case of Hp(R

n),
this problemwas asked by Pisier in 2002 to the fourth-named author, but it is still open.
Éric Ricard recently noticed that such a result for the Euclidean Fourier transform (that
is, its completely bounded norm is still given by the Babenko–Beckner constant raised
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128 M. G. Cowling et al.

to the dimension of the underlying space) would give the expected constants for the
Weyl transform in CCR algebras and, therefore, also for the Fourier transform in the
Heisenberg group. Unfortunately, Beckner’s original strategy crucially uses hypercon-
tractivity, which has been recently proved to fail in the completely bounded setting
[5]. In conclusion, the above discussion indicates one more time (see Remark 5.3) that
some new ideas seem to be necessary to solve these questions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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