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ACM VECTOR BUNDLES ON PROJECTIVE SURFACES
OF NONNEGATIVE KODAIRA DIMENSION

E. BALLICO, S. HUH AND J. PONS-LLOPIS

ABSTRACT. In this paper we contribute to the construction of families of arithmetically Cohen-
Macaulay (aCM) indecomposable vector bundles on a wide range of polarized surfaces (X ,OX (1))
for OX (1) an ample line bundle. In many cases, we show that for every positive integer r there
exists a family of indecomposable aCM vector bundles of rank r , depending roughly on r param-
eters, and in particular they are of wild representation type. We also introduce a general setting to
study the complexity of a polarized variety (X ,OX (1)) with respect to its category of aCM vector
bundles. In many cases we construct indecomposable vector bundles on X which are aCM for all
ample line bundles on X .

1. INTRODUCTION

In many areas of mathematics it plays a central role to understand the complexity of the ob-
jects one is interested in. This complexity can be measured in many different ways. For in-
stance, in representation theory of quivers, Gabriel’s theorem states that a connected quiver
supports only finitely many irreducible representations, i.e. of indecomposable modules over
the associated path algebra, if and only if it is of type A, D , E . The classification of tame quiv-
ers as Euclidean graphs, or extended Dynkin diagrams, of type Ã, D̃ , Ẽ was obtained right after.
Remarkably, any other quivers support arbitrarily large families of indecomposable representa-
tions, i.e. they turn out to be of wild representation type.

Motivated by the results, similar questions were raised to understand the category of Cohen-
Macaulay modules over an arbitrary k-algebra R. When R := k[x0, . . . , xn]/I is a graded algebra
finitely generated in degree one over a field k, Cohen-Macaulay modules correspond naturally
to arithmetically Cohen-Macaulay sheaves over the closed subscheme Proj(R) ⊂Pn ; see [18].

Definition 1.1. A coherent sheaf E on a projective scheme (X ,OX (1)) is called arithmetically
Cohen-Macaulay (for short, aCM) if the following conditions hold:

(i) E is locally Cohen-Macaulay, i.e. the stalk Ex has depth equal to dimOX ,x for any point
x on X ;

(ii) H i (E (t )) = 0 for all t ∈Z and i = 1, . . . ,dim X −1.

The forementioned correspondence allowed to use a geometrical approach to this kind of ques-
tions. A milestone in this area was due to Horrocks, stating that the only indecomposable aCM
sheaf on Pn , up to twist, is OPn ; see [15]. A similar classification was obtained for a smooth
quadric hypersurface Q ⊂Pn : there exist, besides the structural sheaf OQ , only one (for n even)
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2 E. BALLICO, S. HUH AND J. PONS-LLOPIS

or two (for n odd) irreducible aCM sheaves, the well-studied Spinor bundles; see [19]. The
combined work of many mathematicians allowed to complete the list of projective schemes -of
positive dimension- supporting a finite number of aCM sheaves, called the varieties of finite
aCM-representation type: they are either a projective space Pn , a smooth quadric hypersurface
X ⊂Pn , a cubic scroll in P4, the Veronese surface in P5 or a rational normal curve; see [8].

The next degree of complexity is offered by the elliptic curves: in this case, vector bundles of
a given rank and degree on an elliptic curve C are in bijection with the points of C ; see [1]. They
are called varieties of tame aCM-representation type. In [9] it was shown that smooth quartic
surface scrolls in P5 are also tame. Notice that all the projective schemes X ⊂ Pn mentioned
until now are arithmetically Cohen-Macaulay, namely the coordinate ring R := k[x0, . . . , xn]/IX

is a Cohen-Macaulay ring. Indeed, the represention type of the remaining aCM projective
schemes X ⊂Pn was set in [10]: they support arbitrarily large families of indecomposable non-
isomorphic aCM sheaves. They are, therefore, of wild aCM-representation type.

On the other hand, up to our knowledge, a broader problem has been much less studied:
which are the possible dimensions of families of aCM irreducible sheaves on polarized schemes
(X ,OX (1)), where the only requirement for the line bundle OX (1) is to be ample. With this set-
ting it is proved in [6] and [7] that polarized surfaces (S,OS(1)) such that pg = 0, q = 0 or 1,
and OS(1) is very ample with h1(OS(1)) = 0 are of wild representation type. Indeed, the aCM
vector bundles witnessing wilderness own a special property: they have the maximal permit-
ted number of global sections, namely they are the so-called Ulrich vector bundles. Again for
OX (1) very ample, it is proved in [22] that for polarized varieties (X ,OX (1)) of dimension at least
two, the embedding given by OX (l ) with l ≥ 3 is of wild representation type under some mild
assumptions on OX (1).

The goal of the present paper is to contribute to this set of problems: we are constructing
families of aCM vector bundles on a large range of polarized integral surfaces (X ,OX (1)). In the
following Theorem we summarize the results obtained:

Theorem 1.2. Let X be an integral projective surface with a fixed ample line bundle OX (1) listed
below. Then for each integer r ≥ 2 there exists an bX (r )-dimensional irreducible family {Eα}α∈Γ of
indecomposable aCM vector bundles of rank r on X such that for eachα ∈ Γ there are only finitely
many β ∈ Γwith Eα ∼= Eβ.

no.
X

bX (r )

1 π : X → Y a birational morphism with ωY
∼=OY and q(Y ) = 0

such that π−1(Ysing) ∼= Ysing

2r

2 ωX �OX locally free with h0(ωX ) = 0 and h0(ω⊗2
X ) = 1, and q(X ) = 0 2d r

2e
3 smooth and q(X ) = 1 with ω∨

X ⊗OX (1) trivial or ample 1

4 π : X → Y a birational morphism with an abelian surface Y
and ω∨

X ⊗OX (1) trivial or ample
r +1

5 π : X → Y a birational morphism with a hyperelliptic surface Y 1

6 ωX
∼=OX (1) with h1(ω⊗n

X ) = 0 for all n ∈Z and pg ≥ 3 r
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Theorem 1.2 shows that the projective surfaces of Kodaira dimension zero, possibly with sin-
gularities, are of wild representation type, except the case of hyperelliptic surfaces. G. Casnati
proved in [7] that hyperelliptic surfaces are of wild representation type with respect to a very
ample polarization. Note that we do not assume in Theorem 1.2 that X is minimal or OX (1)
is very ample, while the result in [7] is more powerful in the sense that it gives wildness with
respect to Ulrich vector bundles.

The strategy for Theorem 1.2 is two-fold. One is to consider zero-dimensional subschemes of
length equal to the second Chern class of the aCM vector bundles in consideration, from which
we construct aCM vector bundles of arbitrary rank by a series of extensions. The cases no. 1,
2 and 6 are handled by this method respectively in Theorem 2.4, Theorem 3.5 and Theorem
5.4; in case no. 6, for the construction of a family of aCM vector bundles of rank r even, it is
enough to suppose that pg ≥ 2. The second strategy is to consider a family of aCM line bundles,
parametrized by a non-empty open Zariski subset of Pic0(X ), from which we construct aCM
vector bundles of arbitrary rank by iterated extensions. The cases no. 3, 4 and 5 are handled by
this method respectively in Proposition 4.1, Theorem 1.3 and Proposition 4.5.

Based on the results in Theorem 1.2 we introduce a set-up to measure the complexity of a
polarized variety (X ,OX (1)). Define

aX ,OX (1)(r ) := supΓ

{
dimΓ

∣∣∣∣ Γ runs over the parameter spaces of indecomposable
aCM vector bundles of rank r on X

}
with the convention that aX ,OX (1)(r ) =−∞ if there is no indecomposable aCM vector bundle of
rank r . Then we have aX ,OX (1)(r ) ≥ bX (r ) for the surfaces listed in Theorem 1.2. We also define

aX (r ) := sup
{

aX ,OX (1)(r ) | OX (1) ample
}

, a′
X (r ) := inf

{
aX ,OX (1)(r ) | OX (1) ample

}
.

In many construction of aCM vector bundles, the polarization is assumed to be very ample,
in which case we give similar definitions for aX (r ) and a′

X (r ), if we consider only very ample
polarizations in their definitions. Then we may raise several questions.

• For a given X , what can be said about the following limits?

limsup
r−→∞

aX (r ) , limsup
r−→∞

a′
X (r ) , liminf

r−→∞
aX (r ) and liminf

r−→∞
a′

X (r )

• What can be said about following suprema

supX {aX (r )} and supX

{
a′

X (r )
}

,

where X runs over all smooth projective varieties, all varieties with a prescribed Kodaira
dimension or all varieties in a prescribed interesting class, e.g. K3 surfaces?

In those questions concerning (X ,OX (1)) polarized surfaces, we may allow singular surfaces,
but locally CM, e.g. normal or with singularities of embedded dimension at most three, so that
we may consider non-locally free aCM sheaves. We do not know if we may obtain bigger dimen-
sional families of indecomposable aCM sheaves by considering non-locally free aCM sheaves.

For higher dimensional smooth varieties we prove the following result.

Theorem 1.3. Let X be a smooth projective variety of dimension n ≥ 2, birational to an abelian
variety and fix an ample line bundle OX (1) with ω∨

X ⊗OX (1) ample. Then X is wild with respect
to OX (1) and

aX ,OX (1)(r ) ≥ (n −1)r +1.
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For the proof of Theorem 1.3 we use in an essential way a construction by S. Mukai of vec-
tor bundles on abelian varieties in [21], a generic vanishing for smooth varieties with maximal
Albanese dimension in [12, 13] and results on the local Hilbert schemes in [5, 11].

Remark 1.4. In cases no. 1, 2 and 6 of Theorem 1.2 the indecomposable vector bundles that we
construct are aCM for any ample line bundle on X . On the other hand, in cases no. 3, 4 and 5 of
Theorem 1.2 and Theorem 1.3 the indecomposable vector bundles that we construct are aCM
for every ample line bundle OX (1) with ω∨

X ⊗OX (1) ample.

Recall from Theorem 1.2 that we obtain irreducible families of indecomposable aCM vector
bundles of rank r on several projective surfaces, whose dimensions are at most linear poly-
nomials in r . Nonetheless, we may not expect that aX ,OX (1)(r ) is linear in r for any projective
surface. Indeed, Remark 1.5 shows that for X as in Theorem 1.3 with n ≥ 3 we get a lower bound
for aX ,OX (1)(r ) greater than linear, but less than quadratic, in r .

Remark 1.5. Let X be as in Theorem 1.3. Using the terminology from the proof of this theorem,
we can consider the abelian variety Y birational to X and denote by Ŷ = Pic0(Y ) the abelian
variety dual to Y , by R be the completion of the local ring OŶ ,0 and by B f [r ] the set of all R-
modules of finite length r . Then for n ≥ 3 and r À 0, there are positive constants αn and βn

such that
αnr 2−2/n ≤ dimB f [r ] ≤βnr 2−2/n

by [5] and [11, page 6]. Since in the proof of Theorem 1.3 we are going to see that dimB f [r ] ≤
aX ,OX (1)(r ) we get

liminf
r−→∞

ar (X ,OX (1))

r 2−2/n
> 0.

On the other hand, in Section 6 we suggest examples of smooth surfaces of general type with at
least a quadratic lower bound for aX ,OX (1)(r ).

We would like to thank C. Ciliberto for suggesting this problem.

2. K3-LIKE SURFACES

In this section we assume that X is integral withωX
∼=OX and q(X ) = 0. Let OX (1) be an ample

line bundle and set g̃ := h0(OX (1)); if X is a K3 surface, then we have 2g̃ −4 = d and g := g̃ −1 is
called the genus of X . Notice that h1(OX (t )) = 0 for all t ∈Z.

Proposition 2.1. For each r ∈Z with 2 ≤ r ≤ g̃ , there exists an indecomposable aCM vector bun-
dle E of rank r on X with det(E ) ∼=OX and c2(E ) = r

Proof. Take a general set of points S ⊂ Xreg with |S| = r . LetΨ denote the set of all extensions of

IS,X by O⊕(r−1)
X . Fix a general E ∈Ψ, i.e. let E be a general sheaf fitting into the following exact

sequence

(1) 0 −→O⊕(r−1)
X

j
−→ E −→IS,X −→ 0.

Note that ext1
X (IS,X ,OX ) = h1(IS,X ) = r −1 and the sheaf Im( j ) is the image of the evaluation

map H 0(E )⊗OX → E . By generality of the extension (1) we may choose a basis {ε1, . . . ,εr−1} of
Ext1

X (IS,X ,OX ) inducing (1). In particular, E has no trivial factor. Let F be a general extension
of IS,X by OX . Since Ext1

X (IS′,X ,OX ) < Ext1
X (IS,X ,OX ) for all S′ ⊂ S such that |S′| = r − 1, the

Cayley-Bacharach condition is satisfied and hence F is locally free. Since O⊕(r−2)
X ⊕F ∈Ψ, E is

general inΨ and local freeness is an open condition, the sheaf E is locally free.
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Assume E ∼= F1 ⊕F2 with rank(F1) = s and 0 < s < r . For each i ∈ {1,2}, let Gi ⊆ Fi be the
image of the evaluation map H 0(Fi )⊗OX → Fi with si := rank(Gi ). Then we get G1 ⊕G2

∼=
O⊕(r−1)

X . In particular, each Gi is trivial and s1 ∈ {s, s−1}. Note that (F1/G1)⊕(F2/G2) ∼=IS,X has
no torsion. If s1 = s, then we get F1/G1

∼= 0, i.e. F1
∼= O⊕s

X , which is impossible since E has no

trivial factor. If s1 = s −1, then we would get a contradiction similarly from F2
∼= O⊕(r−s)

X . Thus
E is indecomposable.

Then it remains to show that E is aCM. Since h0(OS) ≤ h0(OX (1)) and S is general, we have
h1(IS,X (t )) = 0 for all t > 0. Now {ε1, . . . ,εr−1} is a basis for Ext1

X (IS,X ,OX ) and so it induces an

isomorphism H 1(IS,X ) → H 2(O⊕(r−1)
X ). Thus we have h1(E (t )) = 0 for all t ≥ 0. For any λ ∈ k,

let Eλ denote the middle term of the extension corresponding to (ε1,λε2, . . . ,λεr−1); we have
Eλ

∼= E for λ 6= 0 and E0
∼= G ⊕O⊕(r−2)

X with G induced by the extension ε1. As above we see
that h1(G (t )) = 0 for all t ≥ 0. Since G is locally free from the Cayley-Bacharach condition and
generality of ε1, we use Serre’s duality to obtain h1(G (t )) = h1(G (−t )) = 0 for t < 0. Thus E0 is
aCM. Now using the semicontinuity theorem for cohomology, we obtain h1(E (t )) = 0 because
Eλ

∼= E . �

Remark 2.2. Consider the exact sequence (1) with r = 2. Since ext1
X (IS,X ,OX ) = h1(IS,X ) = 1,

there exists a unique nontrivial extension of IS,X by OX ; denote its middle term by GS . Since
the Cayley-Bacharach condition is satisfied, the sheaf GS is an aCM vector bundle of rank two
on X .

Theorem 2.3. For each integer 2 ≤ r ≤ g̃ , there exists a 2r -dimensional family {Eα}α∈Γ of inde-
composable aCM vector bundles of rank r on X with det(Eα) ∼= OX and c2(Eα) = r such that for
each α ∈ Γ there are only finitely many β ∈ Γwith Eβ

∼= Eα.

Proof. For any subset S ⊂ Xreg with |S| = r , define E′(S) to be the subset of E(S) := Ext1
X (IS,X ,O⊕(r−1)

X ),
consisting of all extensions whose corresponding middle terms are aCM and indecomposable
vector bundles. By Proposition 2.1, E′(S) is a non-empty open subset of E(S) and each [E ] ∈ E′(S)
has trivial determinant with c2(E ) = r .

Letting U := {S ⊂ Xreg | |S| = r }, there is a vector bundle V of rank (r −1)2 on U with E(S) as its

fibre over S ∈U, since ext1
X (IS,X ,O⊕(r−1)

X ) = (r −1)2 for all S ∈U. Then there is a non-empty open
subset V ′ ⊂ V with V ′

|S = E′(S) for a general S ∈U. Thus there exists an irreducible variety Γ⊂ V ′

such that the restriction of the map V →U to Γ is quasi-finite and dominant. In particular, we
have dimΓ= dimU= 2r .

For [E ] ∈ E′(S) we have h0(E ) = r −1 and the cokernel of the evaluation map H 0(E )⊗OX → E

is isomorphic to IS,X . Thus for [E ] ∈ E′(S) and [F ] ∈ E′(S′) with S 6= S′ ∈U, we have E � E ′. Since
the map Γ→U is quasi-finite, the variety Γ satisfies the requirements for the assertion. �

Theorem 2.4. For each integer r ≥ 2, there exists an 2r -dimensional family {Eα}α∈Γ of indecom-
posable aCM vector bundles of rank r on X with det(Eα) ∼= OX and c2(Eα) = r such that for each
α ∈ Γ there are only finitely many β ∈ Γwith Eβ

∼= Eα.

For the proof of Theorem 2.4 we collect numerous technical results below. We fix subsets
S0, . . . ,Sm ⊂ Xreg with |S0| = 3 and |Si | = 2 for all 1 ≤ i ≤ m such that Si ∩S j =; for any i 6= j .

Set I(S1) := {IS1,X } and define I(S1, . . . ,Si ) for i ≥ 2 inductively to be the set of all sheaves
admitting an extension of ISi ,X by an element in I(S1, . . . ,Si−1). Thus for each i ≥ 2 each sheaf
J ∈ I(S1, . . . ,Si ) admits the following exact sequence for some J ′ ∈ I(S1, . . . ,Si−1)

(2) 0 −→J ′ −→J −→ISi ,X −→ 0.
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For a subset N = {i1, . . . , ik } ⊂ {1, . . . , i } with i1 < . . . < ik , we denote I(Si1 , . . . ,Sik ) by I(S j ; j ∈ N ).
Set J(;;S0) := {IS0,X } and define J(S1, . . . ,Si ;S0) to be the set of all isomorphism classes of

extensions of IS0,X by an element in I(S1, . . . ,Si ). Similarly we define J(S j ; j ∈ N ;S0).

Lemma 2.5. Each sheaf J ∈ I(S1, . . . ,Si ) admits an exact sequence

(3) 0 −→J
ι
−→J∨∨ ∼=O⊕i

X −→OS1∪···∪Si −→ 0,

where the map ι is the double dual map. In particular, we have h0(J ) = 0 and h1(J ) = h2(J ) = i .

Proof. The assertion is clear for i = 1, i.e. J = IS1,X . Assume i ≥ 2 and consider an exact
sequence (2) with J ′ ∈ I(S1, . . . ,Si−1). By inductive hypothesis, the assertion holds for J ′ and
ISi ,X and we get the following commutative diagram:

0 0 0
↓ ↓ ↓

0 −→ J ′ −→ J −→ ISi ,X −→ 0
↓ ↓ ↓

0 −→ O⊕(i−1)
X −→ J∨∨ −→ OX −→ 0
↓ ↓ ↓

0 −→ OS1∪···∪Si−1 −→ J∨∨/J −→ OSi −→ 0
↓ ↓ ↓
0 0 0

Since ext1
X (OX ,OX ) = h1(OX ) = 0, we get J∨∨ ∼=O⊕i

X from the second horizontal sequence. From
the third horizontal sequence, we get J∨∨/J ∼= OS1∪···∪Si , because Si ’s are disjoint to each
other. Then we get the exact sequence (3). The vanishing H 0(J ) = 0 can be obtained by in-
duction on i and h1(J ) = h2(J ) = i can be obtained from (3). �

Remark 2.6. By the same argument in the proof of Lemma 2.5, we have an exact sequence

0 −→ J̃ −→ J̃∨∨ ∼=O⊕(i+1)
X −→OS0∪S1∪···∪Si −→ 0,

for J̃ ∈ J(S1, . . . ,Si ;S0). This gives h0(J̃ ) = 0, h1(J̃ ) = i +2 and h2(J̃ ) = i +1.

Lemma 2.7. For a sheaf J ∈ I(S1, . . . ,Si ) and any finite subset A ⊂ X ,

(i) if A* S j for all 1 ≤ j ≤ i , then we have HomX (J ,IA,X ) = 0;
(ii) if A+ S j for some 1 ≤ j ≤ i , then we have HomX (IA,X ,J ) = 0.

Proof. We only prove part (i), because part (ii) can be obtained similarly. Let us use induction on
i ; the case i = 1 is true, because A* S1 is equivalent to HomX (IS1,X ,IA,X ) = 0. Now assume i ≥
2 and consider the sequence (2) with J ∈ I(S1, . . . ,Si−1). Since HomX (ISi ,X ,IA,X ) = 0, any map
f ∈ HomX (J ,IA,X ) is uniquely determined by f ′ ∈ HomX (J ′,IA,X ). The inductive assumption
gives f ′ = 0 and so we have f = 0. �

Lemma 2.8. We have ext1
X (ISi+1,X ,J ) = 2i for J ∈ I(S1, . . . ,Si ).

Proof. Let S := S1∪·· ·∪Si and apply the functor HomX (ISi+1,X ,−) to the sequence (3) to obtain

0 −→ HomX (ISi+1,X ,J ) −→ HomX (ISi+1,X ,O⊕i
X ) −→ HomX (ISi+1,X ,OS)

−→ Ext1
X (ISi+1,X ,J ) −→ Ext1

X (ISi+1,X ,O⊕i
X ) −→ Ext1

X (ISi+1,X ,OS).
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Here, we have homX (ISi+1,X ,O⊕i
X ) = i = ext1

X (ISi+1,X ,O⊕i
X ). We also get homX (ISi+1,X ,OS) = 2i ,

because S is disjoint from Si+1. Now apply the functor HomX (−,OS) to the standard exact se-
quence for Si+1 ⊂ X to obtain

Ext1
X (OX ,OS) −→ Ext1

X (ISi+1,X ,OS) −→ Ext2
X (OSi+1 ,OS).

Here, we have ext1
X (OX ,OS) = h1(OS) = 0 and ext2

X (OSi+1 ,OS) = 0. In particular, we get ext1
X (ISi+1,X ,OS) =

0. Finally, apply the functor HomX (ISi+1,X ,−) to the sequence (2) to have

HomX (ISi+1,X ,J ′) −→ HomX (ISi+1,X ,J ) −→ HomX (ISi+1,X ,ISi ,X ).

Since Si∩Si+1 =;, we get homX (ISi+1,X ,ISi ,X ) = 0. By inductive hypothesis, we get homX (ISi+1,X ,J ′) =
0. Thus we have homX (ISi+1,X ,J ) = 0 and we get the assertion. �

Remark 2.9. Similarly as in the proof of Lemma 2.8, we see that ext1
X (IS0,X ,J ) = 3i for any

J ∈ I(S1, . . . ,Si ). In particular, there exists a non-trivial extension

0 −→J −→ J̃ −→IS0,X −→ 0.

In this case, we have ext1
X (IS0,X ,O⊕i

X ) = 2i and the other numeric data in the proof of Lemma
2.8 are all same.

Lemma 2.10. For each i ≥ 1, there exists an indecomposable sheaf J ∈ I(S1, . . . ,Si ).

Proof. Since IS1,X has rank one and X is an integral variety, IS1,X is indecomposable. Thus
we may assume i ≥ 2. Note that each IS j ,X has the same Hilbert polynomial with respect to

any polarization OX (1). Thus any sheaf in I(S1, . . . ,Si ) is strictly semistable with ⊕i
j=1IS j ,X as its

Jordan-Hölder grading. Let J be a general sheaf fitting into an exact sequence

(4) 0 −→⊕i−1
j=1IS j ,X

f
−→J

g
−→ISi ,X −→ 0

and assume that J is decomposable, say J ∼= A1 ⊕·· ·⊕Ah with h ≥ 2 and each A j indecom-
posable. Since J is strictly semistable with g r (J ) ∼= ⊕i

j=1IS j ,X , there is a subset N j ⊂ {1, . . . , i }
for each j ∈ {1, . . . ,h} such that g r (A j ) ∼=⊕k∈N j ISk ,X . Note that {N j |1 ≤ j ≤ h} forms a partition
of {1, . . . , i } with each N j non-empty.

Assume first that |N j | = 1 for all j . Then we have J ∼=⊕i
j=1IS j ,X . Since we have HomX (ISi ,X ,IS j ,X ) =

0 for all j < i and HomX (ISi ,X ,ISi ,X ) ∼= k, we get that the sequence (4) splits, contradicting
Lemma 2.8.

Now without loss of generality, assume e := |N1| ≥ 2. If i ∉ N1, then by permuting the first i −1
indices of S j ’s we may assume A1 ∈ I(S1, . . . ,Se ). Then by Lemma 2.7 we have homX (IS j ,X ,A1) =
homX (A1,IS j ,X ) = 0 for all j ≥ e +1. Thus f induces an isomorphism f ′ : A1 →⊕e

j=1IS j ,X , con-
tradicting the assumption e ≥ 2 and the indecomposability of A1. If i ∈ N1, then by permuting
the first i − 1 indices of S j ’s we may assume A1 ∈ I(Si−e+1, . . . ,Si ). From the case when i ∉ N1

we may also assume |N j | = 1 for all j > 1, and this implies J ∼= A1 ⊕ (⊕i−e
j=1IS j ,X ). Then by

Lemma 2.7 we have HomX (IS j ,X ,A1) = 0 for all j ≤ i − e. In particular, the extension class

ε= (ε1, . . . ,εi−1) corresponding to (4) with ε j ∈ Ext1
X (ISi ,X ,IS j ,X ) satisfies ε j = 0 for all j ≤ i − e,

contradicting Lemma 2.8 and the generality of ε. �

Remark 2.11. As in the proof of Lemma 2.10, let us consider a general sheaf J̃ fitting into an
exact sequence

(5) 0 −→⊕i
j=1IS j ,X −→ J̃ −→IS0,X −→ 0.
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By Remark 2.9 the extension (5) is non-trivial. Here, J̃ ∈ J(S1, . . . ,Si ;S0) and the sequence (5) is
the Harder-Narasimhan filtration of J̃ . Assume that J̃ is decomposable, say J̃ ∼= Ã1⊕·· ·⊕Ãh .
Note that the HN filtration of J̃ is obtained from the ones of each Ãi . In particular, as in the
proof of Lemma 2.10, we have a partition {N j |1 ≤ j ≤ h} of {0,1, · · · , i } such that Ã j ∈ I(Sk ;k ∈ N j )
if 0 ∉ N j , and Ã j ∈ J(Sk ;k ∈ N j \{0};S0). Then by the same argument in the proof of Lemma 2.10,
we get a contradiction. Thus we get an indecomposable sheaf in J(S1, . . . ,Si ;S0).

Lemma 2.12. For each integer i ≥ 1, the set I(S1, . . . ,Si ) is parametrized by an affine space T (S1, . . . ,Si ),
not necessarily finite-to-one, equipped with the universal sheaf, i.e. a sheaf S (S1, . . . ,Si ) on
T (S1, . . . ,Si )×X such that the fiber of S (S1, . . . ,Si ) over {J }×X with J ∈ I(S1, . . . ,Si ) is the sheaf
J on X .

Proof. For i = 1 we may take as T (S1) just a single point set, because I(S1) = {IS1,X }. Assume that
there exists an affine space T (S1, . . . ,Si−1) and a sheaf S (S1, . . . ,Si−1) with prescribed property
for i ≥ 2. We set

T (S1, . . . ,Si ) := E xt 1
p1

(S (S1, . . . ,Si−1), p∗
2 ISi ,X )

= R1(p1∗H omT (S1,...,Si−1)×X (S (S1, . . . ,Si−1),−))(p∗
2 ISi ,X )

to be the relative E xt 1
p1

-sheaf, where p j is the projection from T (S1, . . . ,Si−1) × X to its j -th

factor; see [20, Proposition 3.1]. By Lemma 2.8 we have ext1
X (J ′,ISi ,X ) = 2i −2 for each J ′ ∈

T (S1, . . . ,Si−1). This implies that T (S1, . . . ,Si ) is a vector bundle of rank 2i −2 over T (S1, . . . ,Si−1)
and so it is an affine space parametrizing I(S1, . . . ,Si ) as required. We may also take as S (S1, . . . ,Si )
the universal extension on T (S1, . . . ,Si )×X as in [20, Corollary 3.4]. �

Remark 2.13. Following the same argument in the proof of Lemma 2.12, we can obtain an affine
space T̃ (S1, . . . ,Si ;S0) parametrizingJ(S1, . . . ,Si ) equipped with the universal sheaf S̃ (S1, . . . ,Si ;S0).

Proof of Theorem 2.4: Assume that r is even and set m := r /2. Fix subsets S1, . . . ,Sm ⊂ Xreg such
that |Si | = 2 for all i and Si ∩S j =; for all i 6= j . By Lemma 2.10 there exists an indecomposable
sheaf J ∈ I(S1, . . . ,Sm), for which we consider a general sheaf E fitting into the following exact
sequence:

(6) 0 −→O⊕m
X

f
−→ E −→J −→ 0.

Note that E has rank r with det(E ) ∼=OX and c2(E ) = r . Let ε= (ε1, . . . ,εm) ∈ Ext1
X (J ,O⊕m

X ) be the
extension class corresponding to (6) with εi ∈ Ext1

X (J ,OX ). Note that h0(E ) = m and f (O⊕m
X ) is

the image of the evaluation map ρE : H 0(E )⊗OX → E with J = coker(ρE ).
By Lemma 2.5 and Serre’s duality, we have ext1

X (J ,OX ) = h1(J ) = m. From the generality of
ε we see that the extensions ε1, . . . ,εm are linearly independent. In particular, we have A·ε 6= 0
for all A ∈ GL(m), and so E �OX ⊕G with G an extension of J by O⊕(m−1)

X . Since f (O⊕m
X ) ⊂ E is

the image of ρE , we get that E �OX ⊕G for any sheaf G , i.e. E has no trivial factor.
Assume that E is decomposable, say E ∼= E1 ⊕E2 with each Ei 6= 0. Since the global section

functor H 0(−) and the evaluation map commute with direct sums, we have J ∼= coker(ρE1 )⊕
coker(ρE2 ). Since J is indecomposable, we get coker(ρEi ) = 0 for some i ∈ {1,2}. This implies
that Ei is trivial, which is impossible because E has no trivial factor.

To conclude the case r even we need to find a sheaf E that is locally free and aCM. Consider
the variety T (S1, . . . ,Sm) together with the sheaf S (S1, . . . ,Sm) in Lemma 2.12. Define

V (S1, . . . ,Sm) := E xt 1
p2

(S (S1, . . . ,Sm), p∗
2 O⊕m

X )
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to be the relative E xt 1
p2

-sheaf as in [20, Proposition 3.1]; the fibre of V (S1, . . . ,Sm) over a point
J ∈ T (S1, . . . ,Sm) is the set of all extensions of J by O⊕m

X . By Lemma 2.5 the sheaf V (S1, . . . ,Sm)
is a vector bundle of rank m2 on T (S1, . . . ,Sm) and so it is an affine space. Pick an aCM and
locally free sheaf GSi fitting into the sequence (6) with r = 2 for each Si . Since GS1 ⊕·· ·⊕GSm is
locally free and aCM, the sheaf associated to a general point in V is also locally free and aCM.
Define

U := {
(S1, . . . ,Sm) | Si ⊂ Xreg with |Si | = 2 and Si ∩S j =; for all i 6= j

}
and consider a vector bundle V on U, whose fibre over (S1, . . . ,Sm) is V (S1, . . . ,Sm). Then there
exists a non-empty open subset V ′ ⊂ V such that the middle term of each extension in V ′ is
aCM and locally free. As in the proof of Theorem 2.3 we can choose an irreducible subvariety
Γ⊂ V ′ such that the restriction of the map V ′ →U to Γ is quasi-finite and dominant. Hence we
get the assertion for the case r even.

Now assume that r is odd, say r = 2m+3. The case m = 0 is true by Proposition 2.1 with r = 3,
because we have g = h0(OX (1)) ≥ 3. Now assume r ≥ 5, i.e. m ≥ 1, and that Theorem 2.4 is true
for all odd integers less than r . We fix subsets S0, . . . ,Sm ⊂ Xreg with |S0| = 3 and |Si | = 2 for all
i ≥ 1 such that Si ∩S j =; for all i 6= j . Define

W (S1, . . . ,Sm ;S0) := E xt 1
p2

(S̃ (S1, . . . ,Sm ;S0), p∗
2 O⊕(m+2)

X ),

where S̃ (S1, . . . ,Sm ;S0) is the universal sheaf in Remark 2.13. Then it parametrizes all the exten-
sions of some sheaf J̃ ∈ J(S1, . . . ,Sm ;S0) by O⊕(m+2)

X . Note that for each extension in W (S1, . . . ,Sm ;S0)
the corresponding middle term E is torsion-free and has rank r = 2m +3 with det(E ) ∼=OX and
c2(E ) = r .

Let us denote by GS0 an aCM and indecomposable vector bundle of rank three, admitting an
extension of IS0,X by O⊕2

X as in Proposition 2.1. Then ⊕m
i=1GSi is the middle term of an extension

in W (S1, . . . ,Sm ;S0), which is locally free and aCM. So the general extension in W (S1, . . . ,Sm ;S0)
has an aCM and indecomposable middle term; the indecomposability can be seen by the exact
same way as in the case of even r . Now fix an indecomposable sheaf J̃ ∈ J(S1, . . . ,Sm ;S0) in
Remark 2.11 and consider a general sheaf E fitting into the following exact sequence:

(7) 0 −→O⊕(m+2)
X

f
−→ E

g
−→ J̃ −→ 0.

Assume that E is decomposable, say E ∼= E1 ⊕ E2 with each Ei 6∼= 0. As before, f (O⊕(m+2)
X ) is

the image of the evaluation map ρE : H 0(E )⊗OX → E and coker(ρE ) = J̃ . Since the global
section functor H 0(−) and the evaluation map commute with finite direct sums, we have J̃ ∼=
coker(ρE1 )⊕coker(ρE2 ). Since J̃ is indecomposable, we get that Ei is trivial for some i , which
contradicts to the generality of the extension (7), because we have ext1

X (J̃ ,OX ) = h1(J̃ ) = m+2
by Remark 2.6. As in the case r even, we define

Ũ := {(S0,S1, . . . ,Sm) | Si ⊂ Xreg with |S0| = 3,

|Si | = 2 for all 1 ≤ i ≤ m and Si ∩S j =; for all i 6= j }.

We consider a vector bundle W on U, whose fibre over (S0,S1, . . . ,Sm) is W (S1, . . . ,Sm ;S0). Then
we get the assertion, following the same argument in the case r even. �

Remark 2.14. Letπ : Y → X be a birational morphism between integral projective surfaces with
ωX

∼=OX and q(X ) = 0 such that π induces an isomorphism π−1(Xsing) ∼= Xsing. In particular, we
have Yreg = π−1(Xreg). This implies that π∗OY

∼= OX and R1π∗OY
∼= 0. Since each fiber of π has

dimension at most one, we also have R2π∗F ∼= 0 for any coherent sheaf F on X . Thus we have
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q(Y ) = 0 and h2(OY ) = 1. Since π induces an isomorphism between π−1(Xsing) and Xsing, the
canonical sheaf ωY is locally free with h0(ωY ) = 1 and so there is an effective divisor ∆ such
that |ωY | = {∆}; we have ∆ = ; if and only if π is an isomorphism. By Serre’s duality we have
ext1

Y (IS,Y ,OY ) = h1(IS,Y ⊗ωY ). Since |ωY | = {∆} and S ∩∆ = ;, we may use the long exact
sequence of cohomology of the following exact sequence

0 −→IS,Y ⊗ωY −→ωY −→OS −→ 0

to obtain ext1
Y (IS,Y ,OY ) = |S| − 1 for any finite subset S ⊂ Yreg \∆. Then the same statement

of Theorem 2.4 holds for Y , using the same argument in its proof with subsets Si ⊂ Yreg \∆ for
i = 0, · · · ,m.

3. ENRIQUES SURFACES

In this section we assume that X is an integral projective surface with q(X ) = 0 and ωX �OX

locally free such that h0(ωX ) = 0 and h0(ω⊗2
X ) = 1. Let ∆ ≥ 0 be the effective divisor such that

ω⊗2
X

∼= OX (∆). When X is smooth, the minimal model of X is an Enriques surface. Note that
h2(OX ) = h0(ωX ) = 0 and so χ(OX ) = 1. Set X ′ := Xreg ∩ (X \∆).

Remark 3.1. We fix an ample line bundle OX (1) on X such that h1(OX (t )) = 0 for all t ∈Z; at least
in characteristic zero Kodaira’s vanishing theorem shows that we only need this assumption for
t ≥ 0. The case t = 0 is a general assumption of the surfaces considered in this article. Serre’s
duality gives h1(ωX (t )) = 0 for all t ∈ Z. Notice that using Riemann-Roch it is easy to see that
under these hypothesis h0(ωX (1)) 6= 0. In summary, we take a polarization OX (1) such that
h0(ωX (1)) 6= 0 and h1(OX (t )) = h1(ωX (t )) = 0 for all t ∈ Z. If ∆ = ;, e.g. minimal Enriques
surfaces, then we always have h1(OX (t )) = 0 for t > 0, because ωX (t ) with t > 0 is ample; it is
numerically equivalent to OX (t ) and so we can use Kodaira’s vanishing theorem.

For any point p ∈ Xreg, we have ext1
X (Ip,X ,OX ) = h1(Ip,X ⊗ωX ) = 1 by Serre’s duality. Thus,

up to isomorphisms, there is a unique sheaf Ep that fits into the following non-trivial extension:

(8) 0 −→OX −→ Ep −→Ip,X −→ 0.

Obviously Ep has rank two and it is locally free outside p with det(Ep ) ∼=OX . Since p ∈ Xreg and
h0(ωX ) = 0, the Cayley-Bacharach condition is satisfied. Thus Ep is locally free. Note that the
point p is uniquely determined by the isomorphism class of Ep , because we have h0(Ep ) = 1 by
the sequence (8) and any non-zero section of Ep vanishes only at p.

Lemma 3.2. For a general p ∈ Xreg the vector bundle Ep is aCM and indecomposable.

Proof. The exact sequence (8) twisted by OX (t ) gives h1(Ep (t )) = 0 for all t ≥ 0. From E∨
p
∼= Ep

we see that h1(Ep ⊗ωX ) = h1(Ep ) = 0 by Serre’s duality. Now fix an integer t < 0. The twist of the
sequence (8) by ωX (−t ) gives

h1(Ep ⊗ωX (−t )) ≤ h1(ωX (−t ))+h1(Ip,X ⊗ωX (−t )) = h1(Ip,X ⊗ωX (−t )).

Here, we have h1(ωX (−t )) = 0 by our assumptions on the polarization OX . We also have h0(ωX (−t )) >
0 from the assumption that h0(ωX (1)) > 0. Since p is general, we have h1(Ip,X ⊗ωX (−t )) = 0. By
Serre’s duality, this implies that h1(Ep (t )) = h1(Ep ⊗ωX (−t )) = 0. Thus Ep ia aCM.

Assume that Ep is decomposable; say Ep
∼=A1⊕A2 with each Ai a line bundle. Since h0(Ep ) =

1, we may assume that h0(A1) = 1 and h0(A2) = 0. Since the evaluation map commutes with
direct sums and Ip,X is isomorphic to the cokernel of the evaluation map H 0(Ep )⊗OX → Ep ,
we get A2

∼=Ip,X , a contradiction. �
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Lemma 3.3. For any two general points p, q ∈ Xreg, we have ext1
X (Ep ,Eq ) = 1.

Proof. Since det(Ep ) ∼= OX , we have E∨
p
∼= Ep and so Ext1

X (Ep ,Eq ) ∼= H 1(Ep ⊗Eq ). Tensoring the
exact sequence (8) with Eq , we get the exact sequence

(9) 0 −→ Eq −→ Ep ⊗Eq −→Ip,X ⊗Eq −→ 0.

Since Eq is aCM, we have h1(Eq ) = 0. On the other hand, tensoring the sequence (8) for Eq with
ωX gives h0(Eq ⊗ωX ) = 0, because ωX � OX . Thus by Serre’s duality we get h2(Eq ) = h0(Eq ⊗
ωX ) = 0 and therefore H 1(Ep ⊗Eq ) ∼= H 1(Ip,X ⊗Eq ). Then the assertion follows from the exact
sequence

0 −→Ip,X ⊗Eq −→ Eq −→ (Eq )|{p} −→ 0

together with the fact that Eq is an aCM vector bundle of rank two and H 0(Eq ) is one-dimensional
whose nontrivial section vanishes only at q so that h0(Ip,X ⊗Eq ) = 0 and therefore h1(Ip,X ⊗
Eq ) = 1. �

Proposition 3.4. Setting g̃ := h0(OX (1)), there exists an indecomposable aCM vector bundle E of
rank r on X with det(E ) ∼=OX and c2(E ) = r −1 for each integer 2 ≤ r ≤ g̃ −1.

Proof. As in the proof of Proposition 2.1, consider a general sheaf E fitting into the sequence
(1) for a general S ⊂ Xreg with |S| = r −1. Then we get ext1

X (IS,X ,OX ) = r −1 and the proof of
Proposition 2.1 works verbatim. �

Theorem 3.5. Let X be an integral projective surface with q(X ) = 0 andωX �OX locally free such
that h0(ωX ) = 0 and h0(ω⊗2

X ) = 1. Then for any r ≥ 2 there exists a family {Eα}α∈Γ of dimension
2d r

2e of indecomposable rank r aCM vector bundles with c1(Eα) ∼= OX such that for each α ∈ Γ
there are only finitely many β ∈ Γwith Eβ

∼= Eα.

Proof. The proof follows exactly the same structure as in the case of Theorem 2.4. In the present
setting, however, in the case of even rank r = 2m, the family Γ of indecomposable aCM vector
bundles of rank r will be mapped by a quasi-finite dominant morphism to

U := {
(S1, . . . ,Sm) | Si ⊂ Xreg with |Si | = 1 and Si ∩S j =; for all i 6= j

}
,

a variety of dimension r , while in the odd case r = 2m +3 it will be mapped to

Ũ := {(S0,S1, . . . ,Sm) | Si ⊂ Xreg with |S0| = 2,

|Si | = 1 for all 1 ≤ i ≤ m and Si ∩S j =; for all i 6= j }.

a variety of dimension 2m +4 = 2d r
2e. �

4. IRREGULAR SURFACES

In this section we deal with surfaces with q(X ) ≥ 1.

Proposition 4.1. Let X be a smooth projective surface with q(X ) = 1 and a fixed ample line bun-
dle OX (1), satisfying one of the following conditions:

(i) OX (1) ∼=ωX ;
(ii) OX (1)⊗ω∨

X is ample.
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Then for each positive integer r there exists a one-dimensional family {Eα}α∈Γ of indecomposable
aCM vector bundles of rank r on X such that Eα for eachα ∈ Γ is strictly semistable with det(Eα) ∈
Pic0(X ) and c2(Eα) = 0 with respect to any polarization of X , and there are only finitely many
β ∈ Γwith Eβ

∼= Eα.

Proof. Fix a general line bundle L ∈ Pic0(X ). Then we have h1(L ) = 0; see [3, Th. 0.1], [12,
Theorem 1] or [13, Theorem 0.1]. We also have h1(L (−t )) = 0 for all t > 0 by Kodaira’s vanishing.
Note that Serre’s duality gives h1(L (t )) = h1(L ∨⊗ωX (−t )). Then we have h1(L ∨⊗ωX (−t )) = 0
for all t > 0. Indeed, in case (i) we may apply Kodaira’s vanishing for t ≥ 2 and h1(L ∨) = 0 for
t = 1. In case (ii) ω∨

X (t ) is ample and so we may apply Kodaira’s vanishing. Thus L is aCM.
Let ϕ : X → C be the Albanese map of X onto an elliptic curve C . We have ϕ∗OX

∼= OC and
Pic0(X ) =ϕ∗Pic(C ). By the classification of vector bundles on an elliptic curve in [1], there is an
indecomposable vector bundle F of rank r on C , which is an iterated extension of OC . Define

EL :=ϕ∗F ⊗L .

Then EL is a vector bundle of rank r on X with det(EL ) ∼= L ⊗r ∈ Pic0(X ) and c2(EL ) = 0,
which is an iterated extension of L . Since L is aCM, so is EL . Moreover, EL is clearly strictly
semistable with respect to any polarization.

Assume that EL is decomposable and this would imply that ϕ∗F is also decomposable, say
ϕ∗F ∼=F1 ⊕F2 with each Fi an aCM vector bundle of rank ri with 0 < ri < r . By the projection
formula andϕ∗OX

∼=OC , we have F ∼=ϕ∗F1⊕ϕ∗F2. Now take a non-empty subset of C so that

• we have F|U ∼=O⊕r
U , and

• ϕ−1(q) is a smooth projective curve for each q ∈U .

Since (ϕ∗F )|ϕ−1(q) is the trivial vector bundle of rank r on the integral projective curve ϕ−1(q),

we get Fi |ϕ−1(q)
∼=O

⊕ri

|ϕ−1(q)
for each i . In particular, we haveϕ∗Fi is not zero for each i , a contra-

diction to the indecomposability of F . �

Remark 4.2. Let X be a smooth and connected projective variety of dimension n ≥ 2 and ϕ :
X → Alb(X ) its Albanese map. Assume that X has maximal Albanese dimension, i.e. dimϕ(X ) =
n. Note that this implies q(X ) = dimAlb(X ) = n ≥ 2. In particular, an abelian variety has maxi-
mal Albanese dimension. Let OX (1) be an ample line bundle on X such thatω∨

X ⊗OX (1) is ample;
if X is an abelian variety, then OX (1) can be arbitrary.

Now choose a general line bundle L ∈ Pic0(X ). Since X has Albanese dimension n, we have
hi (L ) = 0 for all 1 ≤ i ≤ n−1 by [12, Theorem 1] or [13, Theorem 0.1]. Fix a positive integer t . By
Kleiman’s numerical criterion of ampleness in [17], we get that L ∨(t ) and ω∨

X ⊗L (t ) are ample
for t > 0. Then Kodaira’s vanishing gives hi (L (t )) = hi (ωX ⊗ω∨

X ⊗L (t )) = 0 for all 1 ≤ i ≤ n −1.
On the other hand, Serre’s duality gives hi (L (−t )) = hn−i (ωX ⊗L ∨(t )) = 0 for 1 ≤ i ≤ n − 1.
This implies that L is aCM. Since dimPic0(X ) = q(X ), there exists a n-dimensional family of
pairwise non-isomorphic aCM lines bundles.

Now we work on the proof of Theorem 1.3 and the key tool is Mukai’s study of vector bundles
on abelian varieties; see [21].

Proof of Theorem 1.3: Since X is smooth and birational to an abelian variety, there are an n-
dimensional abelian variety Y and a proper birational morphism v : X → Y ; see [23, Proposition
9.12]. In particular, we have v∗OX

∼=OY by the Zariski Main Theorem in [14, Corollary III.11.4]).
Let Ŷ = Pic0(Y ) denote the abelian variety dual to Y . As in [21, Definitions 4.4, 4.5, 4.6] we
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consider the following set

U′
r := { the unipotent vector bundles of rank r on Y },

i.e. the set of all vector bundles of rank r on Y , obtained by iterated extension; we haveU′
1 = {OY }

andU′
r is the set of all vector bundles which admit extensions of OY by an element ofU′

r−1. If we
let R be the completion of the local ring OŶ ,0 and B f the set of all R-modules with finite length,
then by [21, Theorem 4.12] there is a bijection between U′

r and the set B f [r ] of R-modules of
length r . Note that this bijection preserves finite direct sums. Thus to an indecomposable vec-
tor bundle inU′

r it is enough to consider an indecomposable elements of B f [r ]. Define a subset

Ur :=
{
A ∈U′

r

∣∣∣∣ A corresponds to an indecomposable elements of B f [r ]
of the form R/I with I ⊂ R an ideal of colength r

}
,

consisting of elements of the local Hilbert scheme of R corresponding to connected zero-dimensional
subschemes of Ŷ of degree r with 0 as their support. Then we get an algebraic family Ur of in-
decomposable unipotent vector bundles of rank r . For the known results on the dimension of
Ur , refer to [11, page 6]. For n = 2 and arbitrary r ,Ur is irreducible of dimension r −1 by [4, 16],
while it can be reducible for n ≥ 3 by [11, 16]. In any case with n ≥ 2,Ur has an irreducible family
of dimension (n−1)(r −1), whose general element is curvilinear, or collinear, by [11, pages 5–6].

For any line bundle L ∈ Pic0(X ), set

ΘL := {v∗(F )⊗L | F ∈Ur }.

Each element ofΘL is a vector bundle of rank r on X , which is an iterated extension of L . Thus
each element ofΘL is strictly semistable with respect to any polarization on X and all its Chern
classes are zero. Assume that v∗(F )⊗L ∼= v∗(G )⊗L for F ,G ∈Ur . Then we get v∗(F ) ∼= v∗(G )
and so F ∼= G by the projection formula and v∗OX

∼= OY . In particular, ΘL parametrizes one-
to-one vector bundles of rank r on X and dimΘL = dimUr . Note that for each A ∈ ΘL there
are only finitely many L ′ ∈ Pic0(X ) such that A ∼= A ′ for some A ′ ∈ ΘL ′ ; indeed, we have at
most (2n)r vector bundles A ′, because det(A ) ∼=L ⊗r and so L ′⊗L ∨ is an element of r -torsion
of Pic0(X ). Now a general line bundle L ∈ Pic0(X ) is aCM by Remark 4.2. Define a non-empty
open subset

V := {L ∈ Pic0(X ) | L is aCM },

which is an algebraic variety of dimension q(X ) = n. For each L ∈ V, every vector bundle
A ∈ ΘL is aCM, because it is an iterated extension of aCM vector bundles. Define a parame-
ter space Γ over V whose fibre over L is ΘL . Then it is a parameter space, finite-to-one, for
indecomposable aCM vector bundles of rank r on X with dimΓ= n +dimUr = (n −1)r +1. �

Proposition 4.3. Let X be a smooth projective surface with q(X ) ≥ 2 and a fixed ample line bun-
dle OX (1) satisfying one of the following conditions:

(i) OX (1) ∼=ωX ;
(ii) OX (1)⊗ω∨

X is ample.

Then for each integer r with 1 ≤ r ≤ q(X ) there exists a q(X )-dimensional family {Eα}α∈Γ of inde-
composable aCM vector bundles of rank r on X such that Eα for each α ∈ Γ is strictly semistable
with det(Eα) ∈ Pic0(X ) and c2(Eα) = 0 with respect to any polarization of X , and there are only
finitely many β ∈ Γwith Eβ

∼= Eα.



14 E. BALLICO, S. HUH AND J. PONS-LLOPIS

Proof. Fix a general line bundle L ∈ Pic0(X ). Then as in Remark 4.2 we see that L is aCM. Set
G0 = 0 the zero sheaf and G1 := L . For an integer r ≥ 2, we define Gr inductively as a general
sheaf fitting into the following extension

(10) 0 −→Gr−1

u
−→Gr

v
−→L −→ 0.

Note that Gr is strictly semistable for any polarization and Gr ⊗L ∨ is an iterated extension of OX

for each r ≥ 1. Since Gr−1⊗L ∨ is an iterated extension of OX , we have det(Gr−1⊗L ∨) ∼=OX and
c2(Gr−1⊗L ∨) = 0. Moreover, we may choose Gr admitting a non-trivial extension (10), because
we have ext1

X (L ,Gr−1) > 0; indeed, we have h1(Gr−1 ⊗L ∨) ≥ q(X )− r +2, which is clearly true
for r = 2. In general, we get the following exact sequence from (10)

H 0(OX ) −→ H 1(Gr−1 ⊗L ∨) −→ H 1(Gr ⊗L ∨).

Then we may apply the inductive hypothesis and h0(OX ) = 1.
Note that the coboundary map H 0(OX ) → H 1(Gr−1 ⊗L ∨) is zero if and only if (10) is the

trivial extension. Since we take a non-trivial extension at each step, we have h0(Gr ⊗L ∨) =
h0(Gr−1 ⊗L ∨). By induction on r we get h0(Gr ⊗L ∨) = 1 for all r ≤ q(X ). Assume now that
Gr is decomposable, say Gr

∼= F1 ⊕F2 with each Fi nonzero. Then each Fi ⊗L ∨ is a strictly
semistable vector bundle with numerically trivial determinant. Since g r (Gr−1 ⊗L ∨) =O⊕(r−1)

X ,
we get that g r (Fi ⊗L ∨) is trivial and so each Fi ⊗L ∨ has a subsheaf isomorphic to OX . In
particular, we have h0(Gr ⊗L ∨) ≥ 2, a contradiction.

Note that det(Gr ) ∼= L ⊗r and so there are only finitely many line bundles L ′ ∈ Pic0(X ) such
that Gr is also an iterated extension of L ′. Hence we get the assertion from dimPic0(X ) = q(X ).

�

Remark 4.4. Let Y be a hyperelliptic surface, i.e. a smooth projective surface with ωY � OY ,
q(Y ) = 1 and ω⊗12

Y
∼= OY . In particular, we have h2(OY ) = h0(ωY ) = 0 and so χ(OY ) = 0. Let

X be a smooth projective surface birational to Y . Then we have hi (OX ) = hi (OY ) for each i
and ωX � OX with h0(ω⊗12

X ) = 1. Fix an ample line bundle OX (1) on X and take a line bundle
L ∈ Pic0(X ) \ {OX ,ω∨

X }. Then we have h0(L ) = h2(L ) = 0. Since L is numerically equivalent
to OX and χ(OX ) = 0, we have χ(L ) = 0 and so h1(L ) = 0. Note that L (t ) and L ∨⊗ωX (t ) are
ample for t > 0, because they are numerically equivalent to the ample line bundle OX (t ). So we
get h1(L (t )) = 0 for all t 6= 0 by Kodaira’s vanishing and Serre’s duality. Thus L is aCM. Now
we may construct indecomposable aCM vector bundles Gr of rank r as in the case of abelian
surfaces. Indeed, we have ext1

X (L ,L ) = h1(OX ) = 1 and ext1
X (L ,Gr−1) > 0. We have det(Gr ) ∼=

L ⊗r . In particular, there are only finitely many line bundles L ′ ∈ Pic0(X ) such that Gr is an
iterated extension of L ′. We get the following result from q(X ) = 1.

Proposition 4.5. Let X be a smooth projective surface, birational to a hyperelliptic surface, with
any polarization. For any positive integer r , there exists a one-dimensional family {Eα}α∈Γ of
indecomposable aCM vector bundles of rank r on X such that for eachα ∈ Γ there are only finitely
many β ∈ Γwith Eβ

∼= Eα.

5. SURFACES OF GENERAL TYPE WITH AMPLE CANONICAL LINE BUNDLE

Let X be an integral projective surface, possibly singular, with ample ωX satisfying the fol-
lowing conditions:

(i) h1(ω⊗n
X ) = 0 for all n ∈Z;

(ii-ε) pg := h0(ωX ) ≥ 2+ε with ε ∈ {0,1}.
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We set OX (1) :=ωX with respect to which we consider aCM vector bundles on X .

Remark 5.1. Assume that X is smooth. The canonical line bundle ωX is ample if and only if
X is a minimal surface of general type without (−2)-curves, i.e. a smooth surface of general
type without smooth rational curves D ⊂ X with either D2 = −1 or D2 = −2; see [2]. There are
surfaces X of general type with pg = h0(ωX ) ≤ 1, but most surfaces have pg ≥ 2. The condition
(i) for n = 0 is h1(OX ) = 0, i.e. the irregularity of X is q(X ) = 0. This is a non-trivial requirement,
but it is satisfied in many important cases. By Serre’s duality this would imply that h1(ωX ) =
q(X ) = 0. In characteristic 0 the condition (i) for n < 0 comes from Kodaira’s vanishing theorem
by the ampleness of ωX . Assume h1(ω⊗n

X ) = 0 for all n < 0. By Serre’s duality we have h1(ω⊗n
X ) =

h1(ω⊗(1−n)
X ) = 0 for n ≥ 2. Thus in characteristic 0 we have the condition (i) satisfied if and only

if h1(OX ) = 0.

By the condition (ii-ε), the set

Σ := Sing(X )∩{
the base locus of |ωX |

}
is a proper closed subset of X . By the same argument in Remark 2.14 using Serre’s duality we
get the following lemma.

Lemma 5.2. For a finite subset S ⊂ X \Σ, we have ext1
X (IS,X ,ωX ) = |S|−1 and a general extension

of IS,X by ωX is locally free.

Proof. For the first assertion, we may apply the same argument in Remark 2.14 using Serre’s
duality. The second assertion is clear, because the Cayley-Bacharach condition for S and the
linear system |OX | is satisfied. �

Proposition 5.3. For a fixed integer 2 ≤ r ≤ pg and a general subset S ⊂ X \Σ with |S| = r , the
general sheaf E fitting into an exact sequence

(11) 0 −→ω⊕(r−1)
X −→ E −→IS,X −→ 0

is an indecomposable and aCM vector bundle of rank r .

Proof. LetΨ denote the set of all extensions of IS,X byω⊕(r−1)
X , and let E0 be a general extension

of IS,X by ωX . Then by Lemma 5.2), the sheaf E0 is locally free. Then the vector bundle E0 ⊕
ω⊕(r−2)

X is contained in the family Ψ. Since the local freeness is an open condition, the general
sheaf E in the sequence (11) is locally free.

Now since we have ext1
X (IS,X ,ωX ) = r − 1 by Lemma 5.2, the extension (11) is induced by

a choice of a basis {e1, . . . ,er−1} of Ext1
X (IS,X ,ωX ). Thus the map ϕ : H 1(IS,X ) → H 2(ω⊕(r−1)

X ) ∼=
k⊕(r−1) is bijective, and in particular we have h1(E ) = 0. Recall that we assumeωX

∼=OX (1). Then
by the condition (i) we get h1(ωX (n)) = 0 for all n ∈Z and we get

0 −→ H 1(E (n)) −→ H 1(IS,X (n)) −→ H 2(ωX (n))⊕(r−1).

Assume first that n is positive and this implies h2(ωX (n)) = h0(OX (−n)) = 0. Since S is general
with |S| = r ≤ h0(OX (1)) ≤ h0(OX (n)), we get h1(IS,X (n)) = 0. Thus we have h1(E (n)) = 0. It
remains to show that h1(E (−n)) = 0 for n ≥ 1. In fact, it is sufficient to prove the existence of an
extension F of IS,X byω⊕(r−1)

X satisfying h1(F (−n)) = 0 for all n ≥ 1. Take F ∼=G⊕ω⊕(r−2)
X with a

general extension G of IS,X byωX given by e1. By the previous argument, we have h1(G (n)) = 0
for all n ≥ 1. By Lemma 5.2, G is locally free with det(G ) ∼=ωX . Serre’s duality gives h1(G (−n)) =
h1(G (n)) = 0 for all n ≥ 1. Thus we get that E is aCM. Note that if r ≥ 3, then G is not aCM since
we have h1(G ) = r −2.
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For the indecomposability, we may use the same argument in the proof of Proposition 2.1 to
E ⊗ω∨

X , because IS,X ⊗ω∨
X is indecomposable. �

Now for the statement in Theorem 5.4, set ε= r −2
⌊ r

2

⌋
for which the condition (ii-ε) for X is

assumed to be satisfied.

Theorem 5.4. For each integer r ≥ 2, there exists an r -dimensional family {Eα}α∈Γ of indecom-
posable aCM vector bundles of rank r on X with det(Eα) ∼= ω⊗dr /2e

X and c2(Eα) = r such that for
each α ∈ Γ there are only finitely many β ∈ Γwith Eβ

∼= Eα.

Proof. We use the same notations in the proof of Theorem 2.4 such as I(S1, . . . ,Si ) andJ(S1, . . . ,Si ;S0).
Then we get the same assertions from Lemma 2.5 till Remark 2.13; the only difference occurs in
Lemma 2.8 and Remark 2.9, where we have

ext1
X (ISi+1,X ,J ) = ext1

X (IS0,X ,J ) = i

for J ∈ I(S1, . . . ,Si ) from ext1
X (ISi+1,X ,OX ) = ext1

X (IS0,X ,OX ) = 0. Then we may consider the
exact sequences (6) and (7) with OX replaced by ωX . �

6. SURFACES MAPPED TO A CURVE OF GENUS ≥ 3 NOT AS THEIR ALBANESE IMAGE

Throughout this section, X is a smooth projective surface admitting a surjective map v : X →
C with g = g (C ) ≥ 3 and OX (1) is an ample line bundle positive enough to satisfy thatω∨

X ⊗OX (1)
is ample as well. Assume that C is such a curve achieving maximum possible genus g and that
q(X ) > g . For example, we may take as X any smooth surface birational to C ×D , where D is a
smooth curve with 1 ≤ g (D) ≤ g ; in this case we have q(X ) = g + g (D).

Proposition 6.1. For each positive integer r there exists a family {Eα}α∈Γ of indecomposable aCM
vector bundles of rank r on X such that Γ is an integral variety with

dimΓ≥ q(X )+ (r −1)(r −2)(g −1)

2
− r (r −1)

2

and each Eα is strictly semistable with det(Eα) ∈ Pic0(X ) and c2(Eα) = 0 with respect to any po-
larization of X such that there are only finitely many β ∈ Γwith Eβ

∼= Eα.

Set A1 := OC and define inductively a vector bundle Ai+1 of rank i +1 on C to be the middle
term of the following extension:

(12) 0 −→Ai −→Ai+1 −→OC −→ 0,

where Ai+1 = Ai+1(e) corresponds to the extension class e ∈ Ext1
C (OC ,Ai ) ∼= H 1(Ai ). Since we

have g ≥ 3 from the assumption, we get h1(Ai+1) 6= 0. In particular, we may assume that the
extension (12) is non-trivial. The image of the coboundary map H 0(OC ) → H 1(Ai ) corresponds
to the extension (12), up to a sign, and therefore the coboundary map is injective. Thus, from
the long exact sequence of cohomology groups associated to (12) we get h0(Ai+1) = h0(Ai ) and
h1(Ai+1) = h1(Ai )+ g −1 for each i . By induction, we get

h0(Ai ) = 1 and h1(Ai ) = i (g −1)+1.

Note that each Ai is an iterated extension of OC , and in particular it is strictly semistable with
g r (Ai ) ∼= O⊕i

C . Assume Ai
∼= B1 ⊕B2 with each Bi 6= 0. Since each Bi has a HN-filtration with

OC as its first step, we have h0(Bi ) > 0 and so h0(Ai ) ≥ 2, a contradiction. Thus each Ai is
indecomposable.
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Remark 6.2. Let u : A −→B be a surjection of sheaves on C . Since dimC = 1, we have h2(C ,ker(u)) =
0. Thus the surjection u induces a surjective map H 1(C ,A ) −→ H 1(C ,B).

Lemma 6.3. Let M ,D1,D2 be vector bundles on C fitting into exact sequences

(13) 0 −→M
ui−→Di −→OC −→ 0,

corresponding to an extension class ei ∈ Ext1
C (OC ,M ) ∼= H 1(M ) for each i . If there exists an iso-

morphism h : D2 → D1 such that h(u2(M )) = u1(M ), then e1 and e2 are in the same orbit of
H 1(M ) for the action of the group Aut(M ).

Proof. Note that h0(M ) ≤ h0(Di ) ≤ h0(M )+1, and h0(M ) = h0(Di ) if and only if ei 6= 0. Since
h is an isomorphism, e1 = 0 if and only if e2 = 0. Since the assertion is obvious when e1 =
e2 = 0, we may assume e1 6= 0 and e2 6= 0. Since h(u2(M )) = u1(M ), h induces isomorphisms
h′ : D2/u2(M ) −→D1/u1(M ) and f : M −→M . Since Di /ui (M ) ∼=OC , i = 1,2, h′ is induced by the
multiplication by a constant, c. Note that ei is determined by the image of 1 by the coboundary
map H 0(OC ) −→ H 1(M ) in (13). Since e1 6= 0 and e2 6= 0, we have c 6= 0. Taking

(1
c

)
h instead of

h we reduce to the case in which h′ : OC → OC is the identity map. Thus we get a commutative
diagram with exact rows:

0 −→ M −→ D2 −→ OC −→ 0
↓ ↓ ↓

0 −→ M −→ D1 −→ OC −→ 0,

in which the three vertical arrows are respectively f , h and IdOC . By the definition of Ext1
C (OC ,M )

as short exact sequences modulo an equivalence relation, we get e1 = f∗(e2), i.e. e1 ∈ H 1(M ) is
contained in the orbit of e2 for the action of the group Aut(M ). �

We set T2 := H 1(OC ) \ {0} and consider it as a parameter space, not finite-to-one, for non-
trivial extensions of OC by OC . Then we get a family {A2(e)}e∈T2 of aCM vector bundles of rank
two. Since we have h1(A2(e)) = 2g−3 for each e ∈ T2, there is a vector bundleπ2 : T′

3 → T2 of rank
2g −3 whose fibre over A2(e) is H 1(A2(e)) ∼= Ext1

C (OC ,A2(e)). Then we get a family {A3(e)}e∈T′
3

of aCM vector bundles of rank three on C such that for each e ∈ T′
3, A3(e) is an extension of OC

by A2(π(e)). Let T3 be the non-empty Zariski open subset of T′
3 parametrizing the non-trivial

extensions of OC by A2(π(e)). Thus we have a family {A3(e)}e∈T3 of indecomposable aCM vector
bundles of rank three, parametrized by T3.

Now we define a parameter space Ti inductively: fix an integer i ≥ 2 and assume that Ti

is defined, together with a family {Ai (e)}e∈Ti of indecomposable aCM vector bundles of rank
i , parametrized by Ti . Since we have h1(Ai (e)) = i (g −1)+1, there exists a vector bundle πi :
T′

i+1 → Ti of rank i (g−1)+1 and a family {Ai+1(e)}e∈T′
i+1

of aCM vector bundles of rank i+1 on C

such that for each e ∈ T′
i+1, Ai+1(e) is an extension of OC by Ai (π(e)). Let Ti+1 be the non-empty

Zariski open subset of T′
i+1 parametrizing the non-trivial extensions of OC by Ai (π(e)).

If a vector bundle A =Ar of rank r on C corresponding to e ∈ Tr is obtained as a successive
extension of OC by Ai (ei−1) corresponding to ei ∈ H 1(Ai (ei−1)) \ {0} for each i ≤ r , then we
simply denote it by A (e1, . . . ,er−1) :=A and it has a filtration

0 ⊂A1 =OC ⊂A2 =A (e1) ⊂A3 =A (e1,e2) ⊂ ·· · ⊂Ar =A (e1, . . . ,er−1).

Fix a general A = A (e1, . . . ,er−1) that is a non-trivial extension of OC by A ′ := A (e1, . . . ,er−2).
Letting ui ,r : Ai → A with 1 ≤ i ≤ r −1 be the inclusion arising by the extensions reaching A ,



18 E. BALLICO, S. HUH AND J. PONS-LLOPIS

we have the following commutative diagram

0 0
↓ ↓

A1 = A1

↓ ↓
0 −→ A ′ −→ A −→ OC −→ 0

↓ ↓ ‖
0 −→ A ′/u1,r−1(A1) −→ A /u1,r (A1) −→ OC −→ 0

↓ ↓
0 0

so that A /u1,r (A1) is an extension of OC by A ′/u1,r (A1). Iterating the process, we see that
A /u1,r (A1) is an iterated extension of OC .

Lemma 6.4. Fix a general Ar =A (e1, . . . ,er−1) ∈ Tr with a filtration A1 ⊂ ·· · ⊂Ar−1 ⊂Ar . Then
we have

(i) h0(Ai /A j ) = 1 for all 1 ≤ j < i ≤ r ;
(ii) f (Ai ) ⊂Ai for any f ∈ End(Ar ) and each i ;

(iii) dimEnd(Ar ) ≤ r and dimEnd(Ar )−dim(Ar−1) ≤ 1.
(iv) h(Ai ) = Bi for all i and any isomorphism h : Br → Ar , where Br ∈ Tr general with a

filtration B1 ⊂ ·· · ⊂Br−1 ⊂Br .

Proof. For (i) consider the following sequence, obtained from (12):

(14) 0 −→Ai /A j −→Ai+1/A j −→OC −→ 0.

Since ei ∈ H 1(Ai ) is general by the generality of Ar , we get that (14) is a general extension and
h0(Ai+1/A j ) = h0(Ai /A j ). Thus to prove the assertion for j = 1 it is enough to show it for the
case i = 2, which is obvious from A2/A1

∼= OC . For j ≥ 2 we use (14) starting from the case
i = j +1, when we have A j+1/A j

∼=OC .
For (ii) note first that A1 =OC and h0(Ar ) = 1. This implies that A1 is the image of the evalua-

tion map H 0(Ar )⊗OC →Ar and so f (A1) ⊆A1, concluding the case r = 2. Now f induces a map
f ′ : Ar /A1 → Ar /A1. Since h0(Ar /A1) = 1 by (i) and A2/A1

∼= OC , we get f ′(A2/A1) ⊆ A2/A1

and so f (A2) ⊆A2. Thus we get the assertion by continuing this process together with (i).
For (iii) since the case r = 1 is trivial, we may assume r ≥ 2 and use induction on r . For f ∈

End(Ar ), we have A1 =OC and f (A1) ⊆A1 by (ii). Thus there is c ∈ k such that ( f −c·IdAr )(A1) =
0, and f − c·IdAr is uniquely determined by f ′ ∈ End(Ar /A1). Since we may apply (i) and (ii) to
Ar /A1, we conclude by induction on r .

For (iv) note that A1 (resp. B1) is the image of the evaluation map of Ar (resp. Br ) and h
is an isomorphism. In particular, we have h(A1) = B1 and so h induces an isomorphism h′ :
Ar /A1 → Br /B1. Since h0(Ai /A j ) = h0(Bi /B j ) = 1 for all i > j by (i), we iterate the previous
argument. �

Define a subset Jr to be

Jr =
{

e ∈ Tr

∣∣∣∣ Ar (e) admits a filtration A1 ⊂ ·· · ⊂Ar−1 ⊂Ar

such that h0(Ai /A j ) = 1 for all 1 ≤ j < i ≤ r

}
,

i.e. the non-empty open subset of Tr parametrizing the vector bundles Ar satisfying (i) of
Lemma 6.4; thus Ar satisfies (ii), (iii) and (iv) of Lemma 6.4.
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Lemma 6.5. For a general Ar ∈ Jr there exists an algebraic subset of Jr , parametrizing the vector
bundles isomorphic to Ar , with dimension at most r (r−1)

2 .

Proof. We use induction on r ; the case r = 1 is trivial, because J1 = T1 = {OC }. We assume that
r ≥ 2 and fix Br ∈ Jr , isomorphic to Ar , with a filtration B1 ⊂ ·· · ⊂ Br . For any isomorphism
h : Br → Ar , we have h(Br−1) = Ar−1 by (iv) of Lemma 6.4. Since Ar−1 is also general in Jr−1,
by inductive assumption there is an algebraic subset J′ of Jr−1 parametrizing the vector bundles
isomorphic to Ar−1. Fix M ∈ J′ and consider the subset T′ ⊂ Tr of all extensions of OC by M

which are isomorphic to Ar . By Lemma 6.3 and (iii) of Lemma 6.4, we have dimT′ ≤ r −1 and
we get the assertion. �

Proof of Proposition 6.1: Note that

g −1+
r−1∑
i=2

(
i (g −1)−1

)− r−1∑
i=1

i = (r −1)(r −2)(g −1)

2
− r (r −1)

2
.

Set ∆ := {v∗(A ) | A ∈ Jr } and then each element of ∆ is indecomposable, because each A ∈ Jr

is indecomposable. Since we have v∗v∗F ∼=F for any vector bundle F on C by the projection
formula and v∗OX

∼=OC , we have v∗A ∼= v∗B if and only if A ∼=B for any v∗A , v∗B ∈∆.
Fix a general L ∈ Pic0(X ) and set ΘL := {G ⊗L | G ∈ ∆}. Each element of ΘL is an inde-

composable vector bundle of rank r on X and the isomorphism classes of elements in ΘL are
also parametrized by Jr . We have h1(L ) = 0 by [3, Th. 0.1], because q(X ) > g and by our defini-
tion of g there is no non-constant morphism from X to a curve of genus q(X ). Then the same
argument as in Remark 4.2 ensures that L is aCM.

Since each element ofΘL is an iterated extension of L , each element ofΘL is also aCM. Note
that each element of ΘL is strictly semistable with g r (Ar ) ∼= L ⊕r and so no element of ΘL is
isomorphic to an element of ΘL ′ with L �L ′. Now we may vary the general L ∈ Pic0(X ) to
obtain a family Γ whose fibre over L is ΘL . Then we get the inequality in the assertion and all
the requirements for Γ are satisfied. �
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