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A Reduced Basis Method for a PDE-constrained
optimization formulation in Discrete Fracture Network flow

simulations I
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Corso Duca degli Abruzzi 24, Torino, 10129, Italy
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Abstract

In classic Reduced Basis (RB) framework, we propose a new technique for the offline
greedy error analysis which relies on a residual-based a posteriori error estimator. This
approach is as an alternative to classical a posteriori RB estimators, avoiding a discrete
inf-sup lower bound estimate. We try to use less common ingredients of the RB frame-
work to retrieve a better approximation of the RB error, such as the estimation of the
distance between the continuous solution and the reduced one. In particular we fo-
cus on the application of the reduction model for the flow simulations in underground
fractured media, in which high accurate simulations suffer for the complexity of the
domain geometry. Finally, some numerical tests are assessed to confirm the viability
and the efficacy of the technique proposed.

Keywords: Discrete Fracture Network flow simulations, Reduced Basis Method,
Simulations in complex geometries, Mesh adaptivity, A posteriori error estimates,
Adaptivity

1. Introduction1

Given a partial differential equation (PDE) dependent from a set of parameters, the2

Reduced Basis Method (RBM) is a well known and valid technique to generate a nu-3

merical solution dependent on a set of parameters from a linear combination of a small4

group of detailed high fidelity solutions, each one simulated from a selected parameter5

value. The selection of this special sub-set of solutions is usually performed resorting6

to an error analysis on a larger training set of solutions, called “snapshots”. According7
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to [1, 2, 3], standard techniques for RB offline greedy error analysis relies on the qual-8

ity of the high fidelity solutions, thus snapshots should be very accurate; moreover, the9

RB a posteriori error estimators strongly depend on the value of the condition number10

of the matrix of the high fidelity problem. Some problems in modern applied engi-11

neering, such as the simulation of underground phenomena in fractured media, hardly12

satisfy the properties required by classical RB a posteriori estimators. Fracture net-13

work geometries are usually generated from random probability distributions yielding14

to strong geometrical complexities on the domains. This results in hard difficulties in15

conforming mesh generation, that is sometime infeasible or yields to a huge number of16

unknowns to fit the geometrical constraints, also where the solution does not display17

significant behaviours. A variety of strategies are proposed in literature to overcome18

these problems, such as [4, 5, 6] in which little geometry modifications are performed,19

or such as [7, 8, 9, 10] in which the authors try to relax or remove the conformity con-20

straints on fracture intersections. In the present work we focus on a PDE-constrained21

optimization method applied to Discrete Fracture Networks (DFN), introduced in [11]22

and validated in [12], to avoid the geometrical complexities in the generation of the23

mesh on the fracture intersections and to remarkably reduce the number of unknowns24

of the discrete problem. We show that classic RBM error estimators are not effective25

to the fracture network problem when using non-conforming meshes due to the small26

value of the inf-sup constant of the discretized problem [13]. Moreover, we try to pro-27

pose an alternative RBM greedy offline error estimator to build a reliable RB space28

thanks to a residual-based a posteriori error estimate available in [14] and [15] associ-29

ated to the optimization method. Section 2 introduces the greedy approach proposed.30

In Section 3 we report the DFN variational parametrized PDE problem. Finally, Sec-31

tion 4 introduces the reduction applied to the DFN discrete problem and the greedy32

a posteriori analysis. The error estimations is validated with some numerical tests in33

Section 5.34

2. RB Error Estimates35

The definition of a RB a posteriori error estimators is fundamental for the reli-36

ability of the RB method, see for example [1, 2, 16]. Given a set of parameters37

µ = (µ1, . . . , µP) ∈P ⊂ RP and two Hilbert spacesX andY on R along with their dual38

X∗ andY∗, we consider a parametrized variational numerical problem P : P ×D→ X39

on the domain D ⊂ Rd
40

a(w, v; µ) = f(v; µ) ∀v ∈ Y, (1)

with a(·, ·; µ) : X × Y → R bilinear form and f(·; µ) ∈ Y∗ bounded linear functional41

on Y for each µ ∈ P . We denote by (·, ·)X the inner product over the space X and42

by ‖·‖2X = (·, ·)X the induced norm. Moreover, Y∗〈 f, v〉Y denotes the duality pairing43

between Y∗ and Y. In what follows we assume the well-posedness of the problem (1)44

with unique solution w(µ) ∈ X for all µ ∈P . For the Nec̆as theorem, this is equivalent45

[17] to guarantee the existence of a finite continuity upper bound constant γUB > 0 s.t.46

γ(µ) = supw∈X supv∈Y
a(w,v;µ)
‖w‖X ‖v‖Y

≤ γUB, the inf-sup condition infv∈Y supw∈X
a(w,v;µ)
‖w‖X ‖v‖Y

> 047
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and a finite inf-sup lower bound constant βLB > 0 s.t.48

β(µ) = inf
w∈X

sup
v∈Y

a(w, v; µ)
‖w‖X ‖v‖Y

≥ βLB. (2)

Under these assumptions, choosing Xδ ⊂ X and Yδ ⊂ Y as closed subspaces of49

finite dimension δ, we approximate the continuos problem (1) with the following weak50

discrete problem Pδ : P × D→ Xδ51

a(wδ, v; µ) = f(v; µ) ∀v ∈ Yδ. (3)

Let wδ(µ) ∈ Xδ be the unique solution of problem (3) and wN(µ) ∈ XN ⊆ Xδ the52

solution of the reduced problem PN : P × D→ XN53

aN(wN , v; µ) = fN(v; µ) ∀v ∈ YN , (4)

being XN ⊂ Xδ and YN ⊂ Yδ subspaces of dimension N. Classical a posteriori RB54

estimators have the goal to approximate for each µ ∈ P the norm of the error eδ,N :55

Xδ × XN → Xδ s.t.56

eδ,N(wδ,wN ; µ) := wδ(µ) − VwN(µ), (5)

being V ∈ Rδ×N the column-wise collection of the orthonormal basis {ζn}n∈{1,...,N} ofXN .57

Assuming the well-posedness of problem (3) for each µ ∈P there exists a discrete inf-58

sup lower bound βδ,LB > 0 s.t.59

βδ(µ) = inf
w∈Xδ

sup
v∈Yδ

a(w, v; µ)
‖w‖X ‖v‖Y

≥ βδ,LB. (6)

Following [17], classical RB theory introduces a posteriori estimator ∆N : P × XN →60

R, defined ∀ µ ∈P as61

∆N(wN ; µ) :=

∥∥∥Rδ(VwN ; µ)
∥∥∥
Y∗

βδ(µ)
, (7)

where we indicate with Rδ : P × Xδ → R ∈ Y∗δ the discrete residual ∀ v ∈ Yδ62

Y∗〈Rδ(wδ; µ), v〉Y := f(v; µ) − a(wδ, v; µ). (8)

For the sake of notational simplicity, ∆N(wN ; µ) and eδ,N(wδ,wN ; µ) will be shortened63

to ∆N(·; µ) and eδ,N(·; µ). In order to evaluate the reliability of (7) we introduce the64

effectivity index ηN(µ) := ∆N (·;µ)
‖eδ,N (·;µ)‖X

. Using the discrete continuity constant γδ(µ), from65

classical theory follows66

1 ≤ ηN(µ) ≤
γδ(µ)
βδ(µ)

= κδ(µ), (9)

being κδ(µ) the condition number of the matrix associated to the high fidelity problem67

Pδ. The error estimation
∥∥∥eδ,N(·; µ)

∥∥∥
X
≤ ∆N(wN ; µ) is the base for most of the RB68

greedy algorithms for the construction of the RB space XN , starting from a sufficiently69

large sample set SM = {µ1, . . . , µM} ⊆P .70
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Algorithm 1 reports the steps required to obtain matrix V we introduced in (5) for71

a given a tolerance εN > 0, see [1, 16, 17]. The quantity (7) is computed using72

∆N,I(wN ; µ) :=

∥∥∥Rδ(VwN ; µ)
∥∥∥
Y∗

βδ,I(µ)
(10)

with the use of a suitable interpolatory approximation βδ,I : P → R in place of the73

exact value βδ(µ) for each µ ∈ P , [18]. Other reliable tecniques to approximate the74

inf-sup constants may be used, such as the SCM introduced in [19].

Algorithm 1 RB Greedy Space Basis Construction - Classic

Input: εN > 0, SM = {µ1, . . . , µM} ⊆P , βδ,I : P → R
Output: N ≥ 0, V = [ζ1, . . . , ζN] ∈ Rδ×N

1: Initialize V = [], N = 0, δN = εN + 1, µ1
s = rand(SM)

2: while N < M ∧ δN > εN do
3: N = N + 1
4: Compute wδ(µN

s ) solving Pδ

5: ζN = GramSchmidt(V,wδ(µN
s ))

6: V = [V, ζN]
7: Compute SN,M = [wN(µ1), . . . ,wN(µM)] ∈ RN×M solving PN

8: µN+1
s = arg maxµ∈SM

∆N,I(wN ; µ)
9: δN = ∆N,I(wN ; µN+1

s )/
∥∥∥wN(µN+1

s )
∥∥∥
X

10: end while
75

Our target is to provide an estimate of eδ,N(·; µ) for problems Pδ in which the dis-76

crete inf-sup βδ(µ) is very small ∀µ ∈P and the condition number κδ(µ) grows rapidly77

when the complexity of the problem increases. Other authors perform a similar task,78

such as the hierarchical methods introduced in [2]. However, in DFN flow simula-79

tion with no conformity requirements on the mesh at fracture intersections, accurate80

high-fidelity solutions wδ are not easy to obtain, [13]. We introduce for all µ ∈ P the81

quantities eN : X × XN → X and eδ : X × Xδ → X defined by82

eN(w,wN ; µ) := w(µ) − VwN(µ), eδ(w,wδ; µ) := w(µ) − wδ(µ), (11)

suitable to measure the distances between the solution of the continuous problem w(µ)83

from the reduced one wN(µ) and from the discrete one wδ(µ). As we did for (5),84

eN(w,wN ; µ) and eδ(w,wδ; µ) in (11) will be shorten to eN(·; µ) and eδ(·; µ). In [20]85

and [3], the same quantities are already investigated for similar purposes. Assuming86

the mesh for the high fidelity problem fixes, for each parameter µ ∈ P we consider87

the triangle formed by w(µ), wδ(µ) and wN(µ). From Figure 1, we can note that when88 ∥∥∥eδ,N(·; µ)
∥∥∥
X
→ 089 ∥∥∥eδ,N(·; µ)

∥∥∥
X
≈

∣∣∣‖eδ(·; µ)‖X − ‖eN(·; µ)‖X
∣∣∣ , (12)

thanks to the cosine rule. Based on this relation, we introduce a new algorithm to build90

the RB space which takes in account the distance between the exact solution w(µ) and91
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Figure 1: Algorithm 2 - Intuitive explanation

the reduced solution wN(µ). The residual based a posteriori error estimate [21] ensures92

the existence of two positive constants C∗ > 0 and C∗ > 0 independent of the mesh93

size s.t.94

C∗∆δ(wδ; µ) ≤ ‖eδ(w,wδ; µ)‖X ≤ C∗∆δ(wδ; µ), (13)

where ∆δ :P×Xδ→R is a discrete residual-based a posteriori error estimator, [15, 22].95

Let us define ∆δ,N : P × XN → R for each µ ∈P as96

∆δ,N(wN ; µ) := ∆δ(VwN ; µ). (14)

The error in (12) can be estimated by97 ∣∣∣‖eδ(·; µ)‖X − ‖eN(·; µ)‖X
∣∣∣ ≈ ∣∣∣∆δ(wδ; µ) − ∆δ,N(wN ; µ)

∣∣∣ , (15)

thanks to XN ⊆ Xδ and to the Petrov-Galerkin orthogonality which holds for (3) and98

(4), as shown in [17]. ∆δ(wδ; µ) and ∆δ,N(wN ; µ) will be shortened to ∆δ(·; µ) and99

∆δ,N(·; µ) in next sections. In estimation (15) we do not include the constants C∗ and100

C∗ because we assume them uniformly bounded with respect to the parameter µ, [22].101

Finally, similar to the approach provided in (10), we introduce a suitable interpola-

Algorithm 2 Greedy RB Space Basis Construction - Exact Solution

Input: εN > 0, SM = {µ1, . . . , µM} ⊆P , ∆δ,I : P → R
Output: N ≥ 0, V = [ζ1, . . . , ζN] ∈ Rδ×N

1: Initialize V = [], N = 0, δN = εN + 1, µ1
s = rand(SM)

2: while N < M ∧ δN > max{εN , εδ} do
3: N = N + 1
4: Compute wδ(µN

s ) solving Pδ)
5: ζN = GramSchmidt(V,wδ(µN

s ))
6: V = [V, ζN]
7: Compute SN,M = [wN(µ1), . . . ,wN(µM)] ∈ RN×M solving PN

8: µN+1
s = arg maxµ∈SM

∣∣∣∆δ,N(wN ; µN+1
s ) − ∆δ,I(µN+1

s )
∣∣∣

9: δN =
∣∣∣∆δ,N(wN ; µN+1

s ) − ∆δ,I(µN+1
s )

∣∣∣ /∆δ,I(µN+1
s )

10: end while
102

tion ∆δ,I : P → R in place of the estimator value ∆δ(·; µ) for each µ ∈ P . Then,103
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Algorithm 2 provides the reduced space basis using (15) to capture the maximum vari-104

ability of the error avoiding the dependency from the discrete inf-sup constant βδ(µ).105

Moreover, referring again to Figure 1 and using the triangle inequality106

‖eN(·; µ)‖X ≤ ‖eδ(·; µ)‖X +
∥∥∥eδ,N(·; µ)

∥∥∥
X
≤ (εδ + εN) ‖wδ(·; µ)‖X (16)

we can choose the tolerance of the RB method εN in the same order of magnitude of107

the tolerance to control the high fidelity error εδ, to obtain an RBM error proportional108

to the discrete one.109

3. DFN Model110

In what follows we provide a brief description of the DFN model, which represents111

a network of geological fractures on an impervious rock matrix, [15, 23, 24, 25, 22].112

The discrete network113

F :=
⋃
i∈I

Fi ⊆ D ⊂ R3 (17)

collects all the fractures Fi, i ∈ I = {1, . . . , I}, represented as planar polygons in the114

three dimensional domain D ⊂ R3. The set of segments collecting all the intersections115

between two fractures is denoted by S :=
⋃

m∈M S m with S m := F̄i ∩ F̄ j, m ∈ M =116

{1, . . . ,M}; fracture intersections are addressed as “traces” below. A bijective map117

IS : M 7→ I×I is directly defined by IS (m) = (i, j) with i < j. As a natural extension118

of the notation introduced, Si = S|Fi will denote the subset of traces restricted to Fi119

and Mi their trace’s indices. The network boundary ∂F is split in the Dirichlet part120

ΓD, with |ΓD| > 0 and the Neumann part ΓN = ∂F \ ΓD; bD ∈ H
1
2 (ΓD) is imposed121

on ΓD and an homogeneous Neumann conditions is imposed on ΓN ; see [23] for more122

details on non homogeneous Neumann boundary conditions. Finally, on the restricted123

sets ΓiD = ΓD|Fi the intuitive bD
i := bD|ΓiD boundary functions are imposed.124

3.1. The Continuos Problem125

Out target is the computation of the hydraulic head H ruled by a Darcy’s law on the126

full network F . For each i ∈ I, let us introduce the functional spaces VD
i := H1

D(Fi) =127

{v ∈ H1(Fi) : v|ΓiD = bD
i }, Vi := H1

0(Fi) = {v ∈ H1(Fi) : v|ΓiD = 0} and the problem128

Hi ∈ VD
i s.t. ∀v ∈ Vi129 ∫

Fi

Ki∇Hi∇v dF =

∫
Fi

Qiv dF +

M∑
m=1

∫
S m

[[
∂Hi

∂ν̂m
i

]]
v|S m dγ. (18)

Ki represents the fracture hydraulic conductivity tensor that here is assumed to be con-130

stant on the fracture Fi, Qi the source term of the fracture and
[[
∂Hi
∂ν̂m

i

]]
the jump of the co-131

normal derivative of the hydraulic head along the unit vector ν̂m
i of Fi on each S m ∈ Si132

with ∂Hi
∂ν̂m

i
= Ki∇Hi · ν̂

m
i . Finally, two conditions on each S m ∈ S shall be imposed to133
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guarantee the continuity of the hydraulic head on the intersections and the balance of134

the normal fluxes; thus, for all m ∈ M135

Hi|S m − H j|S m = 0, (19)[[
∂Hi

∂ν̂m
i

]]
+

∂H j

∂ν̂m
j

 = 0, (20)

with i and j induced by the map IS (m).136

The introduced model can be converted into an equivalent optimization problem,137

see [11, 15] for further details, introducing the spaces V :=
∏

i∈I VD
i , Wm := H−

1
2 (S m)138

and W∗m := H
1
2 (S m) ∀m ∈ M and the quantity U i

m ∈ Wm139

U i
m :=

[[
∂Hi

∂ν̂m
i

]]
+αHi|S m , (21)

with α > 0 an arbitrary positive constant introduced for the well posedness of the flow140

problem on each Fi. Conditions (19) and (20) can be replaced by the minimization of141

the functional J : V ×W → R142

J(H,U ) =

M∑
m=1

∥∥∥Hi|S m − H j|S m

∥∥∥2
W∗m

+
∥∥∥∥Um

i +Um
j −α

(
Hi|S m + H j|S m

)∥∥∥∥2

Wm
(22)

for all H ∈ V and being U ∈ W :=
∏

m∈M(Wm × Wm). Introducing the following143

bilinear forms aFi : VD
i × Vi → R and aSi : Wm ×W∗m → R144

aFi (u, v) := (∇u,∇v)L2(Fi), aSi (q, s) :=
∑

S m∈Si

W∗m〈s, q〉Wm
. (23)

Darcy’s equation (18) can be shortened applying the constraint functional Gi : VD
i ×145

Wm × Vi → R defined as146

Gi(Hi,Um
i , v) = 0⇔ aFi (KiHi, v) + aSi (αHi|S m − Um

i , v|S m ) − (Qi, v)L2(Fi) = 0 (24)

Thus, the set of equations (18)-(19)-(20) are equivalently replaced [11] by the opti-147

mization problem find H ∈ V s.t.148

min
U∈W

J(H,U ) s.t. Gi(Hi,Um
i , v) = 0 ∀i ∈ I, (25)

with U the control variable of the problem given by the cartesian product of Um
i for149

all S m ∈ Si with i ∈ I. It is possible to reformulate the optimization problem (25),150

[15, 22], introducing a Lagrange multiplier P ∈ V , the space X := V ×W × V and the151

space Y := V ×W∗ × V . A Lagrangian functional L : X ×Y → R can be defined for152

w := (H,U , P) ∈ X, r := (v, t, q) ∈ Y153

L (w, r) :=
∑
i∈I

aFi (KiHi, vi) + aSi (αHi|S m − Um
i , vi|S m ) +

aFi (KiPi, qi) − aSi (Hi|S m − H j|S m , qi|S m ) +

aSi (U
m
i +Um

j −α
(
Hi|S m + H j|S m

)
+ Pi|S m , t|S m ) − (Qi, vi)L2(Fi),

(26)
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where Pi := P|Fi ∈ Vi, vi := v|Fi ∈ Vi and qi := q|Fi ∈ Vi. By referring to [11], problem154

L (w, v) = 0, ∀v ∈ Y (27)

has an unique solution w := (H,U , P) ∈ X equivalent to the one of the optimization155

problem (25) and, thanks to the Nec̆as theorem, it is possible to prove the inf-sup156

condition (2) with the space norm ‖·‖X defined as follows: given w := (H,U , P) ∈ X157

‖w‖2X :=
∑
i∈I

Ki |Hi|
2
H1(Fi)

+ Ki |Pi|
2
H1(Fi)

+

∑
S m∈Si

(
‖αHi|S m‖

2
L2(S m) + ‖αPi|S m‖

2
L2(S m) +

∥∥∥Um
i

∥∥∥2
H−1/2(S m)

)
,

(28)

with |·|H1(Fi) representing the semi-norm in the space H1(Fi).158

3.2. The Discrete Problem159

Following the approach introduced in [25], the discretization of the problem is160

performed independently on each fracture creating an independent mesh Ti on Fi and a161

mesh T m
i on each trace S m in Fi. On each Fi we introduce the finite-dimensional space162

Vδ,i := span{ϕi,k}k∈{1,...,Ni}
⊂ Vi of dimension Ni. The set of functions {ϕD

i,`}`∈{1,...,Ni,D}
is163

used to discretize the lifting function on the Dirichlet boundary and the space VD
δ,i :=164

Vδ,i × span{ϕD
i,`}`∈{1,...,Ni,D}

of dimension ND
i := Ni + Ni,D is introduced. In the following,165

the contractions Ni := {1, ...,Ni}, Ni,D := {Ni + 1, ...,ND
i } and ND

i := {1, ...,ND
i } are166

used. Similarly, we define on each S m of Fi the finite-dimensional subspace Wm
δ,i :=167

span{ψm
i,`}`∈{1,...,N

m
i }
⊂ L2(S m) ⊂ Wm of dimension Nm

i . For the sake of notation, in the168

following we use the same symbol to denote both the discrete functions and the vectors169

of its degree of freedom (DOFs); for example hi will state both for the function hi ∈ VD
δ,i170

and the real vector hi ∈ RND
i . Therefore, the discrete hydraulic head hi ∈ VD

δ,i and the171

discrete control variable um
i ∈ Wm

δ,i are naturally defined. Finally, we define the discrete172

hydraulic head of the network as h := (h1, . . . , hI) ∈ Vδ :=
∏

i∈I VD
δ,i of dimension173

N
F

=
∑

i∈I ND
i and the discrete control variable of the network u := (u1, . . . , uM) ∈174

Wδ :=
∏

m∈M(Wm
δ,i × Wm

δ, j) of dimension NS =
∑

m∈M(Nm
i + Nm

j ), having set um =175

(um
j , u

m
j ) ∈ Wm

δ,i ×Wm
δ, j, with i and j taken from the map IS (m). The discrete counterpart176

of Darcy’s equation in (25) can be deduced introducing the matrices AFi ,AD
Fi
∈ RND

i ×ND
i177

and ASi ,AD
Si
∈ RND

i ×ND
i defined by178

AFi |k` =


aFi (ϕi,k, ϕi,`) k, ` ∈ Ni

1 k = ` ∈ Ni,D

0 otherwise
,AD

Fi
|k` =


aFi (ϕi,k, ϕ

D
i,`) k ∈ Ni, ` ∈ Ni,D

−1 k = ` ∈ Ni,D

0 otherwise

ASi |k` =

aSi (ϕi,k |S m , ϕi,` |S m ) k, ` ∈Ni

0 otherwise
,AD
Si
|k` =

aSi (ϕi,k |S m , ϕD
i,` |S m ) k ∈Ni, ` ∈Ni,D

0 otherwise
.

(29)
The matrix Bi ∈ RND

i ×NS is also introduced to collect the integrals of the product of179

basis functions {ϕi,k |S m }k∈{1,...,ND
i }

with {ψm
i,`}`∈{1,...,N

m
i }

for all S m ∈ Si. Therefore, for180
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each i ∈ I we obtain the discrete version of (24), Gδ,i(h, u) : Vδ × Wδ → R with181

Gδ,i(h, u) := Aihi − qi + AD
i hD

i − Biu, with matrix Ai = KiAFi + αASi ∈ RND
i ×ND

i ,182

matrix AD
i = KiAD

Fi
+ αAD

Si
∈ RND

i ×ND
i , vector qi ∈ RND

i the discretization of the forcing183

term Qi and vector hD
i ∈ RND

i the evaluation of the Dirichlet boundary conditions bD
i .184

Finally, let us introduce the block-diagonal matrices A := diag(Ai)i∈I ∈ RN
F
×N
F and185

AD := diag(AD
i )i∈I ∈ RN

F
×N
F , the column-wise collection matrix B := (B1, . . . ,BI) ∈186

RN
F
×NS and the column vectors q := (q1, . . . , qI), hD := (hD

1 , . . . , h
D
I ) ∈ RN

F to obtain187

the discrete constraints equation188

Ah − q + ADhD − Bu = 0, (30)

simply denoted by Gδ(h, u) = 0. In the discrete framework, the functional (22) can189

be written using L2(S m) norms in place of Wm and W∗m norms, obtaining the discrete190

functional Jδ : Vδ ×Wδ → R191

Jδ(h, u) :=
1
2

(
hTGhh − αhTBhu − αuTBuh + uTGuu

)
. (31)

The matrix Bh = (Bu)T ∈ RN
F
×NS collects the integrals of the mixed products between192

basis functions of Vδ and Wδ and the matrix Gu ∈ RNS×NS is the mass matrix of the193

products between the traces basis functions. Furthermore, the matrix Gh ∈ RN
F
×N
F is194

defined as the sum Gh = (α2 + 1)Gh
F

+ (α2 − 1)Gh
S

, with Gh
F
∈ RN

F
×N
F column-wise195

combination ∀S m ∈ Si of matrices Gh
Fi
∈ RND

i ×N
F196

(Gh
Fi

)k ˆ̀(i) = (ϕ?i,k |S m , ϕ?i,` |S m ) k, ` ∈ ND
i , (32)

and Gh
S
∈ RN

F
×N
F column-wise combination ∀S m ∈ Si of matrices Gh

S m ∈ RND
i ×N

F197

(Gh
S m )k ˆ̀( j) = (ϕ?i,k |S m , ϕ?j,` |S m ) k ∈ ND

i , ` ∈ N
D
j , (33)

with i and j taken from the map IS (m), ˆ̀(i) =
∑

p<i ND
p + ` and the symbol ? shall198

be left empty or shall substitute with D according to the indices numbering. Thus, the199

discrete counterpart of problem (25) becomes find h ∈ Vδ200

min
u∈Wδ

Jδ(h, u) s.t. Gδ(h, u) = 0. (34)

Following the same approach applied for the definition of (26), this optimization dis-201

crete problem can be solved introducing the adjoint Lagrange multiplier p ∈ Vδ. Ap-202

pling the Galerkin approach with the definition of the space Xδ := Vδ×Wδ×Vδ, we ob-203

tain the discrete Lagrangian functional Lδ : Xδ → R defined for all wδ := (h, u,−p) ∈204

Xδ as205

Lδ(wδ) = Jδ(h, u) − pT Gδ(h, u), (35)

which leads to the following optimality system206

Mδwδ = fδ, (36)
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where

Mδ :=

 Gh −αBh AT

−αBu Gu −BT

A −B 0

 , fδ :=

 0
0

q − ADhD

 ,
with Mδ ∈ R(2N

F
+NS)×(2N

F
+NS) and fδ ∈ R2N

F
+NS . The matrix Mδ is symmetric and non207

singular, [26], and the solution of the equation (36) is the unique minimizer of (34).208

Due to the choice of not conformity meshes on the traces, taking a trace mesh coarser209

with respect to the fracture mesh, we have a non vanishing discrete inf-sup lower bound210

βδ,LB, with possible very small values, [13]. Thus, classical RBM a posteriori theory211

can be unreliable as it is well outlined in next section.212

3.3. The Parametrized Problem213

The optimization problem (34) and the linear system (36) are now rewritten as a214

parametrized problem dependent from a set of parameters µ = (µ1, . . . , µP) ∈P ⊂ RP215

min
u∈Wδ

Jδ(h, u; µ) s.t. Gδ(h, u; µ) = 0, (37)

Mδ(µ)wδ(µ) = fδ(µ). (38)

The set of parameters P is chosen following the model we apply to compute Ki on each216

fracture Fi. A common approach used in the applications, [27], is to define a three-217

dimensional stochastic field K : D×Ω→ R and the distribution of Ki(ω) is computed218

as the mean value Ki(ω) := 1
|Fi |

∫
Fi
K(x, ω) dx. According to geological measurements,219

K(x, ω) may follows the law K(x, ω) = bL(x,ω), where b > 1 is a constant and L : D ×220

Ω→ R is a stochastic field with measurable mean value E[L] : D→ R and covariance221

function CL : D × D → R. Assuming CL continuos on its domain, the Karhunen-222

Loève decomposition of L can be applied, see [28, 29], as follows L(x, ω) = E[L](x) +223 ∑∞
n=1
√
λnϕn(x)Yn(ω), where (λn, ϕn) is the eigenvalue-eigenvector pair of the compact224

operator Tϕ =
∫

D CL (z, ·)ϕ(z) dz and Yn are mutually uncorrelated random variables225

with E[Yn] = 0 and E[Y2
n ] = 1. As in [29], we consider CL (x, z) = exp

(
−
‖x−z‖22
γ2

)
,226

being γ the measure of the correlation length and Yn uniformly distributed; hence Yn ∼227

U(−
√

3,
√

3) =
√

3(2Ỹn−1), with Ỹn ∼ U(0, 1). Finally, we define P :=
∏P

p=1[0, 1] ⊂228

RP and we truncate the K.-L. series to the sum of P terms obtaining LP : D ×P → R229

defined as LP(x; µ) := E[L](x) +
∑P

p=1

√
λpϕp(x)µp.230

Therefore, we introduce KP(x; µ) = bLP(x;µ) : D ×P → R and for each i ∈ I the231

conductivity parameter map Ki,P : P → R becomes232

Ki,P(µ) :=
1
|Fi|

∫
Fi

KP(x; µ) dx. (39)

This definition allows us to show the µ-affine, or µ-separable form of the parametric lin-233

ear system (38): replacing the constant α introduced in (21) with a positive parametric234
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function α : P → R+ chosen arbitrarily, we have for each µ ∈P235

Mδ(µ) = Mc
δ +α(µ)MSδ +(α2(µ) + 1)MGh

F

δ +(α2(µ) − 1)MGh
S

δ +
∑
i∈I

Ki,P(µ)MF ,iδ ,

fδ(µ) = f c
δ − α(µ) f Sδ −

∑
i∈I

Ki,P(µ) f F ,iδ .
(40)

The following matrices in R(2N
F

+NS)×(2N
F

+NS) are defined as

Mc
δ :=

 0 0 0
0 Gu −BT

0 −B 0

 ,MF ,iδ :=


0 0 AT

F ,i
0 0 0

AF ,i 0 0


MSδ :=

 0 −Bh AT
S

−Bu 0 0
AS 0 0

 ,MGh
F

δ :=

 Gh
F

0 0
0 0 0
0 0 0

 ,MGh
S

δ :=

 Gh
S

0 0
0 0 0
0 0 0


and the right-hand-side vectors in R(2N

F
+NS) are defined as f c

δ := (0, 0, q)T , f Sδ :=236

(0, 0,AD
S

hD)T and f F ,iδ := (0, 0,AD
F ,i)

T . Block-diagonal matrices AS := diag(ASi )i∈I ∈237

RN
F
×N
F and AD

S
:= diag(AD

Si
)i∈I ∈ RN

F
×N
F are defined applying (29); similarly, matri-238

ces AF ,i ∈ RN
F
×N
F and AD

F ,i ∈ R
N
F
×N
F are created as follow for each i ∈ I239

A?
F ,i :=


0 . . . 0
... A?

Fi

...

0 . . . 0

 , (41)

in which the symbol ? shall be left empty or shall substitute with D according to the240

matrix to define. The matrices Gu, Gh
F

, Gh
S

, B, Bh are defined in (31)-(33). Equation241

(40) is usually written in the classical affine compact form242

QM∑
q=1

θ
q
M (µ)Mq

δwδ(µ) =

Q f∑
q=1

θ
q
f (µ) f q

δ , (42)

where QM = I + 4, Q f = I + 2 and θq
M , θ

q
f : P → R are µ-dependent functions.243

4. The Reduction Strategy244

For the reduction of problem (37) we consider an aggregated trial space strategy245

to guarantee the stability of the reduced approximation, [17, 30, 31, 1]. As before, we246

use the same symbol to denote both the discrete functions and the vectors of its DOFs.247

Choosing Nµ ∈ R, we define for each µn ∈ P , n ∈ (1, . . . ,Nµ) the spaces VNh ,p
:=248

span{h(µn), p(µn)} ⊂ Vδ and WNu
:= span{u(µn)} ⊂ Wδ of dimension Nh,p = 2Nµ and249

Nu = Nµ respectively. Space VNh ,p
represents the “aggregated” space for the state and250

adjoint variables, introduced to recover the inf-sup condition of the reduced problem251

(4) required for the stability of the RB approximation, [31].252
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The reduction of equation (38) can be performed introducing the space XN :=
VNh ,p

×WNu
× VNh ,p

⊂ Xδ of dimension N = 2Nh,p + Nu and the matrix

V := diag(Vh,p ,Wu ,Vh,p ) ∈ R(2N
F

+NS)×N ,

with Vh,p ∈ R
N
F
×Nh ,p the column-wise collection of {ζn}n∈{1,...,Nh ,p }

orthonormal basis of253

VNh ,p
and Wu ∈ RNS×Nu the column-wise collection of {ξn}n∈{1,...,Nu } orthonormal basis254

of WNu
. Calling wN := (hN , uN , pN) ∈ XN we obtain the reduced problem255

VTMδ(µ)VwN(µ) = VT fδ(µ)⇔MN(µ)wN(µ) = fN(µ) (43)

in which we apply the Galerkin-RB approximation hypothesis, see [17] for further256

details. In conclusion, having defined a classical RB projection base on space XN , the257

whole RB methodology is available, such as POD or greedy algorithms for the selection258

of the RB-basis V. Moreover, the affine parametric dependence of the operators, proved259

in (42), allows us to use the offline / online decomposition in order to obtain the solution260

of the problem.261

4.1. DFN Error Estimates262

We introduce the matrix Xδ ∈ R
(2N

F
+NS)×(2N

F
+NS) to compute, given wδ = (h, u, p) ∈263

Xδ the norm264

‖wδ‖
2
Xδ

:=wT
δXδwδ =

∑
i∈I

|hi|
2
H1(Fi)

+ |pi|
2
H1(Fi)

+

∑
S m∈Si

(
‖hi|S m‖

2
L2(S m) + ‖pi|S m‖

2
L2(S m) +

∥∥∥um
i

∥∥∥2
H−1/2(S m)

) (44)

in which ‖·‖H−1/2(S m) : Wm
δ,i → R is approximated by

∥∥∥um
i

∥∥∥2
H−1/2(S m) =

∑
λ∈Tm

i
|λ|

∥∥∥um
i

∥∥∥2
L2(λ),265

with λ the element of the mesh T m
i chosen on S m in Fi. Recalling Ki,P in defini-266

tion (39) and choosing α2(µ) = Ki,P(µ) = I−1 ∑
i∈I Ki,P in (28), it is possible to show267

that ‖wδ‖Xδ
≈ α(µ) ‖ŵδ‖Xδ

, being ŵδ = (h, α(µ)−1u, p). The residual Rδ introduced268

in (8) becomes for the DFN optimization problem Rδ(wδ; µ) = Mδ(µ)wδ(µ) − fδ(µ)269

and the the inf-sup constant βδ(µ) defined in (6) is computed in the discrete opti-270

mization problem (37) as the smallest singular value σmin(X−
1
2

δ Mδ(µ)X
1
2
δ ). Finally,271

we introduce the a posteriori error estimator ∆δ(·; µ) involved in (13) for problem272

(37) as in [15]. Let T and e the elements and the edges of mesh Ti on fracture Fi,273

η2
H, i :=

∑
T
|T |2

Ki,P

∥∥∥qi + Ki,P∆hi

∥∥∥2
L2(T ) the residual estimator of the Darcy’s equation and274

η2
P, i :=

∑
T Ki,P |pi|

2
H1(T ) the estimator of the discontinuity of h between the fractures.275

Moreover, we introduce ξ2
U , i :=

∑
e
|e |

Ki,P

∥∥∥∥∥ [[
∂hi
∂ν̂m

i

]]
−ũi

∥∥∥∥∥2

L2(e)
the estimator for the approxi-276

mation of the flux through the edges of the mesh, where ũi := um
i − αhi|S m is non-zero277

only on e ∩ S m , ∅, ∀S m ∈ Si. Similarly, being T m
i the mesh of elements λ on278

each trace S m ∈ Si, we denote by ξ2
NC,m :=

∑
λ
|λ |

Ki,P

∥∥∥um
i − αhi|S m

∥∥∥2
L2(λ) the estimator for279
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(a) Solution with Ki = 10−2 (b) Example of KP, [µ1, µ2] = [2/3, 16/25]

Figure 2: FracTest - Overview

(a) Problem size

εδ N
F

NS

10−1 2,043 376
5 · 10−2 18,557 1,920

(b) Convergences Rates υe−ρN

Test εδ υ ρ

∆δ,N 10−1 1.9133·10−1 1.2675·10−1

∆N 10−1 1.3871·10−1 1.2847·10−1

∆δ,N 5 · 10−2 1.7179·10−1 1.1834·10−1

∆N 5 · 10−2 5.8893·10−2 1.1748·10−1

Table 1: Frac6 - Data

the non-conformity of the discretization, by ξ2
P,m :=

∑
λ
|λ |

Ki,P
‖pi|S m‖

2
L2(λ) the estimator280

for the hydraulic head induced by the unbalancing of fluxes on the mesh and by J̇2
m :=281 ∑

λ
|λ |(1+α)2

min(Ki,P,K j,P)

∥∥∥∥um
i + um

j − α(hi|S m + h j|S m )
∥∥∥∥2

L2(λ)
+
∑
λ

|λ |
min(Ki,P,K j,P)

∥∥∥hi|S m − h j|S m

∥∥∥2
L2(λ) the282

estimator of the functional minimization error. Collecting all the definitions the esti-283

mator turns out to be ∀µ ∈P284

∆2
δ(wδ; µ) :=

∑
i∈I

η2
H, i + η2

P, i + ξ2
U , i +

∑
S m∈Si

(
ξ2

NC,m + ξ2
P,m + J̇2

m

) . (45)

For the proof of (13) and further details of the definition of the quantities in (45) see285

[15, 22].286

5. Numerical Results287

For two different DFNs with growing complexity we perform the comparison of288

our estimator (Algorithm 2) with the classical greedy interpolation strategy proposed289

in [18] (Algorithm 1). Then, the RB certification is measured through the statistical290
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(a) ∆δ(·; µ)/ ‖wδ(µ)‖X
δ

(b) ‖wδ(µ)‖X
δ

(c) βδ(·; µ) (d) γδ(·; µ)

Figure 3: Frac6 - Interpolation with P = 2, I` = 3, εδ = 10−1. Black dots represent the sparse interpolation
grid

analysis of the error eδ,N on a random set of parameters STest ⊂P . The numerical tests291

are performed with relatively small DFNs because we focus on the validation of the292

proposed algorithm rather than on an efficient and robust implementation. The simula-293

tions for the resolution of the high-fidelity model are performed with the C++ software294

introduced in [12] applied to the optimization method of Section 3 and restricted to the295

serial case [32]. The post-processing analysis for the RBM theory provided in Section 4296

is implemented in the MATLAB software.297

5.1. Test 1 - DFN simple problem298

The first test is performed on a simple problem called Frac6, with I = 6 and M = 6.299

Figure 2a shows the geometry of the network and an example of the solution of the dis-300

crete problem (37) computed with Ki = 10−2 for all i ∈ I on an adaptive mesh. Two301

Dirichlet boundary conditions are imposed, namely a value of 10 in the bottom left302

fracture and a value of zero on the top right fracture; zero Neumann boundary condi-303

tions are required on the other borders and no forcing term is applied on each fracture.304

Figure 2b shows an example of the conductivity field KP with the DFN immersed;305

both the example and the following numerical tests are performed using P of dimen-306

sion P = 2 and taking the parameters of Conductivity field described in Section 4307
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equal to γ = 0.25, E[L] = −2 and b = 10, that can be realistic values as already stated308

in [29]. The two meshes used to solve the high fidelity problem are choosen by the309

adaptive method described in [22] and are kept fixed independent of the dimension N310

of the space XN . The adapted meshes are obtained solving the optimization problem311

with parameter Ki = bE[L] = 10−2 ∀i ∈ I, performing few adaptive iterations starting312

from a mesh with 100 DOFs and imposing two different values of the tolerance εδ (16)313

equal to 10−1 and 10−2. Table 1a shows the resulting size of the discrete problem in314

both the tests. Figures 3 and 4 show the interpolation of all the quantities used in the315

RBM offline computations in both the tests; the surfaces are generated starting from316

a Smolyak’s sparse grid [33] of level I` = 3, to mitigate the curse of dimensionality317

problem with higherP. A radial basis functions (RBF) interpolations of degree 5 of the318

relative a posteriori error ∆δ(·; µ)/ ‖wδ(µ)‖Xδ and of the norm ‖wδ(µ)‖Xδ are represented319

in Figures 3a-4a and in Figures 3b-4b. Finally, the discrete inf-sup constant βδ(·; µ) and320

the discrete continuity constant γδ(·; µ) are approximated with a least squares approxi-321

mation of degree 5 and reported in Figures 3c-3d and Figures 4c-4d. The computation322

of the βδ(·; µ) and γδ(·; µ) values in the interpolation points are performed as described323

in Section 4.1. Comparing Figure 3c and Figure 4c we can notice that the shape of the324

surfaces seems not to be influenced by the mesh size. Moreover, recalling (9), we can325

see that the effectivity index ηδ(·; µ) on the domain P in both cases is bounded by an326

average condition number κδ(·; µ) in the order of 105; this means that, even in this small327

and simple DFN, the classic RBM estimation ∆N(·, µ) can be quite inaccurate. Figure 6328

shows the convergences of both the greedy Algorithms 1 and 2 in which we impose329

εN = 10−8 and M = 100. Althought not required, in Algorithm 2, we compute also330

the classical RBM estimator ∆N(·; µ) for comparison reasons. Figure 5a shows the set331

SM used as input of both the algorithms and generated by a classic uniform tensorial332

P-grid generated from a 1D-Chebyshev grid of size 10. Focusing on the convergence333

obtained, by comparing Figure 6a and Figure 6b we can say again that the mesh size334

does not have relevant impacts on the convergence rate of the RB error eδ,N(·; µ) in both335

the greedy algorithms. Moreover, the curves maxµ∈SM ∆N/ ‖wN‖Xδ
in Figure 6 obtained336

by the two algorithms are almost overlapped, but the error estimator
∣∣∣∆δ,N − ∆δ,I

∣∣∣ /∆δ,I337

seems not strongly influenced by the high condition number κδ(·; µ). Therefore, the338

two algorithms are performing the choice of the reduced basis in a similar way, but339

Algorithm 2 relies on a more sharp stopping criterion. As suggested in Section 2 from340

the triangle inequality (16), we set εN . εδ in order to stop the greedy Algorithm 2341

as soon as possible without any loss of accurancy. In particular, the first test with342

εN . εδ = 10−1 comes to a good approximation with N between 10 and 20 and the343

second case with εN . εδ = 10−2 seems have an optimal stop at N between 20 and344

40. In Figure 7 we report the dimension N for different εN reached by Algorithm 1 and345

Algorithm 2 for the two considered values of εδ; the plots confirm the effectivenes of346

Algorithm 2.347

To validate the results of the greedy algorithms, we use the RBM spaceXN obtained348

to compare the online solution with the corresponding high fidelity solution on a trial349

set STest ⊆ [0, 1]2 (see Figure 5b) of size |STest| = 100 randomly generated with uniform350

distribution. Figure 8 shows for each εδ the real relative RB error
∥∥∥eδ,N

∥∥∥
Xδ
/ ‖wN‖Xδ

351

computed for each µTest ∈ STest on two N; we measure all the quantities used inside the352
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(a) ∆δ(·; µ)/ ‖wδ(µ)‖X
δ

(b) ‖wδ(µ)‖X
δ

(c) βδ(·; µ) (d) γδ(·; µ)

Figure 4: Frac6 - Interpolation with P = 2, I` = 3, εδ = 5 ·10−2. Black dots represent the sparse interpolation
grid
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Figure 5: Greedy Offline/Online set - P of dimension P = 2
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Figure 6: Convergence of Algorithm 1 and Algorithm 2 applied to Frac6. Legend: Algorithm 1
maxµ∈SM ∆N/ ‖wN‖X

δ
, Algorithm 2 maxµ∈SM ∆N/ ‖wN‖X

δ
, maxµ∈SM

∣∣∣∆δ,N − ∆δ,I
∣∣∣ /∆δ,I ,
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∥∥∥
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δ
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Figure 7: Frac6 - Legend: Convergence of Algorithm 1, Convergence of Algorithm 2
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(a) N = 36, εδ = 10−1
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(b) N = 36, εδ = 5 · 10−2
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(c) N = 76, εδ = 10−1
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Figure 8: Frac6 - RBM Online, |STest | = 100. Legend: ∆N/ ‖wN‖X
δ
,

∥∥∥eδ,N
∥∥∥
X
δ
/ ‖wN‖X

δ
,∣∣∣∆δ,N − ∆δ,I

∣∣∣ /∆δ,I , ∆δ,I/
∥∥∥wδ,I

∥∥∥
X
δ

greedy algorithms in order to compare the ability of the estimators to tackle the real353

error eδ,N . Relative estimator ∆δ,I/
∥∥∥wδ,I

∥∥∥
Xδ

of error eδ is also reported as a reference354

value for comparisons. As we expect, from the plots we can see that the relative classic355

RBM estimation ∆N(·; µ) is far from the relative error even in this small case; on the356

other hand the new estimator proposed seems to be very close to the value expected.357

We shall remark that the estimator is not completely above or under the RBM error as358

we neglect the constants C∗ and C∗ in (15). From the very small distance between the359

curves we see in the plots, we can say that this assumption seems appropriate.360

Figure 9 reports the average relative RBM error
∥∥∥eδ,N

∥∥∥
Xδ
/ ‖wN‖Xδ

measured on the361

RBM online tests at different RB space size N, with its standard deviations; classic362

RBM estimator is also reported. Notice how the curve of the a posteriori error ∆δ,I363

related to the RB solution norm ‖wN‖Xδ
becomes constant increasing N, thanks to the364

convergence of the RB solution to the discrete one wδ. We can say that the results365

obtained on the trial set are compliant to the one depicted in Figure 7 in all the tests366
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Figure 9: Frac6 - RBM Online, |STest | = 100. Legend: avg
∥∥∥eδ,N

∥∥∥
X
δ
/ ‖wN‖X

δ
, avg ∆N/ ‖wN‖X

δ
,

avg ∆δ,N/ ‖wN‖X
δ

performed. Moreover, the plots corroborate that no relevant differences can be observed367

comparing the corse mesh with respect to the finer one . To conclude the analysis, we368

report in Figure 10 and in Table 1b the convergence rates computed on the RBM error369 ∥∥∥eδ,N
∥∥∥
Xδ

obtained on the trial set STest; we remark that the symbol ∆N identifies the370

estimator of Algorithm 1, whereas ∆δ,N identifies the estimator of Algorithm 2. We can371

see that an exponential convergence υe−ρN typical of the Kolmogorov N-width decay of372

the elliptic equations is obtained also with the Algorithm 2. Finally, from Table 1b we373

can assert the rate of convergence ρ in the classical algorithm and in the new algorithm374

are comparable.375

5.2. Test 2 - Real DFN376

The second test is performed on an higher complexity stochastically generated377

DFN, called Frac20, with I = 20 and M = 28. The network is created with random378

probability distribution functions concerning size, position and orientation of fractures379

taken from the real data available in [34]. Even with a small number of fractures, in380

Figures 11a-11c we can appreciate the complexity of the geometry from three different381

point of view and an example of the solution of the discrete problem (37) computed382

through the model proposed with Ki = 10−2 for all i ∈ I. Focusing on Figure 11b, we383

impose a Dirichlet boundary condition of value 1 on the left side of the network and of384

value zero on the right part; always zero Neumann conditions are imposed on the other385

borders and no forcing term is present. As for the Frac6 test, Figure 11d shows a sam-386

ple of the conductivity field KP with the DFN immersed; we keep the same parameter387

for the stochastic generation, therefore we use P = 2, γ = 0.25, E[L] = −2 and b = 10.388

We use a fixed adaptive mesh generated in the previous examples with εδ = 10−3 and389

Table 2a shows the resulting size of the discrete problem. From Figures 11 we can ap-390

preciate how the adaptive non-conforming method increases the number of mesh cells391

around the traces.392
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Figure 10: Frac6 - Convergences Curves υe−ρN

(a) View 1 - Solution with Ki = 10−2 (b) View 2 - Solution with Ki = 10−2

(c) View 3 - Solution with Ki = 10−2
(d) Example of KP, [µ1, µ2] = [2/3, 16/25]

Figure 11: Frac20 - Overview
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(a) ∆δ(·; µ)/ ‖wδ(µ)‖X
δ

(b) ‖wδ(µ)‖X
δ

(c) βδ(·; µ) (d) γδ(·; µ)

Figure 12: Frac20 - Interpolation withP = 2, I` = 3, εδ = 10−3. Black dots represent the sparse interpolation
grid

Figure 12 shows the interpolation of all the quantities used in the RBM offline com-393

putations; again, a Smolyak’s sparse grid quadrature rule of level I` = 3 is used. RBF394

interpolation of degree 5 generates Figure 12a and Figure 12b; least squares approxi-395

mation of degree 5 is used for Figure 12c and Figure 12d. Comparing Figures 12a-12d396

to Figures 3a-3d or to Figures 4a-4d it is possible to observe that each DFN has its397

own dependency from the parameter set P . Moreover, recalling (9), we can see that398

the average κδ(·; µ) is above 1013, therefore we expect the the classical RBM estimator399

∆N to be not reliable. Plots in Figure 13 shows the convergence of Algorithm 1 and400

Algorithm 2 obtained with εN = 10−8 and M = 100. The classical RBM estimator401

∆N(·; µ) is reported for both the algorithms. As expected the classic RB estimator does402

not provide reliable information for stopping the iterations, on the other hand the new403

estimator seems to be effective. Moreover, Figure 13b clearly shows the effectivenes404

of Algorithm 2 to produce the RB space with a small value of N. In addition, in Fig-405

ure 13a we observe a similar rate of convergence for the quantity ∆N(·; µ). Taking406

εN . εδ = 10−3 to stop the greedy Algorithm 2 we can say that an acceptable con-407

vergence of the algorithm is performed with N between 60 and 80. To confirm these408

statements, we test the RBM space XN obtained as done for the Frac6 test, evaluating409

the online solution on a trial set STest ⊆ [0, 1]2 of size |STest| = 100 randomly generated.410
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Figure 13: Convergence of Algorithm 1 and Algorithm 2 applied to Frac20, εδ = 10−3

(a) Problem size

εδ N
F

NS

10−3 25,880 2,922

(b) Convergences Rates υe−ρN

Test εδ υ ρ

∆δ,N 10−3 1.4598·102 1.1664·10−1

∆N 10−3 1.4612·102 1.1267·10−1

Table 2: Frac20 - Data

Figure 14 displays all the quantities measured for each µTest ∈ STest on two N, including411

the real distance between the RBM solution and the discrete one
∥∥∥eδ,N

∥∥∥
Xδ
/ ‖wN‖Xδ

. The412

relative classic RBM ∆N(·; µ) is far from the error, on the other hand the alternative es-413

timator proposed is very close to the real error values. Again, the assumption to neglect414

the constants C∗ and C∗ is still reliable, as the estimator
∣∣∣∆δ,N − ∆δ,I

∣∣∣ /∆δ,I is of the same415

size as the relative error
∥∥∥eδ,N

∥∥∥
Xδ
/ ‖wN‖Xδ

. To conclude the analysis, in Figure 15 we416

can see how the convergence rate of the average RB error eδ,N(·; µ) measured matches417

with the values obtained in Figure 13b; again, the curve related to the DFN a posteri-418

ori estimator ∆δ,N(·; µ) becomes constant when N grows, thanks to the convergence of419

the RB solution wN to the high fidelity one wδ. Figure 15b and Table 2b confirm the420

exponential convergences υe−ρN of the greedy method also with the stochastic DFN.421

We conclude the numerical tests reporting in Figure 16 two examples of the solution422

obtained with the RBM algorithm.423

6. Conclusion424

A simple and robust RBM greedy approach is proposed for the creation of a re-425

duced basis space to approximate both the hydraulic head and the flux distribution on426
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Figure 14: Frac20 - RBM Online, |STest | = 100, εδ = 10−3. Legend: ∆N/ ‖wN‖X
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Figure 15: Frac20 - Test of RBM Online, |STest | = 100, εδ = 10−3

(a) µ = [0.080862; 0.77724] (b) µ = [0.74631; 0.010337]

Figure 16: Frac20 - Solutions obtained with RBM
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stochastic Discrete Fracture Networks. A smart stopping criterion for the greedy ap-427

proach is also suggested to control the RBM space dimension taking the tolerance of428

the greedy algorithm in the same order of magnitude of the tolerance used for the a429

posteriori error estimate of the high fidelity solution. The algorithm relies on the a pos-430

teriori error estimation performed on the PDE-constrained optimization problem and it431

can be extended to a more fast and scalable solution by exploiting the parallel nature432

of non conforming mesh on each fracture of the network. Numerical tests verify the433

lower reliability of the classical RB a posteriori analysis and establish the validity of434

the alternative estimator showing the equivalence of the convergence rates compared435

to the classical RB methods.436
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