
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A robust VEM-based approach for flow simulations in poro-fractured media / Berrone, S.; Borio, A.; D'Auria, A.; Scialo,
S.; Vicini, F.. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. -
ELETTRONICO. - (2021), pp. 1-31. [10.1142/S0218202521500639]

Original

A robust VEM-based approach for flow simulations in poro-fractured media

Publisher:

Published
DOI:10.1142/S0218202521500639

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2949154 since: 2022-01-14T11:43:54Z

World Scientific



July 7, 2021 16:6 WSPC/INSTRUCTION FILE ARTicle

Mathematical Models and Methods in Applied Sciences
c© World Scientific Publishing Company

A robust VEM based approach for flow simulations in poro-fractured

media∗

Stefano Berrone†

Politecnico di Torino, Dipartimento di Scienze Matematiche
c.so Duca Degli Abruzzi, 24, 10122, Torino, Italy

stefano.berrone@polito.it

Andrea Borio

Politecnico di Torino, Dipartimento di Scienze Matematiche
c.so Duca Degli Abruzzi, 24, 10122, Torino, Italy

andrea.borio@polito.it

Alessandro D’Auria

Politecnico di Torino, Dipartimento di Scienze Matematiche

c.so Duca Degli Abruzzi, 24, 10122, Torino, Italy

alessandro.dauria@polito.it

Stefano Scialò
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A Virtual Element Method (VEM) based approach is proposed for the simulation of flow

in fractured porous media. The method is based on a robust meshing strategy, capable

of producing conforming polyhedral meshes of intricate geometries and relies on the
robustness of the VEM in handling distorted and elongated elements. Numerical tests in

challenging configurations are presented and discussed, also in a time-dependent setting

to show the viability and the effectiveness of the method.
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1. Introduction

Despite the recent advancements in terms of availability of computational resources,

the effective simulation of underground phenomena is still a challenging task, thus

stimulating the research for the development of innovative numerical schema. Diffi-

culties mainly arise from the geometrical complexity of the involved computational

domains, aggravated by the uncertain nature of input data on the subsoil, which de-

mand for repeated simulations to derive reliable statistics on the selected quantities

of interest.25,47

In the present work we consider the computation of the hydraulic head in a

fractured porous medium, described by means of the Discrete Fracture and Ma-

trix2,4, 5, 21,23,30,49 (DFM) model. Fractures are thin regions in the domain char-

acterized by geological properties different from those of the surrounding medium.

When the domain size is much larger than the fracture thickness, simplified mod-

els are introduced to represent the fractures at an affordable computational cost.

In DFM models (DFMs) fractures are dimensionally reduced to planar objects in

the three dimensional space and some coupling conditions are introduced to close

the problem at fracture-fracture intersections, often called traces, and at fracture-

matrix interfaces.40 Fractures are randomly generated according to probability dis-

tributions on their position, orientation, density and hydraulic properties. DFM

models constitute an alternative to homogenization techniques,48 dual and multi-

porosity models,27 or Embedded Discrete Fracture Matrix (EDFM) models;39,41

DFMs have the advantageous characteristic of providing an explicit representation

of the underground fracture network, which might be critical for applications where

flow directionality and characteristic flow paths might play a relevant role, as for

geothermal applications, geological waste storage, water resources monitoring, or in

Oil&Gas enhanced production. On the other hand, due to the random nature of the

data, DFM models still present complex and multi-scale geometries, now due to the

presence of fractures forming narrow angles and forming intersections which span

several orders of magnitude. A partially simplified problem can be obtained by ne-

glecting the porous matrix in the simulations, which can provide acceptable results

when the matrix has a permeability much lower than the fractures; this originates

the so-called Discrete Fracture Network model (DFN),29,31,42,46 which however still

present the complexities related to the presence of a randomly generated fractures.

Anyway, in both DFM and DFN simulations, robust and efficient numerical tools

to handle severe geometrical configurations, are of paramount importance.

In standard approximation techniques the imposition of interface conditions for

DFM/DFN simulations requires the use of a mesh conforming to the interfaces; on

the other hand, the use of non conforming meshes requires unconventional numer-

ical schema for the treatment of non-conformities.34 Effective conforming meshing
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strategies can be used with standard finite element or finite volume schema,38,43,50

or the problem can be reduced to the interfaces44,45 by removing the unknowns in

the interior of the fractures. Non conforming meshes can be handled instead by in-

troducing XFEM based approximations32,35 or through unconventional domain de-

composition schemes.18–22 Methods based on polytopal meshes are recently gaining

increasing popularity for DFM/DFN simulations, given the possibility of an easier

generation of conforming meshes using elements with general polygonal/polyhedral

shapes. There are several examples of such polytopal methods for instance Mimetic

Finite Difference (MFD) method,3,5 Hybrid High Order (HHO) methods26 and

Virtual Element Methods (VEM).10–14,17,28,33,36

In the present work a time-dependent Darcy law is solved in complex DFM

models by means of the Virtual Element Method (VEM).1,7–9 Continuity of the

hydraulic head and flux balance is assumed at fracture-fracture intersections and

fracture-matrix interfaces. Exploiting the robustness of the VEM in handling dis-

torted elements,16 a conforming mesh is built splitting an original regular non-

conforming mesh into a mesh not crossing the interfaces. This is achieved through

an efficient meshing strategy which builds a tree of each mesh cell, where children

cells are originated by the parent cell by a cut processes of the cell itself or of part

of its boundary. After the discretization, a problem with symmetric positive definite

matrix needs to be solved at each time-step thus allowing to efficiently solve ex-

tremely complex configurations. This meshing strategy is here proposed for the first

time for DFM simulations in conjunction with a primal formulation of the problem

and for time-dependent simulations. Further, the present work deals with realis-

tic problems where the use of polytopal methods is fundamental, since polytopal

meshes naturally arise from the domain itself. For this reason a mesh generation

process tailored to the specific problem is presented and discussed.

The paper is organized as follows: Section 2 describes the continuous non-

stationary problem on the porous matrix and the fracture network; Section 3 and

Section 4 are devoted to introduce the conforming mesh approach and the VEM

discretization space used on the numerical results proposed in Section 5.

2. Problem description

Let us now formulate the DFM problem to be solved in a polyhedral block of

porous material, denoted as D with boundary ∂D, crossed by a fracture network

Ω, as the one shown in Figure 1. The network Ω is given by the union of convex

planar polygons Fi representing the fractures immersed in the porous medium, i.e.,

Ω ⊂ D =
⋃NF
i=1 Fi. The boundary of Ω is given by the union of the boundaries of

the single fractures: ∂Ω =
⋃NF
i=1 ∂Fi. Fractures might intersect forming segments,

or traces, here denoted by Sm, for m = 1, . . . , NS . For simplicity of exposition, we

assume that each trace is given by the intersection of exactly two fractures, such

that an injective map σ : [1, NS ] 7→ [1, NF ] × [1, NF ] can be defined between a

trace index and a couple of fracture indexes σ(m) = {i, j} being Sm = F̄i ∩ F̄j .
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D̃
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(a) D and Ω
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(b) Γ±i and n±Γi

Fig. 1: Example DFM and nomenclature

The boundary ∂D is split in a Dirichelet part ΓD, with |ΓD| 6= 0 and a Neumann

part ΓN , with ΓD∩ΓN = ∅, where Dirichlet and Neumann boundary conditions are

prescribed, respectively. The same boundary conditions apply to the portions of the

fracture network boundary that intersects ΓD and ΓN , whereas internal boundaries

of Ω, i.e., such that |∂Ω ∩ ∂D| = 0, are considered as no-flow boundaries.

We will denote by D̃ = D\ Ω̄ the original block D without the internal fractures
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and, similarly, by F̃i each fracture without the intersection segments with other

fractures. Fractures coincide with portions of the boundary of the domain D̃, and

we call Γ±i the two sides of the boundary of D̃ around Fi, see Figure 1. The outward

pointing unit normal vector to Γ±i is n±Γi and a jump operator

[[v · n]]Γi :=
(
v|Γ+

i
· nΓ+

i

)
−
(
v|Γ−i

· nΓ+
i

)
is defined across Γi for sufficiently regular vector functions v in D̃. Similarly, having

niSm the outward unit normal vector to Sm on the fracture Fi plane,

[[wi · n]]Sm :=
(
wi|S+

m
· niSm

)
−
(
wi|S−m · n

i
Sm

)
is the jump operator across the two sides S±m of the portion of the boundary of F̃i
for sufficiently regular functions wi defined on F̃i. The hydraulic transmissivity in

D̃ is the uniformly positive definite tensor KD : R3 → R3×3, whereas the uniformly

positive definite tensor K
i
: R2 → R2×2 denotes the in-plane fracture transmissivity.

Finally, ∇ represents the three-dimensional gradient in D̃ whereas ∇i is the tangen-

tial gradient on the plane of fracture Fi. The problem of the unsteady distribution

of the hydraulic head H in D can be then stated in strong formulation as:

∂HD
∂t
−∇ ·

(
KD∇HD

)
= s in D̃ × (0, T ] (2.1)

∂Hi

∂t
−∇i ·

(
K
i
∇iHi

)
= −[[KD∇HD · n]]Γi in F̃i × (0, T ], i ∈ [1, NF ] (2.2)

(HD)|Γ±i
= Hi, i ∈ [1, NF ] (2.3)

Hi|Sm = Hj|Sm , m ∈ [1, NS ], {i, j} = σ(m) (2.4)

[[K
i
∇iHi · n]]Sm = −[[K

j
∇jHj · n]]Sm , m ∈ [1, NS ], {i, j} = σ(m)(2.5)

H = H0 in D, t = 0 (2.6)

H = 0 on ΓD × (0, T ] (2.7)

KD∇H · nΓN
= 0 on ΓN × (0, T ] (2.8)

where HD is the restriction of the hydraulic head to D̃ and Hi the hydraulic head

on Fi, i = 1, . . . , NF ; s is a volumetric source term and time t ranges in the interval

(0, T ], T > 0 with H = H0 the initial condition. For simplicity, homogeneous

Dirichlet and Neumann boundary conditions are used, the extension to the more

general case being immediate.

Let us now derive the weak formulation of problem (2.1)-(2.8). We will denote

by (·, ·)Ω the L2-scalar product in Ω and by (·, ·)Fi the counterpart on Fi and

assume KD ∈ L∞(D), K
i
∈ L∞(Fi), ∀i ∈ {1, . . . , NF }. To this end we introduce

the function space V (D):

V (D) =
{
v ∈ H1

0(D) : vi := trFiv ∈ H1
0,ΓD (Fi), ∀i = 1, . . . , NF ,

trSmvi = trSmvj , ∀m = 1, . . . , NS , i, j = σ(m)}
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thus containing functions in H1
0 of the whole domain D whose trace on each fracture

is a function in H1
0,ΓD

(Fi) ∀i = 1, . . . , NF , which represents the subspace of H1(Fi)

of functions having zero trace on ∂Fi∩ΓD. Consequently, functions in V (D) satisfy

the coupling conditions (2.3), (2.4) and (2.5) at the interfaces. We then introduce

the space:

V =

{
v ∈ V (D) :

∫ T

0

‖v‖2V <∞ and

∫ T

0

∥∥∥∥∂v∂t
∥∥∥∥2

V ′
<∞

}
.

The weak formulation of the problem at hand thus reads: find H ∈ V such that, for

all v ∈ V (D)(
∂H

∂t
, v

)
D

+

NF∑
i=1

(
∂Hi

∂t
, vi

)
Fi

+
(
KD∇H,∇v

)
D

+

NF∑
i=1

(
K
i
∇iHi,∇ivi

)
Fi

= (s, v)D .

(2.9)

By classical arguments, it can be shown that problem (2.9) is well posed, since V (D)

is a Hilbert space with the scalar product:21,23

a (v, w) :=
(
KD∇v,∇w

)
D

+

NF∑
i=1

(
K
i
∇iwi,∇ivi

)
Fi
. (2.10)

3. Domain discretization

We now describe how to build a global conforming mesh TD on the DFM do-

main D. Introducing the notation used in the following, given a generic mesh

T = {CT ,FT , ET ,VT }, CT denotes the set of the mesh elements, FT is the set

of the faces forming the boundaries of mesh cells, ET is the set of face boundary

edges and VT collects all the mesh vertices. The first step to build TD consists

in the generation of a mesh of the closure of domain D made of simple elements,

such as cubes or tetrahedra, independently of the embedded fracture network, see

for example Figure 6. Let us denote this initial mesh as T 0
δ = {C0

Tδ ,F
0
Tδ , E

0
Tδ ,V

0
Tδ},

where δ ∈ R is the mesh parameter used to control the size of the elements of the

mesh, as for example the maximum diameter of the cells. This initial mesh will be

then cut with NF steps into a mesh T NFδ = {CNFTδ ,F
NF
Tδ , E

NF
Tδ ,V

NF
Tδ } made of general

polyhedra conforming to the interfaces.

Cell Identification

According to the arbitrary ordering of the fractures in the network Ω, let us first

consider fracture F1 and let us call πF1
the plane on which F1 lies. Let further

FTδ,F1
⊂ F0

Tδ be the set of faces f? having an intersection with F1 of non-vanishing

measure, i.e., FTδ,F1
= {f? ∈ F0

Tδ : |f?∩F1| > 0}, for example the four lateral faces

of the cell in Figure 2a or the front and right face of cell in Figure 2b. A set of

mesh cells CTδ,F1 ⊂ C0
Tδ is then created, containing all the cells having at least one

boundary face belonging to FTδ,F1
.
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Fi

γ⋆

c⋆1

c⋆2

(a) Mesh cell cut along a fracture plane with
γ? ⊂ Fi

Fi

γ⋆
1

γ⋆
2 γ⋆

3

γ⋆
4

c⋆1

c⋆2

(b) Mesh cell cut along a fracture plane with
γ? 6⊂ Fi, and subsequent splitting of γ?

Fi

f1 f2

c

cn

(c) Mesh elements cn neighboring cut cells c
are updated with the references to the newly
generated mesh objects.

Fig. 2: Mesh generation process

Cutting

Subsequently, each cell c? ∈ CTδ,F1
is split along the fracture plane πF1

into two sub-

cells c?1 and c?2 (see Figure 2a). New edges and new vertices are created accordingly.

Please note that, in case the fracture F1 does not entirely cross the cell c?, the

common face of c?1 and c?2, γ? = c?1 ∩ c?2 = c? ∩ πF1
may be only partially inside

fracture F1 (see Figure 2b). In case the cell c? has a face on the plane πF1 , either c?1
or c?2 might be a degenerate polyhedron. The degenerate polyhedron is discarded.
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(a) Detail of a cell (b) Focus on different sizes of cells

(c) A cell with high aspect ratio (d) Detail on mesh cell neighbors

Fig. 3: Example of 3D VEM cells

Fig. 4: Choice of degrees of freedom to enforce solution continuity at the interfaces

Mesh update

The newly generated cells, faces and edges produced by the cut are inserted in the

mesh T 1
δ . When a face or an edge of a cell is replaced by two new faces or edges
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in the cutting phase, the corresponding changes also affect the neighbouring cells,

along with the newly generated vertices, see Figure 2c.

Mesh conforming

The intersection γ? = c?1 ∩ c?2 is added to a set GF1
, such that, after all the cells

in CTδ,F1 are processed, GF1 contains a set of polygons all lying on plane πF1 ; some

of these polygons might be partially outside the fracture, see Figure 2b. Polygons

in GF1 completely internal to fracture F1 already belong to the set F1
Tδ , along with

the newly generated edges and vertices in E1
Tδ and V1

Tδ , respectively. Then each

face γ? ∈ GF1
partially outside F1 is split into p convex sub-polygons, such that

γ?1 ≡ γ? ∩ F1 and γ? =
⋃p
ζ=1 γ

?
ζ (Figure 2b). The polygon γ? and its edges are

removed from T 1
δ and polygons γ?ζ , ζ = 1, . . . , p and the newly generated edges and

vertices are added to F1
Tδ , E

1
Tδ and V1

Tδ , respectively, resulting in the final mesh T 1
δ .

The process described to produce T 1
δ from T 0

δ is then repeated for all the frac-

tures Fi, with i ∈ [2, NF ] obtaining T NFδ = TD at the end of NF steps. We denote

by TFi ⊂ F
NF
Tδ the set of faces f such that f ⊆ Fi.

In Figure 3 we show four examples of 3D VEM cells of a mesh TD generated

with the algorithm described above; in particular, from Figure 3b and Figure 3d we

can appreciate the complexities in the geometry of the cells and the different sizes

of neighboring cells which can be produced. Quantitative examples on mesh char-

acteristics are provided in the presentation of the numerical examples of Section 5

Remark 3.1. To optimize memory consumption in the cutting process, each mesh

is represented as a forest, being each original element in T the root of a tree.. Each

time a polyhedron is cut, it produces two leaves of the tree and each time it is

modified, for example by splitting one of its faces, it produces one leaf. Clearly, if a

polyhedron is not modified during the process, it is itself considered as a leaf. This

way, given a intermediate mesh T nδ of the recursive algorithm, the mesh T n+1
δ is

the mesh obtained collecting all the leaves that are found after applying the above

procedure. Furthermore, notice that once the algorithm is applied to T nδ , all the

geometric objects that are not leaves of the tree are no more necessary and thus

can be safely removed.

Remark 3.2. We note that the description provided in this section is not totally

conforming to the implementation that, for efficiency reasons, is slightly more in-

volved introducing a more precise classification of the intersections with the fracture

that is used reduce the number of operations on the data structures.

Remark 3.3. In order to reduce the computational cost to build the set FnTδ,Fi =

{f? ∈ FnTδ : |f? ∩Fi| > 0} we generate a starting simplicial mesh with informations

of the neighborhood. With these information we do not need to build all the set

FnTδ,Fi , but we need only to find one face f ∈ FnTδ for which is true |f?∩Fi| > 0 and

then we find the other ones moving in the neighbourhood of the intersected cells.
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4. Problem discretization

Here the discrete version of (2.9) is derived, based on a lowest order conforming

Virtual Element Method approximation in primal form.

Let TD be a conforming mesh defined as described in Section 3 and let c ∈ TD
be a polyhedron and f ∈ Fc one of its faces. We denote by P̂1(f) the space of

polynomials of degree 1 with respect to the reference system tangential to f , and

we introduce the linear projection operator Π∇,f1 : H1(f) → P̂1(f), defined such

that, ∀v ∈ H1(f):7
(
∇Π∇,f1 v,∇p

)
f

= (∇v,∇p)f ∀p ∈ P̂1(f) ,∫
∂f

Π∇,f1 v =
∫
∂f
v .

(4.1)

The local VEM space on f is defined, following Ref. 7, using the so called “enhance-

ment” property, as follows:

Vfδ =
{
v ∈ H1(f) : ∆v ∈ P̂1(f) , v ∈ C0(∂f) , tr∂fv ∈ P̂1(e)∀e ∈ Ef ,

(v, p)f =
(

Π∇,f1 v, p
)
f
∀p ∈ P̂1(f)

}
,

(4.2)

where P̂1(e) denotes the spaces of polynomials of degree 1 on each edge e in the

set of face boundary edges Ef , and differential operators are defined with respect

to a reference system tangential to f . The scalar product of functions in Vfδ against

polynomials in P̂1(f) can be computed by means of the projection Π∇,f1 and def-

inition (4.2). In turn, the computation of Π∇,f1 v can be performed knowing the

analytical expression of v only on the boundary of f , using definition (4.1) and the

Gauss-Green formula. Also, the L2(f)-projection of the gradient of a function in Vfδ ,

Π0,f
0 ∇ : Vfδ →

[
P̂0(f)

]2
can be readily computed starting from the values of v on

the boundary of f , since ∇ · q = 0 ∀q ∈
[
P̂0(f)

]2
, and then, applying Gauss-Green

formula, we get:

∀v ∈ Vfδ ,
(

Π0,f
0 ∇v, q

)
=

1

|f |

∫
f

∇v · q =
1

|f |

∫
∂f

v(q · n), ∀q ∈
[
P̂0(f)

]2
. (4.3)

Similarly, let P1(c) be the set of polynomials of degree 1 on a polyhedron c ∈
TD and let Π∇,c1 : H1(c) → P1(c) be the polynomial projection operator such that

∀v ∈ H1(c) 
(
∇Π∇,c1 v,∇p

)
c

= (∇v,∇p)c ∀p ∈ P1(c) ,∫
∂c

Π∇,c1 v =
∫
∂c
v .

(4.4)

We define the following local VEM space on c using again an “enhancement” prop-

erty:

Vcδ =
{
v ∈ H1(c) : ∆v ∈ P1(c) , trfv ∈ Vfδ ∀f ∈ Fc

(v, p)c =
(

Π∇,c1 v, p
)
c
∀p ∈ P1(c)

}
.

(4.5)
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To compute the Π∇,c1 projection of a function v ∈ Vcδ we can use definition (4.4) and

apply the Gauss-Green formula, thus resulting in the computation of an integral on

the boundary of c. Since trfv ∈ Vfδ ∀f ∈ Fc, ∀v ∈ Vcδ , the boundary integral can

be computed through the knowledge of v on the boundary of each face of c (see

Ref. 6 for details).

The above considerations imply that all projections are computable knowing

only the analytical expression of basis functions on the mesh skeleton. Thus, we

can choose as degrees of freedom on Vcδ the values of a function at the vertices of c,

knowing that each VEM function is a linear polynomial on each edge.

Moreover, we define the L2(c)-orthogonal constant projection of the gradient of

a function v ∈ Vcδ , denoted by Π0,c
0 ∇ : Vcδ → [P0(c)]

2
, such that

∀v ∈ Vcδ , Π0,c
0 ∇v =

1

|c|

∫
c

∇v . (4.6)

This projection is computable resorting, once again, to the Gauss-Green formula

and performing integrals of basis functions on faces. Finally, exploiting the last

property in (4.5), we can also compute the L2(c)-projection of VEM functions onto

constants, Π0,c
0 : Vcδ → P0(c), such that

∀v ∈ Vcδ , Π0,c
0 v =

1

|c|

∫
c

v . (4.7)

For each c ∈ TD, let acδ : Vcδ × Vcδ → R be the bilinear form defined as

∀u, v ∈ Vcδ , acδ (u, v) =
(
KDΠ0,c

0 ∇u,Π
0,c
0 ∇v

)
c

+ Sc
(
u−Π∇,c1 u, v −Π∇,c1 v

)
,

(4.8)

where Sc is a bilinear form defined in such a way that

∃α, β > 0: ∀u ∈ Vcδ , α
(
KD∇u,∇u

)
c
≤ acδ (u, u) ≤ β

(
KD∇u,∇u

)
c
. (4.9)

A typical choice for Sc is

∀u, v ∈ Vcδ , Sc (u, v) = %c

∥∥∥KD∥∥∥L∞(c)

#Vcδ∑
i=1

dofci (u) dofci (v) . (4.10)

denoting by dofci (·) the operator selecting the i-th degree of freedom of Vcδ and by

%c the cell diameter.

Similarly, for each face f lying on a fracture Fi, we define afδ : Vfδ × V
f
δ → R

such that

∀u, v ∈ Vfδ , afδ (u, v) =
(
K
i
Π0,f

0 ∇u,Π
0,f
0 ∇v

)
f

+ Sf
(
u−Π∇,f1 u, v −Π∇,f1 v

)
,

(4.11)

where Sf must be chosen such that

∃α, β > 0: ∀u ∈ Vfδ , α
(
K
i
∇u,∇u

)
f
≤ afδ (u, u) ≤ β

(
K
i
∇u,∇u

)
f
. (4.12)
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As done for the stabilization form for polyhedra, we denote by doffi (·) the dof-

operator on Vfδ (the value at the i-th vertex of f) and choose

∀u, v ∈ Vfδ , Sf (u, v) =
∥∥∥K

i

∥∥∥
L∞(f)

#Vfδ∑
i=1

doffi (u) doffi (v) . (4.13)

To discretize terms involving time derivatives, let P denote a generic polytope

being either a polyhedron in TD or a face lying on a fracture. We formally define

the bilinear form mP
δ : VPδ × VPδ → R such that

∀u, v ∈ VPδ , mP
δ (u, v) =

(
Π0,P

0 u,Π0,P
0 v

)
P

+ %dPS
P
(
u−Π∇,P1 u, v −Π∇,P1 v

)
,

(4.14)

where d is the spatial dimension of the polytope (can be either 2 for polygons, or 3

for polyhedra). By standard scaling arguments, since SP has to satisfy either (4.9)

or (4.12), we have

∃α, β > 0: ∀u ∈ VPδ , α (u, u)P ≤ m
P
δ (u, u) ≤ β (u, u)P . (4.15)

To introduce the discrete bilinear forms we define

Vδ =
{
v ∈ H1(D) : v ∈ Vcδ ∀c ∈ TD, trΓDv = 0

}
. (4.16)

The global discrete bilinear forms on D, ∀u, v ∈ Vδ, can be defined as:

aDδ (u, v) =
∑
c∈TD

acδ (u, v) , (4.17)

mDδ (u, v) =
∑
c∈TD

mc
δ (u, vi) . (4.18)

Similarly, for each fracture Fi, we set, ∀u, v ∈ Vδ,

aFiδ (ui, vi) =
∑
f∈TFi

afδ (ui, vi) , (4.19)

mFi
δ (ui, vi) =

∑
f∈TFi

mf
δ (ui, vi) . (4.20)

Finally,

aδ (u, v) = aDδ (u, v) +

NF∑
i=1

aFiδ (ui, vi) , (4.21)

mδ (u, v) = mDδ (u, v) +

NF∑
i=1

mFi
δ (ui, vi) . (4.22)

The semi-discrete formulation of (2.9) thus reads as follows: find h ∈ Vδ such

that, for all v ∈ Vδ,
d

dt
mδ (h, v) + aδ (h, v) =

∑
c∈TD

(
s,Π0,c

0 v
)
c
. (4.23)
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The above problem is well-posed since the discrete bilinear forms we defined

are equivalent to the ones used in (2.9) by (4.9), (4.12) and (4.15). Optimal er-

ror convergence rates can be proved using standard arguments for virtual element

methods.7

4.1. Continuity at the interfaces

Problem (4.23) is given by the sum of terms written on domains of different geo-

metrical sizes, the 3D matrix and the 2D fractures, and implicitly includes the im-

position of the continuity conditions at the interfaces. The possibility of enforcing

continuity conditions at the 1D fracture-fracture interfaces and at the 2D matrix-

fracture interfaces in an easy way is one of the key features of the proposed applica-

tion of the VEM. Indeed, as shown in Figure 4, here unique degrees of freedom are

used across the various domains, thus avoiding the use of Lagrange multipliers to

obtain the desired matching. This, in turn, result in a symmetric positive definite

system to be solved at each time-step in unstationary simulations.

5. Numerical results

In this section some numerical tests are presented on networks of increasing com-

plexity: the first three tests take into account stationary problems, whereas the last

one deals with a time-dependent simulation. In all simulations the linear systems

are solved using the Cholesky factorization of the Eigen C++ library.37 For time-

dependent simulations a time-step of 0.001 is used with the Implicit Euler scheme.

5.1. Problem 1 - simple DFM with known solution

The first numerical test deals with the computation of the steady state distribution

of the hydraulic head in a cubic domain D = [0, 1]3 crossed by a planar fracture,

as shown in Figure 5. Dirichlet boundary conditions are set on the whole boundary

and a forcing term is set such that the exact solution for this problem is H =
1
4 (x2 + y2)− 1

2KF
|z|, with K

F
the hydraulic transmissivity of the unique fracture

F1 set to K
F

= 1000, whereas the permeability of the block is set to KD = 1.

The solution computed with the proposed method on a mesh of cubic cells with

edge equal to 0.05 is shown in Figure 6. The L2 and H1 norms of the error on the

whole domain are computed on four different meshes, with the number of degrees

of freedom ranging between 576 and 8400. Convergence curves of the errors against

the total number of degrees of freedom NDofs are reported in Figure 7 along with

the expected optimal rates, equal to 2
3 for the L2 norm and 1

3 for the H1 norm;

these optimal rates can be achieved despite the low regularity of the exact solution

thanks to the conformity of the mesh to the irregularity interface. Indeed, if we

define

V 2 (D) =
{
v ∈ V (D) : v ∈ H2(̊c) ∀c ∈ TD, vi ∈ H2(f̊) ∀i ∈ {1, . . . , NF }, f ∈ TFi

}
,
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Fig. 5: Problem 1: domain description: with D (white, transparent) and Ω (red)

(a) Solution on block D

(b) Solution on fracture F1

Fig. 6: Problem 1: Example mesh and solution with the VEM based approach

and

ρD = max
c∈TD

ρc , ρFi = max
f∈TFi

ρf ∀i ∈ {1, . . . , NF } ,



July 7, 2021 16:6 WSPC/INSTRUCTION FILE ARTicle

A robust VEM based approach for flow time dependent simulations in poro-fractured media 15

103 104

10−3

10−2

NDofs

E
rr

or

Fig. 7: Problem 1: L2 and H1 error convergence plots. Legend: L2 norm,

H1 norm, L2 norm slope 2
3 , H1 norm slope 1

3

and, finally,

|||v||| =
√
a (v, v) ,

‖H‖H2(D̃) =

√∑
c∈TD

‖H‖2H2 (̊c) ,

‖Hi‖H2(F̃i)
=

√ ∑
f∈TFi

‖Hi‖2H2(f̊) ,

then, the following result can be proved following Ref. 7 as reported in Appendix

A.

Theorem 5.1. Assume that the solution of (2.9) in its stationary form satisfies

H ∈ V 2 (D) and let h be the solution of (4.23) under stationary conditions. Then,

there exists a constant C > 0 independent of the mesh size such that

|||H − h||| ≤ C

(
ρD(‖H‖H2(D̃) + ‖s‖L2(D̃)) +

NF∑
i=1

ρFi ‖Hi‖H2(F̃i)

)
. (5.1)

The optimal convergence rates for the L2 error can be obtained by duality argu-

ments.7 It can be seen in Figure 7 that the obtained convergence trends well adhere

with the expected ones.

Remark 5.1. The assumptions on the regularity of the solution made in Theorem

5.1 can be verified observing that, since the mesh is conforming to fracture planes

and to fracture intersections thanks to the meshing algorithm described in Section



July 7, 2021 16:6 WSPC/INSTRUCTION FILE ARTicle

16 Berrone, Borio, D’Auria, Scialò, Vicini

Fig. 8: Problem 2: domain description with D (white, transparent) and fractures:

fractures in red have K
F

= 1, fractures in blu have K
F

= 10.

Table 1: Problem 2: DFN Ω data:NF number of fractures, NS number of traces, NI
number of intersections between couples of traces, min θF minimum angle between

intersecting fractures, min θS minimum angle between intersecting traces in the

same fracture.

Id NF NS NI min θF min θS

DFN10 10 25 38 29.9986 7.5667

Table 2: Problem 2: mesh TD data: NDofs number of degrees of freedom, min `,

max `, E[`] minimum, maximum, average element edge length, min η, max η, E[η]

minimum, maximum, average element aspect ratio.

Id Mesh NDofs min ` max ` E[`] min η max η E[η]

DFN10 M1 2961 4.25e−5 1.33e−1 6.69e−2 1.73 8.06e1 5.40

DFN10 M2 45148 8.56e−7 4.62e−2 2.77e−2 1.73 1.19e2 3.16

3, the solution will be locally regular in the interior of each polyhedron and each

face lying on a fracture.

5.2. Problem 2 - Simple DFM problem

The second example proposes a validation of the approach on a more complex

domain counting 10 fractures and 25 fracture intersections. Some additional in-
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Table 3: Problem 2: condition number κ of the conforming VEM approach.

Id Mesh κ

DFN10 M1 9.55e4

DFN10 M2 2.66e6

(a) VEM M1 (b) VEM M2 (c) FEM OPT

Fig. 9: Problem 2: comparison of solution on D

formation on the geometry of the network are reported in Table 1, where min θF
represents the minimum angle between two intersecting fractures, computed as the

angle between the normals of the fractures, and min θS is the minimum angle be-

tween couples of intersecting traces in a fracture and NI represents the total num-

ber of intersections between couples of traces in fractures. We can see that, despite

the simplicity of the network, angles as narrow as about 7.5 degrees are present,

and there are 38 intersections between couples of fractures. The permeability of the

porous matrix is set to one, whereas the trasmissivity of three fractures, highlighted

in blu in Figure 8, is set to 10; transmissivities of the remaining fractures, high-

lighted in red in Figure 8, is set to one. A head drop of 1 is imposed between the

top and bottom faces of the domain, all other faces being instead insulated, and a

null forcing term is used.

Since an analytical solution is not available for this problem, the computed

steady state distribution of the hydraulic head in the network with the VEM is

compared to the solution of the same problem with the optimization based approach

described in Ref. 18. A mesh with about 2 × 105 tetrahedral cells and 6 × 103

triangular cells for the fractures is used for the optimization based approach (FEM

OPT), counting about 4.6×104 total degrees of freedom. Two meshes are proposed

for the VEM based approach, named M1 and M2; the latter counts about the same

number of degrees of freedom of the FEM OPT, whereas the former is coarser.
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(a) VEM M1 (b) VEM M2 (c) FEM OPT

(d) VEM M1 (e) VEM M2 (f) FEM OPT

Fig. 10: Problem 2: comparison of solution obtained with the VEM and the opti-

mization based approach on two sections of the domain with planes orthogonal to

the z-axis located at z = 0.25 (top) and z = 0.75 (bottom).

Additional data on the meshes are available in Table 2: min `, max `, E[`] represent

the minimum, the maximum and the average length of element edges in the mesh,

respectively; min η, max η and E[η] are, respectively, the minimum, maximum and

average aspect ratio of elements in the mesh, computed as the ratio between the

radius of the circumscribed and inscribed spheres for each element. We can see that

elements with edges as small as about 10−6 are present next to edges of length

five orders of magnitude larger; moreover, quite distorted elements are present. The

meshes for the two approaches are reported in Figure 9 along with the obtained

solution on the whole domain. The VEM can easily handle such distorted mesh,

producing results in good agreement with the optimization based solution, chosen

as reference for this analysis. This is further highlighted by the results reported in

Figure 10, where the solution on two planes orthogonal to the z-axis located at

z = 0.25 (top) and z = 0.75 (bottom) are shown, obtained with the VEM and

with the optimization approach. We can see that similar trends and close values are

obtained even on the coarse mesh M1, also taking into account that the solution

with the optimization approach is on a mesh non conforming with the fractures.

The condition number of the problem discrete matrix is reported in Table 3 for

the two considered meshes. It can be seen that relatively small values are obtained,

despite the presence in the meshes of small geometrical features and quite elongated

elements.
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(a) Domain description with D (white,
transparent) and fractures: fractures have
K
F

= 100.
(b) Solution on block D

Fig. 11: Problem 3: Benchmark test

Table 4: Problem 3: mesh TD data:NDofs number of degrees of freedom, min `,

max `, E[`] minimum, maximum, average element edge length, min η, max η, E[η]

minimum, maximum, average element aspect ratio.

Mesh 3d cells NDofs min ` max ` E[`] min η max η E[η]

M1 1.13e4 1.69e4 9.82e−3 7.81e1 3.55e1 1.95 4.35e2 5.58

M2 7.55e4 8.67e4 1.70e−3 3.90e1 2.12e1 1.88 2.25e3 5.08
M3 1.42e5 1.57e5 1.17e−6 3.26e1 1.75e1 1.96 6.25e4 9.66

5.3. Problem 3 - Benchmark Test

The third numerical example considers the benchmark test reported in Section

5.4 of Ref. 15. The domain is the box D = (−500m, 350m) × (100m, 1500m) ×
(−100m, 500m) as reported in Figure 11a. A uniform unitary hydraulic conductiv-

ity is prescribed for the porous matrix in D. A network of 52 fractures and 106

traces is present in D, represented in red in Figure 11a, obtained from a post-

processing of an outcrop in the island of Algerøyna (Norway). The network has a

relatively simple structure with a minimum intersection angle between fracture nor-

mals min θF ≈ 7.4◦ and presenting no intersections between traces. Fracture trans-

missivity is assigned to a constant value of 100. The solution of the test is obtained

prescribing a zero boundary condition on ∂Dout = ∂Dout,0∪∂Dout,1 = {{−500m}×
(100m, 400m)× (−100m, 100m)}∪{{350m}× (100m, 400m)× (−100m, 100m)} and

a uniform unit inflow on ∂Din = ∂Din,0 ∪∂Din,1 = {(−500m,−200m)×{1500m}×
(300m, 500m)}∪{{−500m}× (1200m, 1500m)× (300m, 500m)}, the remaining part

of domain boundary being, instead, insulated. Three different VEM conforming

meshes are tested, named M1, M2 and M3 respectively, whose data are reported in

Table 4. Figure 11b shows the numerical solution obtained with the M3 discretiza-

tion. The hydraulic head along two specified lines in the domain is measured as done



July 7, 2021 16:6 WSPC/INSTRUCTION FILE ARTicle

20 Berrone, Borio, D’Auria, Scialò, Vicini

0 500 1,000 1,500
0.00

5.00 · 101

1.00 · 102

1.50 · 102

2.00 · 102

2.50 · 102

arc length [m]

(a) Profile from outlet ∂Dout,0 towards the opposite corner.

0 500 1,000 1,500
0.00

1.00 · 102

2.00 · 102

3.00 · 102

4.00 · 102

5.00 · 102

6.00 · 102

7.00 · 102

arc length [m]

(b) Profile from outlet ∂Dout,1 towards ∂Din.

Fig. 12: Problem 3: Hydraulic head profiles across the domain. Legend: VEM

M1, VEM M2, VEM M3, data from benchmark work.15

in Section 5.4.2.1 of Ref. 15 and Figure 12 shows the two measured profiles. The

VEM solution is compared with all the fourteen schemes proposed in the bench-

mark, where a fine mesh counting about 2.6×105 cells is used for all the schemes. It

can be noticed that the VEM solution with the proposed approach is in very good

agreement with the majority of the benchmark schemes, despite the meshes here
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(a) NF = 50 (b) NF = 100

(c) NF = 200

(d) Detail of fracture intersections

Fig. 13: Problem 4: domain description with D (white) and Ω (red)

used are up to 20 times coarser.

5.4. Problem 4 - Realistic DFM problems

The fourth set of numerical tests takes into account the computation of the steady-

state hydraulic head distribution in quite realistic DFM configurations, where three

different and randomly generated fracture networks of increasing size are embedded

in the same cubic domain, as shown in Figure 13, where the three networks are

represented in red. In all cases a head drop of 1 is imposed between the top and

bottom faces of the domain, all other faces being instead insulated, and a null forcing



July 7, 2021 16:6 WSPC/INSTRUCTION FILE ARTicle

22 Berrone, Borio, D’Auria, Scialò, Vicini

Table 5: Problem 4: network Ω data:NF number of fractures, NS number of traces,

NI number of intersections between couples of traces, min θF minimum angle be-

tween intersecting fractures, min θS minimum angle between intersecting traces in

the same fracture.

Id NF NS NI min θF min θS

DFN50 50 432 3029 10.6 2.50

DFN100 98 1587 90755 1.52 2.71e−1

DFN200 199 7351 922421 3.81 2.32e−2

Table 6: Problem 4: mesh TD data:NDofs number of degrees of freedom, min `,

max `, E[`] minimum, maximum, average element edge length, min η, max η, E[η]

minimum, maximum, average element aspect ratio.

Id Mesh NDofs min ` max ` E[`] min η max η E[η]

DFN50 M1 6.36e3 1.67e−5 2.74e−1 4.71e−2 1.73 2.06e2 9.56

DFN50 M2 1.32e4 1.24e−6 1.34e−1 3.74e−2 1.73 6.75e12 9.42
DFN50 M3 8.96e4 3.51e−7 4.62e−2 2.08e−2 1.73 6.75e2 6.16

DFN100 M1 2.13e4 2.60e−6 2.54e−1 3.13e−2 1.95 3.83e2 1.11e1
DFN100 M2 3.46e5 2.74e−7 1.34e−1 2.67e−2 1.73 1.70e3 1.07e1

DFN100 M3 1.55e5 2.39e−7 4.82e−2 1.68e−2 1.73 7.75e12 5.73e7

DFN200 M1 1.11e5 2.71e−7 2.07e−1 1.71e−2 1.86 1.66e3 1.13e1

DFN200 M2 1.49e5 2.25e−7 1.28e−1 1.56e−2 1.79 1.13e13 9.68e7

DFN200 M3 4.08e5 3.55e−9 5.00e−2 1.14e−2 1.72 1.49e17 4.15e11

term is used. The permeability of the matrix and the transmissivity of the fractures

is set to 1. Details on the geometrical complexity of the networks are reported in

Table 5: the networks count about 50, 100 and 200 fractures, forming 432, 1587

and 7351 traces, respectively. On the largest network, the minimum angle between

intersecting fractures, θF , is less than 4 degrees, and the minimum angle between

intersecting traces, θS , is as low as 2.3× 10−2, with a total number NI = 922421 of

trace intersections in the fractures, thus showing the severity of the configurations.

This is reflected in the properties of the generated conforming meshes. Three meshes,

labeled M1, M2 and M3, are considered for each problem, whose detailed data are

provided in Table 6. A very large variation in terms of edge lengths ` can be seen and

aspect ratios η for the elements can reach values as high as 1011. The finest used

meshes are shown in Figure 14, along with the computed solution on the whole

domains, and in Figure 15, where the domains are cut to provide a view of the

interior part of the mesh. Again, the proposed approach is capable of handling such

meshes, producing reliable solutions, as qualitatively shown in Figure 16, where the
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(a) NF = 50 (b) NF = 100 (c) NF = 200

Fig. 14: Problem 4: Mesh and solutions on D for the three problems: DFN50 (left),

DFN100 (middle), DFN200 (right).

(a) NF = 50 (b) NF = 100 (c) NF = 200

Fig. 15: Problem 4: detail of conformed mesh cut with a plane normal to [−1, 1, 1]

and centered in [1, 1, 0]. DFN50 left, DFN100 middle, DFN200 right.

solution on a plane orthogonal to the z-axis located at z = 0.5 is reported for the

three networks and for the three considered meshes: we can see that the solution is

stable at mesh refinements for all the considered cases. In Figure 16 on the z-axis we

report the values of the solution multiplied by a factor (2x or 3x) in order to amplify

the differences between the solutions obtained on different meshes. The reader can

refer to the colorbar for the exact values.

5.5. Problem 5 - Non Stationary problem

The last example considers a time-dependent simulation on the domain labeled

DFN50 of the previous example (Figure 13a). A constant in time Dirichlet boundary

condition equal to 1 is set on the face of the domain located at z = 0, whereas all
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M1

M2
M3

3

(a) DFN50 - Rescaled 2x

M3

M1

M2

3

(b) DFN100 - Rescaled 2x

M3

M2
M1

3

(c) DFN200 - Rescaled 3x

Fig. 16: Problem 4: comparison of solution on a plane orthogonal to the z-axis and

located at z = 0.5. Three meshes overlapped, M1, M2, M3.

other borders are insulated. The permeability of the matrix is set to 1, whereas

fracture transmissivity is equal to 10 for all fractures. A zero initial solution is



July 7, 2021 16:6 WSPC/INSTRUCTION FILE ARTicle

A robust VEM based approach for flow time dependent simulations in poro-fractured media 25

(a) t = 0 (b) t = 0.002

(c) t = 0.01 (d) t = 0.04

Fig. 17: Problem 5: non-stationary solution

assumed in the whole domain and a transient simulation, on the same spatial mesh

as shown in Figure 14, towards the equilibrium distribution is run, using a time-step

of 0.001 and setting the final time to 1. The solution at four selected time frames is

reported in Figure 17, showing how the fractures represent preferential flow paths

in this setting. A detail of the solution at the final simulation time is shown in

Figure 18: please note that in the plot on the left the colour palette is rescaled
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(a) Block D (b) Network Ω

Fig. 18: Problem 5: detail of solution at t = 1.0

between values 0.88 and 1.0 to better highlight the variation of the solution in the

domain; moreover, the domain is transparent to show the internal fracture network

and its effect on the hydraulic head distribution in the network.

6. Conclusions

The proposed meshing strategy, in conjunction with a primal VEM based formu-

lation of the hydraulic head problem in DFMs, resulted in a robust and effective

approach for the simulation of the flow in fractured porous media on polytopal con-

forming meshes. The method has been tested on a range of DFM models, starting

from a simple domain with known analytic solution to more complex, realistic, con-

figurations with challenging geometries. In all cases the meshing process was capable

of producing a conforming mesh suitable for the chosen discretization method. Time

dependent simulations have been effectively performed, also in complex geometries.

Appendix A. Proof of Theorem 5.1

Let v ∈ V (D) be given. Then, for any face f ⊂ Fi, let

|||v|||f =

√(
K
i
∇ivi,∇ivi

)
f
.

Moreover, for any cell c ∈ TD, let

|||v|||c =

√(
KD∇v,∇v

)
c
.
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Finally, we denote

|||v||| =
√
a (v, v) =

√√√√∑
c∈TD

|||v|||2c +

NF∑
i=1

∑
f∈TFi

|||v|||2f .

We define

V 2 (D) =
{
v ∈ V (D) : v ∈ H2(̊c) ∀c ∈ TD, vi ∈ H2(f̊) ∀i ∈ {1, . . . , NF }, f ∈ TFi

}
,

and, on V 2 (D), we define the following broken norms:

‖H‖H2(D̃) =

√∑
c∈TD

‖H‖2H2 (̊c) ,

‖Hi‖H2(F̃i)
=

√ ∑
f∈TFi

‖Hi‖2H2(f̊) .

Moreover, let

ρD = max
c∈TD

ρc , ρFi = max
f∈TFi

ρf ∀i ∈ {1, . . . , NF } .

Following Ref. 7, the proof relies on the following auxiliary result.

Lemma Appendix A.1. Let u ∈ V 2 (D). Then, there exists a function uI ∈ Vδ
such that

∃CD > 0: ‖∇(u− uI)‖L2(D̃) ≤ CDρD ‖u‖H2(D̃) , (A.1)

∀i ∈ {1, . . . , NF }, ∃CFi > 0: ‖∇(ui − trFiuI)‖L2(F̃i)
≤ CFiρFi ‖ui‖H2(F̃i)

, (A.2)

where constants depend on the shape of the polytopes that discretize each domain,

on KD and K
i
∀i.

Proof. uI can be defined as in Ref. 24 (Theorem 11), thus obtaining (A.1) from

standard interpolation estimates, since u ∈ H2(̊c) ∀c ∈ TD.

Regarding (A.2), we observe that, in the construction of uI , the trfuI is defined

as a VEM interpolant, ∀f ∈ FTD . Thus, estimate (A.2) is obtained by the interpo-

lation estimates reported in the cited reference, since ui ∈ H2(f̊) ∀i if f ∈ TFi .

We are now ready to prove Theorem 5.1.

Proof. (Theorem 5.1)

Let HI be the function described in Lemma Appendix A.1. We apply a triangle

inequality and obtain:

|||H − h||| ≤ |||H −HI ||| + |||HI − h||| .
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The first term can be bounded by (A.1) and (A.2):

|||H −HI ||| ≤ C

(
ρD ‖H‖H2(D̃) +

NF∑
i=1

ρFi ‖Hi‖H2(F̃i)

)
.

Setting eδ = HI − h, exploiting the equivalence relations (4.9) and (4.12) and

applying the weak formulation (2.9) and the discrete formulation (4.23) in stationary

conditions, we get

|||eδ|||2 ≤ Caδ (eδ, eδ) ≤ C (aδ (HI , eδ)− aδ (h, eδ) + (s, eδ) − a (H, eδ))

= C

(∑
c∈TD

(
s, eδ −Π0,c

0 eδ

)
c

+ aδ (HI , eδ)− a (H, eδ)

)
.

(A.3)

The first term in the parentheses can be bounded exploiting known results on

polynomial projections.7 For any c ∈ TD,(
s, eδ −Π0,c

0 eδ

)
c
≤ ‖s‖L2(c)

∥∥∥eδ −Π0,c
0 eδ

∥∥∥
L2(c)

≤ Cρc ‖s‖L2(c) |||eδ|||c .

Regarding the other terms in (A.3), we decompose them as follows:

aδ (HI , eδ)− a (H, eδ) =
∑
c∈TD

acδ (HI , eδ)−
(
KD∇H,∇eδ

)
c

+

NF∑
i=1

∑
f∈TFi

afδ (HI , eδ)−
(
K
i
∇iH,∇i(trFieδ)

)
.

Terms on cells and faces lying on fractures are treated separately. ∀c ∈ TD we

get, since acδ

(
Π0,c

1 H, eδ

)
=
(
KD∇Π0,c

1 H,∇eδ
)
c

and by applying (4.9), (A.1) and

estimates on projectors,

acδ (HI , eδ)−
(
KD∇H,∇eδ

)
c

= acδ

(
HI −Π0,c

1 H, eδ

)
+
(
KD

(
∇Π0,c

1 H −∇H
)
,∇eδ

)
c

≤ C
(∥∥∥√KD (∇HI −∇Π0,c

1 H
)∥∥∥

+
∥∥∥√KD (∇H −∇Π0,c

1 H
)∥∥∥) |||eδ|||c

≤ Cρc ‖H‖H2 (̊c) |||eδ|||c .

We can procede similarly with the terms on faces, using afδ

(
Π0,f

1 H, eδ

)
=(

K
i
∇iΠ0,f

1 Hi,∇i(trFieδ)
)
f
, (4.12) and (A.2), obtaining

afδ (HI , eδ)−
(
K
i
∇iH,∇i(trFieδ)

)
≤ Cρf ‖Hi‖H2(f̊) |||eδ|||f .

Inequality (5.1) follows immediately from the above bounds.
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