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Abstract We study the cosmology of a quadratic metric-
compatible torsionful gravity theory in the presence of a per-
fect hyperfluid. The gravitational action is an extension of the
Einstein–Cartan theory given by the usual Einstein–Hilbert
contribution plus all the admitted quadratic parity even tor-
sion scalars and the matter action also exhibits a dependence
on the connection. The equations of motion are obtained
by regarding the metric and the metric-compatible torsion-
ful connection as independent variables. We then consider a
Friedmann–Lemaître–Robertson–Walker background, ana-
lyze the conservation laws, and derive the torsion modified
Friedmann equations for our theory. Remarkably, we are able
to provide exact analytic solutions for the torsionful cosmol-
ogy.

1 Introduction

As it is well known, the development of Riemannian geom-
etry led to the rigorous mathematical formulation of gen-
eral relativity (GR). In spite of the great success and solid
predictive power of GR in many contexts, it still falls short
in explaining some of the current cosmological data. It
does not properly explain the cosmological evolution at
early times and is unable to predict a late time accelerated
expansion. Consequently, diverse alternative modified the-
ories of gravity have been proposed [1]. Among the vari-
ous proposals, a particularly well motivated and promising
setup in the spirit of gravity geometrization is that of non-
Riemannian geometry [2,3], where the Riemannian assump-
tions of metric compatibility and torsionlessness of the con-
nection are released and therefore non-vanishing torsion
and nonmetricity are allowed along with curvature. Non-
Riemannian effects, induced by the presence of torsion and
non-metricity, are nowadays believed to have played a key

a e-mail: diosifid@auth.gr
b e-mail: lucrezia.ravera@polito.it (corresponding author)

role in particular in the very early Universe (see [4,5] and
references therein).

Different restrictions of non-Riemannian geometry pro-
vide distinct frameworks for gravity theories formulations
and the inclusion of torsion and non-metricity in gravita-
tional theories has led to many fruitful applications in var-
ious areas of both mathematics and physics, among which,
for instance, the ones recently presented in [6–15]. In par-
ticular, in the cosmological context, in [15] the most general
form of acceleration equation in the presence of torsion and
non-metricity was derived and conditions under which tor-
sion and non-metricity accelerate/decelerate the expansion
rate of the Universe were discussed. Let us also mention that
imposing the vanishing of torsion and non-metricity one gets
metric theories of which GR is a special case, whereas by
demanding the vanishing of the curvature and non-metricity
one is left with the standard teleparallel formulation [16].
Moreover, one could either set the curvature and torsion to
zero while allowing for a non-vanishing non-metricity, which
yields the symmetric teleparallel scheme [17,18], or fix just
the curvature to zero getting a generalized teleparallel frame-
work involving both torsion and non-metricity [19]. On the
other hand, one may also impose no constraint on such geo-
metric objects. This is the non-Riemannian scenario where
Metric-Affine Gravity (MAG) theories are developed. The
literature on the subject is huge. For an exhaustive review of
the geometrical theoretical background on MAG we refer the
reader to e.g. [20–22]. In the metric-affine approach the met-
ric and the connection are considered as independent fields
and the matter Lagrangian depends on the connection as well.
In this framework, the theory is assumed to have, in principle,
a non-vanishing hypermomentum tensor [23] encompassing
the microscopic characteristics of matter such as spin, dila-
tion, and shear [20].

What is more, in the framework of non-Riemannian geom-
etry, where the presence of extra degrees of freedom with
respect to GR is due to torsion and non-metricity of space-
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time which are linked to the microstructure of matter, fluid
carrying hypermomentum turns out to be very appealing. In
particular, diverse hyperfluid models have proved to have rel-
evant applications especially in cosmology, such as the ones
given in [24–33]. In particular, in [33] the perfect (ideal)
hyperfluid model representing the natural generalization of
the classical GR perfect fluid structure has been formulated
and analyzed.

Motivated by the prominent and intriguing role of non-
Riemannian geometry and hyperfluids in the cosmological
scenario, in the present paper we study the cosmology of
a quadratic torsionful gravity theory given by the Einstein–
Hilbert (EH) contribution plus all the admitted quadratic par-
ity even torsion scalars (see also [34]) and in the presence of a
perfect hyperfluid. We restrict ourselves to the case of vanish-
ing non-metricity while allowing for a non-vanishing torsion
and let the matter action also exhibit a dependence on the
connection.

The remaining of this paper is structured as follows: in
Sect. 2 we briefly review the geometric setup and in Sect. 3
we give a short account of energy–momentum and hyper-
momentum tensors. Subsequently, in Sect. 4 we write our
quadratic torsionful gravity theory and derive its field equa-
tions. We work in a first order formalism, where the metric
and the affine connection are treated as independent vari-
ables. The theory and the aforementioned general analysis
is developed in n spacetime dimensions, whereas we restrict
ourselves to the case n = 4 when studying solutions. Sec-
tion 5 is devoted to the study of the cosmology of the the-
ory. Here we first discuss the torsion degrees of freedom in
a Friedmann–Lemaître–Robertson–Walker (FLRW) space-
time and recall the notion of perfect hyperfluid together with
its properties. Then we analyze the field equations, conserva-
tion laws, and torsion modified Friedmann equations for our
torsionful model. Finally, in Sect. 6 we provide exact ana-
lytic solutions for such torsionful cosmology. In Sect. 7 we
discuss our results and possible future developments. Useful
formulas and conventions are collected in Appendix A.

2 Review of the geometric setup

Let us start with a brief review of the geometric setup. We
will adopt the same notation and conventions of Ref. [22],
to which we refer the reader for more details. We consider
the framework of non-Riemannian geometry, endowed with
a metric gμν and an independent affine connection �λ

μν . The
generic decomposition of an affine connection reads

�λ
μν = �̃λ

λμν + Nλ
μν, (1)

where the distortion tensor Nλ
μν (non-Riemannian contribu-

tion to the affine connection) and the Levi–Civita connection

�̃λ
λμν (Riemannian contribution) are respectively given by

Nλ
μν = 1

2
gρλ

(
Qμνρ + Qνρμ − Qρμν

)

︸ ︷︷ ︸
deflection (or disformation)

− gρλ
(
Sρμν + Sρνμ − Sμνρ

)

︸ ︷︷ ︸
contorsion := K λ

μν

, (2)

�̃λ
λμν = 1

2
gρλ

(
∂μgνρ + ∂νgρμ − ∂ρgμν

)
. (3)

In Eq. (2), Sμν
ρ is the Cartan torsion tensor,

Sμν
λ := �λ[μν], (4)

whose trace is given by

Sμ := Sμλ
λ. (5)

On the other hand, Qλμν is the nonmetricity tensor, defined
as

Qλμν := −∇λgμν = −∂λgμν + �ρ
μλgρν + �ρ

νλgμρ. (6)

In the sequel we will focus on the case of a metric-compatible
torsionful affine connection, namely we will consider van-
ishing non-metricity and non-vanishing torsion. Our defini-
tion for the covariant derivative ∇, associated with a metric-
compatible torsionful affine connection �, acting on a vector
is

∇μu
λ = ∂μu

λ + �λ
νμu

ν . (7)

The curvature tensor is defined by

Rμ
ναβ := 2∂[α�μ|ν|β] + 2�μ

ρ[α�ρ |ν|β] (8)

and we also have the following contractions:

Rνβ := Rμ
νμβ, (9)

R̂αβ := Rμ
μαβ = 0, (10)

Řλ
λα := Rλ

μναg
μν. (11)

The tensor in (9) is the Ricci tensor of �, while in (10) we
have the so-called homothetic curvature which vanishes for
metric-compatible affine connections, and in (11) we have
introduced a third tensor that is sometimes referred to as
the co-Ricci tensor in the literature. In particular, for metric-
compatible affine connections we have Řμν = −Rμν (see
also [22] for details). A further contraction gives us the Ricci
scalar of �, which is uniquely defined, since

R := Rμνg
μν = −Řμνg

μν. (12)

Let us also mention that plugging the decomposition (1) into
the definition of the curvature tensor (8) one can prove that

Rμ
ναβ = R̃μ

μναβ + 2∇̃[αNμ|ν|β] + 2Nμ
λ|αNλ|ν|β], (13)
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where ∇̃ denotes the Levi–Civita covariant derivative. More-
over, the torsion can be derived from the distortion tensor
through the relation

Sμνα = Nα[μν]. (14)

The variation of the torsion with respect to the metric and the
connection (see e.g. [22]) reads, respectively,

δgSμν
α = 0, (15)

δ�Sαβ
λ = δ[μ

α δ
ν]
β δ�λ

μν. (16)

These formulas are particularly useful to reproduce the cal-
culations in the sequel.

3 Hypermomentum and energy–momentum tensors

In this section we give a short account of energy–momentum
and hypermomentum tensors, following the same lines
of [31]. Here we shall restrict ourselves to the metric-
compatible torsionful case.

In our setup we consider the action to be a functional
of the metric, the independent metric-compatible torsionful
connection, and the matter fields, that is to say

S[g, �, ϕ] = SG[g, �] + SM[g, �, ϕ], (17)

where

SG[g, �] = 1

2κ

∫
dnx

√−gLG(g, �) (18)

and

SM[g, �, ϕ] =
∫

dnx
√−gLM(g, �, ϕ) (19)

represent, respectively, the gravitational sector and the matter
one. In the former κ = 8πG is the gravitational constant,
while in the latter ϕ collectively denotes the matter fields. Let
us mention that the action (17) also depends on the derivatives
of the metric and connection. Here we are suppressing the
aforesaid dependence for simplicity.

Then, we define as usual the metrical (symmetric) energy–
momentum tensor (MEMT)

Tμν := − 2√−g

δSM

δgμν
= − 2√−g

δ(
√−gLM)

δgμν
(20)

and the hypermomentum tensor (HMT) [23]


λ
μν := − 2√−g

δSM

δ�λ
μν

= − 2√−g

δ(
√−gLM)

δ�λ
μν

, (21)

which encompasses matter microstructure [20]. Now, note
that if one works in the equivalent formalism based on the
vielbeins eμ

c and spin connection ωμab, then the so-called

canonical energy–momentum tensor (CEMT) is defined by

tμc := 1√−g

δSM

δeμ
c
, (22)

which, in general, is not symmetric. Here we use Latin letters
to denote Lorentz indices, that is tangent indices. The usual
relation gμν = eμ

aeν
bηab connecting metric and vielbeins

holds, where ηab is the tangent space flat Minkowski metric.
Our conventions are given in Appendix A. The CEMT is not
independent of the MEMT and HMT (see also [20]). Indeed,
one can prove that the following relation holds:

tμλ := 1√−g

δSM

δeλ
c
eλ

c = Tμ
λ − 1

2
√−g

∇̂ν

(√−g
λ
μν

)
,

(23)

where we have also exploited the identity

∇νeμ
a = 0 = ∂νeμ

a − �ρ
μνeρ

a + ωνa
νabeμ

b, (24)

connecting the two formalisms, and we have defined

∇̂ν := 2Sν − ∇ν . (25)

Observe that for matter with no microstructure (
αμν ≡ 0)
the CEMT and MEMT coincide. Furthermore, note that from
Eq. (23) one can obtain the conservation law for spin [35],
which, in the metric-compatible torsionful case, reads

2t[μν] = 1√−g
∇̂α

(√−gτμν
α
)
, (26)

where

τμν
α := 
[μν]α. (27)

Additionally, upon contraction of μ, λ in (23), one gets the
trace relation

t = T + 1

2
√−g

∂ν

(√−g
ν
)
, (28)

with

t := tμμ, T := Tμ
μ, 
ν := 
λ

λν. (29)

From Eq. (28) one can notice that for specific matter types
the following relations hold true:

T = 0 ↔ 2t = 1√−g
∂ν

(√−g
ν
)
, (30)

t = 0 ↔ 2T = − 1√−g
∂ν

(√−g
ν
)
, (31)

t = T ↔ ∂ν

(√−g
ν
) = 0, (32)

corresponding, respectively, to the case of conformally
invariant, frame rescalings invariant, and special projective
transformations invariant theories (see [36] for details on
such models).
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4 The theory

We consider an extension of the Einstein–Cartan theory,
including also the three torsion (parity even) quadratic terms
that are allowed by dimensional analysis.1 As we shall show,
their presence is rather essential in order to obtain non-trivial
dynamics for the torsion variables.2 Then, our extended
quadratic torsionful action involves three parameters and
reads

S[g, �, ϕ] = 1

2κ

∫
dnx

√−g
[
R + b1SαμνS

αμν

+b2SαμνS
μνα + b3SμS

μ
]

+ Shyp, (33)

where b1, b2, and b3 are dimensionless parameters. Shyp

denotes the matter part which we assume to be that of a per-
fect hyperfluid. Note that the above action is a special case of
the more general gravitational theory involving both torsion
and non-metricity quadratic parity even and parity odd terms
[22]. Moreover, the action (33) has been considered also in
[34] in a different context and in the presence of a cosmo-
logical constant. In this regard, let us mention here that the
inclusion of a cosmological constant term in (33) would just
imply a further contribution to the metric field equations we
are going to analyze, while the connection field equations
would not be modified.

Let us now derive the field equations of the theory (33).
Variation with respect to the metric gives

R(μν) − R

2
gμν − L2

2
gμν + Bμν = κTμν, (34)

where we have defined

Bμν = Bνμ := b1(2Sναβ Sμ
αβ − SαβμS

αβ
ν)

−b2Sναβ Sμ
βα + b3SμSν (35)

and

L2 := b1SαμνS
αμν + b2SαμνS

μνα + b3SμS
μ. (36)

In addition, varying the action with respect to the metric-
compatible but torsionful connection �λ

μν we get the field
equations

Pλ
μν + �λ

μν = κ
λ
μν, (37)

where

Pλ
μν = 2(Sλg

μν − Sμδν
λ + gμσ Sσλ

ν) (38)

1 These terms have exactly the same dimension as R, that is [L−2], and
therefore their inclusion is well motivated.
2 In [11] (see also [12–14], where the form of torsion presented in [11]
was constrained), where only the Ricci scalar was present in the gravita-
tional action, the conservation law for hypermomentum was trivialized
leaving, therefore, the torsion function fully undetermined. It will be
shown in the sequel that the very presence of the quadratic torsion
terms fixes this indeterminacy, providing exact evolution laws for all
variables.

is the metric-compatible torsionful Palatini tensor, which ful-
fills Pμ

μν ≡ 0, and where we have defined

�λ
μν := 2b1S

μν
λ + 2b2Sλ

[μν] + 2b3S
[μδ

ν]
λ . (39)

In what follows we will analyze the cosmology of this
quadratic torsionful gravity theory.

5 Cosmology with quadratic torsion terms

In this section we move on to the study of the cosmology
of the theory (33). To pursue this aim, we shall consider a
flat FLRW spacetime with the usual Robertson-Walker line
element

ds2 = −dt2 + a2δi j dx
i dx j , (40)

where a(t) is the cosmic scale factor and i, j = 1, 2, . . . , n−
1. In addition we let uμ represent the normalized n-velocity
field of a given fluid which in co-moving coordinates is
expressed as uμ = δ

μ
0 = (1, 0, 0, . . . , 0), uμuμ = −1.

Accordingly, we define in the usual way the projector tensor

hμν := gμν + uμuν, (41)

which project objects on the space orthogonal to uμ. We also
define the temporal derivative

˙= uα∇α. (42)

The projection operator (41) and the temporal derivative (42)
constitute together a 1 + (n − 1) spacetime split.

5.1 Perfect cosmological hyperfluid

As we have already mentioned in the introduction, a hyper-
fluid is a classical continuous medium carrying hypermo-
mentum. The general formulation of perfect hyperfluid gen-
eralizing the classical perfect fluid notion of GR has been
recently presented in [33] by first giving its physical defini-
tion and later using the appropriate mathematical formulation
in order to extract its energy tensors by demanding spatial
isotropy. In our study we consider such perfect hyperfluid
model in a homogeneous cosmological setting.3

As shown in [33], the description of the perfect hyperfluid
is given by the energy related tensors

Tμν = ρuμuν + phμν, (43)

tμν = ρcuμuν + pchμν, (44)


(n)
αμν = φ(t)hμαuν + χ(t)hναuμ + ψ(t)uαhμν

+ω(t)uαuμuν + δn4εαμνρu
ρζ(t), (45)

all of them respecting spatial isotropy and subject to certain
conservation laws (see discussion below). In the hyperfluid

3 That is, we also demand homogeneity along with isotropy.
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MEMT (43), ρ and p are, as usual, the density and pressure
of the perfect fluid component of the hyperfluid, while, in
the hyperfluid CEMT (44), ρc and pc are, respectively, the
canonical density and canonical pressure of the hyperfluid.
On the other hand, the variables φ, χ , ψ , ω, and ζ in the
hypermomentum (45) characterize the microscopic proper-
ties of the fluid which, upon using the connection field equa-
tions, act as the sources of the torsionful non-Riemannian
background. The aforementioned conservation laws for the
perfect hyperfluid in the case in which the non-metricity is
set to zero while the torsion is non-vanishing read as follows:

1√−g
∇̂μ

(√−gtμα

) = 1

2

λμνRλμνα + 2Sαμν t

μν

→ ∇̃μt
μ

α = 1

2

λμνRλμνα, (46)

tμλ = Tμ
λ − 1

2
√−g

∇̂ν

(√−g
λ
μν

)
, (47)

Recall that ∇̃ denotes the Levi–Civita covariant derivative.
Notice that (47) is exactly the same relation (23) we have
previously obtained connecting the three energy related ten-
sors.4 In addition, as we can see from (46), the canonical
energy–momentum tensor naturally couples to torsion. Equa-
tions (46) and (47) will be fundamental in the study of the
cosmology of our theory.

5.2 Cosmology with torsion

Now we need the most general form of torsion that can be
written in a homogeneous and isotropic space. In such a space
the torsion has at most two degrees of freedom in n = 4 and a
single one for n �= 4 [37], and it can be written in an explicitly
covariant fashion as (see also [15,31])

S(n)
μνα = 2u[μhν]α�(t) + εμναρu

ρ P(t)δn4 , (48)

where εμναρ is the Levi–Civita tensor and δn=4
4 = 1, other-

wise it is zero. Here the upper label (n) is used to denote that
we are considering n spacetime dimensions. Eq. (48) also
implies

Sα = (n − 1)�uα, (49)

and the following relations hold:

SμναS
μνα = −2(n − 1)�2 + 6P2δn4 , (50)

SμναS
αμν = (n − 1)�2 + 6P2δn4 , (51)

SμS
μ = −(n − 1)2�2, (52)

4 Working in the language of differential forms the second conservation
law comes from the GL(n,R) invariance of the matter part. On the other
hand, the first one is obtained from diffeomorphism invariance. We refer
the interested reader to [33] for details.

which imply, in particular,

(n − 1)SμναS
μνα − (n − 1)SμναS

αμν − 3SμS
μ = 0, (53)

indicating that actually only two out of the three torsion
scalars are independent.

Consequently, the distortion tensor takes the form

N (n)
αμν = −

(
S(n)
αμν + S(n)

ανμ − S(n)
μνα

)
= X (t)uαhμν

+Y (t)uμhαν + εαμνλu
λW (t)δn4 . (54)

Note that the functions determining the distortion are linearly
related with the functions of torsion. This can be shown by
using the fact that

S(n)
μνα = N (n)

α[μν], (55)

which results in the relations

2(X + Y ) = 0, 2� = Y, P = W, (56)

or, inverting them,

W = P, Y = 2�, X = −2�. (57)

Therefore, non-Riemannian effects driven by torsion can
be parametrized using either the set {�, P} or the set
{X,Y,W } → {Y,W } (in fact, notice that we have Y =
−X = 2�). Both of these sets will be related to the set of
hypermomentum sources by means of the connection field
equations of the theory. Nevertheless, in what follows we
shall use the former, which provides a more transparent geo-
metrical meaning with respect to the latter.

Let us also recall that the hyperfluid energy related tensors
take the form (43), (44), and (45). Moreover, since we are
considering a metric-compatible setup (that is to say vanish-
ing non-metricity), we will also have ω = 0, since ωuαuμuν ,
being totally symmetric, can only excite non-metric degrees
of freedom, which are absent here.

5.3 Analysis of the connection field equations

Using the information collected above and contracting the
connection field equations (37) independently in μ, λ, then
in ν, λ, and finally with gμν , we get the following three equa-
tions:

−
[
2b1 − b2 + (n − 1)b3

]
(n − 1)� = κ

[
(n − 1)φ − ω

]
,

(58)
[

− 2(n − 2) + 2b1 − b2 + (n − 1)b3

]
(n − 1)�

= κ
[
(n − 1)χ − ω

]
, (59)

2(n − 2)(n − 1)� = κ
[
(n − 1)ψ − ω

]
. (60)

Moreover, the contraction of the connection field equations
with uλuμuν gives the constraint ω = 0, which we already

123
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anticipated, since this part of hypermomentum, being totally
symmetric, can only excite the non-metric degrees of free-
dom which are absent here. In addition, the pseudo-scalar
torsion mode is obtained by taking the totally antisymmetric
part of (37), which yields

2(b1 + b2 − 1)P = κζ. (61)

Let us observe that the assumption b1+b2 �= 1 is crucial here,
since otherwise one would face the constraint ζ(t) = 0 on
the sources which would then make P(t) arbitrary, signaling
a problematic (unphysical) theory. It is therefore natural to
assume that b1 +b2 �= 1. Combining the above equations we
have

κφ = −
[
2b1 − b2 + (n − 1)b3

]
�,

κψ = 2(n − 2)�,

κχ = −2(n − 2)� +
[
2b1 − b2 + (n − 1)b3

]
�

= −ψ − φ,

ω = 0,

2(b1 + b2 − 1)P = κζ. (62)

Note that the latter imply that the hypermomentum variables
are related to each other, since it is evident that the following
relations hold true:

χ =
[

2(n − 2)

2b1 − b2 + (n − 1)b3
− 1

]
φ, (63)

ψ = − 2(n − 2)

2b1 − b2 + (n − 1)b3
φ, (64)

with

χ + ψ = −φ. (65)

The dynamics is therefore contained in φ. In the above the
assumption 2b1 − b2 + (n − 1)b3 �= 0 has been made. The
latter is crucial in order to obtain non-trivial solutions. More-
over, note that if the quadratic terms are switched off, that is
if b1 = 0 = b2 = b3, it follows that both φ = 0 and ω = 0,
as seen from the above. Then, in such a case, there are no
evolution equations for the hypermomentum variables and
subsequently � remains undetermined (this was in fact the
case in [11]).

5.4 Conservation laws

Using (43), (44), and (45), one can easily prove that the con-
tinuity equation from (46) in the present case reads5

ρ̇c + (n − 1)H(ρc + pc) = 1

2
(ψ − χ)Rμνu

μuν, (66)

where, as usual, H := ȧ
a is the Hubble parameter. On the

other hand, taking the 00 and i j components of the conser-
vation law (47) we obtain the evolution equations for the
hypermomentum variables, which result to be given by

ω̇ + (n − 1)H(χ + ψ + ω) + (n − 1)(ψX − χY )

= 2(ρc − ρ), (67)

φ̇ + (n − 1)Hφ + H(χ + ψ) + ψX − χY = 2(pc − p).

(68)

Moreover, since in our case ω = 0, the first becomes

(n − 1)(ψ + χ)(H − Y ) = 2(ρc − ρ), (69)

where we have also used the fact that Y = −X .
Let us now see what happens if we assume that our hyper-

fluid is of the hypermomentum preserving type [31]. In this
case the metrical and canonical energy momentum tensors
coincide and as a result ρc = ρ as well as pc = p. Then, the
above equation becomes

(n − 1)(ψ + χ)(H − Y ) = 0 (70)

and therefore it follows that either

ψ + χ = 0 (71)

or

H − Y = 0. (72)

Remarkably, each of the above constraints has a direct physi-
cal interpretation. Indeed, as it can be seen from the hypermo-
mentum decomposition (45), the combination ψ +χ appears
in the shear part of hypermomentum. Therefore, Eq. (71) is
related to the vanishing of one of the shear sources. On the
other hand, one can trivially verify that

∇i u
i = (n − 1)(H − Y ). (73)

Hence, Eq. (72) turns out to imply that the hyperfluid is
incompressible, ∇i ui = 0. Thus, we see that Eq. (70) has

5 Here, let us mention that the evolution equation of ρ can be obtained
by plugging into the metric field equations (34) the cosmological expres-
sion of the torsion, exploiting also the (twice-)contracted form of the
Riemann tensor first Bianchi identity, and using (43) into the resulting
equation (on the same lines of what was done in [11]). On the other
hand, in the present case the evolution equation of ρ is related to the
one of ρc we report here by means of Eq. (47), which also involves
the hypermomentum tensor. Besides, when analyzing solutions we will
consider ρc = w̃ρ (see Eq. (88)), in which case the evolution equation
of ρ can be immediately obtained from that of ρc.
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a very clear interpretation, meaning that the fluid must either
have one shear part vanishing or it should be incompressible.

Let us now go back to the analysis of Eq. (68). Using
(70) and continuing to consider the case of hypermomentum
preserving hyperfluid, Eq. (68) simplifies to

φ̇ + (n − 1)Hφ = 0. (74)

Had we not assumed hypermomentum preserving configura-
tion, this would generalize to

φ̇ + (n − 1)Hφ = 2

(n − 1)

×
[

− (ρc − ρ) + (n − 1)(pc − p)
]
. (75)

In order to keep the following discussion as general as pos-
sible, we shall not assume, at this point, that the hyperfluid
is of hypermomentum preserving type. We will further come
back to this special case with some observations at the end
of Sect. 6, where we will study solutions of our model.

5.5 Torsion modified Friedmann equations

We are now in a position to derive the torsionful Friedmann
equations. Taking the 00 components of the metric field equa-
tions (34), after some calculations (see Appendix A for a col-
lection of useful formulas we have derived and exploited in
our computations), we finally find

H2 = − 1

(n − 2)

[
2b1 − b2 + (n − 1)b3 + 4(n − 2)

]
�2

+4H� + (1 − b1 − b2)P
2δn4 + 2κ

(n − 1)(n − 2)
ρ.

(76)

Note that when the quadratic torsion terms are absent the
above reduces to

H2 = −4�2 + 4H� + P2δn4 + 2κ

(n − 1)(n − 2)
ρ, (77)

which is in perfect agreement with [11,31], as expected.
The second Friedmann equation (also known as acceleration
equation) can be obtained by combining the 00 and the i j
components of the metric field equations. This would require
some cumbersome calculations, but eventually there exists a
much simpler road. Indeed, in [15] the most general form
of the acceleration equation was derived and, in the case of
vanishing non-metricity we are considering, it takes the form

ä

a
= − 1

(n − 1)
Rμνu

μuν + 2

(
ȧ

a

)
� + 2�̇. (78)

Therefore, we can find the second Friedmann equation by just
computing the piece Rμνuμuν from the metric field equations
in the present case (see Appendix A for details). We get

ä

a
= − κ

(n − 1)(n − 2)

[
(n − 3)ρ + (n − 1)p

]

+
[
2b1 − b2 + (n − 1)b3

]
�2 + 2H� + 2�̇. (79)

Observe that in the case n = 3 the ρ contribution disappear.
On the other hand, in n = 4 all terms survive, and this is the
case we will restrict to in the following, where we are going
to discuss solutions of our cosmological theory.

6 Solutions

In this section we derive exact analytic solutions of our tor-
sionful cosmological model. Before proceeding in this direc-
tion, let us just recall that, as we have shown, since (53)
holds true not all the three quadratic torsion invariants are
linearly independent. This means that we may set one of the
ba (a = 1, 2, 3) to zero, which would amount to a renaming
of the ba as they appear in (33). We choose to set b2 = 0.
Then, our cosmological set of equations now reads

H2 = − 1

(n − 2)

[
2b1 + (n − 1)b3 + 4(n − 2)

]
�2

+4H� + (1 − b1)P
2δn4 + 2κ

(n − 1)(n − 2)
ρ, (80)

ä

a
= − κ

(n − 1)(n − 2)

[
(n − 3)ρ + (n − 1)p

]

+
[
2b1 + (n − 1)b3

]
�2 + 2H� + 2�̇, (81)

where � is related to the source field φ through

κφ = −
[
2b1 + (n − 1)b3

]
�, χ + ψ = −φ, (82)

and we also have that (63) and (64) hold true, together with
2b1 + (n − 1)b3 �= 0. In addition, the sources are subject to
the conservation laws

ρ̇c + (n − 1)H(ρc + pc) = 1

2
(ψ − χ)Rμνu

μuν, (83)

(n − 1)(ψ + χ)(H − Y ) = 2(ρc − ρ), (84)

φ̇ + (n − 1)Hφ = 2

(n − 1)

×
[

− (ρc − ρ) + (n − 1)(pc − p)
]
. (85)

Let us now consider ζ = 0 and disregard the pseudo-scalar
mode, setting P = 0 (which is consistent with (61), as we
can see from our previous analysis). This does not modify
the qualitative analysis and the general results we are going
to provide. Indeed, by allowing P �= 0 one would have to
introduce a barotropic equation connecting P to � of the
form P ∝ � and the presence of P would just introduce a
shift in coefficients.6

6 In this cosmological analysis we are considering flat spacetime (i.e.,
K = 0, where K is the curvature parameter). Nevertheless, let us men-
tion that the presence of a non-vanishing curvature parameter K , as
the latter goes along P(t) (cf. Ref. [38]), would just induce a shift in
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In order to study the physical cosmology of our Universe,
we shall fix n = 4. With the assumption that the perfect
fluid variables of the hyperfluid are related through barotropic
equations of state of the usual form,

pc = wcρc, (86)

p = wρ, (87)

ρc = w̃ρ, (88)

where wc, w, and w̃ are the associated barotropic indices, we
will now obtain general exact and analytic solutions of the
above system. To start with, we first observe the emergence
of a perfect square in (80), which, defining

ξ := H − 2� (89)

and

b0 := 2b1 + 3b3, (90)

simplifies to

ξ2 = −1

2
b0�

2 + κ

3
ρ. (91)

Furthermore, recalling that Y = 2� and using (82), Eq. (84)
can be expressed as

�ξ = 2(w̃ − 1)

3b0
κρ. (92)

Combining the above we obtain

(�2)2 − 2κ

3b0
ρ�2 + 2

b0

[
2(w̃ − 1)κ

3b0

]2

ρ2 = 0. (93)

The latter can be seen as a quadratic equation either in �2 or
in ρ. We may see it as a quadratic equation for �2. In order
to have real solutions, the condition

1 − 8(w̃ − 1)2

b0
≥ 0 (94)

have to be satisfied. Then, it follows that

�2 = κρ

3b0

⎛

⎝1 ±
√

1 − 8(w̃ − 1)2

b0

⎞

⎠ . (95)

Footnote 6 continued
coefficients. Moreover, as here we take P = 0, such a shift would not
affect our solutions. On the other hand, even though P is supposed to
vanish, a K -contribution would still appear in Eq. (80), yielding

H2 = − K

a2 − 1

(n − 2)

[
2b1 + (n − 1)b3 + 4(n − 2)

]
�2

+4H� + 2κ

(n − 1)(n − 2)
ρ,

namely producing the usual term induced by the presence of a non-null
curvature parameter (see also [11]). As our main concern here regards
the cosmological effects induced by torsion, we restrict ourselves to the
case of flat spacetime.

Incidentally, there is yet another constraint that gives us a
unique solution. Indeed, from (91) we can see that there
exists some time period in which the �2 component will
be dominant over the density ρ, and in that region one has

ξ2 ≈ −1

2
b0�

2, (96)

which demands b0 < 0, otherwise there would be a con-
tradiction. With this result, we extract from (93) the unique
solution

�2 = κρ

3b0

⎛

⎝1 −
√

1 − 8(w̃ − 1)2

b0

⎞

⎠ , (97)

since the one with the plus sign would certainly give negative
�2, which is clearly impossible. Setting

λ0 := 1 −
√

1 − 8(w̃ − 1)2

b0
< 0 (98)

we have

ρ = 3b0

κλ0
�2, (99)

which is positive as expected. Continuing, we may substitute
the latter equation back into (92) to arrive at (recalling also
the definition of ξ given by (89))

H = λ1�, (100)

where we have defined

λ1 := 2

(
1 + w̃ − 1

λ0

)
. (101)

Observe that in Ref. [11] the condition � ∝ H was consid-
ered as a particular case, supposing a specific form for the
torsion and then solving the coupled system of equations. On
the other hand, let us stress that in the present case Eq. (100)
is not an assumption, but an exact condition derived from the
equations of the theory and by physically consistent require-
ments resulting in constraints on the parameters. In contrast
to [11], here we have an evolution equation for � driven by
the presence of quadratic torsion terms which break projec-
tive invariance in the model. As we shall see, this gives �

specific dynamics. Then, plugging (100) along with (82) and
(99) into the evolution equation (85), we find

�̇ = −λ2�
2, (102)

where

λ2 := 2

λ0

[
3λ0 − 2 − 3w + w̃(3wc + 2)

]
. (103)

Eq. (102) can be trivially integrated to give

�(t) = 1

λ2t + C1
, (104)
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where C1 is some integration constant to be determined by
the initial conditions. With this at hand, we conclude that

ρ(t) = 3b0

κλ0

1

(λ2t + C1)2 . (105)

Furthermore, also (100) can be now integrated, yielding

a(t) = C2(λ2t + C1)
λ1
λ2 , (106)

where C2 is another integration constant which can be fixed
from the initial data. From the last equation we see that
we have interesting power law solutions for the scale fac-
tor which depend on the parameters of the theory. Note that
there is also the second Friedmann equation (81) which must
be taken into account. Nevertheless, since it is a byproduct of
the first Friedmann equation and the conservation laws, it is
not and independent equation and its contribution is already
accounted for in the analysis above. Lastly, in order to have
a self-consistent theory, all equations must be satisfied and
the only one we have not used so far is (83). Substituting all
the above results into (83) we get the consistency relation

4w̃
[

− 2λ2 + 3(1 + wc)λ1

]
= (8 − b0)

(
1 + 3w + 2λ0

)

(107)

among the parameters of the theory. Remarkably, the solu-
tions we have provided analytically are exact ones. Some
comments regarding our power law solution for the scale
factor are now in order. Firstly, note that the evolution of the
latter can be either slower or more rapid with respect to the
one obtained for conventional forms of matter (such as dust,
radiation, etc.; for a nice review of the various forms of matter
in cosmology we refer the reader to [39]), depending on both
the parameters of the theory and the barotropic indices. Given
some data one would be able to restrict the possible values
of these parameters. Secondly, restrictions on the parame-
ters can be obtained directly from (106). Indeed, given that
a(t) > 0, we must have C2 > 0. Furthermore, in order to
have unique real solutions for any value of the ratio λ1/λ2,
it must hold that λ2t + C1 > 0 for any t . For t = 0 we con-
clude thatC1 > 0, while for late times λ2t becomes dominant
over C1 and the positivity is guaranteed as long as λ2 > 0.
With these at hand, given that for some fixed time t = t0 the
scale factor and the density acquire values a(t0) = a0 and
ρ(t0) = ρ0, the integration constants are found to be

C1 =
√

3b0

κλ0ρ0
− λ2t0, C2 = a0

(
κλ0ρ0

3b0

) λ1
2λ2

(108)

and consequently the scale factor can be expressed as

a(t) = a0

[
λ̃(t − t0) + 1

] λ1
λ2 , (109)

where

λ̃ := λ2

√
κλ0ρ0

3b0
> 0. (110)

Now, at first sight it seems that there exist only power law
solutions for the torsionful system. However, the expansion
depends on parameters that could potentially lead to a more
rapid expansion. Indeed, given the form of (103), there exists
a given configuration among the barotropic indices for which
λ2 → 0+. In this limit the scale factor goes like7

a(t) ∝ eλ1t , (111)

which signals an exponential expansion. Although this would
of course require fine tuning, it is evident that it represents a
possibility. Constraints on both the torsion scalars parameters
and the barotropic indices could be obtained by fitting the
derived results to some given data. This could also allow
one to rule out specific cases and find the allowed equations
of state among the hyperfluid variables. Let us discuss here
some specific characteristic cases emerging by considering
different values of the ratio λ1/λ2.
(a) Case λ1 = 0, λ2 �= 0:

As is can be seen from (109), in this case we have a static
Universe, a = a0 = const. Note that in such a case both the
Hubble parameter and its first derivative vanish (i.e. H =
0 = Ḣ ) in agreement with the static nature of the model.
Moreover, besides fulfilling the consistency relation (107),
here we find that the parameters of our theory satisfy the
additional relation λ0 = 1 − w̃.
(b) Case λ1 �= 0, λ2 → 0+:

As we have already pointed out previously, in this case the
scale factor experiences an exponential growth. Interestingly,
in this configuration both � and ρ “freeze out” and acquire
the constant values

� = �0, ρ = ρ0 = 3b0

κλ0
�2

0. (112)

In a sense, the freezing out of the latter two acts as an effective
cosmological constant,

�eff = 12(λ0 + w̃ − 1)2

λ2
0

�2
0, (113)

which drives the exponential expansion. In this instance the
parameters of the theory satisfy, besides Eq. (107), 3λ0 =
2 + 3w − w̃(2 + 3wc).
(c) Case λ1/λ2 = 1: In this limit Eq. (109) yields

a(t) = a0

[
λ̃(t − t0) + 1

]
. (114)

7 This is easily seen by recalling the identity limμ→∞
(

1 + t
μ

)μ = et ,

where in the case at hand we have μ = 1
λ2

.
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In this case we notice a Milne-like expansion and in particular
when a0t0 = 1 = a0λ̃ the behaviour is identical with that
of a Milne Universe [40] (i.e. a = t). The parameters also
fulfill 2λ0 = 3w + 1 − w̃(1 + 3wc).
(d) Case λ1/λ2 = 1/2: For such a configuration we have

a(t) = a0

[
λ̃(t − t0) + 1

] 1
2
, (115)

indicating a radiation-like expansion. The parameters are
related through λ0 = 3(w − w̃wc).
(e) Case λ1/λ2 = 2/3: In this case we get

a(t) = a0

[
λ̃(t − t0) + 1

] 2
3
, (116)

from which we conclude that the net effect is similar to that
of dust in comparison to the solutions predicted by the Stan-
dard Cosmological Model. Here, the model parameters sat-
isfy 3λ0 = 1 + 6w − w̃(1 + 6wc).
(f) Case λ1/λ2 = 1/3: In this case we have

a(t) = a0

[
λ̃(t − t0) + 1

] 1
3
. (117)

The above now indicates a correspondence with a stiff matter
dominated Universe and the parameters obey 3w = 1 −
w̃(1 + 3wc).

The above represent only some very specific correspon-
dences with respect to standard cosmology. In particular, we
should note that, depending on the parameter space, our solu-
tions also allow for an accelerated growth when λ1/λ2 > 0,
in contrast to the standard picture where conventional matter
always causes a slow expansion. We see therefore that torsion
changes this picture dramatically and allows for interesting
possibilities.

The case w̃ = 1:
Note that in all of the above considerations we have

assumed that w̃ �= 1. In the special case for which w̃ = 1,
the total (canonical) density does not receive contributions
from the hypermomentum part, i.e. ρc = ρ. Let us analyze
this case further. From (92), recalling also the definition for ξ

given in (89), for w̃ = 1 we get that either � = 0 or H = 2�.
The former represents a trivial solution, so we shall consider
the latter possibility. Then, for H = 2� Eq. (93) becomes

ρ = 3b0

2κ
�2. (118)

Interestingly, in this case the physical restriction ρ > 0
demands that b0 > 0. Substituting the above results into
the conservation law (85) and using also (82) it follows that

�̇ = −3
[
2 + (wc − w)

]
�2, (119)

or, equivalently,

Ḣ = −w0

2
H2, (120)

where w0 := 6+3(wc−w). Again, the latter can be trivially
integrated to give

a(t) = C2

(w0

2
t + C1

)− 2
w0 . (121)

Then, classifications similar to the ones obtained in the case
w̃ �= 1 follow. However, let us observe that the solution for
the scale factor here is independent of the parameter b0 and,
as a consequence, it does not depend on the coefficients of the
additional quadratic torsion terms. Furthermore, in the case
of a hypermomentum preserving hyperfluid [31], for which
ρc = ρ and pc = p, we get the unique solution for the scale
factor

a(t) = C2

(
3t + C1

)− 1
3
, (122)

which is perfectly allowable since in our theory the torsion
contributions modify the early time cosmology.

7 Conclusions

We have considered a quadratic torsionful gravity theory in n
spacetime dimensions in the presence of a perfect hyperfluid
and we have developed and studied its cosmology. The gravi-
tational action we considered is an extension of the Einstein–
Cartan theory including also the three allowed torsion parity
even squared terms. The inclusion of the quadratic terms
turns out to be most important as it solves the problem of
indeterminacy8 that one faces when only the Ricci scalar is
included into the gravitational action. As for the matter part
we considered the presence of a perfect hyperfluid which has
been recently developed. The metric and the connection have
been considered as independent variables and the equations
of motion of the theory have been derived in this setup. We
have studied the cosmology of the theory considering the
usual FLRW background and discussed the non-Riemannian
torsion driven degrees of freedom within the latter. We have
then analyzed in detail the conservation laws of the perfect
hyperfluid and also the torsion modified Friedman equations
for our theory. Remarkably, for this seemingly complicated
model, we have been able to provide exact analytic cosmo-
logical solutions, finding in particular power law solutions for
the scale factor which depend on the parameters of the the-
ory. Under certain circumstances the expansion can be very
rapid, i.e. exponential-like. Under a general perspective, our
solutions for the scale factor provide generalizations of the
usual dust, radiation, or general barotropic perfect fluid solu-
tions of the standard cosmology. The reason for this general-

8 This indeterminacy is related to the fact that the Palatini tensor is trace-
less when contracted in its first and second index. In an FLRW space
this trivializes the hypermomentum conservation law. The presence of
the quadratic terms resolves exactly this problem.
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ized possibility lies in the inclusion of the hypermomentum
degrees of freedom, which, having a direct association with
the intrinsic characteristics of the material fluid, modify the
net expansion. In this sense the microstructure of the fluid
alters the expansion rate in a non-trivial way and provides
new interesting cosmological results.

We have also discussed some specific characteristic cases
emerging by considering different values of the ratio λ1/λ2.
In particular, for λ1/λ2 = 0 we have found a static Universe,
while for λ1/λ2 = 1 we have obtained a Milne-like expan-
sion. In the case λ2 → 0+, corresponding to an exponen-
tial growth, we have also derived the effective cosmological
constant, whereas the cases λ1/λ2 = 1/2, λ1/λ2 = 2/3, and
λ1/λ2 = 1/3 correspond, respectively, to a radiation-like
expansion, dust effects, and stiff matter dominated Universe.
For each case we have also found further bound on the param-
eters. Interestingly, depending on the parameter space, our
torsionful solutions allow for an accelerated growth when
λ1/λ2 > 0, in contrast to the standard picture where con-
ventional matter always causes a slow expansion. Finally,
we have analyzed the special case w̃ = 1, namely the one
in which the hypermomentum sector does not contribute to
the total (canonical) density (ρc = ρ). We have derived the
expression for the scale factor also in this setup, observing
that for the particular case of a hypermomentum preserving
hyperfluid (ρc = ρ, pc = p) the solution is in fact unique.

In closing, let us note that there exist many possible ways
to extend our present study. For instance one could also add
the quadratic curvature terms and investigate the cosmology
of the Poincaré theory in the presence of the perfect hyper-
fluid. It would also be interesting to see which would be the
effect of additional parity odd quadratic torsion terms in a
more generalized setting. Finally, a probably more ambitious
work would be to generalize the setup of the present study by
allowing for a non-vanishing non-metricity and subsequently
obtain the full cosmology of the resulting quadratic MAG
theory. Some work is currently in progress on this point.
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Appendix A: Useful formulas

Our convention for the metric signature is mostly plus. In
particular, the n = 4 metric signature is (−,+,+,+). Some
useful formulas that we have derived and exploited in our
calculations are the following:

Sμναu
α = 0, (A1)

uμSμαβ = −�hαβ, (A2)

Sν
αβuαhμβ = �hμν, (A3)

Sμαβh
αβ = Sμ = (n − 1)�uμ, (A4)

Sμαβ Sν
αβ = �2

[
(n − 1)uμuν − hμν

]
+ 2P2δn4hμν, (A5)

Sμαβ Sν
βα = (n − 1)�2uμuν − 2P2δn4hμν, (A6)

SμSν = (n − 1)2�2uμuν, (A7)

SαβμS
αβ

ν = (−2�2 + 2P2δn4 )hμν, (A8)

Bμν = b1(2Sναβ Sμ
αβ − SαβμS

αβ
ν)

− b2Sναβ Sμ
βα + b3SμSν

Bμν = (n − 1)�2uμuν

[
2b1 − b2 + (n − 1)b3

]

+ 2(b1 + b2)P
2δn4hμν, (A9)

Bμνu
μuν = (n − 1)�2

[
2b1 − b2 + (n − 1)b3

]
, (A10)

Bμνh
μν = 2(b1 + b2)(n − 1)P2δn4 , (A11)

B := Bμνg
μν = (n − 1)

{
2(b1 + b2)P

2δn4

−
[
2b1 − b2 + (n − 1)b3

]
�2

}
, (A12)

Bi j = 2(b1 + b2)P
2δn4gi j , (A13)

B00 = (n − 1)�2
[
2b1 − b2 + (n − 1)b3

]
. (A14)

Furthermore, regarding the metric field equations, taking the
trace of (34) and plugging back the result into the latter we
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get

Rμνu
μuν = κ

[
1

(n − 2)
T + Tμνu

μuν

]
− (n − 1)

×
[
2b1 − b2 + (n − 1)b3

]
�2. (A15)

Then, upon use of (43), together with the trace of the latter,
we are left with

Rμνu
μuν = κ

(n − 2)

[
(n − 3)ρ + (n − 1)p

]
− (n − 1)

×
[
2b1 − b2 + (n − 1)b3

]
�2, (A16)

which has been used to write the Friedmann equations in the
main text.

Let us also give the relevant hypermomentum contrac-
tions, that are

hαμ
αμν = (n − 1)φuν, (A17)

hαν
αμν = (n − 1)χuμ, (A18)

hμν
αμν = (n − 1)ψuα, (A19)

εαμνλ
αμν = −6uλζ δn4 , (A20)

uαuμuν
αμν = −ω, (A21)

which can be also inverted, yielding

φ = − 1

(n − 1)
hαμuν
αμν, (A22)

χ = − 1

(n − 1)
hανuμ
αμν, (A23)

ψ = − 1

(n − 1)
hμνuα
αμν, (A24)

ζ = 1

6
εαμνλ
αμνuλδ

n
4 , (A25)

ω = −uαuμuν
αμν, (A26)

where we recall that ω = 0 for vanishing non-metricity,
together with the explicit form and contractions of the Palatini
tensor in our cosmological setup, which read

Pαμν = 4(n − 2)�u[αhμ]ν − 2εαμνρu
ρ Pδn4 , (A27)

hαμPαμν = 0, (A28)

hανPαμν = −2(n − 1)(n − 2)�uμ, (A29)

hμν Pαμν = 2(n − 1)(n − 2)�uα, (A30)

εαμνλPαμν = 12Puλδn4 , (A31)

uαuμuν Pαμν = 0. (A32)

Clearly, if non-vanishing non-metricity were also allowed,
the above equations would be modified.
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