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Twisting D(2,1; 𝜶) Superspace
L. Andrianopoli, B.L. Cerchiai,* R. Matrecano, R. Noris, L. Ravera, and M. Trigiante

We develop a three-dimensional = 4 theory of rigid supersymmetry
describing the dynamics of a set of hypermultiplets (𝚲𝜶𝜶′𝜶̇′

I ,𝝓𝜶A
I ) on a curved

AdS3 worldvolume background, whose supersymmetry is captured by the
supergroup D2(2, 1;𝜶). To unveil some remarkable features of this model, we
perform two twists, involving the SL(2,ℝ) factors of the theory. After the first
twist, our spacetime Lagrangian exhibits a Chern-Simons term associated
with an odd one-form field, together with a fermionic “gauge-fixing”, in the
spirit of the Rozansky-Witten model. The second twist allows to interpret the
D2(2, 1;𝜶) setup as a framework capable of describing massive Dirac
particles. In particular, this yields a generalisation of the
Alvarez-Valenzuela-Zanelli model of “unconventional supersymmetry”. We
comment on specific values of the combination 𝜶 + 1, which in our model is
related to a sort of gauging in the absence of dynamical gauge fields.

1. Introduction

In recent years, much interest has been devoted to 3D Chern-
Simons (CS) field theories[1] and their relations with 4D super-
symmetric theories.
More specifically, in a series of papers,[2–5] an interesting

relation was unveiled between an  = 4 supersymmetric CS
theory, based on a gauge group  and coupled to a set of
hypermultiplets[3] and a CS theory based on a supergroup ,[4,5]

whose maximal bosonic subgroup is .
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In this relation, the hypermultiplets of
the former theory arise as descendants
from the BRST-covariant gauge-fixing of
the odd symmetries in .[2] This cor-
respondence entails a topological twist,
involving the Euclidean version of the
Lorentz group and one of the two SU(2)
factors in the = 4 R-symmetry group.
In a seemingly unrelated line of re-

search, stemming from works on un-
conventional supersymmetry,[6] a 3D su-
persymmetric CS theory on an OSp(2|2)
supergroup was considered, where the
only propagating degrees of freedom are
encoded in massive spin-1∕2 fields. We
shall refer to this as the AVZ model,
where the aforementioned massive spin-
1∕2 fields are related to the gauge

connection 𝛹I𝜇 of the odd gauge symmetries through the follow-
ing ansatz:

𝛹I𝜇 = i 𝛾i e
i
𝜇 𝜒

(AVZ)
I , (1.1)

𝜒
(AVZ)
I being a spin-1∕2 field and ei

𝜇
the dreibein of the space-

time where the CS Lagrangian is integrated on.1 These theories
are naturally defined on a 3D spacetime with negative cosmolog-
ical constant and the mass of the propagating spin-1∕2 fields is
related to the spacetime torsion.
Eventually a holographic setupwas put forward, in which these

3D theories can be interpreted as dual to an AdS4  = 2 bulk
supergravity,[7–9] the first step in this direction being to embed
the 3Dmodel of [6] with unconventional supersymmetry, within
an AdS3 supergravity described, à la Achucarro-Townsend,

[10] as
a Chern-Simons theory in three dimensions.
Finally, in [11] the unconventional supersymmetry of [6]

was revisited by applying the analysis of [4] to an Achucarro-
Townsend AdS3-supegravity, described as a Chern-Simons the-
ory on an AdS3 supergroup . The ansatz (1.1) was related to
the gauge-fixing condition of the odd gauge symmetries in the
model, carried out in a covariant BRST setting.
The very presence of a cosmological constant in the three-

dimensional theories studied in [7, 8, 11] represents a substan-
tial difference with respect to the models considered in [2–5]. As
a first consequence, this implies that the two theoretical construc-
tions differ in the chosen topological twist, which involves differ-
ent real forms of the Lorentz and R-symmetry groups.
Another important issue related to the cosmological constant

in the construction of [7, 8, 11], following the prescription in

1 We shall use the indices 𝜇, 𝜈,… = 0, 1, 2 as worldvolume spacetime
indices and i, j,… = 0, 1, 2 as anholonomic ones.

Fortschr. Phys. 2021, 2100111 2100111 (1 of 16) © 2021 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

http://www.fp-journal.org
mailto:bianca.cerchiai@cnr.it
https://doi.org/10.1002/prop.202100111
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fprop.202100111&domain=pdf&date_stamp=2021-08-28


www.advancedsciencenews.com www.fp-journal.org

[6], is that the worldvolume spin-connection is identified with an
SL(2,ℝ)-gauge connection in . Different choices for this iden-
tification amount to the presence or not of a non-trivial spacetime
torsion on the worldvolume, which naturally has an AdS3 geom-
etry. In particular, as shown in [7, 8], the condition for the world-
volume theory to be dual to an AdS4 supergravity background re-
quires its vacuum geometry to be of AdS3-type consistently with
the characterization of the Chern-Simons theory on  as the
description à la Achucarro-Townsend of an AdS3 supergravity.
To motivate the present work, let us first review the main fea-

tures of the construction in [11], which our analysis here is based
on. In that paper, a Chern-Simons theory on an AdS3 supergroup
of the form  = OSp(2|2) × SL(2,ℝ) was considered and a co-
variant gauge-fixing of the odd gauge symmetries of  was per-
formed, along the lines of [4]. We shall denote the gauge con-
nection associated with these odd gauge symmetries by 𝛹𝛼

I𝜇 dx
𝜇,

where I = 1, 2 is an SO(2) index and 𝛼 = 1, 2 is an SL(2,ℝ) index.
The gauge-fixing introduces a dependence of the theory on the

three-dimensional worldvolume metric, where by worldvolume
we mean the base space which the Chern-Simons action is inte-
grated on. By the same token, we shall refer to the -algebra-
valued Chern-Simons connections as target space fields.
The gauge-fixing of the odd gauge symmetry is implemented

by a covariant BRST procedure which, in turn, implies the intro-
duction of scalar ghost and anti-ghost fields, to be denoted by 𝜙𝛼

I
and 𝜙̄𝛼

I , respectively, with the same index structure as the odd-
symmetry parameters of , but with opposite spin-statistics. As
observed in [2], these fields behave as ordinary scalars naturally
parametrizing a hyper-Kähler manifold. One can associate the
ghost quantum number with an SU(2) fundamental representa-
tion, labeled by a new index A = 1, 2, so that the ghost/anti-ghost
fields can be grouped in a doublet 𝜙𝛼A

I , where 𝜙𝛼1
I = Re(𝜙𝛼

I ) and
𝜙𝛼2
I = Im(𝜙𝛼

I ).
2

A peculiarity of 3D Chern-Simons theories is the presence,
besides the BRST symmetries generated by  , ̄ , of additional
“vector-BRST” global symmetries,[11–15] whose generators are de-
noted here by i, ̄i, i = 0, 1, 2. Similarly to the scalar ghosts, the
BRST generators can be grouped in SU(2)-doublets A,A

i . The
gauge-fixing constraint is implemented by fermionic Nakanishi-
Lautrup fields 𝜂𝛼I .
Notice that 𝛹𝛼

Ii and 𝜂𝛼I transform with respect to the worldvol-
ume Lorentz group SL(2,ℝ)L as triplets and singlets, respectively.
Therefore, following,[11] if we identify SL(2,ℝ)L with the diago-
nal of the two SL(2,ℝ) factors in the worldvolume AdS3 isome-
try group, to be denoted by SL(2,ℝ)′1 × SL(2,ℝ)′2, we can arrange
these two fields into a single set of Grassmann fields Λ𝛼𝛼′ 𝛼̇′

I ,

Λ𝛼𝛼′ 𝛼̇′

I = i 𝛾 i 𝛼
′ 𝛼̇′ 𝛹𝛼

i I + a 𝜖𝛼
′ 𝛼̇′ 𝜂𝛼I , (1.2)

where 𝛾 i 𝛼′ 𝛼̇′ and 𝜖𝛼′ 𝛼̇′ are SL(2,ℝ)L-invariant tensors on the world-
volume intertwining between the two fundamental representa-
tions of SL(2,ℝ)′1 and SL(2,ℝ)

′
2, respectively labeled by 𝛼

′ = 1, 2
and 𝛼̇′ = 1, 2. The above choice of the worldvolume Lorentz sym-
metry inside the bosonic symmetry group corresponds, in our
setting, to the topological twist performed in [2–5].

2 With respect to [11], we use here a different SU(2)-basis to be labeled
by the index A.

In light of the above twist, the Chern-Simons BRST operators
A and A

i can be viewed as components of a single operator
with index structure 𝛼′ 𝛼̇′A, behaving as supercharges. The latter
can then be treated as a global supersymmetry of the gauge-fixed
worldvolume theory. The parameters of this supersymmetry have
index structure 𝜖𝛼′ 𝛼̇′A and transform in the (2, 2, 2) of the symme-
try group SL(2,ℝ)′1 × SL(2,ℝ)′2 × SU(2), where the latter factor is
the group acting on the ghost-number of the fields. The number
of supercharges is eight, corresponding to an  = 4 supersym-
metry on D = 3.
These considerations and the AdS3 geometry of our back-

ground suggest a superspace description based on anAdS3 super-
group whose maximal bosonic subgroup is a suitable real form
of SL(2,ℂ)3 and the odd generators transform in the product of
the bi-spinor representation of each SL(2,ℂ) factor. This naturally
hints towards the exceptional supergroupD2(2, 1;𝜶), whosemax-
imal bosonic subgroup is indeed SL(2,ℝ)′1 × SL(2,ℝ)′2 × SU(2)
andwhose odd generators𝛼′ 𝛼̇′A transform in the product (2, 2, 2)
of the fundamental representations of the three factors.[16]

This construction bears important differences with respect to
the one in [4], due to the fact that we work on a worldvolume with
an AdS geometry, with isometry group SO(2, 2) ∼ SL(2,ℝ)′1 ×
SL(2,ℝ)′2.
Ourmodel has = 4 supersymmetry: on aMinkowski world-

volume, this would normally be associated with an SO(4) R-
symmetry group commuting with the spacetime symmetry, as
in [4]. In our case, instead, one of the SU(2) factors of the SO(4)
R-symmetry group corresponds to one of the two SL(2,ℝ) factors
in the spacetime isometry group.
As explained above, the worldvolume Lorentz group SL(2,ℝ)L

is the diagonal subgroup of the SL(2,ℝ)′1 × SL(2,ℝ)′2 isometry
group. As a consequence of this, in our model the spinor in-
dex is a composite one, 𝛼′𝛼̇′, yielding a redundant 4-component
description of the spinorial degrees of freedom and reducing
the manifest R-symmetry to SU(2). We shall refer to these
Grassmann-valued fields as spinorial fields, independently of
their actual SL(2,ℝ)L representation. With respect to this super-
symmetry, the spinors Λ𝛼𝛼′ 𝛼̇′

I and the scalars 𝜙𝛼A
I belong to a set

of hypermultiplets.
In the present work we make a preliminary step towards the

explicit construction of the gauge-fixed theory defined in [11],
choosing a worldvolume superspace based on the supergroup
D2(2, 1;𝜶). More specifically, we construct aD = 3, = 4model
describing the set of hypermultiplets (Λ𝛼𝛼′ 𝛼̇′

I ,𝜙𝛼A
I ) on a rigid AdS3

superspace with symmetry group D2(2, 1;𝜶). Supersymmetric
models featuring rigid supersymmetry on a curved background
were previously investigated in [17–20].3

The hypermultiplets (Λ𝛼𝛼′ 𝛼̇′

I ,𝜙𝛼A
I ) transform under the flavour

symmetry SL(2,ℝ) × SO(2) through the indices 𝛼, I, which we in-
troduced here in view of a future generalisation where a gauging

3 It is worth emphasizing here that the supergroupD2(2, 1; 𝛼), describes,
in the present construction, the worldvolume supersymmetry and
should not be mistaken with the Achucarro-Townsend AdS3 super-
group. The latter is in general the product of two supergroups, each
containing one of the two SL(2,ℝ) factors of the AdS3 isometry group.
Let us recall that, in our case, the choice of D2(2, 1; 𝛼) as the worldvol-
ume supergroup was forced by the transformation property of the su-
persymmetry generators under the SL(2,ℝ)′1 × SL(2,ℝ)′2 × SU(2) sym-
metry of the worldvolume theory.
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of the flavour symmetries will be performed. In the present pa-
per, the hypermultiplet model, when rewritten in terms of the
twisted quantities (𝛹𝛼

iI , 𝜂
𝛼
I ) will bear resemblance with the con-

struction of [2], restricted to a flat hyper-Kähler geometry, where
only odd symmetry generators show up in the CS theory.
In [4, 11] the presence of a non-gauge-fixed bosonic subgroup

 within the gauge supergroup  induces, in the model with
gauge-fixed odd-symmetry, mass terms for the fermion fields.
The latter are a necessary ingredient if we ultimately wish to
derive, within our theoretical setting, a model featuring uncon-
ventional supersymmetry and describing a massive Dirac field.
In the framework we are considering here, the gauge group 

is absent and the fermion masses are related to the non-trivial
gauging of the R-symmetry group SU(2) within the supergroup
D2(2, 1;𝜶). This in turn depends on the parameter 𝜶 since the
SU(2) generators enter the anticommutator of two supersymme-
try onesmultiplied by𝜶 + 1. As we shall see, the case𝜶 + 1 = 0 is
a singular limit, where the structure of the superalgebra changes.
In the general case where 𝜶 + 1 ≠ 0, the group SU(2) is non-
trivially gauged, the gauge coupling coinciding with the same
parameter 𝜶 + 1. The corresponding gauge fields Ax are part of
the worldvolume supergravity sector which is frozen in the rigid
limit we are considering. They are, in other words, solutions,
together with the supervielbein and the spin-connection, to the
Maurer-Cartan equations of the D2(2, 1;𝜶) superalgebra.4 As a
consequence, their field-strengths are proportional, through the
gauge coupling constant, to a non-exact co-cycle in the fermionic
directions of superspace (see Equation (2.16) below). By super-
symmetry, the non-trivial gauging of SU(2) induces, even in the
absence of dynamical gauge fields, spin-1∕2 fermion shift matri-
ces ℕ𝛼

IA and a mass term for the fermion fields Λ𝛼𝛼′ 𝛼̇′

I , which are
then all proportional, through the coupling constant, to 𝜶 + 1.
This gauging is also responsible for a scalar potential, which is
in fact a mass term for the scalar fields. In other words the SU(2)
group plays, in our construction, a role to some extent analogous
to the one played by the gauge group  ⊂  in [11] in determin-
ing the masses of the dynamical fields.
We find a supersymmetric spacetime Lagrangian, whose su-

perspace extension features a quasi-invariance under supersym-
metry,meaning an invariance up to a total derivative term, which,
in our case only affects the fermionic directions. We shall elabo-
rate on this point in Section 3.
Related to this, the interpretation of the supersymmetries in

terms of the BRST symmetry generators A and their vector
counterpart A

i is not straightforward for generic values of 𝜶,
since A do not anticommute on fields with non-trivial ghost-
charge,5 thus failing to define a cohomology. We retrieve a di-
rect BRST interpretation of the D2(2, 1;𝜶) supersymmetries, and
thus an apparent connection to the construction of [11] and [2,
4], only for the special singular value 𝜶 = −1 for which SU(2)
is effectively ungauged and becomes an external automorphism
of the superalgebra. In fact, for such value of the parameter, the

4 Here and in the following, with an abuse of notation, we use the same
symbols to denote the D2(2, 1;𝜶) supergroup and the associated super-
algebra.

5 For instance we have 2𝜙̄ ∝ (𝜶 + 1)𝜙.

D2(2, 1;𝜶) algebra reduces to

D2(2, 1;𝜶 = −1) ≃ 𝔰𝔩(2|2)⊕ 𝔰𝔲(2)

and the 𝔰𝔲(2) factor becomes an outer automorphism of the
𝔰𝔩(2|2) algebra.
For the construction of the theory, we adopt the geometric ap-

proach to supersymmetry and supergravity, see for instance,[21]

which allows to obtain the superspace Lagrangian and the super-
symmetry transformations of the fields.
The equations of motion derived from the Lagrangian impose

the standard Klein-Gordon equation for the scalar fields, with
mass term proportional to the AdS radius and a massive Dirac-
like equation for the spinor fields Λ𝛼𝛼′ 𝛼̇′

I .
By performing a first twist, analogous to the one in [4, 11], the

spacetime Lagrangian obtained from the D2(2, 1;𝜶) supergroup
can precisely be rewritten in terms of the quantities 𝛹𝛼

Ii and 𝜂𝛼I ,
besides the scalars 𝜙𝛼A

I . As a result, we find that it describes a
Chern-Simons term in the connection 1-form 𝛹𝛼

I together with a
gauge-fixing term defined by the Nakanishi-Lautrup field 𝜂𝛼I plus
a a kinetic term for the scalar fields𝜙𝛼A

I , analogously to the results
in [2, 4]. Inspection of the Dirac equation, in its twisted form,
shows that the only massive degrees of freedom in the fermionic
sector are encoded in the field 𝜂𝛼I .
We eventually perform a second twist to make contact with the

model of [6]. In this case, we identify one of the two SL(2,ℝ) fac-
tors in the isometry group of the AdS3 worldvolume with a part
of the aforementioned flavour symmetry group. This peculiar
choice mixes target space and worldvolume indices and allows
to decompose the hyperini in terms of new fields 𝜒̂𝛼

iI and 𝜒𝛼
I . The

spacetime Lagrangian obtained in this way contains the Chern-
Simons term for a spin-3/2 field, 𝜒̊Ii and describes the coupling
of this field to two propagating spin-1/2 particles 𝜒1I,𝜒2I.
The theory is still consistent if we implement one of the con-

straints needed for the unconventional supersymmetry, that is if
we set the spin-3∕2 component 𝜒̊Ii to zero: the resulting theory
then describes a spin-1∕2 fermion 𝜒2I satisfying a Dirac equa-
tion, whose mass term is proportional again to (𝜶 + 1) and which
sources the spinor 𝜒1I, which can in general be written as a linear
combination of 𝜒2I and a massless spin-1∕2 fermion. This leads
to a generalisation of the ansatz (1.1), in which the spin-1∕2 field
on the right-hand side is 𝜒1I, while 𝜒2I is proportional to 𝜂𝛼I .
The paper is organised as follows. In Section 2 we consider

the algebraic relations defining the D2(2, 1;𝜶) superalgebra, its
description as an AdS3 superspace and the matter content of our
theory, together with the supersymmetry transformations laws of
the fields.
In Section 3 we derive the supersymmetric Lagrangian, we

compute the corresponding field equations and we prove its su-
persymmetry invariance both in spacetime and superspace. Fur-
thermore, we comment on the hyper-Kähler structure underlying
the Lagrangian, in view of a possible generalisation of the theory
to a curved scalar manifold.
In Section 4 we perform two twists of the spinor fields in the

hypermultiplets. The first one is useful to make contact with the
results obtained in [2] and [4], whereas the second one allows to
implement the (AVZ) ansatz (1.1).
We conclude the paper with some final remarks and possible

future developments for this research line.
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2. The Model

2.1. The D = 3, = 4 Background

As mentioned in the Introduction, our aim is to construct a the-
ory defined on a supersymmetric background, whose symmetry
is captured by the superalgebra D2(2, 1;𝜶). We start by defining
the structure of this algebra and of the superspace based on it.

2.1.1. The D2(2, 1;𝜶) Superalgebra

D(2, 1;𝜶) is an exceptional superalgebra whose bosonic subalge-
bra is [𝔰𝔩(2)]3. It is included in the list of the superalgebras defin-
ing possible super-AdS backgrounds in three spacetime dimen-
sions, as discussed in [16].
In particular, we are interested in the supergroup referred to as

D2(2, 1;𝜶) in [16]. As explained in the above cited paper, in this
case the bosonic subgroup can be chosen in the following real
form:

D2(2, 1;𝜶) ⊃ SL(2,ℝ)′
⏟⏞⏟⏞⏟

a=1

×SL(2,ℝ)′
⏟⏞⏟⏞⏟

a=2

× SU(2)
⏟⏟⏟

a=3

, (2.1)

which allows the interpretation of the first two factors as the isom-
etry group of AdS3, whereas the third represents the manifest
part of the R-symmetry. For the sake of notational simplicity we
shall denote each of the three factors on the right-hand side of
(2.1), generically by SL(2)(a).
Finally, the generators of the odd part of the D2(2, 1;𝜶) super-

algebra, as previously anticipated, transform in the (2, 2, 2) repre-
sentation. A detailed description of the superalgebra can be found
for example in [22].
Let us denote by  ia

(a) (ia = 1, 2, 3) the generators of the 𝔰𝔩(2)(a) ⊂
D2(2, 1;𝜶) and by 𝛼1𝛼2𝛼3

(𝛼a = 1, 2) the odd ones.
The superalgebra is then expressed by the following

(anti)commutation relations:[


ia
(a),…𝛼a…

]
=
(
𝕥ia(a)
) 𝛽a

𝛼a

…𝛽a…;

{𝛼1𝛼2𝛼3
,𝛽1𝛽2𝛽3

} =
3∑

a,b,c=1
a≠b≠c

i sa
(
𝕥ia(a)
)
𝛼a𝛽a

𝜖𝛼b𝛽b𝜖𝛼c𝛽c(a) ia

= i
[
s1
(
𝕥i1(1)
)
𝛼1𝛽1

𝜖𝛼2𝛽2𝜖𝛼3𝛽3(1)i1 + s2
(
𝕥i2(2)
)
𝛼2𝛽2

𝜖𝛼1𝛽1𝜖𝛼3𝛽3(2)i2

+ s3
(
𝕥i3(3)
)
𝛼3𝛽3

𝜖𝛼1𝛽1𝜖𝛼2𝛽2(3)i3

]
, (2.2)

where(
𝕥ia(a)
)
𝛼a𝛽a

= i
2

(
𝛾
ia
(a)

)
𝛼a𝛽a

(2.3)

are representationmatrices that, taking into account the different
real forms of the three bosonic factors, are defined as

𝛾
i1
(a=1) = 𝛾

i2
(a=2) =

(
𝜎2, i𝜎1, i𝜎3

)
, 𝜂 = diag(+,−,−), (2.4)

𝛾
i3
(a=3) =

(
𝜎1, 𝜎2, 𝜎3

)
, 𝜂 = diag(+,+,+). (2.5)

We refer to the Appendix A for useful relations involving the
gamma matrices.
In particular, the closure of the algebra imposes the following

relation between the three real non-vanishing parameters sa:

s1 + s2 + s3 = 0.

The cases where one of the sa = 0 are singular limits.
Up to the normalization of the odd generators, the superalge-

bra is then characterized by a single parameter 𝜶 = s2∕s1 and the
Jacobi identities can be expressed as the condition

s3∕s1 = −(𝜶 + 1).

When expressed in terms of 𝜶, the singular limits correspond to
𝜶 equal to −1, 0,∞.
A dual representation of the above superalgebra is given in

terms of the superconnection

Ω = 𝜔(a)ia


ia
(a) + 𝜓𝛼1𝛼2𝛼3𝛼1𝛼2𝛼3

, (2.6)

where the bosonic and fermionic Maurer-Cartan 1-forms 𝜔(a)ia
,

𝜓𝛼1𝛼2𝛼3 define the superalgebra in its dual form through the
Maurer-Cartan equations

R̂ia
(a) ≡ d𝜔ia

(a) −
1
2
𝜖iajaka𝜔(a)ja

𝜔(a)ka

+ i
2
sa𝜓

𝛼1𝛼2𝛼3

(
𝕥ia(a)
)𝛼1𝛼2𝛼3

𝛽1𝛽2𝛽3

𝜓𝛽1𝛽2𝛽3 = 0, (2.7)

∇̂𝜓𝛼1𝛼2𝛼3 ≡ d𝜓𝛼1𝛼2𝛼3 +
3∑

a=1
𝜔ia(a)

∧
(
𝕥ia(a)
)𝛼1𝛼2𝛼3

𝛽1𝛽2𝛽3

𝜓𝛽1𝛽2𝛽3 = 0.

(2.8)

The above equations (2.7), (2.8) can be obtained as Euler-
Lagrange equations from the following Chern-Simons La-
grangian:

𝜅 = 𝜅

2

[
3∑

a=1

1
sa

(
𝜔(a)ia

d𝜔ia
(a) −

1
3
𝜖iajaka𝜔(a)ia

𝜔(a)ja
𝜔(a)ka

)

− i𝜓𝛼1𝛼2𝛼3
∇̂𝜓𝛼1𝛼2𝛼3

]
, (2.9)

where 𝜅 is the level of the CS action.

2.1.2. D2(2, 1;𝜶) Superspace Description

In the following, we are going to give a superspace interpretation
of the Maurer-Cartan equations (2.7), (2.8): to this end, we in-
terpret the diagonal subgroup SL(2,ℝ)′D ⊂ SL(2,ℝ)′1 × SL(2,ℝ)′2
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as the Lorentz group of our background super-geometry. Corre-
spondingly, we choose

𝜔i ≡
1
2
(𝜔i

(1) + 𝜔i
(2)),

as the spin-connection and we interpret the 1-form

ei ≡ L
2
(𝜔i

(1) − 𝜔i
(2)),

as the dreibein, where we have introduced the scale parameter
L ∈ ℝ+ with dimension of a length. The dreibein ei, together

withΨ =
√
L𝜓 , which is regarded as a gravitino 1-form field, de-

fine the supervielbein of our rigid, but curved superspace back-
ground.
Note that, with the above choice, only SL(2,ℝ)′D ⊂ SL(2,ℝ)′1 ×

SL(2,ℝ)′2 is a manifest spacetime symmetry and the indices i1, i2
are both identified with the Lorentz spacetime index i. We then
choose to name the indices referring to the first two factors as
follows:

i1 = i2 = i = 0, 1, 2 ; 𝛼1 = 𝛼′ = 1, 2 ; 𝛼2 = 𝛼̇′ = 1, 2;

𝛼′𝛼̇′ ≡ (𝛼) = 1,… , 4.

Furthermore, it is useful to introduce the 4 × 4 matrices(
𝕋 i
(1)

)
(𝛼)(𝛽)

≡
(
𝕥i(1)
)
𝛼′𝛽′

⊗ 𝜖𝛼̇′ 𝛽̇′ ,(
𝕋 i
(2)

)
(𝛼)(𝛽)

≡ 𝜖𝛼′𝛽′ ⊗
(
𝕥i(2)
)
𝛼̇′ 𝛽̇′

, (2.10)

whose properties are given in Appendix A, and their linear com-
binations

𝕁i = 𝕋 i
(1) + 𝕋 i

(2),

𝕂i = 𝕋 i
(1) − 𝕋 i

(2),

𝕄i
± = − i

2

(
𝕋 i
(1) ± 𝜶𝕋 i

(2)

)
, (2.11)

playing the role of the gamma matrices in the ordinary super-
space.
On the other hand, only the part of the  = 4 R-symmetry

associated with the group SU(2) is manifest and interpreted as
internal symmetry group. To distinguish it from the other two
bosonic factors in the superalgebra, we relabel the corresponding
indices

i3, j3,… = x, y,… = 1, 2, 3 ; 𝛼3, 𝛽3,… = A, B,… = 1, 2,

we redefine the connection 𝜔
i3
(3) as

𝜔
i3
(3) ⇒ Ax

and the representation matrix as(
𝕥(3)x
)A

B
≡

i
2

(
𝜎1, 𝜎2, 𝜎3

)A
B
. (2.12)

In light of the above definitions, the D2(2, 1;𝜶) Maurer-Cartan
equations can be written as

Ri ≡ d𝜔i − 1
2
𝜖ijk𝜔j ∧ 𝜔k =

1
2L2

𝜖ijkej ∧ ek

+ 1
2L

(
𝕄i

+

)
(𝛼)(𝛽)

Ψ(𝛼)A ∧ Ψ(𝛽)B𝜖AB, (2.13)

∇Ψ(𝛼)A ≡ Ψ(𝛼)A +
(
𝕥x(3)
)A

B
Ax ∧ Ψ(𝛼)B = −1

L

(
𝕂i
)(𝛼)

(𝛽)
ei ∧ Ψ(𝛽)A,

(2.14)

ei ≡ dei − 𝜖ijk𝜔j ∧ ek =
1
2

(
𝕄i

−

)
(𝛼)(𝛽)

Ψ(𝛼)A ∧ Ψ(𝛽)B𝜖AB, (2.15)

 x ≡ dAx − 1
2
𝜖xyzAy ∧ Az =

i
2L

(𝜶 + 1)
(
𝕥x(3)
)
AB
Ψ(𝛼)A ∧ Ψ(𝛽)B 𝛿(𝛼)(𝛽),

(2.16)

where the Lorentz-covariant derivative Ψ(𝛼)A is defined as

Ψ(𝛼)A = dΨ(𝛼)A + 𝜔i𝕁(𝛼)i (𝛽)Ψ(𝛽)A.

In eqs. (2.13)-(2.16), the left-hand sides can be read as definitions
of the superspace curvature, gravitino covariant derivative, su-
pertorsion and gauge field-strength respectively, while the right-
hand sides define their parametrizations as 2-forms in the super-
space spanned by the supervielbein ei, Ψ(𝛼)A. In other words, the
above relations define our background superspace. In particular,
we see that they define a curved AdS3 background, where L is the
AdS radius.
Note that the quantity g≡(𝜶 + 1) plays the role of the cou-

pling constant associated with the SU(2) gauge group. This is bet-
ter understood by redefining Ax = g A′x, in which case the field
strengths of the rescaled gauge fields read

 ′x ≡ dA′x −
g
2
𝜖xyzA′

y ∧ A′
z =

i
2L

(
𝕥x(3)
)
AB
Ψ(𝛼)A ∧ Ψ(𝛽)B 𝛿(𝛼)(𝛽).

(2.17)

As it is typical of supersymmetric theories, the gauging of an
internal symmetry induces, by supersymmetry, additional terms
in the supersymmetry transformation laws (fermion shifts) of the
fermion fields and fermion mass terms, all proportional to the
gauge coupling constant g and a scalar potential proportional to
g2, independently of the fact that in our model the gauge fields
do not propagate, being part of the background. We are going
to compute these terms in the following Section. In the limit
g = (𝜶 + 1) → 0 the fermion shifts and the fermion mass terms
vanish, together with the scalar potential.
Let us also mention here that, differently from other AdS su-

peralgebras, the D2(2, 1;𝜶) one allows for various different con-
tractions, due to its dependence on the two unrelated parame-
ters L and 𝜶 and it admits, in particular, the presence of central
charges in the contracted structure both on Minkowski and on
AdS. One limit consists in sending L → ∞, in which we recover
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a super-Poincaré structure, in the presence of non-abelian gauge
fields; two more contractions involve the limit g = (𝜶 + 1) → 0,
performed before or after having introduced the redefinition A′x.
In the former case we end up with an AdS3 background super-
space coupled to non-abelian pure-gauge SU(2) connections triv-
ially embedded in superspace, while with the latter contraction
the gauge fields become abelian and are associated with central
charges of the contracted superalgebra on an AdS3 background.
Finally, onemore contraction can be considered, in whichwe first
redefine Ax = 1

L
Ãx and consequently take the limit L → ∞, ob-

taining a central extension of a super-Poincaré structure where
the central charges are associated with abelian gauge fields.
Using standard coset geometry techniques applied to the su-

percoset D2(2, 1;𝜶)∕[SL(2.ℝ)L × SU(2)], one can express the su-
pervielbein ei, Ψ(𝛼)A, as well as the connection 1-forms, in terms
of the differentials dx𝜇 , d𝜃(𝛼)A. To this end, we can define a super-
coset representative

𝕃(x, 𝜃) ≡ 𝕃F(𝜃) ⋅ 𝕃B(x), (2.18)

where 𝕃F(𝜃) = exp(𝜃(𝛼)A (𝛼)A) and 𝕃B(x) = exp(ti(x)i), t
i being

non-linearly related to the spacetime coordinates andi ≡ (1)i −
(2)i. For the sake of simplicity, let us collectively denote the gen-
erators of the bosonic subalgebra 𝔰𝔩(2)1 ⊕ 𝔰𝔩(2)2 ⊕ 𝔰𝔲(2) by B.
The left invariant 1-form reads

Ω(x, 𝜃, d𝜃, dx) = 𝕃−1 d𝕃 = 𝕃−1
B (x) (𝕃−1

F d𝕃F(𝜃, d𝜃))𝕃B(x)

+ 𝕃−1
B d𝕃B(x, dx). (2.19)

Defining the Lie algebra-valued 1-forms ΩF(𝜃, d𝜃) and ΩB(x, dx)
as follows:

ΩF(𝜃, d𝜃) ≡ 𝕃−1
F d𝕃F(𝜃, d𝜃) = ΩF(𝜃, d𝜃)

(𝛼)A (𝛼)A + ΩF(𝜃, d𝜃)
 B,

ΩB(x, dx) = 𝕃−1
B d𝕃B(x, dx) = ΩB(x, dx)

 B, (2.20)

we can rewrite the 1-forms in (2.19) as

Ω(x, 𝜃, d𝜃, dx) = ΩF(𝜃, d𝜃)
(𝛼)A𝕃B(x)(𝛼)A

(𝛽)B (𝛽)B

+ ΩF(𝜃, d𝜃)
𝕃B(x)

 B + ΩB(x, dx)
 B

= ei

L
i +

1√
L
Ψ(𝛼)A (𝛼)A + 𝜔i i + Ax (3) x, (2.21)

where we have denoted by 𝕃B(x)(𝛼)A
(𝛽)B and 𝕃B(x)

 the matri-
ces representing the adjoint action of 𝕃B(x) on the supersymme-
try generators (𝛼)A and on B and which can be deduced from
the structure constants of the superalgebra. Moreover we defined
 i =  i

(1) +  i
(2).

From the above equation we can read off the supervielbein and
connection. In particular we find for ei and Ψ(𝛼)A the following
general formulae:

ei = L
(
ΩF(𝜃, d𝜃)

𝕃B(x)
i + ΩB(x, dx)

i
)
,

Ψ(𝛽)B =
√
LΩF(𝜃, d𝜃)

(𝛼)A𝕃B(x)(𝛼)A
(𝛽)B, (2.22)

where the i index in the first equation labels the components
along the i generators. We notice that restriction to spacetime
is effected by setting 𝜃 = 0, d𝜃 = 0, which in turn impliesΨ(𝛽)B =
0.6

In the following, we will study the dynamics of a set of hyper-
multiplets in this curved background. To be consistent with the
rigid superspace interpretation, the supergravity Lagrangian (2.9)
must decouple from the matter sector in the rigid limit. To this
aim, we set the parameter 𝜅 to

𝜅 = L
𝓁P

,

where we denote by 𝓁P the Planck length. In the rigid limit
𝓁P → 0, it is possible to choose L ≫ 𝓁P, so that the supergravity
dynamics is fully decoupled from the matter sector.

2.2. The Matter Content of the Model

The model describes the rigid supersymmetric background de-
fined above coupled to a set of hypermultiplets labeled by a cou-
ple of flavor indices a ≡ 𝛼I = 1,… , 2n, namely a set of scalars𝜙𝛼A

I

and their spin-1∕2 superpartners Λ𝛼(𝛼)
I .

In the geometric approach to supersymmetry and supergravity
in superspace,7 the first step for identifying themodel is to extend
the notion of the matter fields to superfields in superspace and
to define their covariant derivatives in superspace,

∇𝜙𝛼A
I ≡ d𝜙𝛼A

I + Ax
(
𝕥x(3)
)A

B
𝜙𝛼B
I , (2.23)

∇Λ𝛼(𝛼)
I ≡ dΛ𝛼(𝛼)

I + 𝜔i

(
𝕁i
)(𝛼)

(𝛽)
Λ𝛼(𝛽)
I . (2.24)

The corresponding Bianchi identities, which stem from the d2-
closure, must then hold on-shell in superspace,

∇2𝜙𝛼A
I =
(
𝕥x(3)
)A

B
x(3)𝜙

𝛼B
I , (2.25)

∇2Λ𝛼(𝛼)
I =

(
𝕁i
)(𝛼)

(𝛽)
RiΛ𝛼(𝛽)

I . (2.26)

6 We refrain here from using an explicit matrix representation of the
supercoset representative, since it is known not to be needed in order
to compute ei,Ψ(𝛼)A in terms of the coordinates and their differentials.
These quantities, indeed, only depend on the structure constants of the
superalgebra, as it can be explicitly shown by using the general formula
(see Theorem 5 of [23]):

e−X ⋅ d
(
eX
)
=
(
1 − e−AdX
AdX

)
dX,

where X is a superalgebra generator, linear function of the superalge-

bra parameters, AdX (Y) ≡ [X, Y ] and 1−e−AdX
AdX

≡
∑∞

k=0
(−1)k

(k+1)! (AdX )
k. In

order to evaluate the components of ΩF along the generators, as poly-
nomials in 𝜃, d𝜃, for instance, we just need to choose X = 𝜃 ⋅ in the
above formula. Their explicit expression is not needed for the scope of
the present investigation.

7 A recent detailed description of the geometric approach can be found
in [21].
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Note that the above relations are not identically satisfied in super-
space, but amount to constraints that must hold on-shell, when
the covariant derivatives above are parametrized as general 1-
forms in superspace. More precisely, their generic parametriza-
tion can be expressed as

∇𝜙𝛼A
I = ∇i𝜙

𝛼A
I ei + Ψ(𝛼)AΛ𝛼

(𝛼)I, (2.27)

∇Λ𝛼(𝛼)
I = ∇iΛ

𝛼(𝛼)
I ei + ∇i𝜙

𝛼A
I

(
𝕞i
)(𝛼)(𝛽)ΨB

(𝛽)𝜖AB + ℕ𝛼
IA Ψ

(𝛼)A. (2.28)

The consistency constraints (2.25), (2.26), once imposed on the
parametrizations (2.27), (2.28), imply the field equations for the
fermion fields and also determine the auxiliary matrices𝕞i,ℕ𝛼

IA(
𝕞i
)(𝛼)

(𝛽)
= − i

2

(
𝕋 i
(1) − 𝜶𝕋 i

(2)

)(𝛼)
(𝛽)

=
(
𝕄i

−

)(𝛼)
(𝛽)
,

ℕ𝛼
IA =

i(1 + 𝜶)
4L

𝜖AB 𝜙
𝛼B
I . (2.29)

Since in this approach the supersymmetry transformation laws
are described geometrically as Lie derivatives along the fermionic
directions of superspace, the above procedure allows to easily de-
termine the supersymmetry transformations of the fields, which
read

𝛿𝜀𝜙
𝛼A
I = 𝜀(𝛼)AΛ𝛼

(𝛼)I,

𝛿𝜀Λ
𝛼(𝛼)
I =Φ𝛼A

I;i

(
𝕄i

−

)(𝛼)
(𝛽)𝜀

(𝛽)
A + ℕ𝛼

IA𝜀
(𝛼)A,

𝛿𝜀e
i =
(
𝕄i

−

)
(𝛼)(𝛽)

𝜀(𝛼)AΨ(𝛽)
A ,

𝛿𝜀𝜔
i = 1

L
(𝕄i

+)(𝛼)(𝛽)𝜀
(𝛼)AΨ(𝛽)B)𝜖AB,

𝛿𝜀Ψ(𝛼)A =∇𝜀(𝛼)A + 1
L
𝕂(𝛼)(𝛽)

i ei𝜀A(𝛽),

𝛿𝜀A
x = i

L
(1 + 𝛼)(𝕥x(3))AB𝜀

(𝛼)AΨB
(𝛼). (2.30)

Note that the condition of background invariance under super-
symmetry requires 𝜀 to be a Killing spinor, namely that 𝛿𝜀Ψ(𝛼)A =
0. This in turn implies that the supersymmetry parameter should
satisfy the following equation:

∇̂𝜀 ≡ ∇𝜀 + 1
L
𝕂i e

i𝜀 = 0. (2.31)

From this it follows that all the background fields have vanishing
supersymmetry transformations on spacetime,

𝛿ei
𝜇
= 𝛿Ax

𝜇
= 𝛿𝜔i

𝜇
= 𝛿Ψ(𝛼)A

𝜇
= 0. (2.32)

3. The Lagrangian

The geometric approach allows to determine the Lagrangian
for our dynamical hypermultiplets as a bosonic 3-form in the

D2(2, 1;𝜶) superspace. It reads

 = a1
(
∇𝜙𝛼A

I − Ψ(𝛼)AΛ𝛼
(𝛼)I

)
ΦI;i

𝛼A e
j ek𝜖ijk −

1
6
a1Φ𝛼A

I;𝓁Φ
I;𝓁
𝛼Ae

i ej ek𝜖ijk

− 16
a1

𝜶2 − 1
Λ𝛼(𝛼)I

(
𝕄i

+

)
(𝛼)(𝛽)

[
1
2
∇Λ𝛽(𝛽)

I ej

+
(
𝕄j

−

)(𝛽)
(𝛾)

(
∇𝜙𝛽A

I − 1
2
Ψ(𝛿)AΛ𝛽

(𝛿)I

)
Ψ(𝛾)B𝜖AB

− ℕ𝛽

IA(𝜙)Ψ
(𝛽)Aej
]
𝜖𝛼𝛽 e

k𝜖ijk

+
ia1

3(𝜶 + 1)
(𝛼)(𝛽)Λ𝛼(𝛼)IΛ𝛽(𝛽)

I 𝜖𝛼𝛽e
i ej ek𝜖ijk −

a1
3
(𝜙) ei ej ek𝜖ijk

+
ia1

(𝜶 − 1)
𝜙

𝛽(A
I ∇𝜙𝛼I|B)𝜖𝛼𝛽 Ψ(𝛼)

A Ψ(𝛽)
B

×
[
(1 − 𝜶 + 𝜶2)

4
𝛿(𝛼)(𝛽) + 𝜶

(
𝕋 k
(1)𝕋(2)k

)
(𝛼)(𝛽)

]
−
i(1 + 𝜶)a1

8L
𝜙IA𝛼𝜙𝛽B

I

(
𝕁i
)
(𝛼)(𝛽)

Ψ(𝛼)CΨ(𝛽)Dei𝜖CD𝜖𝛼𝛽𝜖AB. (3.1)

As we are going to show in Section 3.2, this Lagrangian is invari-
ant under supersymmetry modulo boundary terms.
The hyperini mass matrix and the scalar potential have the fol-

lowing expressions:

(𝛼)(𝛽) =
1
L

[
𝛿(𝛼)(𝛽) + 4

(
𝕋 i
(1) ⋅ 𝕋(2)i

)
(𝛼)(𝛽)

]
, (3.2)

(𝜙) = − 1
2L2

𝜙𝛼A
I 𝜙𝛽BI𝜖𝛼𝛽𝜖AB + const.. (3.3)

We choose the overall normalization to be a1 =
1
2
. Thus, the

spacetime projection of the superspace Lagrangian (3.1) takes the
simple expression

spacetime = 1
2
∇𝜇𝜙

𝛼A
I ∇𝜇𝜙𝛽BI𝜖𝛼𝛽𝜖AB

− 8
𝜶2 − 1

Λ𝛼(𝛼)I
(
𝕄𝜇

+
)
(𝛼)(𝛽)

∇𝜇Λ
𝛽(𝛽)
I 𝜖𝛼𝛽

+ i
(𝜶 + 1)

(𝛼)(𝛽)Λ𝛼(𝛼)IΛ𝛽(𝛽)
I 𝜖𝛼𝛽 − (𝜙). (3.4)

Notice that the spacetime Lagrangian describes non-mutually-
interacting scalar and fermion sectors, the interaction terms only
appearing in the components of the superspace Lagrangian along
the odd directions.
The expression of the scalar potential, which is in fact a mass

term for the scalar fields, is fixed by the requirement of super-
symmetry of the action, to be discussed in Section 3.2.
In this Section, we are going to explicitly write down the Euler-

Lagrange equations of the spacetime Lagrangian, which provides
the field equations of the hypermultiplets.Moreover, we are going
to discuss some of the peculiarities of the superspace Lagrangian
(3.1), which are not apparent in its spacetime projection (3.4).
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3.1. The Field Equations

The scalar field𝜙𝛼A
I satisfies the following Klein-Gordon equation

of motion:

∇𝜇∇𝜇 𝜙𝛼A
I = + 1

L2
𝜙𝛼A
I , (3.5)

where the mass is given by the inverse of the AdS radius L. Let
us observe that the squared mass of the scalar fields, m2

𝜙
= − 1

L2
,

saturates the Breitenlohner-Freedman (BF) bound[24,25] inD = 3.
Being the BF bound satisfied, the vacuum is perturbatively stable
against scalar fluctuations.
The equation of motion of Λ(𝛼)𝛼

I , that can be easily obtained
from the Lagrangian (3.4), as well as (after some laborious calcu-
lations) from the Bianchi identities in superspace, reads(
𝕄i

+

)
(𝛼)(𝛽)

∇iΛ
𝛼(𝛽)
I − i

8
(𝜶 − 1)(𝛼)(𝛽)Λ

𝛼(𝛽)
I = 0. (3.6)

It is a massive Dirac equation, with a constant mass proportional
to the inverse of the AdS radius L. The mass matrix  can be
diagonalized through conjugation with the orthogonal matrix

 =

⎛⎜⎜⎜⎜⎝
0 0 0 1

− 1√
2

0 1√
2

0
1√
2

0 1√
2

0

0 1 0 0

⎞⎟⎟⎟⎟⎠
, (3.7)

showing that it has only one eigenvalue different from zero,

(𝜎)(𝛼) =
(
 t

)
(𝜎)(𝛼)

= 1
L

⎛⎜⎜⎜⎝
4 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠. (3.8)

The interpretation of the above result in terms of mass eigen-
states will be more transparent in the twisted descriptions of the
model that we will give in Section 4.

3.2. Scalar Potential and Supersymmetry Invariance

In this Section, we discuss the supersymmetry of the action of
our model, starting from the properties of the Lagrangian both
in superspace (3.1) and in spacetime (3.4). As we are going to
see, we find that supersymmetry invariance of the superspace La-
grangian requires a non-trivial contribution from the boundary.
This means that the bulk Lagrangian is invariant modulo total
derivative terms. The latter are relevant to the complete invari-
ance of the action, being our model formulated on a spacetime
with AdS geometry, which is not globally hyperbolic. Here, we
will be dealing with the invariance of the model in the bulk only,
leaving a detailed analysis of the invariance of the action, which
includes the boundary contributions, along the lines of [26], to
future investigation. For this reason, we expect all contributions
 in 𝛿 to sum up to a total derivative term d𝛿 in such a way
that

𝛿 =  =  + d(𝛿)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

0

−d(𝛿) = −d(𝛿). (3.9)

By using the transformation laws (2.30), restricted to spacetime
and the Killing spinor equation (2.31), it can be verified that
the spacetime Lagrangian (3.4) features off-shell invariance un-
der supersymmetry.
In particular, this invariance is crucial to determine the explicit

expression of the scalar potential appearing in (3.1) and (3.4), as
expected. Indeed, invariance of the spacetime Lagrangian (3.4) to
order 1∕L2 requires the scalar potential (𝜙) to satisfy the follow-
ing condition:

𝜕

𝜕𝜙𝛼A
= − 1

L2
𝜖𝛼𝛽𝜖AB 𝜙

𝛽B, (3.10)

which yields the expression for the potential given in (3.3).
The analysis of supersymmetry for the superspace Lagrangian

can instead be performed, in a geometric setting, by computing
its Lie derivative along odd diffeomorphisms,

𝛿𝜖 = £𝜖 = 𝜄𝜖(d) + d𝜄𝜖(), (3.11)

and ignoring the total derivative part for the bulk analysis, as ex-
plained above. Eventually, we can analyse independently the in-
variance in different sectors, defined by the inverse powers of the
AdS radius L and on different basis elements for 3-forms in su-
perspace. Of particular interest is the sector 1

L2
𝜖Ψee, which yields

the supersymmetric potential Ward identity.[27–29]

The explicit computation of this sector in (3.1) yields

(𝜙)
(
(𝜶 + 1)𝕂i − (𝜶 − 1)𝕁i

)
+ 1
2L2

𝜶 + 1
𝜶 − 1

𝜙2
(
(1 − 𝜶)𝕂i + (𝜶 + 1)𝕁i

)
− 𝜶 + 1

L2
𝜙2𝜖ijk𝕂j𝕁k = | 1

L2
𝜖Ψee ≠ 0. (3.12)

In particular, we notice that, while the components on the left
hand side along 𝕂i vanish for the choice of the potential in (3.3),
the components along 𝕁i fail to do so. These contributions can
be disposed of by adding a suitable total derivative term to the
superspace Lagrangian in (3.1) of the form

d = d
(
Λ𝛼(𝛼)I

[
r1
(
𝕁i
)
+ r2𝜖

ijk𝕋(1)j𝕋(2)k
]
(𝛼)(𝛽)

𝜙𝛽A
I Ψ(𝛽)B𝜖AB𝜖𝛼𝛽ei

)
,

(3.13)

where the values of r1, r2 are restricted by the requirement that
the 1

L2
𝜖Ψee component of 𝛿𝜖 vanishes,

(𝜙)
(
(𝜶 + 1)𝕂i − (𝜶 − 1)𝕁i

)
+ 1
2L2

𝜶 + 1
𝜶 − 1

𝜙2
(
(1 − 𝜶)𝕂i + (𝜶 + 1)𝕁i

)
− 𝜶 + 1

L2
𝜙2𝜖ijk𝕂j𝕁k +

2(𝜶 + 1)
L2

(
r1 +

1
2
r2
)
𝜙2𝕁i = 0. (3.14)

This leads to the following relation:

r1 +
r2
2

= −1
2

(
𝜶2 + 1
𝜶2 − 1

)
. (3.15)

Fortschr. Phys. 2021, 2100111 2100111 (8 of 16) © 2021 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

In light of the remark in (3.9), this signals that the Lagrangian
in (3.1) is invariant in the bulk modulo a total derivative term
−d(𝛿).

3.3. Comments on the Dependence of the Lagrangian on the
Hyper-Kähler Geometry

Although we are restricting to a flat hyper-Kähler manifold, in
view of a possible generalisation to a curved one, it would be use-
ful to provide an intrinsic characterization of the scalar depen-
dence of the Lagragian (in particular of the scalar potential) in
terms of quantities characterizing the hyper-Kähler geometry. To
this end we start recalling the main facts about hyper-Kähler ge-
ometry.
A hyper-Kählermanifold[30,31] of real dimension 4nH is amani-

fold on which three complex structures are defined Jx, x = 1, 2, 3,
(Jx)2 = −1, closing an 𝔰𝔲(2) algebra: [Jx, Jy] = 𝜖xyz Jz. The metric
huw is required to be Hermitian with respect to any of the three
structures. In a local patch with coordinates qu, u = 1,… , 4nH,
this amounts to the conditions

huw J
x w

v + hvw J
x w

u = 0, (3.16)

where (Jx)uv represent the action of the complex structures on a
coordinate basis of the tangent space and satisfy the quaternionic
algebra

JxJy = −𝛿xy + 𝜖xyz Jz. (3.17)

Themanifold is further required to be Kähler with respect to each
of the three complex structures. This in turn is equivalent to the
condition that the matrices (Jx)uv be covariantly constant with re-
spect to the Levi-Civita connection Γ̃w

uv on the manifold,

w (J
x)uv = 0. (3.18)

We define the hyper-Kähler 2-forms as follows:

Ωx = Ωx
uv dq

u ∧ dqv,Ωx
uv = huw J

x w
v = hw[u J

x w
v]. (3.19)

The hyper-Kähler condition implies that these three 2-forms are
closed: dΩx = 0.
In our case the coordinates qu are identified with the scalar

fields of our model 𝜙𝛼A
I . The matrices (Jx)uv are constant and de-

fine the (linear) action of the 𝔰𝔲(2) generators on the index A of
the scalars 𝜙𝛼 A

I ,

(Jx)uv = (Jx)A𝛼IB𝛽J = 2 (𝕥x)AB 𝛿𝛼𝛽 𝛿
I
J . (3.20)

The real dimension of the space is 8, corresponding to nH = 2 hy-
permultiplets.
We can treat the space as a complex manifold with respect to

the complex structure J ≡ Jx=2, which acts on the indices A, B,…
as the matrix 2 (𝕥2)AB = i (𝜎2)AB

J ⋅ 𝜙𝛼A
I = i (𝜎2)AB 𝜙

𝛼B
I . (3.21)

This choice of the complex structure yields the definition of 4
complex coordinates 𝜙𝛼

I and their complex conjugates 𝜙̄𝛼
I ,

𝜙𝛼
I ≡ 𝜙𝛼A=1

I + i𝜙𝛼A=2
I , 𝜙̄𝛼

I ≡ 𝜙𝛼A=1
I − i𝜙𝛼A=2

I , (3.22)

such that

J ⋅ d𝜙𝛼
I = −i d𝜙𝛼

I , J ⋅ d𝜙̄
𝛼
I = i d𝜙̄𝛼

I . (3.23)

When interpreting 𝜙𝛼
I , 𝜙̄

𝛼
I as ghost and anti-ghost fields, the op-

erator i J measures their ghost charges, which are +1 and −1, re-
spectively. In our model the hyper-Kähler manifold is flat and the
metric reads

ds2 = huv dq
u dqv = 𝜖𝛼𝛽 𝜖AB d𝜙

𝛼A
I d𝜙𝛽B

I = i𝜖𝛼𝛽 d𝜙
𝛼
I d𝜙̄

𝛽

I . (3.24)

The Kähler 2-form associated with J reads

K = huv J
v
w dq

u ∧ dqw = −d𝜙𝛼 ∧ d𝜙̄𝛽 𝜖𝛼𝛽 , (3.25)

and the corresponding Kähler potential has the following expres-
sion:

(𝜙, 𝜙̄) ≡ 𝜙𝛼A
I 𝜙𝛽B

I 𝜖𝛼𝛽𝜖AB = i 𝜖𝛼𝛽 𝜙
𝛼
I 𝜙̄

𝛽

I . (3.26)

In terms of this potential the metric in the complex basis is given
by the known relation for Kähler manifolds,

ds2 =

(
𝜕2

𝜕𝜙𝛼
I 𝜕𝜙̄

𝛽

J

)
d𝜙𝛼

I d𝜙̄
𝛽

J . (3.27)

As for the other complex structures Jx, whose action on the A, B
indices can be described in terms of the matrices 2 (𝕥x)AB, it is
useful to describe the index x = 1, 2, 3 in terms of a symmetric
couple (AB) and write (Jx)CD = i (𝕥x)AB (J(AB))CD, where (J(AB))CD ≡

𝛿
(A
D 𝜖B)C. The three closed hyper-Kähler 2-forms Ω(AB) have then
the following expression[11]:

Ω(AB) = d𝜙𝛼 A
I ∧ d𝜙𝛽 B

I 𝜖𝛼𝛽 . (3.28)

Being closed, locally these forms can be written as the exterior
derivative of 1-forms(AB): Ω(AB) = d(AB), where

(AB) = 𝜙
𝛼 (A
I d𝜙𝛽 |B)

I 𝜖𝛼𝛽 . (3.29)

Let us now show that the dependence of the Lagrangian on the
scalar fields can be described in terms of geometrical quanti-
ties which are intrinsic to the hyper-Kähler manifold and this
suggests a natural generalisation of its expression to more gen-
eral non-flat hyper-Kähler geometries.[2] We note indeed that the
scalar potential (𝜙, 𝜙̄) can be expressed in terms of (𝜙, 𝜙̄) as
follows:

(𝜙, 𝜙̄) = − 1
2L2

(𝜙, 𝜙̄) + const.. (3.30)

Moreover the expression 𝜙
𝛼 (A
I ∇𝜙

𝛽 |B)
I 𝜖𝛼𝛽 in a ΨΨ-component of

the Lagrangian, as well as∇𝜙𝛼A
I in the spacetime Lagrangian, are

respectively interpreted in terms of the connection(AB) and the
vielbein 𝛼A

I =  𝛼A
I u dqu 1-forms, in which the exterior derivative
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d is replaced by the covariant one ∇ due to the gauging of the
SU(2) isometry algebra by Ax

𝜇
. As mentioned above, this obser-

vation is useful in view of a generalisation of the Lagrangian to
a sigma-model on more general hyper-Kähler manifolds.[2] This
task will be undertaken in a future work.
Let us add that, when a curved hyper-Kähler manifold is con-

sidered, the supersymmetry transformation laws contain extra
contributions depending on the affine connection on the 𝜎-model
and the Lagrangian includes an additional term of the form

𝜖AB R𝛼AI,𝛽BJ;𝛾K,𝜎L Λ(𝛼)𝛼I Λ(𝛽)𝛽J Λ(𝛾)𝛾K Λ(𝜎)𝜎L𝜖(𝛼)(𝛽)(𝛾)(𝜎), (3.31)

where

𝜖(𝛼)(𝛽)(𝛾)(𝛿) = 4 (𝕋 i
(1))[(𝛼)(𝛽)(𝕋(1) i)(𝛾)(𝛿)] = −4(𝕋 i

(2))[(𝛼)(𝛽)(𝕋(2) i)(𝛾)(𝛿)] (3.32)

is the totally antisymmetric SO(2, 2)-invariant tensor and

R𝛾K,𝜎L =
1
2
Ruv;𝛾K,𝜎Ldq

u ∧ dqv = 1
2
R𝛼AI,𝛽BJ;𝛾K,𝜎L d𝜙

𝛼AI ∧ d𝜙𝛽BJ

is the curvature 2-form with value in the 𝔲𝔰𝔭(2n) = 𝔲𝔰𝔭(4) alge-
bra.

4. The Twists

In this Section we will perform two different twists of the theory.
As we shall see, the first one will relate this model to the one of
[2], whereas the second one will allow to make contact with the
unconventional supersymmetry explored in [6–9, 11].

4.1. First Twist

In all of the analysis up to now, the manifest invariance of the
action is only restricted to the Lorentz group SL(2,ℝ)L embedded
as the diagonal subgroup

SL(2,ℝ)L = SL(2,ℝ)′D ⊂ SL(2,ℝ)′1 × SL(2,ℝ)′2

and to the R-symmetry group SU(2) inside D2(2, 1;𝜶). How-
ever, we have kept so far a somewhat hybrid notation in the de-
scription of the fermionic fields and of supersymmetry, by keep-
ing the spinor indices 𝛼′, 𝛼̇′ of SL(2,ℝ)′1 and SL(2,ℝ)′2 distinct
and thus working with a redundant 4-component description of
spinor fields.
In this Subsection we rewrite the spinor fields in irreducible

SL(2,ℝ)′D components,

Λ(𝛼)𝛼
I → 𝛹𝛼

Ii , 𝜂
𝛼
I , (4.1)

according to the branching

(2, 2) → 3 + 1. (4.2)

We will call this decomposition a twist in analogy with the known
topological twist. In our framework, it amounts to making ex-
plicit the choice of the spin-connection of D2(2, 1;𝜶) superspace
among the SL(2,ℝ) connections of the superalgebra.

To expressΛ(𝛼) 𝛼
I in terms of its component fields, we introduce

the following intertwining matrices:

𝛾 i(𝛼) ≡ (𝛾 i)𝛼′ 𝛼̇′ , 𝜖(𝛼) ≡ 𝜖𝛼′ 𝛼̇′ , (4.3)

which are clearly invariant under the Lorentz group SL(2,ℝ)L.8
Using this quantity, we can decomposeΛ𝛼(𝛼)

I into the components
𝛹𝛼
i I , 𝜂

𝛼
I as follows:

Λ𝛼(𝛼)
I = i 𝛾 i(𝛼) 𝛹𝛼

i I + 𝜖(𝛼) 𝜂𝛼I . (4.4)

In the context of the analysis carried out in [11], the two com-
ponents of Λ𝛼(𝛼)

I resulting from the twist describe, respectively,
the gauge field 𝛹𝛼

i I associated with the odd gauge symmetries of
a Chern-Simons model defined on the supergroup OSp(2|2) and
the corresponding Nakanishi-Lautrup field 𝜂𝛼I . In our case, simi-
larly as in [2], the bosonic subgroup of the gauge supergroup be-
ing replaced by a global flavour symmetry, the odd gauge fields
𝛹𝛼
i I are the only relics of the Chern-Simons gauge supergroup.

Similarly, the analogous components of the supersymmetry gen-
erators (𝛼)A define what in [4] were identified as the BRST sym-
metry generator , the “vector” BRST symmetry generatori and
their secondary counterparts ̄ , ̄i:

(𝛼)A = i 𝛾 i(𝛼) A
i + 𝜖(𝛼) A, (4.5)

where A ≡ ( , ̄),A
i ≡ (i, ̄i).

Let us now compute the anticommutator of the two supersym-
metry generators for the D2(2, 1;𝜶) algebra in (2.2), in terms of
the twisted operators A, A

i . We find

{
A,B

}
= i
2
s3
(
𝕥(3)x
)AB

 x
(3), (4.6){

A
i ,

B
j

}
= i
4
𝜖ijk𝜖

AB
(
s1

k
(1) + s2

k
(2)

)
+ i
2
s3 𝜂ij
(
𝕥(3)x
)AB

 x
(3),

(4.7){
A
i ,

B
}
= i
4
𝜖AB
(
s1(1)i − s2(2)i

)
. (4.8)

The above expressions show that, except for the D2(2, 1;𝜶) singu-
lar value s3 = 0 (corresponding to 𝜶 = −1), the scalar generators
A do not behave as cohomology operators.
By proving the following relation:

(𝕋 i
(1)𝕋(2) i)

(𝛼)
(𝛽) 𝛾

k (𝛽) = −1
4
𝛾k (𝛼), (4.9)

one can verify that 𝛾 i (𝛼) provide three zero-eigenvectors for the
mass matrix(𝛼)(𝛽):

(𝛼)
(𝛽)𝛾

i(𝛽) =
(
𝛿
(𝛼)
(𝛽) + 4 (𝕋 j

(1)𝕋(2) j)
(𝛼)

(𝛽)

)
𝛾 i(𝛽) = 0. (4.10)

This implies that the massive degrees of freedom are encoded
in 𝜂𝛼I . We should now write the equation for Λ in terms of 𝛹

8 To see this for 𝛾 i(𝛼) one can verify that

(𝕋 i
(1) + 𝕋 i

(2))
(𝛼)

(𝛽) 𝛾
k (𝛽) = −𝜖ik𝓁 𝛾 (𝛼)𝓁 .
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and 𝜂. To this end it is useful to write the following relations (we
suppress the indices 𝛼, I):

(𝕋 i
(1)Λ)

(𝛼) = i
2
𝜖i𝓁k 𝛾

(𝛼)
𝓁 𝛹k −

1
2
𝜖(𝛼)𝛹 i + i

2
𝛾 i(𝛼) 𝜂,

(𝕋 i
(2)Λ)

(𝛼) = i
2
𝜖i𝓁k 𝛾

(𝛼)
𝓁 𝛹k +

1
2
𝜖(𝛼)𝛹 i − i

2
𝛾 i(𝛼) 𝜂. (4.11)

By substituting (4.4) in the field equation (3.6) and projecting
along (𝛾p)

(𝜎) and 𝜖(𝜎) we find9

(
𝛾p
)(𝜎)

: (𝜶 − 1)∇p𝜂I + (1 + 𝜶)𝜖pik∇i𝛹 k
I = 0,

𝜖(𝜎) : (𝜶 − 1)∇i𝛹
i
I +

2
L
(𝜶 − 1)𝜂I = 0. (4.12)

We observe that for the value 𝜶 = 1, which is not a singular case
for D2(2, 1;𝜶),10 𝜂 decouples and we end up with only one equa-
tion for 𝛹𝛼

i . Note that if the index 𝛼 were a spinor index with
respect to the Lorentz group, the equation 𝜖ipk∇p𝛹 k𝛼

I = 0 would
be the Rarita-Schwinger equation for a massless spin-3∕2 field.
Recall however that in our construction 𝛼 is an internal gauge in-
dex.
The Lagrangian and the Supersymmetry Variations: The above

mentioned equations of motion can be reproduced by the follow-
ing Lagrangian:

spacetime =
1
2
∇i𝜙

𝛼A
I ∇i𝜙𝛽BI𝜖𝛼𝛽𝜖AB − (𝜙) + 4i

1 − 𝜶
𝜖ijk𝛹𝛼I

i ∇j𝛹
𝛽

kI𝜖𝛼𝛽

+ 8i
(1 + 𝜶)

(
−𝛹 i𝛼I∇i𝜂

𝛽

I +
1
L
𝜂𝛼I𝜂𝛽I

)
𝜖𝛼𝛽 , (4.13)

which can be obtained from the spacetime Lagrangian (3.4) by
performing the twist (4.4). Note that the 𝜂I-dependent terms in
the above Lagrangian are consistent with the interpretation of 𝜂I
as the Nakanishi-Lautrup field.[11]

The supersymmetry variations of these two new fields and of
𝜙 are

𝛿𝜀𝜙
𝛼A
I = 𝜀(𝛼)A

(
i𝛾 i(𝛼)𝛹

𝛼
iI + 𝜖(𝛼)𝜂

𝛼
I

)
,

𝛿𝜀𝛹
𝛼
iI = −1

8

(
(1 − 𝜶)𝜖ijk∇j𝜙𝛼A

I + 1 + 𝜶

L
𝜙𝛼A
I 𝜂ik

)
𝛾k(𝛼)𝜀

(𝛼)
A

−
i(1 + 𝜶)

8
∇i𝜙

𝛼A
I 𝜖(𝛼)𝜀

(𝛼)
A ,

𝛿𝜀𝜂
𝛼
I = −1 + 𝜶

8
∇i𝜙

𝛼A
I 𝛾 i(𝛼)𝜀

(𝛼)
A + 1

2
ℕ𝛼
IA𝜖(𝛼)𝜀

(𝛼)A. (4.14)

These expressions can now be rewritten in terms of the new
symmetry parameters arising from the twist we are considering,

9 We use the following identity:(
𝛾p
)(𝜎)

𝜖(𝜎) = 0,
(
𝛾p
)(𝜎)(

𝛾k
)
(𝜎) = −2𝜂pk, 𝜖(𝜎)𝜖(𝜎) = 2.

10 In fact, for 𝜶 = 1 the algebra D2(2, 1;𝜶) becomes isomorphic to a real
form of D(2, 1) ∼ 𝔬𝔰𝔭(4|2) with bosonic subgroup 𝔰𝔬(2, 2) × 𝔰𝔲(2).

𝜀(𝛼)A = i𝛾 i(𝛼)𝜀Ai + 𝜖(𝛼)𝜀A, that is

𝛿𝜀iBiB
𝜙𝛼A
I = 𝜀iA𝛹𝛼

iI ,

𝛿𝜀BB
𝜙𝛼A
I = 𝜖AB𝜂𝛼I 𝜀B,

𝛿𝜀lBlB
𝛹𝛼
iI =

i
8

(
(1 − 𝜶)𝜖ijk∇j𝜙𝛼A

I + 1 + 𝜶

L
𝜙𝛼A
I 𝜂ik

)
𝜀kA,

𝛿𝜀BB
𝛹𝛼
iI = −

i(1 + 𝜶)
8

∇i𝜙
𝛼A
I 𝜀A,

𝛿𝜀iBiB
𝜂𝛼I =

i(1 + 𝜶)
8

∇i𝜙
𝛼A
I 𝜀iA,

𝛿𝜀BB
𝜂𝛼I =

i(1 + 𝜶)
8L

𝜙𝛼
AI𝜀

A. (4.15)

In particular, since on a generic field 𝛷 we have by linearity
𝛿𝜀BB

𝛷 = 𝜀B𝛿B
𝛷 ≡ 𝜀B(B ⋅𝛷), from the above equations we ob-

tain

(B ⋅ 𝜙𝛼A
I ) = 𝜖AB𝜂𝛼I ,

(A ⋅ 𝛹𝛼
iI ) =

i(1 + 𝜶)
8

∇i𝜙
𝛼A
I ,

(A ⋅ 𝜂𝛼I ) =
i(1 + 𝜶)
8L

𝜙𝛼A
I , (4.16)

so that

( (BA) ⋅ 𝜙𝛼C
I ) =

i(1 + 𝜶)
8L

𝜖C(A𝜙
𝛼B)
I ,

( (BA) ⋅ 𝛹𝛼
iI ) =

i(1 + 𝜶)
8

𝜖(AB)∇i𝜂
𝛼
I = 0,

( (BA) ⋅ 𝜂𝛼I ) =
i(1 + 𝜶)
8L

𝜖(AB)𝜂𝛼I = 0. (4.17)

The above equations show that the operators A do not anticom-
mute on fields with non-vanishing ghost-number. The cohomo-
logical structure is retrieved in the singular case 𝜶 + 1 = 0.
Furthermore, we notice that the obtained spacetime La-

grangian can be expressed, as in [2]

spacetime =
4i

1 + 𝜶
A ⋅
(
∇i𝜙𝛼BI𝛹𝛽

iI𝜖AB +
1
L
𝜂𝛼I𝜙𝛽B

I 𝜖AB

)
𝜖𝛼𝛽

+ 4i
1 − 𝜶

𝜖ijk𝛹𝛼I
i ∇j𝛹k𝛼I. (4.18)

Let us remark that the charges A act on the spacetime La-
grangian similarly as BRST cohomology operators, separating
it in a “physical” Lagrangian and a term in the image of  , de-
spite the fact that the A do not behave as proper cohomological
charges (see (4.6)). In fact, extra contributions due to the peculiar
structure of the D2(2, 1;𝜶) superspace show up in the superspace
Lagrangian, some of them being associated with the commuta-
tor [A,∇]𝜙B𝛽

I , which however vanishes on spacetime, as a conse-
quence of (2.32), whose twisted expression implies a trivial action
on spacetime of the A on the background fields appearing in the
covariant derivatives.
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4.2. Second Twist

As discussed in [11], in order to make contact with the model of
[6], where an “unconventional” supersymmetric theory featuring
spin-1∕2 fields 𝜒 (AVZ)

I was constructed, we perform a second twist
which amounts to writing the fields in a covariant way with re-
spect to the diagonal subgroup SL(2,ℝ)D of SL(2,ℝ) × SL(2,ℝ)′1,
where the former factor is the flavor symmetry group acting on
the index 𝛼. This amounts to introducing the SL(2,ℝ)D-invariant
tensors 𝛾 i

𝛼𝛼′
, 𝜖𝛼𝛼′ and decomposing Λ𝛼𝛼′ 𝛼̇′ as follows:

Λ𝛼𝛼′ 𝛼̇′

I = i (𝛾k)𝛼𝛼
′
𝜒̂ 𝛼̇′

Ik + 𝜖𝛼𝛼
′
𝜒𝛼̇′

I , (4.19)

This twist is suggested by the ansatz (1.1) in which the field 𝛹𝛼
iI

is expressed in terms of spin-1∕2 fields 𝜒𝛼̇′

I , to be related to the
components on the right-hand side of (4.19) in the following.
Equations (4.4) and (4.19) amount to writing the spinors in two

different bases. The relation between the corresponding compo-
nents reads{

𝜒I =
1
2
(i𝛹∕I − 𝜂I),

𝜒̂Ii = 𝛹Ii +
i
2
𝛾i
(
i𝛹∕I + 𝜂I

)
,

{
𝜂I = − 1

2

[
i 𝜒̂∕I + 𝜒I

]
,

𝛹iI = 𝜒̂iI −
1
2
𝛾i
(
𝜒̂∕I + i𝜒I

)
,

(4.20)

where the spinor indices have been suppressed.11 The spinor
equations (4.12) in the new fields have the following form:

(𝜶 + 1)𝜖𝓁ik ∇i

(
𝜒̂kI −

i
2
𝛾k (𝜒I − i 𝜒̂∕I)

)
+ 1 − 𝜶

2
∇𝓁(𝜒I + i 𝜒̂∕I) = 0,

(4.21)

1
2

(
−i∇∕𝜒I −

2
L
𝜒I

)
− i
2

(
−i∇∕𝜒̂∕I +

2
L
𝜒̂∕I
)
+ ∇i𝜒̂iI = 0, (4.22)

and the field variations are

𝛿𝜀𝜙
𝛼A
I = i

(
𝛾k
)𝛼

𝛼′
𝜀𝛼

′ 𝛼̇′A𝜒̂Ik𝛼̇′ + 𝜀𝛼𝛼̇
′A𝜒I𝛼̇′ ,

𝛿𝜀𝜒̂
𝛼̇′

Il = i
8
∇i𝜙

𝛼A
I

[(
𝛾l𝛾

i
)
𝛼𝛽′

𝜀𝛽
′ 𝛼̇′

A − 𝜶
(
𝛾l
)
𝛼𝛽′

(
𝛾 i
)𝛼̇′

𝛽̇′𝜀
𝛽′ 𝛽̇′

A

]
+ i
2
ℕ𝛼
IA

(
𝛾l
)
𝛼𝛼′

𝜀𝛼
′ 𝛼̇′A,

𝛿𝜀𝜒
𝛼̇′

I = 1
8
∇i𝜙

𝛼A
I

[(
𝛾 i
)
𝛼𝛽′

𝜀𝛽
′ 𝛼̇′

A − 𝜶𝜖𝛼𝛽′
(
𝛾 i
)𝛼̇′

𝛽̇′𝜀
𝛽′ 𝛽̇′

A

]
+ 1
2
ℕ𝛼
IA𝜖𝛼𝛼′𝜀

𝛼′ 𝛼̇′A. (4.23)

The Lagrangian and the Supersymmetry Variations: In terms of
the fields 𝜒̂ 𝛼̇′

Ik , 𝜒
𝛼̇′

I , the spacetime Lagrangian (3.4) takes the form

spacetime =
1
2
∇i𝜙

𝛼A
I ∇i𝜙𝛽BI𝜖𝛼𝛽𝜖AB − (𝜙)+

11 Note that the abovemanipulations require that the onlymanifest sym-
metry acting on the odd sector be the diagonal subgroup SL(2,ℝ) ⊂
SL(2,ℝ)D × SL(2,ℝ)′2 so that the three indices 𝛼, 𝛼

′, 𝛼̇′ are treated on
an equal footing.

− 4
𝜶2 − 1

[
i𝜖ijk𝜒̂ t

iI𝜖∇j𝜒̂
I
k

+ 𝜶𝜒̂ t
iI𝜖𝛾

j∇j𝜒̂
I
i + 𝛼𝜒 t

I𝜖𝛾
i∇i𝜒

I − 2i𝜒 t
I𝜖∇

i𝜒̂ I
i

]
+

+ 2i
L(𝜶 + 1)

[
𝜒̂ t
kI𝜖𝜒̂

kI − i𝜖ijk𝜒̂ t
iI𝜖𝛾j𝜒̂

I
k

+ 𝜒 t
I𝜖𝜒

I − 2i𝜒̂ t
iI𝜖𝛾

i𝜒 I
]
, (4.24)

where we have used the matrix notation for the bispinor index:
𝜉t𝜖𝜁 ≡ 𝜉𝛼𝜁𝛽 𝜖𝛼𝛽 .
The above results can be further rewritten by decomposing the

𝜒̂Ii field into its spin-3∕2 and spin-1∕2 components, 𝜒̊Ii and 𝜒̂∕I,
as follows:

𝜒̂Ii = 𝜒̊Ii +
1
3
𝛾i 𝜒̂∕I, (4.25)

where 𝛾 i 𝜒̊Ii = 0. In this way we can rewrite the expressions of 𝛹Ii
and 𝜂I in (4.20) in the form

𝛹Ii = 𝜒̊Ii −
i
2
𝛾i 𝜒1I, 𝜂I = −1

2
𝜒2I, (4.26)

where 𝜒1I and 𝜒2I are defined as follows:

𝜒1I ≡ − i
3
𝜒̂∕I + 𝜒I, 𝜒2I ≡ i 𝜒̂∕I + 𝜒I. (4.27)

The inverse relations are

𝜒I =
1
4

(
3𝜒1I + 𝜒2I

)
, 𝜒∕I =

3
4
i
(
𝜒1I − 𝜒2I

)
, (4.28)

and the Lagrangian (4.24), when expressed in terms of the fields
𝜒̊Ii,𝜒1I,𝜒2I, takes the simpler form

spacetime =
1
2
∇i𝜙

𝛼A
I ∇i𝜙𝛽BI𝜖𝛼𝛽𝜖AB − (𝜙)+

+ 4i
1 − 𝜶

[
𝜖ijk𝜒̊ t

Ii𝜖∇j𝜒̊
I
k −

i
2
𝜒 t
1I𝜖∇∕𝜒

I
1 + 𝜒̊ t

Ii𝜖∇
i 𝜒 I

1

]
+

+ 2i
𝜶 + 1

[
2 𝜒̊ t

Ii𝜖∇
i 𝜒 I

2 + i𝜒 t
1I 𝜖∇∕𝜒

I
2 +

1
L
𝜒 t
2I𝜖 𝜒

I
2

]
, (4.29)

where for the spinor bilinears we have used the notation illus-
trated in Appendix A.
The field equations are readily written in the following form:

𝛿𝜒̊ : ℙ( 32 )
l
i

(
(𝜶 + 1) 𝜖ijk ∇j

(
𝜒̊Ik −

i
2
𝛾k 𝜒1I

)
−
(𝜶 − 1)

2
∇i 𝜒2I

)
= 0, (4.30)

𝛿𝜒1 : ∇i𝜒̊iI + i∇∕𝜒1I + i 𝛼 − 1
2(1 + 𝜶)

∇∕𝜒2I = 0, (4.31)

𝛿𝜒2 : − 2∇i𝜒̊iI+i∇∕𝜒1I +
2
L
𝜒2I = 0, (4.32)

where ℙ( 3
2
)
j
i ≡ 1 𝛿ji −

1
3
𝛾 j𝛾i is the projector on the spin-3∕2 rep-

resentation. Combining the three equations above, we get the
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following conditions:

∇i𝜒̊iI =
1
6
1 − 𝜶

1 + 𝜶

[
i∇∕𝜒2I −

4(1 + 𝜶)
L(𝜶 − 1)

𝜒2I

]
,

2 𝜖ijk∇j𝜒̊Ik +
(
∇i − 𝛾 i∇∕

)
𝜒1I −

𝜶 − 1
𝜶 + 1

∇i𝜒2I = 0. (4.33)

Massive Dirac Spinors and Unconventional Supersymmetry: Let
us show that the solutions to equations (4.30), (4.31) and (4.32)
comprise a massive Dirac spinor. To this end it suffices to restrict
to solutions satisfying the condition

∇i𝜒̊Ii = 0. (4.34)

Equations (4.31) and (4.32) can then be rewritten in the following
equivalent form:

∇∕𝜒1I =
2i
L
𝜒2I, (4.35)

i∇∕𝜒2I = m𝜒2I, (4.36)

where

m =
4(𝜶 + 1)
L(𝜶 − 1)

. (4.37)

The fields 𝜒2I are now massive Dirac spinors of mass m. Note
that, as expected, this mass depends on the parameter g = (𝜶 +
1), that is on the gauging of the R-symmetry SU(2). As for 𝜒1I,
it is straightforward to verify that, given the field 𝜒2I, solution of
(4.36), 𝜒1I is given by the following general expression:

𝜒1I = − 2
Lm

𝜒2I + 𝜎I =
1 − 𝜶

2(𝜶 + 1)
𝜒2I + 𝜎I, (4.38)

where 𝜎I are massless spinor fields: i∇∕𝜎I = 0. This result is also
expected, since 𝜒1I satisfies a higher order field equation (see
(4.35)).
We could impose on the solutions to equations (4.30), (4.31)

and (4.32) a stronger condition and set the spin-3∕2 field to zero:

𝜒̊Ii = 0. (4.39)

This allows to make contact with unconventional supersymme-
try, where the fields 𝛹𝛼

Ii have a vanishing spin-3∕2 component.
Equations (4.35) and (4.36) still hold. Now, however, 𝜒1I,𝜒2I also
satisfy the additional equation

∇i
(
(𝜶 − 1)𝜒2I − (𝜶 + 1)𝜒1I

)
= −2i

L
(𝜶 + 1) 𝛾 i 𝜒2I, (4.40)

which implies that the spin-3∕2 component of the covariant
derivative on the left-hand side vanishes.
From eqs. (4.26) we recover a generalisation of the ansatz

(1.1),

𝛹Ii = − i
2
𝛾i 𝜒1I, 𝜂I = −1

2
𝜒2I, (4.41)

where 𝛹Ii only has a spin-1∕2 component 𝜒1I which is expressed
in terms of the massive spinor field 𝜒2I through (4.38). The prop-
agating spinor 𝜒 (AVZ)

I of themodel,[6] appearing in Equation (1.1),

has to be identified, using (4.26), with

𝜒
(AVZ)
I = i𝛾 i𝛹iI =

3
2
𝜒1I.

We have discussed above only those solutions for which either
Equation (4.34) or the stronger one (4.39) holds. Our supersym-
metric model, however, features more general solutions which
non-trivially involve the spin-3∕2 fields and whose physical ap-
plications deserve investigation. We postpone this analysis to fu-
ture work.
Finally, we notice that the condition for unconventional super-

symmetry 𝜒̊iI = 0 breaks, in general, all supersymmetries of our
superspace. Indeed we can use the supersymmetry variations of
𝜒̊iI in the twisted form to write

𝛿𝜀BB
𝜒̊iI = −

i(1 + 𝜶)
8

(ℙij∇j𝜙A
I )𝜀A, (4.42)

𝛿𝜀lBlB
𝜒̊iI = ℙ( 32 )ij 𝛿𝜀lBlB

𝛹
j
I

= i
8

(
(1 − 𝜶)𝜖ijk∇j𝜙A

I + 1 + 𝜶

L
𝜙A
I 𝜂ik

)
𝜀kA+

− i
24

𝛾i

(
3i(𝜶 − 1)ℙkj∇j𝜙A

I − 2i(𝜶 − 1)∇k𝜙
A
I

+ 𝜶 + 1
L

𝛾k𝜙
A
I

)
𝜀kA, (4.43)

from which it follows that, in general, the vanishing of 𝜒̊iI is not
preserved by supersymmetry transformations in D2(2, 1;𝜶) su-
perspace. It is important to emphasise, however, that this super-
symmetry is not related to the “unconventional” one exhibited by
the model in [6], that originated from a target-space symmetry.

5. Conclusions and Outlook

In this final Section, we summarize the outcome of our analysis
and we conclude with some comments on future developments
and perspectives.
Our results can be summarised as follows:

1) We have constructed a three-dimensional model of rigid su-
persymmetry featuring eight supercharges on a curved AdS3
worldvolume background whose superspace is based on the
supergroup D2(2, 1;𝜶). The resulting model describes the dy-
namics of a set of hypermultiplets (Λ𝛼𝛼′ 𝛼̇′

I ,𝜙𝛼A
I ).

A peculiarity of the chosen superalgebra is the presence
of a parameter 𝜶, independent of the cosmological constant,
which defines, through the combination g = 𝜶 + 1, the gaug-
ing of an internal SU(2), in the absence of dynamical gauge
fields. To clarify the meaning of the word “gauging” in the
present context, let us notice that the “coupling constant” g
generates a fermion shift ℕ𝛼A

I in the supersymmetry transfor-
mation of the hyperini (2.30), together with mass terms for
the latter fields and non-trivial scalar dynamics. This feature
is not fully apparent from the Lagrangian, since the structure
of D2(2, 1;𝜶) naturally leads to a redundant (4-component) de-
scription of the spinorial degrees of freedom and to a gener-
alised definition of gamma matrices which include a depen-
dence on the parameter 𝜶. Consequently, the dependence of
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the Lagrangian on the parameter 𝜶 is somewhat concealed
in the matrices 𝕄i

±. The proper definition of the hyperini
mass requires a formulation of the above fields as ordinary
2-component spinors, and this in turn implies a choice of the
Lorentz symmetry in the superspace. This reformulation is
intimately related to the issue of the twists.

2) Two inequivalent twists have indeed been performed, corre-
sponding to two different identifications of the Lorentz group.
In the first one, the Lorentz group is identified with the

diagonal subgroup of the two SL(2,ℝ) factors in the AdS3
isometry group. This is the counterpart, in our setting, of
the topological twist discussed in [2,4]. After performing this
twist, the hyperini decompose into an abelian gauge connec-
tion 𝛹𝛼

iI associated with odd symmetry generators, transform-
ing as a vector with respect to the Lorentz group and in a
Grassmann-valued field, 𝜂𝛼I , singlet of the Lorentz group (see
Equation (4.4)). Correspondingly, the supersymmetry genera-
tors decompose into vector-like and scalar-like odd generators
A
i ,

A. Our spacetime Lagrangian takes the form of a Chern-
Simons Lagrangian for 𝛹𝛼

iI , plus a term in the image of A,
containing the interaction with the other fields.
An alternative twist can be performed, involving the

SL(2,ℝ) flavour group.More precisely, in this case the Lorentz
group is defined to be the diagonal of the previously chosen
Lorentz group with the flavour SL(2,ℝ) acting on the index
𝛼 carried by the dynamical fields of the model. This corre-
sponds to identifying the Lorentz group as the diagonal of
the three groups SL(2,ℝ)′1, SL(2,ℝ)

′
2, SL(2,ℝ)flavour. In partic-

ular, the anticommuting fields 𝛹𝛼
iI and 𝜂𝛼I now transform in

half-integer Lorentz representations, which are appropriate to
their spin statistics, while 𝜙𝛼A

I transform as commuting spin-
1∕2 fields, fully decoupled from the rest. In this new setting,
the superspace structure is not manifest. This identification,
which in fact describes a subsector of the first twist, unveils
the interesting structure described by the Lagrangian (4.29).
Indeed, 𝛹𝛼

iI and 𝜂𝛼I acquire a natural interpretation as spino-
rial fields, in particular as a purely spin-3∕2 field 𝜒̊iI coupled to
two spin-1∕2 particles 𝜒1I, 𝜒2I. A subset of the solutions of the
field equations, defined by the condition∇i𝜒̊

i
I = 0, describes a

massive spin-1/2 field, 𝜒2I, which acts as a source for the field
𝜒1I. The latter can therefore be expressed as a combination of
𝜒2I and an arbitrary massless spin-1∕2 field.
Imposing the stronger condition 𝜒̊iI = 0, we recover the

most general solution of the model with unconventional su-
persymmetry of [6–8]. It is worth emphasizing, however, that
the complete set of solutions of the field equations of our
model is richer and describes non-trivial dynamics involving
𝜒̊iI, 𝜒1I, 𝜒2I, yet to be explored.

A few questions, however, remain open. We have found that the
action, though perfectly supersymmetric in spacetime, is only
quasi-supersymmetric when extended as a three-form in the full
superspace, its invariance requiring the addition of boundary
terms. This is possibly related to the presence, for𝜶 + 1 ≠ 0, of an
SU(2)-gauging involving non-dynamical vector fields Ax

𝜇
which,

in our model, are frozen as background fields. As 𝜶 + 1 is set
to zero, indeed, the full supersymmetry of the Lagrangian is re-
stored in superspace.

In this same limit the interpretation of the A generators as
anticommuting BRST operators is recovered.
As 𝜶 is set to this singular value, the fermion masses, which

would vanish in the model considered here, could instead be ob-
tained through the gauging of the flavour group  = SL(2,ℝ) ×
SO(2), according to the analysis of [11]. This gauging, which we
did not consider in the present work, can be regarded as more
conventional in that it will involve gauge fields sitting in vector
multiplets and thus that are not background fields. The flavour
group, however, can also be gauged for a generic value of 𝜶.
Let us now turn to the discussion of perspectives and future de-

velopments. Given the peculiar structure of the supergroup con-
sidered here and the chosen dynamical supermultiplets, there are
multiple possible routes.
A first choice would be, as mentioned above, to introduce a

proper gauging of the flavour symmetry group: we expect this
idea to lead to a structure similar to the one of [4], where the
spacetime Lagrangian truly is a CS theory, having both even
and odd connections. Further insight could be found by includ-
ing in our analysis also the interaction with a set of twisted
hypermultiplets.[5] It would then be interesting to explore the
possible embedding of the full theory on D2(2, 1;𝜶) superspace
in higher-dimensional supergravity within a holographic setting.
Another possibility for extending the present analysis is given

by the choice of a more general, curved scalar manifold of hyper-
Kähler type. In this case the hypermultiplet Lagrangian should be
modified by the addition of terms accounting for the curvature of
the hyper-Kähler geometry, as sketched in Section 3.3.
Finally, it would be appealing to consider the D2(2, 1;𝜶) super-

algebra as a framework to derive new models of interacting mas-
sive Dirac particles, whose application to the description, for in-
stance, of graphene-like materials,[32] similarly to what has been
done for models with unconventional supersymmetry, is an in-
teresting task to be pursued.

Appendix A: Useful Relations

In this Appendix we state some of the properties of the Clifford
algebra and of the matrices used throughout the text. We are par-
ticularly interested in the SL(2,ℝ) factors, appearing both in the
bosonic subalgebra of D2(2, 1;𝜶) and as a flavour group and in
their interplay.
For this reason, in this Appendix we will not distinguish be-

tween different types of spinorial indices (e.g. 𝛼, 𝛼′, 𝛼̇′), unless
explicitly stated and we will identify spacetime indices belong-
ing to different SL(2,ℝ) factors, since we take the diagonal group
SL(2,ℝ)D as Lorentz symmetry of our theory.
We adopt the following general conventions on gamma matri-

ces:

{𝛾 i, 𝛾 j} = 2𝜂ij𝟙2×2, [𝛾 i, 𝛾 j] ≡ 2𝛾 ij = 2i𝜖ijk𝛾k, (A.1)

Once the SL(2,ℝ)-invariant tensor 𝜖12 = 𝜖12 = 1 is introduced,
one can lower and raise the indices of the gamma matrices in
the following way:

(𝛾 i)𝛼𝛽 = 𝜖𝛼𝛾 (𝛾
i)𝛾

𝛽
, (𝛾 i)𝛼𝛽 = (𝛾 i)𝛼

𝛾
𝜖𝛾𝛽 , (A.2)

where the obtained matrices are symmetric.
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The antisimmetric matrix 𝜖𝛼𝛽 satisfies

𝜖𝛼𝛽𝜖𝜌𝜎 = 𝛿𝛼
𝜌
𝛿𝛽
𝜎
− 𝛿𝛼

𝜎
𝛿𝛽
𝜌
, 𝜖𝛼𝛽𝜖𝛽𝛾 = −𝛿𝛼

𝛾
,

whereas the sum of all gamma matrices with uncontracted in-
dices yields

(𝛾 i)𝛼𝛽 (𝛾i)𝜌𝜎 = −(𝛿𝛼
𝜌
𝛿𝛽
𝜎
+ 𝛿𝛼

𝜎
𝛿𝛽
𝜌
).

The conventions used in the text for traces and spinor bilinears
are the following:

Tr(𝛾 i𝛾 j) ≡ (𝛾 i)𝛼𝛽 (𝛾
j)𝛽𝛼 , 𝜆t𝜖𝜒 ≡ 𝜆𝛼𝜖𝛼𝛽𝜒

𝛽 ,

𝜆t𝜖𝛾 i𝜒 ≡ 𝜆𝛼𝜖𝛼𝛽 (𝛾
i)𝛽 𝛾𝜒

𝛾 , (𝛾i)
t = 𝜖(𝛾i)𝜖, (A.3)

where 𝜆,𝜒 are two generic spinors and the upper t denotes trans-
position.
Other conventions, needed to justify the form of the D2(2, 1;𝜶)

superalgebra, concern the properties of spinors and spinorial
forms under complex conjugations,(
𝜆𝛼𝜓𝛽
)∗

≡ 𝜓𝛽∗𝜆𝛼∗, (A.4)(
d𝜃𝛼 ∧ d𝜃𝛽

)∗ = −d𝜃𝛼 ∧ d𝜃𝛽 . (A.5)

We end up with a list of the properties of the 4 × 4-matrices
(𝕋 i

(1))
(𝛼)

(𝛽) and (𝕋 i
(2))

(𝛼)
(𝛽) defined in the main text, where (𝛼) =

𝛼′𝛼̇′:(
𝕋 i
(1)

)(𝛼)
(𝛽)

(
𝕋 j
(1)

)(𝛽)
(𝛾)

= −1
4
𝜂ij𝛿

(𝛼)
(𝛾) −

1
2
𝜖ijk
(
𝕋(1)k
)(𝛼)

(𝛾)
,

(
𝕋 i
(2)

)(𝛼)
(𝛽)

(
𝕋 j
(2)

)(𝛽)
(𝛾)

= −1
4
𝜂ij𝛿

(𝛼)
(𝛾) −

1
2
𝜖ijk
(
𝕋(2)k
)(𝛼)

(𝛾)
,

(
𝕋 i
(1)

)(𝛼)
(𝛽)

(
𝕋 j
(2)

)(𝛽)
(𝛾)

=
(
𝕋 j
(2)

)(𝛼)
(𝛽)

(
𝕋 i
(1)

)(𝛽)
(𝛾)

= −1
4

(
𝛾 i
)𝛼′

𝛾 ′
⊗
(
𝛾 j
)𝛼̇′

𝛾̇ ′
.

2∑
a=1

(𝕋 i
(a))

(𝛼)(𝛽)(𝕋(a) i)(𝜌)(𝜎) = 𝛿
(𝛼)
(𝜌)𝛿

(𝛽)
(𝜎) − 𝛿

(𝛼)
(𝜎)𝛿

(𝛽)
(𝜌) ,

(𝕋 i
(1)𝕋

j
(2))

(𝛼)(𝛽)(𝕋(1) i𝕋(2) j)(𝜌)(𝜎) =
1
8

(
𝛿
(𝛼)
(𝜌)𝛿

(𝛽)
(𝜎) + 𝛿

(𝛼)
(𝜎)𝛿

(𝛽)
(𝜌)

)
− 1
16

𝛿(𝛼)(𝛽) 𝛿(𝜌)(𝜎),

(A.6)

from which we see that

Tr
(
𝕋 i
(1)𝕋

j
(1)

)
= Tr
(
𝕋 i
(2)𝕋

j
(2)

)
= −𝜂ij ;

Tr
(
𝕋 k
(1)𝕋

i
(2)

)
= Tr
(
𝕋 k
(2)𝕋

i
(1)

)
= 0. (A.7)
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