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Abstract: Biobased monomers and green processes are key to producing sustainable materials. Car-
danol, an aromatic compound obtained from cashew nut shells, may be conveniently functionalized,
e.g., with epoxy or (meth)acrylate groups, to replace petroleum-based monomers. Photoinduced poly-
merization is recognized as a sustainable process, less energy intensive than thermal curing; however,
cardanol-based UV-cured polymers have relatively low thermomechanical properties, making them
mostly suitable as reactive diluents or in non-structural applications such as coatings. It is therefore
convenient to combine them with biobased reinforcements, such as microfibrillated cellulose (MFC),
to obtain composites with good mechanical properties. In this work a cardanol-based methacrylate
monomer was photopolymerized in the presence of MFC to yield self-standing, flexible, and rel-
atively transparent films with high thermal stability. The polymerization process was completed
within few minutes even in the presence of filler, and the cellulosic filler was not affected by the
photopolymerization process.

Keywords: photoinduced polymerization; biobased composites; cardanol methacrylate; microfibril-
lated cellulose; biobased polymers

1. Introduction

Sustainable polymer-based materials may be conveniently prepared through the
photoinduced curing of biobased monomers [1–3]. Photoinduced polymerization is widely
recognized as a green technology, thanks to its low energy requirements, high reaction
rates at room temperature, no need for solvents, and low VOC emissions [4,5]. Among
the various biobased monomers explored for this application are those derived from
vegetable oils such as soybean or linseed oils, from lignin such as vanillin or eugenol, from
terpenes, from itaconic acid and succinic acid, etc. [6,7]. UV and two-photon polymerization
of biocompatible and appropriately functionalized biobased monomers and oligomers
derived from fatty acids, polylactic acid, alginate microgel, hyaluronic acid, chitosan,
hydroxypropyl methylcellulose, and gelatin, were, e.g., used for injectable viscous materials
for implants and hydrogels [8].

However, photocured biobased polymers often have low thermomechanical properties,
which are only suitable for non-structural applications such as coatings or adhesives, and
they are mostly used in combination with fossil-based co-monomers or reinforcements [5].
The addition of natural fillers, such as microfibrillated cellulose, to biobased photocurable
monomers is thus particularly interesting for preparing fully biobased composites.

Cardanol, particularly, is an interesting aromatic compound obtained by thermal
treatment of cashew nutshell liquid (CNSL) extracted from the shell of the cashew seed.
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This nonedible by-product of the cashew nut industry is a commercially abundant and
inexpensive renewable resource. Cardanol is a phenolic lipid with a C15 side chain that
can be saturated (4%), mono-olefinic (41%), di-olefinic (19%), or tri-olefinic (35%), leading
to an average of two C=C double bonds per molecule [9]. In the polymer field, cardanol is
very appealing as its multiple reactive sites, i.e., the phenolic group and the unsaturations
of the side chain, can be exploited for derivatization or functionalization [10]. Epoxidized
cardanol derivatives were polymerized through photoinduced cationic polymerization
reactions [11]; they were also used for the production of biobased composites with cel-
lulose microfibrils; while composites with good overall properties could be prepared, a
drawback of photoinduced cationic polymerization is the degradation of the cellulosic
filler by the acid species generated in the reaction, leading to lower thermal stability of the
composites [12,13].

(Meth)acrylated compounds can be polymerized through a radical mechanism [14],
which could be an advantage when a cellulosic filler is present. Specifically, acrylates
derived from cardanol were successfully used for radical polymerization reactions. Con-
ventional radical polymerization of cardanyl acrylate was found to produce crosslinked
materials. A linear polymer was obtained by solution polymerization of cardanyl acrylate
in toluene using azobisisobutyronitrile (AIBN) as the initiator. Upon removal of solvent,
the polymer underwent crosslinking upon exposure to air (or UV light), resulting in an
insoluble transparent film. In bulk and suspension polymerization, the polymer under-
went in situ crosslinking even in the absence of any crosslinking agent [15]. Crosslinked
copolymers of cardanyl acrylate with vinyl monomers were also obtained by conventional
radical polymerization in bulk or suspension polymerization [16,17]. The synthesis of
linear poly(cardanyl acrylate) completely soluble in THF could be instead carried out by
ATRP in bulk at 95 ◦C, with a conversion of 62% [18].

The use of cardanol-based acrylates and epoxidized cardanol-based acrylates as a
reactive diluent in photocurable castor oil polyurethane acrylate and acrylated epoxidized
soybean oil resins was also reported [19–21]. Cardanol methacrylate was used as additive
for UV-curable tripropylene glycol diacrylate/1,6-hexanediol diacrylate formulations, to
increase their hydrophobicity [22]. Acrylated cardanol diphenyl phosphate was added to
urethane acrylate UV-curable coatings, enhance flame-retardant properties, and reduce
volume shrinkage [23,24]. Finally, cardanol-based multi-arm acrylates, in which the acrylate
groups are attached to the alkyl side chain of the cardanol moieties, were synthesized and
used to produce UV-curable coatings [25–29].

To the best of our knowledge, the photoinduced radical polymerization of cardanol
methacrylate in the presence of a cellulosic filler has not yet been reported. In this work we
prepared composite films by the photopolymerization of cardanol methacrylate reinforced
with microfibrillated cellulose. The photoinduced polymerization reaction reached a high
degree of conversion within minutes, allowing the obtainment self-standing flexible films.

2. Materials and Methods
2.1. Materials

A cardanol-based methacrylate monomer, from here on simply called cardanol methacry-
late (CM), was derived from cardanol (Figure 1) with the one-pot, two-step synthesis de-
scribed in [7]. For the synthesis, Cardanol NX2026 containing 1% cardol was kindly sup-
plied by Cardolite; ethylene carbonate (98%, Sigma-Aldrich, St. Quentin Fallavier, France),
1,5-diazabicyclo[4.3.0]non-5-ene (98%, Sigma-Aldrich, St. Quentin Fallavier, France), tri-
ethylamine (99.5%, Sigma-Aldrich, St. Quentin Fallavier, France), methacrylic anhydride
(94%, Sigma-Aldrich, St. Quentin Fallavier, France), sodium hydroxide (NaOH, 98%, Sigma-
Aldrich, St. Quentin Fallavier, France), ethyl acetate (>99%, VWR, Rosny sous bois, France),
and sodium sulfate (Na2SO4, >99%, Sigma-Aldrich, St. Quentin Fallavier, France), were
used as received; dichloromethane was dried with molecular sieves (4 Å, 2.5–5.0 mm beads
(4–8 Mesh), Fisher Chemical, Illkirch, France) and kept under N2 before use; deionized water
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(1 µS cm−1) was obtained using a D8 ion exchange demineralizer (A2E Affinage de L’Eau,
Mauguio, France).
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Figure 1. Structures of (a) cardanol and (b) cardanol methacrylate (CM).

The radical photoinitiator (PI) used in this work was 2-hydroxy-2-methylpropiophenone
(Darocur 1173, BASF, Ludwigshafen, Germany), a Norrish Type I photoinitiator that, when
irradiated with UV light, undergoes homolytic cleavage, yielding two carbon-centered
radicals, as depicted in Figure 2.
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Figure 2. Homolytic cleavage of 2-hydroxy-2-methylpropiophenone [30].

Wood-derived microfibrillated cellulose (MFC), in the form of a paste with 10 wt%
solids in water (Exilva F01-V), was kindly provided by Borregaard (Sarpsborg, Norway).
For the preparation of composites via the solvent exchange technique, acetone (≥99.5%
Sigma-Aldrich S.r.l., Milan, Italy), was used.

2.2. Preparation of the Photocurable Resin and Composites

The photocurable resin was prepared by adding the radical photoinitiator (PI) to
cardanol methacrylate (CM) and mixing for 5 min over a magnetic stirrer (AREX Hot Plate
Stirrer, VELP Scientifica, Usmate (MB), Italy). The concentration of PI in the photocurable
resin formulation (CM + PI) was 2–3 wt%. To prepare the composite films, the MFC 10 wt%
paste was diluted with deionized water and dispersed with a homogenizer (Ultraturrax T10,
IKA®-Werke GmbH & Co. KG, Staufen, Germany) at about 20k rpm, for 5 min, to obtain a
suspension with a solid content of 0.75 wt%. The MFC suspension was then filtered with a
Büchner funnel connected to vacuum, fitted with a 47-mm-diameter Durapore® membrane
filter (hydrophilic PVDF, 0.65-micrometer pore size, Merck Millipore, Darmstadt, Germany).
The wet mats of cellulosic fibers formed on the filter were transferred to an acetone bath,
allowing the exchange of water with acetone. The solvent was refreshed twice over 24 h.
For the impregnation, the photocurable CM + PI resin was diluted with acetone to obtain
solutions containing either 15 wt% or 30 wt% of resin; the mats were then transferred in a
bath containing the selected solution of the photocurable resin. The impregnation time was
set at 2.5 h in the dark to prevent any reaction. Finally, the impregnated mats were removed
from the bath, and the solvent was evaporated at room temperature under vacuum for
about 10 min, obtaining the uncured composites, which were stored at 4 ◦C in the dark until
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further use. The final resin and MFC weight fractions in the composites were estimated
gravimetrically from the weight of MFC used for preparing the mat and the final weight of
the composite after solvent evaporation. The composites prepared using the solution with
30 wt% of resin contained approximately 25 wt% MFC and will be designated as low MFC
(L-MFC) composites; those prepared using the solution with 15 wt% of resin contained
approximately 45 wt% MFC and will be designated as high MFC (H-MFC) composites.

2.3. Photoinduced Polymerization of the Resin and Composites

Real-time Fourier transform infrared (rt-FTIR) spectroscopy was used to monitor
the photoinduced polymerization of the CM + PI resin using a Nicolet iS50 spectrometer
(Thermo Fisher Scientific Inc., Waltham, MA, USA). The equipment was fitted with a
custom-made accessory allowing in situ irradiation of horizontal samples and with a high-
pressure mercury–xenon lamp Lightning Cure LC8 equipped with a flexible light guide
(L9566-02A, 220 to 600 nm) by Hamamatsu (Hamamatsu Photonics Italia S.R.L, Arese (MI),
Italy). The intensity of the UV light was measured with an EIT Powerpuck® II radiometer
(EIT, LLC., Leesburg, VA, USA) and was set at 218 ± 13 mW cm−2 (UVA + UVB + UVC). For
the analysis, resin samples were spread on silicon wafers by a 10-micrometer wire-wound
applicator; they were then irradiated in situ during the rt-FTIR analysis for up to 9 min,
either under air or protected from air with a 30-micrometer-thick polypropylene (PP) film.
The spectra were acquired in transmission mode, in the 650–4000 cm−1 range, with 1 scan
per spectrum and a resolution of 4 cm−1, with a sampling interval of 0.36 s.

In order to assess the advancement of the polymerization reaction of the resin and of
the composites under inert atmosphere (nitrogen), a 5000-EC UV flood lamp system (Dymax
Corporation, Torrington, CT, USA) with a medium intensity mercury bulb (320–390 nm)
was used for the photopolymerization; the lamp was fitted with a chamber connected
with a nitrogen flow and equipped with a quartz window through which the specimens
were exposed to the UV light (see Figure S1). The UV intensity (UVA) was checked by
means of a UV Power Puck II radiometer (EIT, LLC., Leesburg, USA) and was fixed at
100 ± 2, 130 ± 2 or 140 ± 2 mW cm−2 by setting the distance between the specimen and
the light source. The resins were spread by 10-micrometer wire-wound bar applicators
on silicon wafers or on glass slides by a 50-micrometer wire-wound bar applicator. The
composites were in the form of self-standing films; the L-MFC ones were 140 µm thick, and
the H-MFC ones were 90 µm thick. The resin coatings were irradiated only on the free side,
while the irradiation of the composites was carried out by turning the sample upside down
at given intervals to have homogeneous irradiation on the two sides. The resin coatings
were analyzed by Fourier transform infrared spectroscopy with a Nicolet iS50 spectrometer
(Thermo Fisher Scientific Inc., Waltham, MA, USA). Transmission mode was used to
analyze the 10-micrometer-thick resin coatings on silicon wafers after different irradiation
times, in the 400–4000 cm−1 range, with 32 scans per spectrum and a resolution of 4 cm−1;
polymerized resin samples, detached from the glass slides, were analyzed in attenuated
total reflectance (ATR) mode using an ATR-Smart Orbit accessory with a diamond crystal
in the 525–4000 cm−1 range, with 32 scans per spectrum and a resolution of 4 cm−1. The
composites were analyzed in ATR mode, with a Nicolet 5700 FTIR spectrometer equipped
with an ATR-Smart Orbit accessory with a diamond crystal (ThermoElectron Corp., Milan,
Italy); the spectra were acquired in the 525–4000 cm−1 range, with 64 scans per spectrum
and a resolution of 2 cm−1.

2.4. Characterization Methods

The conversion of double bonds was calculated from the FTIR spectra using the
following Equation (1):

Conversiont=x(%) = 100 ∗ (1 −
At=x

Re f .At=x
At=0

Re f .At=0

) (1)
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where Ref. A is the absorbance estimated as area of the reference peak centered at 1583 cm−1

corresponding to the aromatic C–C (in ring) stretching, and A is the absorbance estimated
as area of the peak corresponding to the monitored functional group. Specifically, the
conversion of methacrylate double bonds was monitored using the band at 1638 cm−1 and
the conversion of the side chain double bonds using the band at 3008 cm−1.

The insoluble fractions of the composites were assessed by measuring the weight of
the samples, wrapped in a fine metallic mesh, before and after immersion in toluene for
24 h and evaporation of the residual solvent at room temperature for 24 h followed by
drying at 70 ◦C for 1 h.

Thermogravimetric analysis (TGA) was performed using a TG 209 F1 Libra thermobal-
ance (NETZSCH-Gerätebau GmbH, Selb, Germany). Scans were made from 50 ◦C to 700 ◦C
with a heating rate of 10 ◦C min−1, under a N2 flux, to prevent thermo-oxidative processes.
The first derivative of the weight curve (DTG) was calculated in order to better resolve the
main thermal decomposition steps of the analyzed materials.

Dynamic mechanical analysis (DMA) was performed with a Q800 (TA Instruments—
Waters SpA, Sesto San Giovanni (MI), Italy), in the tensile mode. The temperature was
increased from −90 ◦C to 120 ◦C at a rate of 3 ◦C min−1. The frequency was set at 1 Hz, and
the strain was set at 0.1%. The specimens had a length of approximately 10 mm between
the clamps and a width of approximately 5 mm.

3. Results
3.1. Photoinduced Polymerization of Cardanol Methacrylate and Its Composites with MFC

The FTIR spectrum of CM is shown in Figure 3a. The absence in the spectrum of a
broad absorption band above 3100 cm−1 typical of hydroxyls confirmed the replacement of
the phenolic OH groups of cardanol by methacrylate groups, which instead gave rise to
peaks corresponding to C=O and C=C stretching vibrations at 1723 cm−1 and 1638 cm−1,
respectively, and to C=CH2 twisting at 813 cm−1 [9]. Characteristic vibrations of the alkyl
chain were found in the 3100–2800 cm−1 region, where the peak at 3008 cm−1 was at-
tributed to the stretching of =C–H cis bonds [20,31–34], and two intense peaks at 2927 cm−1

and 2854 cm−1 corresponded to sp3 C–H bond vibrations in –CH3 and –CH2 groups, re-
spectively [20,35,36]. The aromatic ring was characterized by the vibrations of the C=C
aromatic bonds in the 1550–1600 cm−1 region, with two strong peaks at 1601 cm−1 and
1583 cm−1 [20,33,36] and by peaks characteristic of the meta substituted aromatic rings
vibrations (670–710, 750–805, 870–900 cm−1).
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the 2980–2800 cm−2 region is saturated due to the presence of the PP film.

The FTIR spectrum of 2-hydroxy-2-methylpropiophenone (PI) in its undissociated
form (i.e., before irradiation) has a strong band centered around 1680 cm−1 [37]; indeed,
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this band appeared in the spectrum of the non-irradiated CM + PI formulation, as shown
in Figure 3b, in the 1690–1660 cm−1 region (enlarged in the inset in Figure 3).

The photoinduced polymerization of cardanol methacrylate in the presence of PI
proceeds via a radical mechanism that is affected by oxygen [38–40]; therefore, its kinetics
was studied by real-time FTIR both under air and protected by air by means of a PP film.
The FTIR spectra of pCM samples obtained by photopolymerization in air and protected by
a PP film are shown in Figure 3c,d, respectively. The percentages of reacted methacrylate
double bonds and side chain double bonds (conversion) as a function of irradiation time are
reported in Figure 4. They were estimated, using Equation (1) (as explained in Section 2.4),
from the absorbances of the bands at 1638 cm−1 and 3008 cm−1, respectively, in the FTIR
spectra taken at different times of irradiation.
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Figure 4. Conversion as a function of time of methacrylate double bonds (squares) and of side chain
double bonds (circles) for cardanol methacrylate resins containing PI, irradiated with a light intensity
of 218 mW cm−2 in the UVA–UVC range under air (full symbols) and protected from air by means of
a PP film (hollow symbols); lines connect the experimental points and are only a guide for the eyes.

When the resins were irradiated under air the reaction of the methacrylate double
bonds started slowly, and 50% conversion was reached after approximately 5 min; then
the reaction rate increased, and a conversion of 85% was reached within the 9 min of
irradiation. The slow initial rate of reaction was attributed to oxygen inhibition, typical
for (meth)acrylate resins [39,40]. Indeed, oxygen can scavenge the initiating free radicals
and the growing polymer radicals, forming peroxyl radicals; these are not reactive towards
(meth)acrylate double bonds, and thus the polymerization reaction slows down until
oxygen is consumed [30]. The peroxyl radicals, particularly when ether groups are present
on the growing chain, may then form hydroperoxides, abstracting hydrogen atoms from
the polymer backbone and thus originating a carbon-centered polymer radical that can
react with the (meth)acrylate monomers, causing the re-initiation of the polymerization
reaction [41]; this gives rise to a typical sigmoidal curve for the conversion as a function of
time. Confirming this type of mechanism, a band centered around 3400 cm−1, characteristic
of hydroperoxides, appeared [30,42], as shown in the area shaded in gray in Figure 3. At
the same time, the peak centered at 3008 cm−1 decreased, indicating that the unsaturations
of the alkyl side chain were consumed; almost 70% of the side chain double bonds were
consumed after 5 min of irradiation, and 85% by the end of the irradiation time (9 min).
This also suggests the presence of the autoxidation of the side chain of cardanol, with a
mechanism similar to that of unsaturated fatty acids in the presence of oxygen; peroxyl
radicals abstract a hydrogen from the side chain, forming hydroperoxides, which then
further react with other species, creating crosslinks or carbonyl groups [15,42]. This was
further confirmed as the band characteristic of carbonyl groups broadened and became
more intense.
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When the CM + PI resin was irradiated while being covered by the PP film and thus
protected from air, the conversion as a function of time of the methacrylate double bonds
and of side chain double bonds was very different. In the case of methacrylate double
bonds, the polymerization proceeded rapidly since the start of irradiation, reaching more
than 50% conversion within 30 s, and a conversion higher than 80% was reached within
about 4 min, slowly increasing to more than 85% by the end of the 9 min of irradiation.
Some variation in the initial reaction rate was observed within different measurements,
possibly due to residual oxygen entrapped in the resin coating or between the resin and
the PP protection. Indeed, when the polymerization proceeded more slowly, a larger
decrease in the peak at 3008 cm−1 and rise of the band at 3400 cm−1 could be detected,
indicating the presence of residual oxygen. The consumption of the side chain double
bonds, through the autoxidation mechanism requiring the presence of oxygen, was very
limited for short irradiation times compared to irradiation under air; however, it had still
reached approximately 50% by the end of the irradiation.

To guarantee a completely oxygen-free environment, a series of measurements was
performed using a UV flood lamp equipped with a nitrogen-purged chamber. The CM + PI
resin was irradiated under nitrogen for given time intervals and immediately analyzed by
FTIR spectroscopy in transmission. Three light intensities were used, namely 100, 130, and
140 mW cm−2, in the UVA range. The spectrum of pCM obtained by photopolymerization
under a nitrogen atmosphere 100 mW cm−2 is given in Figure 3e and is representative of
the spectra obtained at all three light intensities. For reference, cardanol methacrylate (CM)
was irradiated in the absence of photoinitiator with UVA light under nitrogen for up to
80 s at 130 mW cm−2, and no changes were observed in the FTIR spectrum with respect to
the non-irradiated CM. After the irradiation of the photocurable CM + PI resin, no change
in the FTIR spectrum was detected above 2000 cm−1 for any of the three light intensities,
confirming that irradiation with UVA in the absence of oxygen did not affect the alkyl side
chain and that no hydroperoxides were produced. On the other hand, as expected, the
peaks corresponding to the vibrations of the methacrylate group changed upon irradiation.
The absorbance of the peaks at 1638 cm−1 and 813 cm−1 decreased; the peak at 1723 cm−1

broadened and shifted towards 1732 cm−1, while its absorbance remained unchanged,
as the photopolymerization proceeded through the reaction of methacrylate C=C double
bonds. The conversion of methacrylate double bonds at different irradiation times was
calculated using Equation1 from the absorbance of the peak at 1638 cm−1 and is reported
in Figure 5.
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The conversion rate increased with increasing light intensity as expected, and in all
cases a conversion of 87–89% was obtained in times ranging from 1 to 2 min, thus very
rapidly as no side reactions took place.

The composite materials were irradiated at 100 mW cm−2 under nitrogen; the FTIR
spectra of the L-MFC and H-MFC composites before and after irradiation for 5 min are
reported in Figure 6a–d, where the spectrum of dry MFC is also reported for reference.
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Figure 6. FTIR spectra acquired in ATR mode of: (a,b) L-MFC and H-MFC before irradiation (c,d) L-
MFC and H-MFC after irradiation under nitrogen for 5 min at 100 mW cm−2; (e) dry MFC.

The spectrum of dry MFC, shown in Figure 6e, was characterized by a broad band
in the 3500–3000 cm−1 region corresponding to O–H stretching vibrations and relatively
weak C–H stretching vibrations at 3000–2800 cm−1. A weak and broad peak centered
at 1639 cm−1 was associated with water bound to the cellulose fibrils. Finally, intense
bands in the fingerprint region were attributed to the C–O stretching of the pyranose ring
skeletal vibration in the 1150–1030 cm−1 range, the C–O bending of cellulose alcohols
involved in hydrogen bonds at 985 cm−1 [43], and the β-glycosidic bond vibration at
896 cm−1 [44–49]. The spectra of the uncured composites showed the main characteristic
peaks of both MFC (highlighted in gray in Figure 6) and CM + PI resin; the change of
the intensity of the peak at 985 cm−1 relative to the peaks in the 1150–1030 cm−1 range
in the composite materials versus dry MFC may be ascribed to a decrease in hydrogen
bonding involving cellulose alcohols. After irradiation under nitrogen, a decrease in the
bands at 1638 cm−1 and 813 cm−1 was observed, while the peak at 1723 cm−1 broadened
and shifted towards 1732 cm−1, while its absorbance remained unchanged, as observed
also for pCM polymerized under nitrogen. It is important to notice that MFC absorbs light
at wavelengths below 600 nm, and its absorbance increases with decreasing wavelength,
particularly below 400 nm [50]; thus, it is expected to affect the photopolymerization
reaction. The conversion of methacrylate double bonds as a function of time for the
composites cured in inert atmosphere is shown in Figure 7. The reaction rates in the early
stage of the photopolymerization were comparable within experimental variability for the
two MFC fractions. While initial conversion rates were comparable for the composites and
the resin, the polymerization rate of the composites decreased, more markedly when a
higher amount of MFC was present, after 0.5 min. Thus, the final conversion was somewhat
lower for the H-MFC composites (ca. 75–80%) than for the L-MFC composites (ca. 85%)
and was reached within 3–5 min of irradiation.
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composites irradiated with 100 mW cm−2 in the UVA range under nitrogen; lines connect the
experimental points and are only a guide for the eyes.

3.2. Properties of the Photocured Resin and Its Composites

The non-irradiated CM + PI resin had a slightly yellow hue, while cured resin coatings
were clear and transparent. The MFC used in this work was a commercial product that
has been fully characterized by Berglund and coworkers [51,52]; it consists of an entangled
network of fibrils with a polydisperse size distribution, mainly having widths ranging from
20 nm to 1 µm, and lengths of approximately 5 to 40 µm, with a small fraction of coarser
micrometer-sized fibrils with lower aspect ratio. After photopolymerization, the composite
films were flexible and relatively transparent, although slightly hazy due to the diffusive
effects of the texture formed by the MFC at the surface, with a slightly yellowish hue that
was more intense for higher fractions of resin. Images of cured composite films are shown
in Figure 8, while optical micrographs of their surfaces are given in Figure S2.
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Figure 8. Photos of: (a) L-MFC composite, containing ca. 25 wt% MFC; (b) H-MFC composite
containing ca. 45 wt% MFC.

The insoluble content of the composites was measured after immersion in toluene for
24 h; it was 92% and 86% for the L-MFC and H-MFC composites, respectively. Taking into
account the estimated weight fraction of cellulose, it was calculated that ca. 89% and 74%
of the resin, for the L-MFC and H-MFC composites, respectively, remained insoluble. The
poor solubility of poly(cardanol methacrylate) when polymerized in the presence of MFC
is not unexpected; in fact, acrylic polymers can be grafted onto cellulose (either handsheet
or fibers), obtaining covalent links. The propagation of the acrylic monomer is initiated by
different radicals formed onto cellulose either by the photoinitiator or by the direct effect of
UV light irradiation [53,54].
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The thermogravimetric curves obtained for pCM and L-MFC and H-MFC composites,
all photopolymerized under nitrogen at 100 mW cm−2, are shown in Figure 9, together
with the first derivative of the weight curves. As a reference, TGA analysis of the CM
monomer and of L-MFC composite before polymerization are reported in Figure S3; TGA
analysis of dry sheets made of the same MFC as used in this work can be found in [12].
The values of the Td,5% and Td,10% (i.e., the temperatures corresponding to a weight loss of
the sample of 5% and 10%, respectively) and Tmax (i.e., the temperatures corresponding
to the main degradation peaks in the DTG curve) are summarized in Table S1. For the
pCM resin, the Td,5% was 280 ◦C, the Tmax was 445 ◦C, and the residue was less than
2 wt%. The composites showed small weight losses at a low temperature, attributed to
residual solvent or water evaporation; they had a Td,5% = 205 ◦C owing to these initial
losses. A first thermal decomposition event then followed with Tmax at 388 ◦C attributed
to MFC, and a second one with Tmax at 445 ◦C and at 458 ◦C, for the H-MFC and the
L-MFC composite, respectively, due to the CM resin component. The temperature at which
the weight loss attributed to thermal decomposition of MFC occurred was slightly higher
than that measured in our previous work for dry MFC sheets, i.e., 355 ◦C [12]; thus, not
only did the radical photoinduced polymerization process not damage the MFC, but the
presence of the resin even slightly retarded the thermal decomposition of the cellulosic
reinforcement. Interestingly, this is the opposite of what was previously observed with
cationic photoinduced polymerization, where the strong acid developed upon the scission
of the photoinitiator was suspected to hydrolyze cellulose [12,13].
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Figure 9. Thermogravimetric analysis results for cured CM resin, L-MFC, and H-MFC composites:
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The viscoelastic properties of the photopolymerized composites were assessed by
dynamic mechanical analysis (DMA); as a reference, DMA analysis of a dry MFC sheet
is reported in Figure S4; the material showed no transitions in the examined tempera-
ture range and a storage modulus slowly and linearly decreasing with temperature from
approximately 7 to 5 GPa. On the other hand, it was not possible to detach pCM from
the substrate in the form of a self-standing film, as it was too soft, while the composites
before UV irradiation, although in the form of a self-standing film, had too low mechanical
properties and broke at the edges or were deformed while they were mounted in the DMA
clamps. The storage (E’) and loss (E”) moduli as a function of temperature of the L-MFC
and H-MFC cured composites are reported in Figure 10a and the respective loss tangent
plot (tanδ) in Figure 10b. The storage modulus (E’) curves showed a typical shape, with
an initial slow E’ decrease with temperature and a step decrease at the glass transition
temperature (Tg) of the material, followed by a slow decrease. The L-MFC had a modulus
in the glassy state of approximately 4.5 GPa, which in the rubbery state decreased to about
0.3 GPa; its tanδ curve showed a pronounced peak, indicating the Tg centered around 8 ◦C.
These results are comparable with those obtained for composites prepared by photoinduced
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curing composites with an epoxidized cardanol matrix containing a similar wt% of MFC
(of the same type as used in this work) [12]. For the H-MFC composite on the other hand,
the storage modulus had a value of 3.4 GPa at −90 ◦C and decreased with temperature
reaching in the rubbery state a value of 0.4 GPa; the lower decrease in the storage modulus
was due to the higher amount of MFC reinforcement. The tanδ peak was centered around
−28 ◦C. The lower Tg presented by the H-MFC composites is in agreement with results
of the FTIR analysis; the high amount of cellulose hindering light transmission reduced
the final conversion. The shoulder present around 50 ◦C in the tanδ was attributed to the
evaporation of residual solvent [12].
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4. Conclusions

The photoinduced polymerization of CM resins under UV light proceeded rapidly in
the absence of oxygen, reaching 87–89% conversion of methacrylate double bonds within
1–2 min. When oxygen was present, the polymerization rate was initially slower; the
consumption of the unsaturations on the alkyl chain and the formation of hydroperoxides
were also observed. Nevertheless, when photoinduced polymerization was conducted
under air a conversion of the methacrylate double bonds higher than 85% was reached
within 9 min.

Composites containing microfibrillated cellulose were successfully photocured in the
absence of oxygen, reaching conversions of methacrylate double bonds between 75% and
85% depending on the cellulose content. The composites were relatively transparent with a
yellowish hue, and flexible; their glass transition temperature ranged from −28 ◦C to 8 ◦C.
Their thermal stability was high, with a Td,5% = 205 ◦C. Notably, the radical photopolymer-
ization of the resin did not affect the thermal stability of the MFC in the composites, in
contrast to what was previously observed with cationically photocured matrices.

Therefore, in this work self-standing flexible biobased composite films made of car-
danol methacrylate and cellulosic fillers and characterized by good thermal and mechanical
properties were easily produced by photoinduced radical polymerization.
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Figure S2: Optical micrographs of the surfaces of composite materials (dark field, in reflection mode);
Figure S3: TGA analysis of (a) CM and (b) L-MFC composite before irradiation; Figure S4. DMA
analysis of dry MFC sheet; Table S1: Main parameters from TGA and DMA measurements performed
on dry MFC, pCM, and on photopolymerized L-MFC and H-MFC composites.
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