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Asymptotic analysis of Poisson shot noise processes, and

applications

Giovanni Luca Torrisi∗and Emilio Leonardi†

Abstract

Poisson shot noise processes are natural generalizations of compound Poisson processes that
have been widely applied in insurance, neuroscience, seismology, computer science and epi-
demiology. In this paper we study sharp deviations, fluctuations and the stable probability
approximation of Poisson shot noise processes. Our achievements extend, improve and com-
plement existing results in the literature. We apply the theoretical results to Poisson cluster
point processes, including generalized linear Hawkes processes, and risk processes with delayed
claims. Many examples are discussed in detail.

Keywords: Central limit theorem; Hawkes processes; Poisson cluster processes; Poisson shot noise
processes; Ruin probabilities; Sharp deviations; Stable laws.

1 Introduction

We consider Poisson shot noise processes {St}t>0 of the form

St :=
∑
n≥1

H(t− Tn,Mn)1(0,t](Tn), (1)

where {Tn}n≥1 is a homogeneous Poisson process on (0,∞) with intensity λ > 0, {Mn}n≥1 is
a sequence of random variables with values on some measurable space (M,M), independent of
{Tn}n≥1, H : [0,∞)×M→ R is a measurable function and 1A(·) is the indicator function of a set
A. We suppose that the random variables {Mn}n≥1 are independent and identically distributed.

Poisson shot noise processes are natural generalizations of compound Poisson processes, which
have found applications in different fields, due to their versatility and mathematical tractability. In
insurance mathematics, Poisson shot noise processes arise as models of Incurred But Not Reported
Claims [21, 22]. In this context, Tn represents the instant at which the nth claim arrives, for any
m ∈ M, the function H(·,m) is non-negative and non-decreasing, the random quantity H(∞,Mn)
models the total pay-off caused by the nth claim and the random function H(· − Tn,Mn) models
the evolution of the pay-off process for the nth claim. We refer the reader to [5, 14, 17, 21, 22,
29, 30, 37] (and the literature cited therein) for specific applications in insurance mathematics of
Poisson shot noise processes, such as estimates of ruin probabilities of risk processes with delay in
claim settlement. In neurophysiology, Poisson shot noise processes appear as models of synaptic
input. In this context, Tn describes the nth presynaptic event happened in the time interval
(0, t], H(·, ·) is the impulse-response function and Mn models a possible synaptic inhomogeneity
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[6, 33]. In computer science, Poisson shot noise processes are used e.g. as traffic, queues or caches
models [3, 16, 24, 25, 28, 37]. Poisson shot noise processes are also exploited to model earthquake
aftershocks [38] and epidemics [31]. Spatial versions of {St}t>0 are proposed in [1] to model the
interference in wireless communication networks, see also [2, 15, 34, 36]. We study sharp estimates,
fluctuations and stable probability approximation of spatial Poisson shot noise processes, with
applications to communication networks, in a companion paper.

Over the years, the mathematics of Poisson shot noise processes have been investigated by many
authors. The central limit theorem and the Berry-Esseen bound have been proved in [26, 27]. The
law of the large numbers and functional central limit theorems have been studied in [22]. Scalar
and sample path large deviations are investigated in [5, 16, 29, 35]. In [23], the authors study the
weak convergence to a multivariate infinite-variance stable distribution of the finite-dimensional
distributions of a properly normalized and centred Poisson shot noise process.

In words, the main theoretical contributions of this paper are: (i) The sharp deviations, at
scales O(t), of {St}t>0 from its asymptotic mean; this result improves the tail estimates based on
large deviations given in [5, 29]; (ii) The fluctuations, at scales o(t), of {St}t>0 from its asymptotic
mean; these results improve the central limit theorem in [26]; (iii) In the case of a multiplicative
noise, we provide quantitative limit theorems for the weak convergence, as t→∞, of St (properly
re-scaled) to a random variable S with a stable law; these results complement the research started
in [23]. We emphasize that the results about stable approximations of Poisson shot noise processes
cover only stable laws with stability parameter α and skewness parameter β such that either α 6= 1
or α = 1 and β = 0 (see Subsection 2.3). We remark that, although stable laws have been defined
also for α = 1 and β 6= 0, the most relevant and well-known stable laws (i.e., the Gaussian, the
Cauchy and the Lévy) are all encompassed by our study.

From the point of view of the applications, our main achievements concern: (i) The sharp
deviations and fluctuations of Poisson cluster processes and, in particular, of generalized linear
Hawkes processes, extending in this way the results in [18]; (ii) Estimates of ruin probabilities of
risk processes with delayed claims, refining the large deviation approximation provided in [5].

Most of our theoretical contributions are achieved by means of the recently developed mod-
φ convergence theory [12, 13]. Roughly speaking, provided that a natural normalization of the
characteristic function of a stochastic process converges to some non-trivial limiting function, mod-
φ convergence theory allows us to obtain precise deviations and fluctuations of the process from
its asymptotic mean, improving classical results stemming from large deviations and central limit
theorems.

The paper is structured as follows. In Section 2 we give some preliminaries on mod-φ con-
vergence theory, compound Poisson and stable laws. Moreover, we state an elementary inequality
between complex numbers and the Faà di Bruno formula which will be exploited a lot of times
throughout the paper. In Section 3 we present the results on sharp deviations and fluctuations
from the asymptotic mean of Poisson shot noise processes. Applications to Poisson cluster pro-
cesses and ruin probabilities are described in Sections 4 and 5, respectively. In particular, in Section
4 we shall consider extensions of the classical linear Hawkes process (see [19]), where the number
of offspring of any parent is not necessarily Poisson distributed and the law of the birth times is
not necessarily absolutely continuous with respect to the Lebesgue measure. In Section 6 we state
the results concerning the stable approximation of Poisson shot noise processes (with a multiplica-
tive noise), which extend well-known results for the compound Poisson process (which are indeed
recovered considering a constant shot shape). All the proofs are given in Section 7.
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2 Preliminaries

2.1 Mod-φ convergence

We preliminary recall that a real-valued random variable X (or its law) is said infinitely divisible
if, for any n ∈ N := {1, 2, . . .},

X
d
= X1 + . . .+Xn,

for some independent and identically distributed random variables X1, . . . , Xn. Here the symbol
d
=

denotes the equality in law.
We proceed providing the definition of mod-φ convergence, see [12].

Definition 2.1 Let φ be a non-constant infinitely divisible law on R and let D ⊆ C be a subset of
the complex plane which contains 0. We assume that the Laplace transform of φ is defined on D,
i.e., ∣∣∣ ∫

R
ezx φ(dx)

∣∣∣ <∞, for all z ∈ D,

and it has Lévy exponent η(·) on D, i.e.,∫
R

ezx φ(dx) = eη(z), z ∈ D.

Let {Xt}t>0 be a real-valued stochastic process with Laplace transform defined on D, i.e., such that
|E[ezXt ]| < ∞, for all t > 0 and z ∈ D, and let x(t), t > 0, be a positive function such that
x(t)→ +∞, as t→ +∞.

We say that {Xt}t>0 converges mod-φ on D, with parameter function x(·) and limiting function
ψ(·), if ψ : D → C is analytic, it does not vanish on ReD := {Rez : z ∈ D} and

for any compact K ⊆ D, lim
t→∞

sup
z∈K
|ψt(z)− ψ(z)| = 0,

where
ψt(z) := E[ezXt ]e−x(t)η(z).

We say that {Xt}t>0 converges mod-φ on D with speed O(x(t)−σ), for some σ ∈ N, and limiting
function ψ(·), if ψ : D → C is analytic, it does not vanish on ReD and

for any compact K ⊆ D there exists CK > 0: sup
z∈K
|ψt(z)− ψ(z)| ≤ CKx(t)−σ.

In this paper we consider two different classes of infinitely divisible (reference) laws: the com-
pound Poisson law and the stable law.

2.2 Compound Poisson laws

Let X be a non-negative random variable such that

aX ∈ (0,∞], where aX := sup{γ : E[eγX ] <∞}. (2)

Throughout this paper, we denote by φλ,X the compound Poisson law with Lévy exponent

ηλ,X(z) := λ(E[ezX ]− 1), z ∈ Dcp(aX) := {z ∈ C : Rez < aX}, (3)

i.e., a random variable Y has law φλ,X if and only if

E[ezY ] = eηλ,X(z), z ∈ Dcp(aX).
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2.3 Stable laws

Let c > 0 (the scale parameter), α ∈ (0, 2] (the stability parameter) and β ∈ [−1, 1] (the skewness
parameter) be fixed. We consider the stable law φc,α,β with parameters (c, α, β), whose Fourier
transform (or characteristic function) has Lévy exponent

ηc,α,β(iξ) := −|cξ|α(1− iβh(α, ξ)sgn(ξ)), ξ ∈ R \ {0}, ηc,α,β(0) := 0,

i.e., a random variable S has law φc,α,β if and only if E[eiξS ] = eηc,α,β(iξ), ξ ∈ R. Here

h(α, ξ) := 1{α 6= 1} tan
(πα

2

)
− 1{α = 1} 2

π
log |ξ| and sgn(ξ) denotes the sign of ξ.

Since
|eηc,α,β(iξ)| = e−|cξ|

α
, ξ ∈ R, (4)

the characteristic function of φc,α,β is integrable. Therefore, the stable law with parameters (c, α, β)
has a density with respect to the Lebesgue measure. A standard computation shows that such a

density is bounded above by
Γ( 1

α)
απc , where Γ(·) denotes the Euler gamma function.

For later purposes, we recall the following scaling property of the Lévy exponent ηc,α,β(·). For
any t > 0 and ξ ∈ R, it holds:

tηc,α,β

(
iξ

t1/α

)
= ηc,α,β(iξ) if either α 6= 1 or α = 1 and β = 0. (5)

Finally, we recall some famous stable laws: the standard Gaussian distribution corresponds to the
stable law with parameters (2−1/2, 2, 0), the standard Cauchy distribution corresponds to the stable
law with parameters (1, 1, 0) and the standard Lévy distribution corresponds to the stable law with
parameters (1, 2−1, 1).

2.4 An elementary inequality and the Faà di Bruno formula

Throughout this paper we exploit the following elementary inequality between complex numbers:

Lemma 2.2 It holds:

|ez1 − ez2 | ≤ |z1 − z2|emax{Rez1,Rez2}, z1, z2 ∈ C.

Since we have not found a proof of this inequality in standard textbooks of complex analysis, we
show it in Section 7.

Hereafter, for a sufficiently smooth function f we denote by f (n) its derivative of order n ∈ N.

Lemma 2.3 (Faà di Bruno formula) For any sufficiently smooth functions g and h,

(g ◦ h)(j)(x) = j!

j∑
i=1

g(i)(h(x))

i!

∑
m1+m2+...+mi=j

h(m1)(x)

m1!
. . .

h(mi)(x)

mi!
, j ∈ N,

where the sum is taken over all the m1, . . . ,mi ∈ N such that m1 + . . .+mi = j.
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3 Sharp deviations and fluctuations of Poisson shot noise pro-
cesses

As already mentioned in the Introduction, our analysis relies on the mod-φ convergence theory.
Specifically, we obtain different sharp deviations estimates (at scale O(t)) of Poisson shot noise
processes depending on whether the reference measure φ is non-lattice or lattice, as it can be
realized by comparing the formulas (15) and (18). The distinction “φ non-lattice” and “φ lattice”,
instead, has no impact on the results about the fluctuations (at scales o(t)) of Poisson shot noise
processes. For the sake of completeness, we recall that a probability law is lattice if its support is
included in a set of the form γ1 + γ2Z, for some parameters γ1 ∈ R and γ2 > 0.

In both cases (non-lattice and lattice), the shot shape H(·, ·) is supposed to be a non-negative
function. Moreover we assume that

Z := sup
t≥0

H(t,M1) is such that a := aZ ∈ (0,∞]. (6)

Although in the non-lattice case, i.e., under the assumption

φλ,Z is non-lattice, (7)

we simply suppose that:

function H : [0,∞)×M→ [0,∞) is non-negative, (8)

in the lattice case, we naturally assume that:

function H : [0,∞)×M→ N ∪ {0} takes values in N ∪ {0}. (9)

A crucial hypothesis to prove the mod-φλ,Z convergence of Poisson shot noise processes is∫ ∞
0

(Z −H(s,M1)) ds ∈ Lq(P), for any q > 1. (10)

However, when sharp deviations are concerned and φλ,Z is lattice we need to strengthen (10) by
assuming

∃ σ ∈ N and {κq}q>1 ⊂ (0,∞): (11)

sup
q>1

κ−1
q

∥∥∥∫ ∞
t

(Z −H(s,M1)) ds
∥∥∥
Lq(P)

≤ t−σ, for all t large enough.

Indeed, this condition guarantees the mod-φλ,Z convergence of Poisson shot noise processes with
speed O(t−σ). Finally, we mention that to prove the fluctuations of Poisson shot noise processes
when φλ,Z is non-lattice, we need to assume that φλ,Z has a density, i.e.,

φλ,Z is absolutely continuous with respect to the Lebesgue measure. (12)

Hereon, under (6) (and either (8) or (9))

∀ x ∈ (0, λE[ZeaZ ]), we denote by θx ∈ (−∞, a) the unique solution of the equation λE[ZeθZ ] = x.

Note that 0 < x < λE[Z] if and only if θx < 0; x = λE[Z] if and only if θx = 0; x ∈
(λE[Z], λE[ZeaZ ]) if and only if θx ∈ (0, a).
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Throughout this article, we denote by η∗λ,Z the Fenchel-Legendre transform of ηλ,Z (see (3)),
i.e.,

η∗λ,Z(x) := sup
θ∈R

(θx− ηλ,Z(θ)), x > 0.

Under (6) (and either (8) or (9)), standard computations show that

η∗λ,Z(x) = xθx − λ(E[eθxZ ]− 1), x > 0. (13)

Hereafter, for ease of notation, we also set

ϕ(z) :=

∫ ∞
0

(E[ezH(s,M1)]− E[ezZ ]) ds, z ∈ C. (14)

3.1 Sharp deviations at scales O(t)

The following theorems provide the exact asymptotic behavior of the tail of the Poisson shot noise
when the reference compound Poisson law φλ,Z is either non-lattice or lattice, respectively.

Theorem 3.1 (Non-lattice case) Assume (6), (7), (8) and (10). Then, for any x ∈ (λE[Z], λE[ZeaZ ]),
we have

P(St ≥ tx) =
exp(−tη∗λ,Z(x) + λϕ(θx))

θx
√

2λπtE[Z2eθxZ ]
(1 + o(1)), as t→ +∞. (15)

Theorem 3.2 (Lattice case). Assume (6), (9) and (11). Then:
(i) For any x ∈ (0, λE[ZeaZ ]) such that tx ∈ N, we have

P(St = tx) =
exp(−tη∗λ,Z(x) + λϕ(θx))√

2λπtE[Z2eθxZ ]
(1 + o(1)), as t→ +∞. (16)

More in general, for any x ∈ (0, λE[ZeaZ ]) such that tx ∈ N, we have

P(St = tx) =
exp(−tη∗λ,Z(x))√

2λπtE[Z2eθxZ ]

(
eλϕ(θx) +

σ−1∑
k=1

ak(θx)

tk
+O

(
1

tσ

))
, as t→ +∞, (17)

where the quantities ak(θx) are computed in Proposition 7.3.
(ii) For any x ∈ (λE[Z], λE[ZeaZ ]) such that tx ∈ N, we have

P(St ≥ tx) =
exp(−tη∗λ,Z(x) + λϕ(θx))√

2λπtE[Z2eθxZ ]

1

1− e−θx
(1 + o(1)), as t→ +∞. (18)

More in general, for any x ∈ (λE[Z], λE[ZeaZ ]) such that tx ∈ N, we have

P(St ≥ tx) =
exp(−tη∗λ,Z(x))√

2λπtE[Z2eθxZ ]

1

1− e−θx

(
eλϕ(θx) +

σ−1∑
k=1

bk(θx)

tk
+O

(
1

tσ

))
, as t→ +∞, (19)

where the quantities bk(θx) are computed in Proposition 7.3.

We emphasize that Theorem 3.1 and Theorem 3.2(ii) refine the tail estimates provided by the
corresponding large deviations principle in [16] (see also [29]).

We shall give many examples where the quantities θx, E[eθxZ ] and E[Z2eθxZ ] can be computed.
We shall give also some examples where the integral ϕ(θx) can be computed. When this is not
possible, our starting point to provide estimates of the integral is the following elementary propo-
sition.
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Proposition 3.3 Under the foregoing assumptions and notation, we have:
(i) If θx < 0 (i.e., x ∈ (0, λE[Z])), then

0 ≤ ϕ(θx) ≤ −θx
∫ ∞

0
E[Z −H(s,M1)] ds.

(ii) If θx > 0 (i.e., x ∈ (λE[Z],E[ZeaZ ])), then for any q, q′ > 1 such that q−1 + q′−1 = 1, we have

−θx‖eθxZ‖Lq(P)

∥∥∥∫ ∞
0

(Z −H(s,M1)) ds
∥∥∥
Lq′ (P)

≤ ϕ(θx) ≤ 0.

We remark that this proposition is exploited e.g. in the application to Poisson cluster processes
to exhibit explicit estimates of the integral ϕ(θx), see Proposition 4.1(iii) and Proposition 4.2(vi).

3.2 Fluctuations at scales o(t)

The fluctuations of the Poisson shot noise process from its asymptotic mean, at any scale which
is o(t) as t→∞, are provided by the following theorem, where N(0, 1) denotes a random variable
distributed according to the standard Gaussian law. We refer the reader to Remark 3.5 for a brief
discussion on the range of the scaling functions for the process {St − λE[Z]t}t>0.

Theorem 3.4 Assume either (6), (8), (10) and (12) or (6), (9) and (10). Then:
(i) For any function y(·) such that y(t) = o(t1/6), it holds

P

(
St − λE[Z]t√

λE[Z2]t
> y(t)

)
= P(N(0, 1) > y(t))(1 + o(1)), as t→ +∞. (20)

In particular, if y(t)→∞ as t→ +∞, then (by the asymptotics of the tail of N(0, 1))

P

(
St − λE[Z]t√

λE[Z2]t
> y(t)

)
=

e−
y(t)2

2

y(t)
√

2π
(1 + o(1)), as t→ +∞.

(ii) For any function y(·) such that y(t)→ +∞, as t→∞, and y(t) = o(t1/2), it holds

P

(
St − λE[Z]t√

λE[Z2]t
> y(t)

)
=

e−tη
∗
λ,Z(v(t))

θv(t)

√
2λπtE[Z2eθv(t)Z ]

(1 + o(1))

=
e−tη

∗
λ,Z(v(t))

y(t)
√

2π
(1 + o(1)), as t→ +∞, (21)

and

t η∗λ,Z(v(t)) =
y(t)2

2
(1 + o(1)). (22)

Here

v(t) := λE[Z] +
y(t)√
t

√
λE[Z2].

(iii) For any function y(·) such that y(t)→ +∞, as t→∞, and y(t) = o
(
t
1
2
− 1
m

)
, m ≥ 3 integer,

it holds

P

(
St − λE[Z]t√

λE[Z2]t
> y(t)

)
=

exp

(
−y(t)2

2

(
1 + 2

∑m−2
j=1 (λE[Z2])(j+2)/2

θ
(j+1)
λE[Z]

(j+2)!

(
y(t)√
t

)j))
y(t)
√

2π
(1 + o(1)),

(23)
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as t → +∞. Here, the derivatives of θx evaluated at λE[Z], denoted by θ
(j+1)
λE[Z], can be recursively

computed by the formula:

θ
(j+1)
λE[Z] = j!

j∑
i=1

g(i)(0)

i!

∑
m1+m2+...+mi=j

θ
(m1)
λE[Z]

m1!
. . .

θ
(mi)
λE[Z]

mi!
, 1 ≤ j ≤ m− 2, (24)

where the sum is taken over all the m1, . . . ,mi ∈ N such that m1 + . . .+mi = j,

θ′λE[Z] =
1

λE[Z2]
and g(x) :=

1

λE[Z2exZ ]
.

3.3 Some remarks

We conclude this section with the following three remarks.

Remark 3.5 (On the range of the scaling functions) Theorems 3.1 and 3.4 cover the whole
range of scalings for the process {St − λE[Z]t}t>0 up to the order of t. Indeed, Theorem 3.4(i)
covers scalings, say s(t), of St − λE[Z]t such that s(t) � t1/6

√
t = t2/3. Theorem 3.4(ii) covers

scalings of St − λE[Z]t such that either s(t) ∼ t1/6
√
t = t2/3 or t2/3 � s(t)� t. Finally, Theorem

3.1 refers to scalings of St − λE[Z]t of order t.

Remark 3.6 (Central Limit Theorem and Extended Central Limit Theorem) Let the as-
sumptions of Theorem 3.4 prevail. Then it is well-known that the classical Central Limit Theorem
for the Poisson shot noise holds, i.e.,

St − E[St]√
Var(St)

→ N(0, 1) in law, as t→∞.

(see e.g. Theorem 2.3 in [22]). This Central Limit Theorem can be retrieved by using Theorem
3.4(i). Indeed, as we shall check later on (see the comment after the statement of Lemma 7.1), the
conditions (6), (8) and (10) guarantee

E[St] = λE[Z]t+O(1) and Var(St) = λE[Z2]t+O(1). (25)

It follows

St − E[St]√
Var(St)

=

(
1 +

O(1)√
t

)−1/2
(
St − λE[Z]t√

λE[Z2]t
− O(1)√

t

)
.

Therefore, for any x ∈ R,

P

(
St − E[St]√
Var(St)

> x

)
= P

(
St − λE[Z]t√

λE[Z2]t
> x(t)

)
= P(N(0, 1) > x(t))(1 + o(1)), (26)

where the latter relation is a consequence of (20) since

x(t) := x

(
1 +

O(1)√
t

)1/2

+
O(1)√
t

= o(t1/6). (27)

The Central Limit Theorem for the Poisson shot noise process stated at the beginning follows com-
bining (26) with the trivial relation

P(N(0, 1) > x(t)) = P(N(0, 1) > x)(1 + o(1)).

In fact, Theorem 3.4 is a big improvement of the classical Central Limit Theorem for the Poisson
shot noise process, yielding the Extended Central Limit Theorem for the Poisson shot noise process.
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Remark 3.7 As it will be clear from the proofs, in all the theorems above, conditions (10) and
(11) can be replaced respectively by

Z ∈ L∞(P) and

∫ ∞
0

(Z −H(s,M1)) ds ∈ L1(P),

and
Z ∈ L∞(P) and ∃ σ ∈ N and κ > 0:∥∥∥∫ ∞

t
(Z −H(s,M1)) ds

∥∥∥
L1(P)

≤ κt−σ for all t large enough.

Note also that if Z ∈ L∞(P), then Z satisfies (6) with a := aZ = +∞.

4 Application to Poisson cluster processes

Let Nn(·), n ≥ 1, be independent and identically distributed finite and simple point processes on
[0,∞), independent on {Tn}≥1. We assume Nn({0}) = 1 for any n ≥ 1. Denoting by {Sn,k}k≥0,
Sn,0 := 0 the (ordered) points of Nn, and interpreting Tn as the ancestor of the point process
θTnNn ≡ {Sn,k + Tn}k≥0 of offspring, we have that, at time t > 0, the total number of offspring
generated by the ancestors (and including the ancestors) is equal to∑

n≥1

1(0,t](Tn)θTnNn([Tn, t]) =
∑
n≥1

1(0,t](Tn)Nn([0, t− Tn]) =
∑
n≥1

1(0,t](Tn)H(t− Tn,Mn), (28)

where Mn := Nn, i.e., Mn is a random variable with values on M := N, i.e., the space of finite and
simple counting measures on [0,∞) (endowed with the usual vague topology), and H : [0,∞)×M→
N ∪ {0} is defined by

H(t,m) = H(t, µ) := µ([0, t]).

Thus, assuming that {Tn}n≥1 is a homogeneous Poisson process with intensity λ, at time t > 0,
the total number of offspring generated by the ancestors (including the ancestors) is equal to the
Poisson shot noise process St defined by (28).

We put Ln := supk≥1 Sn,k, n ≥ 1, and note that Ln is the “length” of the cluster point process
Nn(·). Clearly, the random variables {Ln}n≥1 are independent and identically distributed, and we
set L := L1. The following proposition holds.

Proposition 4.1 Let {St}t>0 be the Poisson shot noise process (28), i.e., St denotes the number
of offspring generated by the Poissonian ancestors {Tn}n≥1 in the time interval (0, t] (including the
ancestors). Assume that Z := N1([0,∞)) satisfies (6), and that

E[Lk] <∞, ∀ k ∈ N. (29)

Then, setting H(s,M1) := N1([0, s]), s ∈ [0, t], we have that:
(i) The formulas (20), (21) and (23) of Theorem 3.4 hold.
(ii) For any arbitrarily fixed σ ∈ N, the formulas (17) and (19) of Theorem 3.2 hold.
(iii) The following estimates hold:
(1) For any x ∈ (0, λE[Z]) and any q, q′ > 1 such that q−1 + q′−1 = 1, we have

0 ≤ ϕ(θx) ≤ −θx‖L‖Lq(P)‖Z‖Lq′ (P). (30)
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(2) For any x ∈ (λE[Z], λE[ZeaZ ]) and any q, q′, q1, q2 > 1 such that q−1 +q′−1 = 1 and q−1
1 +q−1

2 =
1, we have

−θx‖eθxZ‖Lq(P)‖L‖Lq′q1 (P)‖Z‖Lq′q2 (P) ≤ ϕ(θx) ≤ 0. (31)

Here the function ϕ(·) is given by (14) with Z and H(·,M1) defined at the beginning of the
statement.

We note that the Part (ii) of this proposition refines the tail estimates provided by the large
deviations principle in [4].

4.1 Poisson cluster processes with a Galton-Watson branching structure or gen-
eralized linear Hawkes processes

We consider Poisson cluster processes whose clusters have a Galton-Watson branching structure.
Clearly, to define such processes it suffices to describe the structure of the cluster point process N1.

The points in the cluster C0, generated by a common ancestor placed in the origin, are par-
titioned in generations g ∈ N ∪ {0}. Every point belonging to the (g − 1)th generation will give
rise to a random number of “children” points in the gth generation. By definition, N1 is the point
process with support C0. Let

• Kh be the number of points in the hth generation,

• Wh be the total number of points in the cluster C0 up the hth generation,

• {Bh
1 , . . . , B

h
Kh
} be the birth times (i.e., the times at which points are placed) in the hth

generation.

We assume that the birth times are arranged in increasing order, i.e.,

Bh
1 < . . . < Bh

Kh
.

Let {Pi,j}(i,j)∈N2 be a sequence of N ∪ {0}-valued independent random variables with law
{pk}k≥0, where Pij represents the number of children generated by the jth individual of the ith gen-
eration. Let {Bi,j,k}(i,j,k)∈N3 be a sequence of non-negative independent and identically distributed
random variables, independent of {Pi,j}(i,j)∈N2 , where Bijk represents the time lag between the
birth time of the jth individual of the ith generation and the birth time of its kth child.

The point {0} constitutes the 0th generation. By construction we have K0 = 1 and W0 = 1.
The birth time of the unique individual in this generation is given by B0

1 := 0. The points in the
gth generation are generated by the points in the (g − 1)th generation according to the following
rule:
(i) If Kg−1 = 0, then the (g − 1)th generation is empty and then the gth generation will be empty
as well. We set Kg := 0 and Wg := Wg−1.
(ii) If Kg−1 > 0, then:

• Kg := Pg,1 + . . .+ Pg,Kg−1 is the number of births in the gth generation.

• Wg := Wg−1 +Kg is the total number of points in the cluster C0 until the gth generation.

• The birth times in the gth generation are given by the union of the following sets:

10



{Bg−1
1 +Bg,1,1, . . . , B

g−1
1 +Bg,1,Pg,1},

which are the birth times of the children of the parent born at time Bg−1
1 ,

{Bg−1
2 +Bg,2,1, . . . , B

g−1
2 +Bg,2,Pg,2},

which are the birth times of the children of the parent born at time Bg−1
2

· · ·

{Bg−1
Kg−1

+Bg,Kg−1,1, . . . , B
g−1
Kg−1

+Bg,Kg−1,Pg,Kg−1
},

which are the birth times of the children of the parent born at time Bg−1
Kg−1

.
The points in the gth generation are then arranged in increasing order as

{Bg
1 , . . . , B

g
Kg
}.

If the the law of B1,1,1 has a probability density h(·)/
∫∞

0 h(t) dt, where h : (0,∞) → [0,∞) is
an integrable function, and the law of P1,1 is Poisson with mean

∫∞
0 h(t) dt, then the corresponding

Poisson shot noise process {St}t>0, where St denotes the number of points generated by the Pois-
sonian ancestors in the time interval (0, t], is a classical Hawkes process (or linear Hawkes process)
[19], for which large deviations were studied in [4] and sharp deviations and fluctuations have been
recently investigated in [18].

The sequence {Kn}n∈N∪{0} is a Galton-Watson process from an initial population of one indi-
vidual and with offspring law {pk}k≥0. Hereon, we assume that

0 < E[P1,1] < 1, (32)

so that the Galton-Watson process is subcritical and the total progeny

Z := N1([0,∞)) =
∑
n≥0

Kn

has mean equal to (1 − E[P1,1])−1. For later purposes, we recall that the distribution of the total
progeny Z := N1([0,∞)) is related to the offspring distribution by the formula

P(Z = k) =
1

k
P(P11 + . . .+ P1k = k − 1), k ∈ N (33)

(the reader is referred to e.g. [20] for an introduction to branching processes). Hereafter, we also
suppose that

b := aP1,1 ∈ (0,∞], (34)

where aP1,1 is defined by (2). So (being the branching process subcritical) by Theorem 2.1 in [32]
we have that the total progeny Z satisfies (6).

The “length” of N1 is given by
L := sup

g∈N
sup
j≤Kg

Bg
j .

Define

Vg :=

Kg−1∑
k=1

Pg,k∑
j=1

Bg,k,j .

11



Clearly, V1 is an upper bound of the latest birth in the first generation; V1 + V2 is an upper bound
of the latest birth until the second generation and by induction

V :=
∑
g≥1

Vg (35)

is clearly an upper bound for L. Hereon, we suppose

E[Bk
1,1,1] <∞, for any k ∈ N, (36)

and denote by GP1,1 the probability generating function of P1,1. In the next proposition, we provide
the fluctuations and the sharp deviations of the number of points St up to time t.

Proposition 4.2 Assume (32), (34) and (36). Then, setting H(s,M1) := N1([0, s]), s ∈ [0, t], we
have that:
(i) The formulas (20), (21) and (23) of Theorem 3.4 hold.
(ii) For any arbitrarily fixed σ ∈ N, the formulas (17) and (19) of Theorem 3.2 hold.
(iii) Setting

ac := sup
θ≥0

(θ − logE[eθP1,1 ]),

we have ac ∈ (0, aZ ].
(iv) Set bc := sup Θ, where

Θ := {θ : θ < ac and E[eθZ ] < eb},

and b is defined by (34) (note that bc > 0). We have

E[eθZ ] = eθGP1,1(E[eθZ ]) <∞, for any θ ∈ (−∞, bc),

and the moments of Z satisfy the formula:

E[Zn] = 1 +
n∑
k=1

k!

(
n

k

) k∑
i=1

E[P1,1(P1,1 − 1) . . . (P1,1 − (i− 1))]

i!∑
m1+m2+...+mi=k

E[Zm1 ]

m1!
. . .

E[Zmi ]

mi!
, for any n ≥ 1, (37)

where the third sum is taken over all the m1, . . . ,mi ∈ N such that m1 + . . .+mi = k.
(v) For any x ∈ (0, λE[ZebcZ ]), let %x ∈ (0,E[ebcZ ]) be the unique solution of the equation in %:

λ%

1− %
G′P11

(%)

GP1,1 (%)

= x. (38)

Then
θx = log

%x
GP1,1(%x)

, %x = E[eθxZ ],

and

E[Z2eθxZ ] = %x
1 + eθx(G′P1,1

(%x) +G′′P1,1
(%x))

(1− eθxG′P1,1
(%x))2

.

(vi) The following estimates hold:
(1) For any x ∈ (0, λ(1− E[P1,1])−1) and any q, q′ > 1 such that q−1 + q′−1 = 1, we have

p1E[B1,1,1]eθx(1− E[eθxZ ]) ≤ ϕ(θx) ≤ −θx‖B1,1,1‖Lq(P)‖Z‖Lq(P)‖Z‖Lq′ (P). (39)
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Note that these bounds are non trivial for any choice of the conjugate exponents.
(2) For any x ∈ (λ(1− E[P1,1])−1, λE[ZebcZ ]) and any q, q′, q1, q2 > 1 such that q−1 + q′−1 = 1 and
q−1

1 + q−1
2 = 1, we have

−θx‖eθxZ‖Lq(P)‖B1,1,1‖Lq′q1 (P)‖Z‖Lq′q1 (P)‖Z‖Lq′q2 (P) ≤ ϕ(θx) ≤ p1E[B1,1,1]eθx(1− E[eθxZ ]). (40)

Note that the upper bound is always non trivial. The lower bound is non trivial for any q ∈ (1, bc/θx).
Here, the function ϕ(·) involved in the relations (39) and (40) is defined as in the statement of

Proposition 4.1.

4.2 Example 1: Binomial offspring distribution

Suppose that P1,1 has a binomial distribution with parameters (m, p) such that E[P1,1] = mp < 1,
m ≥ 1, p ∈ (0, 1). Then condition (32) is satisfied, and the assumption (34) holds with b = +∞,
indeed

GP1,1(%) = (%p+ (1− p))m, % ∈ R.

A standard computation gives

ac = bc = log

(
1

mp

(
m− 1

m(1− p)

)m−1
)

(since 00 := 1, if m = 1 then ac = bc = − log p). Using the formula (33), we have that Z is
distributed according to the Consul distribution, i.e.,

P(Z = k) =
1

k

(
km

k − 1

)
pk−1(1− p)km−k+1, k ∈ N

(see e.g. [7]). Therefore

E[ebcZ ] =
∑
k≥1

(
1

mp

(
m− 1

m(1− p)

)m−1
)k

1

k

(
km

k − 1

)
pk−1(1− p)km−k+1

=
1− p
p

∑
k≥1

1

k

(
mk

k − 1

)(
(m− 1)m−1

mm

)k
= +∞, (41)

and so E[ZebcZ ] = +∞. To check that the infinite sum in (41) diverges, we note that it is trivially
equal to +∞ if m = 1 and that, by construction, the total progeny of a Galton-Watson process with
offspring distribution the binomial law with parameters (m, p) is bigger than or equal to the total
progeny of a Galton-Watson process with offspring distribution the Bernoulli law with parameter
p. Note that the equation (38) reads

λp%2 + λ(1− p)%
p(1−m)%+ (1− p)

= x,

i.e.,
λp%2 + (λ(1− p) + (m− 1)px)%− (1− p)x = 0, x ∈ (0,∞),

which gives

%x =
−(λ(1− p) + (m− 1)px) +

√
(λ(1− p) + (m− 1)px)2 + 4xp(1− p)λ

2λp
.
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Therefore, we know explicitly the quantities θx, E[eθxZ ] and E[Z2eθxZ ].
Note that the formulas (16) and (18) involve also the integral ϕ(θx) whose estimates (39) and

(40) involve, in turn, the moments of Z and of eθxZ . Hereafter, for the sake of completeness we
briefly describe how those estimates can be computed. For any x ∈ (0, λ(1 −mp)−1), choose, for
instance, q = q′ = 2 in the upper bound of (39). Then both the lower and the upper bounds on
the integral are explicit (once the law of B1,1,1 is fixed). Indeed, p1 = mp(1 − p)m−1, we already
computed the quantities θx and E[eθxZ ] and by (37) one has E[Z] = (1− E[P1,1])−1, and

E[Z2] = 1 + 2E[P1,1]E[Z] + E[P1,1]E[Z2] + (E[P 2
1,1]− E[P1,1])(E[Z])2,

from which E[Z2] is readily calculated. For any x ∈ (λ(1−mp)−1,∞), we note that (once the law
of B1,1,1 is fixed) the upper bound in (40) is always explicit. As far as the lower bound in (40)
is concerned, we note that, fixed q ∈ (1, bc/θx), the finite quantity ‖eθxZ‖Lq(P) can be computed
e.g. numerically (the law of Z is explicitely known). Taking e.g. q1 = q2 = 2 and letting q′ be the
conjugate exponent of q, we have

‖Z‖2q′ ≤ E[Zd2q
′e]1/(2q

′)

(where d·e denotes the ceiling function), which yields a computable lower bound (recall that −θx <
0), using the formula (37).

4.3 Example 2: Geometric offspring distribution

Suppose that P1,1 has a geometric distribution with parameter p ∈ (1/2, 1). Then condition (32)
is satisfied, and the assumption (34) holds with b = − log(1− p), indeed

GP1,1(%) =
p

1− %(1− p)
, |%| < (1− p)−1.

A standard computation gives
ac = − log(4p(1− p)).

Using the formula (33), we have

P(Z = k) =
1

k

(
2(k − 1)

k − 1

)
(1− p)k−1pk, k ∈ N.

For all θ ≤ ac = − log(4p(1− p)), it holds∑
k≥1

1

k

(
2(k − 1)

k − 1

)
[(1− p)peθ]k = (1− p)peθ

∑
h≥0

1

h+ 1

(
2h

h

)
[(1− p)peθ]h

=
1−

√
1− 4(1− p)peθ

2
< 1,

where the latter equality follows reconizing the generating function of the Catalan numbers. There-
fore, for all θ ≤ ac we have E[eθZ ] < 1/(1− p), which implies bc = ac. Moreover,

E[ebcZ ] =
1

4(1− p)
∑
k≥1

1

k

(
2(k − 1)

k − 1

)(
1

4

)k−1

=
1

8(1− p)
,

and

E[ZebcZ ] =
1

4(1− p)
∑
h≥0

(
2h

h

)(
1

4

)h
= +∞.
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Note that the equation (38) reads

λ%(1− (1− p)%)

1− 2(1− p)%
= x,

i.e.,
−λ(1− p)%2 + (2(1− p)x+ λ)%− x = 0, x > 0,

which gives

%x =
(2(1− p)x+ λ)−

√
(2(1− p)x+ λ)2 − 4λx(1− p)
2λ(1− p)

.

Therefore, we know explicitly the quantities θx, E[eθxZ ] and E[Z2eθxZ ]. Similar considerations as
in the case of a binomial offspring distribution yield estimates of the integral ϕ(θx), which also
appears in the formulas (16) and (18).

4.4 Example 3: Poisson offspring distribution, i.e., linear Hawkes processes
with a general displacement distribution

As already mentioned, precise deviations and fluctuations of classical Hawkes processes (or linear
Hawkes processes) have been studied in [18]. Here, for the sake of completeness, we briefly explain
how to apply Proposition 4.2 even to the linear Hawkes process.

We emphasize that to apply Proposition 4.2 we need to assume that the displacement distri-
bution, i.e., the law of B1,1,1, has all moments finite. The results in [18], instead, require only the
existence of some moments for the displacement distribution, which, however, must have a density
with respect to the Lebesgue measure. Hereon, instead, we do not require the law of B1,1,1 to be
absolutely continuous with respect to the Lebesgue measure.

So, suppose that P1,1 has a Poisson distribution with mean µ ∈ (0, 1). Then condition (32) is
satisfied, and the assumption (34) holds with b = +∞, indeed

GP1,1(%) = eµ(%−1), y ∈ R.

A standard computation gives
ac = µ− 1− logµ.

Using the formula (33), we have that Z is distributed according to the Borel distribution, i.e.,

P(Z = k) =
(µk)k−1

k!
e−µk, k ∈ N

(see e.g. [7]). Clearly, bc = ac. Moreover, standard computations yield

E[ebcZ ] = µ−1 and E[ZebcZ ] = +∞.

Note that the equation (38) reads
λ%

1− µ%
= x,

which gives

%x =
x

λ+ µx
.

Therefore, we know explicitly the quantities θx, E[eθxZ ] and E[Z2eθxZ ]. Similar considerations as
in the case of a binomial offspring distribution yield estimates of the integral ϕ(θx), which also
appears in the formulas (16) and (18).
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5 Further applications

5.1 Ruin probabilities of risk processes with delayed claims

Consider an insurance company with initial capital u > 0 and premium rate c > 0. As already
mentioned in the Introduction, the total claim amount, up to time t > 0, due to Incurred But Not
Reported Claims is often modeled by a Poisson shot noise process St of the form (1), see [21, 22].
We recall that, in this context, it is assumed

For any m ∈ M, the function H(·,m) is non-negative and non-decreasing. (42)

The ruin probability of the insurance company is clearly given by

ψIBNR(u) := P
(

sup
t>0

(St − ct) ≥ u
)
, u > 0.

Letting

ψCL(u) := P
(

sup
t>0

(Ct − ct) ≥ u
)
, u > 0,

denote the ruin probability of the “associated” Cramér-Lundberg risk process, where

Ct :=
∑
n≥1

H(∞,Mn)1(0,t](Tn), t > 0,

it is well-known that (see e.g. Theorem 1.2.2 in [11]) if

(2) holds with Z := H(∞,M1) in place of X, λ(E[eaZ ]− 1)− ca > 0, (43)∫ ∞
0

xewxP(Z > x) dx <∞, (44)

and the “net profit” condition
c > λE[Z] (45)

is satisfied, then

ψCL(u) =

(
λw

c− λE[Z]

∫ ∞
0

xewxP(Z > x) dx

)−1

e−wu(1 + o(1)), as u→∞. (46)

Here w > 0 is the unique positive solution of the equation in γ:

λ(E[eγZ ]− 1)− cγ = 0. (47)

Using large deviations techniques, it was proved in [5] that, under the foregoing assumptions,

lim
u→∞

1

u
logψIBNR(u) = −w.

The next proposition improves such ruin probability estimate.

Proposition 5.1 Assume (42), (43), (44) and (45). Then:
(i) If (7) and (10) hold, then

exp (λϕ(w))

w
√

2λπ(λE[ZewZ ]− c)−1E[Z2ewZ ]

e−wu√
u

(1 + o(1)) ≤ ψIBNR(u)

≤
(

λw

c− λE[Z]

∫ ∞
0

xewxP(Z > x) dx

)−1

e−wu(1 + o(1)), as u→∞.
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(ii) If (9) and (11) hold, then

exp (λϕ(w))

w(1− e−w)
√

2λπ(λE[ZewZ ]− c)−1E[Z2ewZ ]

e−wu√
u

(1 + o(1)) ≤ ψIBNR(u)

≤
(

λw

c− λE[Z]

∫ ∞
0

xewxP(Z > x) dx

)−1

e−wu(1 + o(1)), as u→∞.

5.1.1 Example 4: a risk process with delayed claims

We consider a risk process with delay in claim settlement and total claim amount at time t > 0
given by the Poisson shot noise process

St :=
∑
n≥1

F (t− Tn)Mn1(0,t](Tn),

where F is the distribution function of a law on (0,∞) with a finite mean. We suppose that the
random variable M1 is non-negative, it has a density with respect to the Lebesgue measure and it
is such that aM1 ∈ (0,∞] (see (2)). Then, setting F := 1− F , we have

M1

∫ ∞
0

F (s) ds ∈ Lq(P), for any q > 1,

and the compound Poisson law φλ,M1 has a density with respect to the Lebesgue measure. Note
that Z is distributed as M1 and the assumptions of Theorems 3.1 and 3.4 are satisfied.

Exponentially distributed claims : sharp deviations at scales O(t)

Suppose that M1 is exponentially distributed with mean 1/a, a ∈ (0,∞). Then, a straightforward
computation shows

θx = a−
√
λa

x
, x > λ/a, (48)

E[eθxM1 ] =
a

a− θx
=

√
ax

λ
, (49)

E[M2
1 eθxM1 ] =

2a

(a− θx)3
= 2

x

λ

√
x

λa
, (50)

and

ϕ(θx) =

∫ ∞
0

(E[eθxF (s)M1 ]− E[eθxM1 ]) ds =

∫ ∞
0

(
a

a− θxF (s)
− a

a− θx

)
ds

= −a
(√

ax

λ
− 1

)
Φ(λ, a, x, F ),

where

Φ(λ, a, x, F ) :=

∫ ∞
0

F (s)

a−
(
a−

√
λa
x

)
F (s)

ds.

So by Theorem 3.1 we have that, for any x > λ/a, as t→∞,

P(St ≥ tx) =
(λ/ax)1/4

2
√
π(
√
ax−

√
λ)

exp
(
−a(
√
λax− λ)Φ(λ, a, x, F )

) 1√
t
e−(xa+λ−2

√
λax)t(1 + o(1)).
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For specific choices of F (·) the quantity Φ can be computed. For instance, if F (·) is the distribution
function of the uniform law on (0, 1), then∫ ∞

0

F (s)

a−
(
a−

√
λa
x

)
F (s)

ds = −
√
λx/a

(
√
ax−

√
λ)2

log

√
ax

λ
+

1

a−
√

λa
x

.

For this model, one may easily compute the ruin probabilities estimates provided by Proposition
5.1(i). We omit the details.

Fluctuations at scales o(t)

Hereon, by applying Theorem 3.4(iii) with y(t) := o(t1/4), y(t)→∞, we study the fluctuations of
St around its asymptotic mean at a scale of order o(t3/4). To perform the computation, we do not
need to know the distribution of M1 (as it happens to study the sharp deviations of St from its
asymptotic mean, where we need to compute the function θ·), but only the first four moments of
M1. Indeed, under the foregoing assumptions, the formula (23) holds with Z = M1 and m = 4 and,

assuming the knowledge of the quantities E[M i
1], i = 1, 2, 3, 4, we only need to compute θ

(j)
λE[M1] for

j = 2, 3. To this aim, by the recursive formula (24) we have

θ
(2)
λE[M1] = g′(0)θ

(1)
λE[M1] = − λE[M3

1 ]

(λE[M2
1 ])3

and

θ
(3)
λE[M1] = g′(0)θ

(2)
λE[M1] + g′′(0)(θ

(1)
λE[M1])

2

=
(λE[M3

1 ])2

(λE[M2
1 ])5
− λ

(λE[M2
1 ])2

(
E[M4

1 ]− 2λ
(E[M3

1 ])2

E[M2
1 ]

)
.

5.2 A teletraffic model

In this subsection we briefly discuss the application of Theorems 3.1 and 3.4 to a teletraffic model
proposed in [24].

We consider an infinite servers queuing system, handling in parallel active jobs (connections).
New jobs arrive at the system according to a homogeneous Poisson process {Tn}n≥1. Let {Mn}n≥1

denote the sequence of the processing times of the jobs, which are assumed to be independent and
identically distributed. Every job en-queued is served by the system at unit rate. At time t, the
number of active jobs in the system is given by

Xt :=
∑
n≥1

1(0,Mn](t− Tn)1(0,t](Tn).

Then, the total workload processed by the system up to time t is given by the Poisson shot noise
process

St :=

∫ t

0
Xs ds =

∑
n≥1

[(t− Tn) ∧Mn]1(0,t](Tn),

where, for a, b ∈ R, the symbol a∧b denotes the minimum between a and b. Hereon, we suppose that
the random variable M1 has a density with respect to the Lebesgue measure and that aM1 ∈ (0,∞]
(see (2)). Then ∫ ∞

0
(M1 − s ∧M1) ds =

M2
1

2
∈ Lq(P), for any q > 1,
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and the compound Poisson law φλ,M1 is absolutely continuous with respect to the Lebesgue measure.
Here again, Z is distributed as M1 and the assumptions of Theorems 3.1 and 3.4 are satisfied.
Assuming the knowledge of only the first four moments of M1, by the same application of Theorem
3.4(iii) with y(t) := o(t1/4), y(t)→∞, discussed in the Example 4, we can quantify the fluctuations
of St around its asymptotic mean at a scale of order o(t3/4). If we assume that M1 is exponentially
distributed with mean 1/a, a ∈ (0,∞), then the function θ· is given by (48) and the quantities
E[eθxM1 ] and E[M2

1 eθxM1 ] are provided by (49) and (50), respectively. Moreover

ϕ(θx) =

∫ ∞
0

(E[eθx(s∧M1)]− E[eθxM1 ]) ds = E
[∫ M1

0
(eθxs − eθxM1) ds

]
= − 1

θx
+

a

θx(a− θx)
− a

(a− θx)2

=

√
x

λa
− x

λ
.

So by Theorem 3.1 we have the explicit asymptotic expression of the tail of the processed workload.

6 Stable probability approximation of Poisson shot noise pro-
cesses

We recall that throughout this paper we denote by φc,α,β the stable law with scale parameter
c > 0, stability parameter α ∈ (0, 2] and skewness parameter β ∈ [−1, 1] (see Subsection 2.3 for the
definition of stable distribution and its first properties). In the context of the stable probability
approximation of the Poisson shot noise, we consider the following assumptions on the model (1):

The random variable M1 is distributed according to φc,α,β with either α 6= 1 or α = 1 and β = 0.
(51)

For any t > 0 and m ∈ R, H(t,m) := mF (t), for some distribution function F : [0,∞)→ [0, 1].
(52)

The following theorem holds.

Theorem 6.1 Assume (51) and (52) and let S be a random variable with law φcλ1/α,α,β. Then

St/t
1
α converges in law to S, as t→∞.

The next theorem quantifies the speed of such weak convergence. For the sake of readability, we
state this result by giving estimates of the Kolmogorov distance between St/t

1/α and S in terms of
big O functions. However, in the proof we compute explicitly the constants involved in the bounds;
anyway, such constants have a complicated expression.

Letting X,Y denote two real-valued random variables, we recall that the Kolmogorov distance
between X and Y is defined by

dKol(X,Y ) := sup
x∈R
|P(X ≤ x)− P(Y ≤ x)|.

Theorem 6.2 Let the assumptions and notation of Theorem 6.1 prevail. Then:
(i) Define

A :=

{
η ∈ [max{0, (α− 1)/α}, 1/2] : lim sup

t→∞

∫ t
0 (1− F (s)α) ds

tη
<∞

}

19



and η0 := inf A.
If

η0 ∈ A (53)

then

dKol(St/t
1/α, S) = O

(
1

t1−η0

)
, as t→∞.

Instead, if
A 6= ∅ and η0 /∈ A,

then for any η̃0 ∈ (η0, 1) it holds

dKol(St/t
1/α, S) = O

(
1

t1−η̃0

)
, as t→∞.

(ii) If ∫ ∞
0

(1− F (s)α) ds ∈ [0,∞) (54)

then

dKol(St/t
1/α, S) = O

(
1

t1/α

)
1{α ∈ (1, 2]}+O

(
1

t

)
1{α ∈ (0, 1) ∪ {α = 1, β = 0}}, as t→∞.

Remark 6.3 In [23] the authors study the weak convergence to a multivariate α-stable distribution
of the finite-dimensional distributions of a properly centred and scaled Poisson shot noise process.
In particular, Section 3.3 of [23] considers Poisson shot noise processes of the form

Xt :=
∑
n≥1

Mnh(t− Tn)1(0,t](Tn), t > 0,

where {Tn}n≥1 is a homogeneous Poisson process on (0,∞), independent of the sequence of in-
dependent and identically distributed random variables {Mn}n≥1, and h(·) is a measurable and
positive function. By the theory developed in [23] it follows that if the law of M1 is regularly vary-
ing at infinity with a constant sign, and the shot shape function h(·) is bounded on the compacts
and regularly varying too, then Xt, properly centred and scaled, converges weakly to a stable law.
Although the Poisson shot noise model St considered in Theorem 6.1 has a multiplicative noise, we
consider different hypotheses on the mark M1 and on the shot shape function F (·). For instance,
we do not assume that both the distribution of M1 and the shot shape function are regularly varying.
Furthermore, Theorem 6.2 provides the speed of the weak convergence to the stable law, which is
far from the achievements in [23].

6.1 Example 5: shot shapes for the stable probability approximation

Assuming (51) and (52), hereon we discuss some possible choices of the shot shape F (·) which
allows us to apply Theorem 6.2.

We start noticing that if the law with distribution function F (·) has a finite mean, then by
Theorem 6.2(ii) we have

dKol(St/t
1/α, S) = O

(
1

t1/α

)
1{α ∈ (1, 2]}+O

(
1

t

)
1{α ∈ (0, 1) ∪ {α = 1, β = 0}}.
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Indeed, since α ∈ (0, 2] we have F (t)2 ≤ F (t)α for any t > 0. Therefore∫ ∞
0

(1− F (s)α) ds ≤
∫ ∞

0
(1− F (s)2) ds ≤ 2

∫ ∞
0

(1− F (s)) ds <∞.

If either α ∈ (1, 2] or α = 1 and β = 0, and the law with distribution function F (·) has an
infinite mean, then Theorem 6.2(ii) can not be applied, indeed F (t) ≥ F (t)α for any t > 0. In
such a case we can hope to apply Theorem 6.2(i). This is the case, for instance, when F (·) is the
distribution function of a Pareto law with parameter 1, i.e.,

F (t) :=
t

1 + t
1[0,∞)(t).

Indeed, we have ∫ ∞
0

(1− F (t)) dt =∞,

and so Theorem 6.2(ii) does not apply (condition (54) is not satisfied). However, by applying twice
de l’Hopital’s theorem, for any η ∈ (0, 1/2] we have

lim
t→∞

∫ t
0 (1− F (s)α) ds

tη
= lim

t→∞

1− F (t)α

ηtη−1

=
α

η(1− η)
lim
t→∞

F (t)α−1 t2

(t+1)2

tη
= 0. (55)

If α ∈ (1, 2], then η0 = (α − 1)/α ∈ A (the set A is defined in the statement of Theorem 6.2)
and so by Theorem 6.2(i) we have dKol(St/t

1/α, S) = O
(
1/t1/α

)
. If α = 1 and β = 0, then

η0 = 0 /∈ A and so by Theorem 6.2(i) we have dKol(St/t, S) = O
(
1/t1−η

)
, for any η ∈ (0, 1). Of

interest for applications in insurance it is the case when the total pay-off M1 has the heavy tail
Lévy distribution, which corresponds to the stable law with parameters c = 1, α = 1/2 and β = 1.
In such a case if the delay in claim settlement is modeled by a distribution function F (·) with a
finite mean, then we fall in the first case discussed above and so

dKol(St/t
2, S) = O

(
1

t

)
.

If, for instance, F (·) is the distribution function of a Pareto law with parameter 1, then (by the
some computation as in (55))

lim
t→∞

∫ t
0 (1− F (s)1/2) ds

tη
= 0, for any η ∈ (0, 1/2],

and so η0 = 0 /∈ A. Therefore by Theorem 6.2(i) we have dKol(St/t
2, S) = O

(
1/t1−η

)
, for any

η ∈ (0, 1).

7 Proofs

7.1 Proof of Theorem 3.1

As already mentioned in the Introduction, the proof is based on the mod-φ convergence theory.
So, first we state a lemma which concerns the mod-compound Poisson convergence of Poisson shot
noise processes (i.e., the mod-φ convergence of Poisson shot noise processes when φ is the compound
Poisson law), then we prove Theorem 3.1 applying the results in [12].

The following lemma, whose proof is postponed at the end of the subsection, holds.
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Lemma 7.1 Assume (6), (8) and (10). Then {St}t>0 converges mod-φλ,Z on Dcp := Dcp(a) with
parameter function x(t) := t and limiting function

ψ(z) := eλϕ(z), (56)

where ϕ(·) is defined by (14).

Before proving Theorem 3.1, we note that, under the assumptions and notation of Lemma 7.1,
by the theory of mod-φ convergence (see p. 20 of [12]) we have the asymptotic expressions of the
mean and the variance of St anticipated in (25).

Proof of Theorem 3.1. Let x ∈ (λE[Z], λE[ZeaZ ]) be fixed. Reasoning by contradiction, suppose

lim sup
t→∞

P(St ≥ tx)
exp(−tη∗λ,Z(x)+λϕ(θx))
θx
√

2λπtE[Z2eθxZ ]

6= 1, (57)

and let {tk}k≥1 ⊂ (0,∞) be a divergent sequence that realizes the lim sup. By Lemma 7.1 the
stochastic process {Stk}k≥1 converges mod-φλ,Z on Dcp with parameter sequence x(tk) := tk and
limiting function (56). So, by Theorem 4.2.1 in [12] easily follows that the relation (15) holds with
tk in place of t. Indeed, in our framework, the functions F (·), h· and η(·) in the Theorem 4.2.1 of
[12] are given, respectively, by the functions η∗λ,Z(·) (in (13)), θ· and ηλ,Z(·). Moreover, the function
ψ(·) and the quantities c and d of Theorem 4.2.1 in [12] are given, respectively, by the function
ψ(·) defined by (56), and c = −∞ and d = a.Therefore we reached a contradiction and in (57) we
have the equality. The same arguments hold if in (57) we replace the lim sup with the lim inf. The
proof is completed.
�
Proof of Lemma 7.1. Note that {(Tn,Mn)}n≥1 is a Poisson process on (0,∞) × M with mean
measure λdtPM1(dm). So, by the expression of the Laplace functional of a Poisson process (see e.g.
[8]), we have

E[ezSt ] = exp

(
λ

∫ t

0
(E[ezH(s,M1)]− 1) ds

)
, for any t > 0 and z ∈ Dcp.

By the elementary relation |ez| = eRez, z ∈ C, we have

|E[ezSt ]| ≤ E[e(Rez)St ]

= exp

(
λ

∫ t

0
(E[e(Rez)H(s,M1)]− 1)1{Rez ≤ 0} ds+ λ

∫ t

0
(E[e(Rez)H(s,M1)]− 1)1{Rez > 0}ds

)
≤ exp(λt(E[e(Rez)Z ]− 1)1{Rez > 0}) <∞, for any t > 0 and z ∈ Dcp.

Therefore, the Laplace transform of St, t > 0, is defined on Dcp. We now check that ψ(·), defined
by (56), does not vanish on ReDcp = (−∞, a) and it is analytic on Dcp. By the Lemma 2.2, for
any z ∈ Dcp and s > 0, we have

|ezH(s,M1) − ezZ | ≤ |z|(Z −H(s,M1))emax{(Rez)H(s,M1),(Rez)Z}

= |z|(Z −H(s,M1))emax{(Rez)H(s,M1),(Rez)Z}1{Rez ≤ 0}
+ |z|(Z −H(s,M1))emax{(Rez)H(s,M1),(Rez)Z}1{Rez > 0}

≤ |z|(Z −H(s,M1))emax{0,Rez}Z P-a.s..
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Therefore, for any z ∈ Dcp and s > 0,

E[|ezH(s,M1) − ezZ |] ≤ |z|E[(Z −H(s,M1))emax{0,Rez}Z ]. (58)

So, applying Hölder’s inequality with p ∈ (1, a/max{0,Rez}), where we conventionally set a/0 :=
∞, and q > 1 such that p−1 + q−1 = 1 (note that the conjugate exponents depend on z), we have

|ϕ(z)| ≤ |z|
∥∥∥∫ ∞

0
(Z −H(s,M1)) ds

∥∥∥
Lq(P)

∥∥∥emax{0,Rez}Z
∥∥∥
Lp(P)

<∞, for any z ∈ Dcp,

where the latter term is finite due to the assumptions (6) and (10). So

ψ(x) = eλϕ(x) > 0, for any x ∈ (−∞, a).

To prove that ψ(·) is analytic on Dcp we show that ϕ(·) is such, and to this aim we prove that

sup
z∈K
|ϕt(z)− ϕ(z)| → 0, as t→∞, for any compact K ⊂ Dcp, (59)

where

ϕt(z) :=

∫ t

0
(E[ezH(s,M1)]− E[ezZ ]) ds, z ∈ Dcp

(then the analiticity of ϕ(·) on Dcp it follows by the analiticity of ϕt on Dcp for any t > 0). Let
K ⊂ Dcp be an arbitrarily fixed compact. Without loss of generality, we suppose that there exists
a′ ∈ (0, a) such that K ∩ {z : 0 < Rez ≤ a′} 6= ∅. Indeed, if K ⊂ {z : Rez ≤ 0}, then there exists
K ′ ⊂ Dcp compact such that K ⊂ K ′ and K ′ ∩ {z : 0 < Rez ≤ a′} 6= ∅. Hereon, we set

mK := max(ReK).

By construction, 0 < mK < a, and, setting MK := supz∈K |z|, by (58) it follows

E[|ezH(s,M1) − ezZ |] ≤MKE
[
(Z −H(s,M1))emKZ

]
, ∀ s > 0 and z ∈ K.

By this relation and the definition of ϕt and ϕ, for any t > 0 and z ∈ K, we have

|ϕt(z)− ϕ(z)| ≤MKE
[
emKZ

∫ ∞
t

(Z −H(s,M1)) ds

]
.

Applying Hölder’s inequality with p ∈ (1, a/mK) and q > 1 such that p−1 + q−1 = 1 (note that in
this case the conjugate exponents depend on K, but not on z) for any t > 0 and z ∈ K, we have

|ϕt(z)− ϕ(z)| ≤MK(t) := MK

(
E[epmKZ ]1/p

)∥∥∥∫ ∞
t

(Z −H(s,M1)) ds
∥∥∥
Lq(P)

. (60)

The claim (59) follows taking first the supremum over K on this latter relation, and then letting
t tend to infinity. Indeed, by the assumption (10) and the dominated convergence theorem we
immediately have ∥∥∥∫ ∞

t
(Z −H(s,M1)) ds

∥∥∥q
Lq(P)

→ 0, as t→∞.

Finally we prove that
ψt(z) := e−tηλ,Z(z)E[ezSt ], t > 0, z ∈ Dcp,
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converges to ψ(·) uniformly on the compacts of Dcp. Let K ⊂ Dcp be an arbitrarily fixed compact.
For any z ∈ K, by first applying Lemma 2.2, then using the elementary inequality Rew ≤ |w|,
w ∈ C, and finally exploiting (60), we have

|ψt(z)− ψ(z)| =
∣∣∣ exp

(
λ

∫ t

0
(E[ezH(s,M1)]− E[ezZ ]) ds

)
− exp(λϕ(z))

∣∣∣
≤ λ

∫ ∞
t

E[|ezH(s,M1) − ezZ |] ds× exp

(
λ

∫ ∞
0

E[|ezH(s,M1) − ezZ |] ds

)
≤
(
λeλMK(0)

)
MK(t).

(61)

The claimed local uniform convergence follows by first taking the supremum over K on this relation
and then letting t tend to infinity.
�

7.2 Proof of Theorem 3.2

Here again, the proof is based on the mod-φ convergence theory. However, we need to refine Lemma
7.1 since we need the mod-compound Poisson convergence with a polynomial decay (see Definition
2.1). So, first we state such a refinement in a lemma and then we prove Theorem 3.2 applying the
results in [12].

The following lemma, whose proof is postponed at the end of the subsection, holds.

Lemma 7.2 Assume (6), (9) and (11). Then {St}t>0 converges mod-φλ,Z on Dcp := Dcp(a) with
speed O(t−σ) and limiting function (56).

Proof of Theorem 3.2. Although the proof is conceptually similar to the proof of Theorem 3.1,
since it exploits different results of the mod-φ convergence theory, we provide some details.
Proof of Part (i).
Let x ∈ (0, λE[ZeaZ ]) be such that tx ∈ N. Reasoning by contradiction, suppose

lim sup
t→∞

t−σ

∣∣∣P(St = tx)− exp(−tη∗λ,Z(x))√
2λπtE[Z2eθxZ ]

(
ψ(θx) +

∑σ−1
k=1

ak(θx)
tk

) ∣∣∣
exp(−tη∗λ,Z(x))√

2λπtE[Z2eθxZ ]

= +∞, (62)

and let {tk}k≥1 ⊂ (0,∞) be a divergent sequence that realizes the lim sup. By Lemma 7.2 the
stochastic process {Stk}k≥1 converges mod-φλ,Z on Dcp with speed O(1/(tk)

σ) and limiting function
(56). So, by Theorem 3.2.2(1) in [12] easily follows that the relation (17) holds with tk in place of
t. Indeed, in our framework, the functions F (·), h· and η(·) in the Theorem 3.2.2 of [12] are given,
respectively, by the functions η∗λ,Z(·) (in (13)), θ· and ηλ,Z(·). Moreover, the function ψ(·) and the
quantities c and d of Theorem 3.2.2 in [12] are given, respectively, by the function ψ(·) defined by
(56), and c = −∞, d = a. Therefore we reached a contradiction and the lim sup in (62) is finite.
The proof is completed.
Proof of Part (ii).
Similar to the proof of Part (i). One has to apply Theorem 3.2.2(2) in [12] in place of Theorem
3.2.2(1) in [12].
�
Proof of Lemma 7.2. Note that the assumptions imply (10). Indeed, for any t > 0 and q > 1,

E
[(∫ t

0
(Z −H(s,M1)) ds

)q]
≤ tqE[Zq] <∞, (63)
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where the latter quantity is finite by (6). So (10) follows by (63), (11) and Minkowski’s inequality.
Consequently, all the claims in the proof of Lemma 7.1 hold, and using the same notation of the
lemma, we only have to prove that for any compact K ⊂ Dcp, there exists CK > 0 such that

sup
z∈K
|ψt(z)− ψ(z)| ≤ CKt−σ, for any t > 0.

To this aim, we note that by the relations (60) and (61), for any t > 0 and K ⊂ Dcp, we have

|ψt(z)− ψ(z)| ≤ λeλMK(0)MK

(
E[epmKZ ]1/p

)∥∥∥∫ ∞
t

(Z −H(s,M1)) ds
∥∥∥
Lq(P)

.

The claim follows by the assumption (11) (note that the conjugate exponents p and q in this latter
inequality depend on K, but not on z).
�

7.3 Computation of the quantities ak(θx) and bk(θx), 1 ≤ k ≤ σ − 1, and proof of
Proposition 3.3

The following proposition provides the expression of the functions ak(·) and bk(·) in Theorem 3.2.

Proposition 7.3 Let the assumptions and notation of Theorem 3.2 prevail. Then, for any x ∈
(0, λE[ZeaZ ]) and k = 1, . . . , σ − 1, we have

ak(θx) =

2k∑
`=0

ψ(2k−`)(θx)

(2k − `)!
∑

(m1,...,m`)∈S`

(−1)m1+...+m`

m1!1!m1m2!2!m2 . . .m`!`!m`

×
∏̀
j=1

(
E[Zj+2eθxZ ]

(j + 1)(j + 2)E[Z2eθxZ ]

)mj (−1)k(2(k +m1 + . . .+m`)− 1)!!

(λE[Z2eθxZ ])k

and

bk(θx) =

2k∑
n=0

∑
(m1,...,mn)∈Sn

e(m1+...+mn)θx(m1 + . . .+mn)!(1− e−θx)−(m1+...+mn)−1

m1!1!m1m2!2!m2 . . .mn!n!mn

n∏
j=1

(−1)jmj

×
2k−n∑
`=0

ψ(2k−n−`)(θx)

(2k − n− `)!
∑
S`

(−1)m1+...+m`

m1!1!m1m2!2!m2 . . .m`!`!m`

×
∏̀
j=1

(
E[Zj+2eθxZ ]

(j + 1)(j + 2)E[Z2eθxZ ]

)mj (−1)k(2(k +m1 + . . .+m`)− 1)!!

(λE[Z2eθxZ ])k
.

Here Sn denotes the set of ntuples of non-negative integers (m1, . . . ,mn) such that 1 · m1 + 2 ·
m2 + . . . n ·mn = n, f (k) denotes the derivative of order k ∈ N of a sufficiently smooth function f
and f (0) = f . The derivatives of the function ψ(·), defined by (56), can be computed by using the
recursive formula:

ψ(n)(θx) = n!

n∑
i=1

λi
eλϕ(θx)

i!

∑
m1+m2+...+mi=n

ϕ(m1)(θx)

m1!
. . .

ϕ(mi)(θx)

mi!
, n ∈ N,

where the sum is taken over all the m1, . . . ,mi ∈ N such that m1 + . . .+mi = n, and

ϕ(n)(θx) =

∫ ∞
0

(E[H(s,M1)neθxH(s,M1)]− E[ZneθxZ ]) ds.
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Proof. The general expression of the functions ak(·) and bk(·) can be computed following the
suggestions of Remark 3.2.5 in [12]. See Proposition 1 in [18] for the details. The recursive formula
for the derivatives of ψ is easily obtained by applying the Faà di Bruno formula (see Lemma 2.3).
�
Proof of Proposition 3.3.
Proof of Part (i).
The lower bound is trivial. The upper bound follows immediately by applying Lemma 2.2.
Proof of Part (ii).
The upper bound is trivial. For the lower bound, note that by Lemma 2.2 and Hölder’s inequality
it follows ∫ ∞

0
(E[eθxZ ]− E[eθxH(s,M1)]) ds ≤ θx‖eθxZ‖Lp(P)

∥∥∥∫ ∞
0

(Z −H(s,M1)) ds
∥∥∥
Lq(P)

.

�

7.4 Proof of Theorem 3.4

Proof of Part (i).
Reasoning by contradiction, suppose

lim sup
t→∞

P
(
St−λE[Z]t√
λE[Z2]t

> y(t)

)
P(N(0, 1) > y(t))

6= 1, (64)

and let {tk}k≥1 ⊂ (0,∞) be a divergent sequence that realizes the lim sup. The proof of (20) then
proceeds similarly to the proof of (15) in Theorem 3.1 [i.e., applying Lemma 7.1 and then Theorem
4.3.1 in [12] (in place of Theorem 4.2.1 in [12]) to reach a contradiction]. By a similar argument
we reach a contradiction if we replace the lim sup with the lim inf in (64).
Proof of Part (ii).
From now on, for ease of notation, we denote by f the Fenchel-Legendre transform η∗λ,Z in (13). For
technical reasons (related to the application of Dini’s implicit function theorem), we assume f to be
defined in a neighborhood of λE[Z]. The relations in (21) follow (reasoning again by contradiction
as in the Part (i)) by Lemma 7.1 and Theorem 4.3.1 in [12]. As far as (22) is concerned, note that
by the definition of the function θ· and Dini’s implicit function theorem we have that θ· is infinitely
differentiable on the domain of f and

θ′x =
1

λE[Z2eθxZ ]
.

In particular, f is infinitely differentiable on its domain and, by Taylor’s formula, in a neighborhood
of λE[Z], we have

f(x) = f(λE[Z]) + f ′(λE[Z])(x− λE[Z]) +
f ′′(λE[Z])

2
(x− λE[Z])2 + o((x− λE[Z])2).

Note that θλE[Z] = 0 and so f(λE[Z]) = 0. A straightforward computation yields

f ′(x) = θx + xθ′x − λθ′xE[ZeθxZ ] = θx and f ′′(x) = θ′x.

Therefore,

f ′(λE[Z]) = θλE[Z] = 0 and f ′′(λE[Z]) = θ′λE[Z] =
1

λE[Z2]
.
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So, as x→ λE[Z], we have

f(x) =
1

2λE[Z2]
(x− λE[Z])2 + o((x− λE[Z])2).

In particular, as t→∞, by the expression of v(·) we have

f(v(t)) =
y(t)2

2t
+ o

(
y(t)2

t

)
,

which gives the claim.
Proof of Part (iii).
Note that, in particular, y(t) = o(t1/2), and therefore by the previous Part (ii) we have that the
relations in (21) hold. In the previous Part (ii) we noticed that f is infinitely differentiable on its

domain with f ′′(·) = θ′·. Therefore, the kth derivative of f is given by f (k)(x) = θ
(k−1)
x , k ≥ 1. By

Taylor’s formula, as x→ λE[Z], we have

f(x) =
m∑
k=2

θ
(k−1)
λE[Z]

k!
(x− λE[Z])k + o((x− λE[Z])m).

In particular, as t→∞, by the expression of v(·) we have

tf(v(t)) =

m∑
k=2

(λE[Z2])k/2
θ

(k−1)
λE[Z]

k!

y(t)k

tk/2−1
+ t · o

(
y(t)m

tm/2

)
. (65)

Note that

lim
t→∞

t · o
(
y(t)m

tm/2

)
= lim

t→∞

o
(
y(t)m

tm/2

)
y(t)m

tm/2

lim
t→∞

(
y(t)

t
1
2
− 1
m

)m
= 0, (66)

where we used the assumption on y(·). Moreover,

m∑
k=2

(λE[Z2])k/2
θ

(k−1)
λE[Z]

k!

y(t)k

tk/2−1
= y(t)2

1

2
+

m∑
k=3

(λE[Z2])k/2
θ

(k−1)
λE[Z]

k!

y(t)k−2

tk/2−1


= y(t)2

1

2
+

m−2∑
j=1

(λE[Z2])(j+2)/2
θ

(j+1)
λE[Z]

(j + 2)!

(
y(t)√
t

)j→∞, as t→∞.

(67)

The claim follows combining (21) with (65), (66) and (67). Finally, the recursive formula for θ
(j)
λE[Z],

2 ≤ j ≤ m−1, easily follows by the Faà di Bruno formula (see Lemma 2.3). The proof is completed.

7.5 Proof of Propositions 4.1 and 4.2

Proof of Proposition 4.1.
Proof of Parts (i) and (ii).
The claim follows by applying Theorems 3.2 and 3.4. To this aim, we show that, under the foregoing
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assumptions, one has (11) (then, due to the fact that Z := N1([0,∞)) satisfies (6), one also has
that condition (10) holds). We start noticing that, for t ≥ 0, we have∫ ∞

t
(N1([0,∞))−N1([0, s])) ds =

∫ ∞
t

(N1([0, L])−N1([0, s])) ds

= 1(L > t)

∫ ∞
t

(N1([0, L])−N1([0, s]))1(L > s) ds

≤ (L− t)+N1((t, L]), (68)

where x+ := max{x, 0}. For an arbitrary q > 1, set p̃1 := m
q , m > q, m ∈ N, and let p̃2 :=

m/(m−q). Note that p̃1, p̃2 > 1 and (p̃1)−1 +(p̃2)−1 = 1. Therefore by Hölder’s inequality we have∥∥∥∫ ∞
t

(N1([0, L])−N1([0, s])) ds
∥∥∥
Lq(P)

≤ E[((L− t)+)m]1/mE[N1((t, L])qp̃2 ]1/(qp̃2).

For θ∗ ∈ (0, a) fixed, we have

E[N1((t, L])qp̃2 ]1/(qp̃2) ≤ E[(N1([0,∞))dqp̃2e] ≤ (dqp̃2e)!
(θ∗)dqp̃2e

E[eθ
∗N1([0,∞))] =: κ(1)

q ,

where x 7→ dxe denotes the ceiling function. So∥∥∥∫ ∞
t

(N1([0, L])−N1([0, s])) ds
∥∥∥
Lq(P)

≤ κ(1)
q E[((L− t)+)m]1/m. (69)

Let σ ∈ N be arbitrarily fixed and set θ := σm + 1. Since (L − t)+ is a non-negative random
variable, for any t ≥ 1 by Markov’s inequality we have

E[((L− t)+)m] = m

∫ ∞
0

um−1P((L− t)+ > u) du

= m

∫ ∞
0

um−1P(Lθm > (u+ t)θm) du

≤ mE[Lθm]

∫ ∞
0

um−1

(u+ t)θm
du

= E[Lθm]

∫ ∞
0

1

(z1/m + t)θm
dz

≤ E[Lθm]

∫ ∞
0

1

zθ + tθ
dz

= E[Lθm]t−(θ−1)

∫ ∞
0

1

zθ + 1
dz

≤ E[Lθm]t−(θ−1)

(
1 +

∫ ∞
1

1

z2 + 1
dz

)
:= κ(2)

q t−(θ−1),

where the quantity which multiplies t−(θ−1) depends on q since m = m(q). So

E[((L− t)+)m]1/m ≤ (κ(2)
q )1/mt−(θ−1)/m ≤ (κ(2)

q )1/m t−σ,

where we used the definition of θ and the fact that t ≥ 1. Combining this latter inequality with
(69), for any σ ∈ N fixed and t ≥ 1, we have∥∥∥∫ ∞

t
(N1([0, L])−N1([0, s])) ds

∥∥∥
Lq(P)

≤ κqt−σ,
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where κq := κ
(1)
q (κ

(2)
q )1/m. Therefore, for any σ ∈ N fixed we have

sup
q>1

κ−1
q

∥∥∥∫ ∞
t

(N1([0, L])−N1([0, s])) ds
∥∥∥
Lq(P)

≤ t−σ, for all t ≥ 1.

Thus condition (11) holds, and the proof of (i) and (ii) is completed.
Proof of Part (iii).
The claim easily follows by Proposition 3.3. Here, we limit ourselves to note that by (68) we have∫ ∞

0
(Z −N1([0, s])) ds ≤ LZ,

and so the upper bound in (30) and the lower bound in (31) follow, respectively, by the upper
bound in the Part (i) of Proposition 3.3 and the lower bound in the Part (ii) of Proposition 3.3,
and Hölder’s inequality.
�
Proof of Proposition 4.2.
Proof of Parts (i) and (ii).
We are going to apply Proposition 4.1, and so we verify the assumptions therein. We already
noticed that Z := N1([0,∞)) satisfies (6). So we only need to check (29). Let {Un}n≥1 be a
sequence of independent random variables with the same law as B1,1,1, independent of Z. Since V ,
defined by (35), has the same law as

Z−1∑
n=1

Un,

and V is an upper bound of L, we have

L ≤ L′ :=
Z∑
n=1

Un. (70)

Such random variable L′ has all the moments finite, indeed for any k ∈ N, using Minkowski’s
inequality we have

E

( Z∑
n=1

Un

)k ≤ E[Zk]E[Uk1 ] <∞, (71)

where the latter term is finite due to (36) and the fact that Z satisfies (6). The proof is completed.
Proof of Part (iii).
By the random walk perspective to branching processes (see e.g. [20] p. 90), we have that Z has
the same law of the hitting time to zero of the random walk {Z ′n}n≥0 defined by

Z ′0 := 1 Z ′n := P1,1 + . . .+ P1,n − (n− 1), n ∈ N,

i.e.
Z

d
= inf{n ∈ N : Z ′n = 0}

(we define the right-hand side equal to +∞ if {. . .} = ∅). So

P(Z > n) ≤ P(Z ′n > 0) = P

(
1

n

n∑
k=1

P1,k ≥ 1

)
≤ e−nac , n ∈ N, (72)
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where the latter inequality follows by the Chernoff’s bound (see e.g. [20] Theorem 2.19 p. 68, and
recall that E[P1,1] < 1). Standard convexity arguments (combined with the subcritical assumption)
guarantee ac ∈ (0,∞). A straightforward computation shows that (72) implies E[eθZ ] <∞∀ θ < ac,
which completes the proof.
Proof of Part (iv).
Let {Zj}j≥1 be independent copies of Z and let K1 be the random variable defined at the beginning
of Subsection 4.1. For any θ ∈ (−∞, bc), by standard computations we have

E[eθZ ] = eθ
∑
k≥0

E[eθ
∑k
j=1 Zj |K1 = k]pk

= eθ
∑
k≥0

E[eθZ ]kpk = eθGP1,1(E[eθZ ]) <∞. (73)

As far as the moments of Z are concerned, we combine the Faà di Bruno formula with the elementary
relation:

dn

dxn
(f(x)g(x)) =

n∑
k=0

(
n

k

)
f (n−k)(x)g(k)(x), n ∈ N, (74)

for sufficiently smooth functions f and g. For any θ ∈ (−∞, bc), by (73) and (74) we have

dn

dθn
E[eθZ ] = eθ

n∑
k=0

(
n

k

)
dk

dθk
GP1,1(E[eθZ ]).

By the Faà di Bruno formula we have

dk

dθk
GP1,1(E[eθZ ]) = k!

k∑
i=1

G
(i)
P1,1

(E[eθZ ])

i!

∑
m1+m2+...+mi=k

dm1

dθm1 E[eθZ ]

m1!
. . .

dmi
dθmi E[eθZ ]

mi!
, k ∈ N,

where the sum is taken over all the m1, . . . ,mi ∈ N such that m1 + . . .+mi = k. The claim follows
recalling that

E[Zn] =
dn

dθn
E[eθZ ]

∣∣∣
θ=0

and that
G

(i)
P1,1

(1) = E[P1,1(P1,1 − 1) . . . (P1,1 − (i− 1))]

is the ith factorial moment of P1,1.
Proof of Part (v).
Differentiating (73) with respect to θ, for any θ ∈ (−∞, bc) we have

E[ZeθZ ] = eθGP1,1(E[eθZ ]) + eθE[ZeθZ ]G′P1,1
(E[eθZ ]) = E[eθZ ] + eθE[ZeθZ ]G′P1,1

(E[eθZ ]),

where the latter equality follows by (73). Therefore

E[ZeθZ ] =
E[eθZ ]

1− eθG′P1,1
(E[eθZ ])

. (75)

Differentiating again we have

E[Z2eθZ ] = E[eθZ ]
1 + eθ(G′P1,1

(E[eθZ ]) +G′′P1,1
(E[eθZ ]))

(1− eθG′P1,1
(E[eθZ ]))2

. (76)
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Recall that, for any x ∈ (0, λE[ZebcZ ]) we denote by θx ∈ (−∞, bc) the unique solution to
λE[ZeθZ ] = x. Using (73), we rewrite the relation (75) as

E[ZeθZ ] =
E[eθZ ]

1− E[eθZ ]
G′P1,1

(E[eθZ ])

GP1,1 (E[eθZ ])

.

Taking θ = θx in this relation, we have

x

λ
=

E[eθxZ ]

1− E[eθxZ ]
G′P1,1

(E[eθxZ ])

GP1,1 (E[eθxZ ])

,

and so %x = E[eθxZ ] is solution to (38). The expressions of θx and E[Z2eθxZ ] are readily obtained
by (73) and (76), respectively. The proof is completed.
Proof of Part (vi).

For a fixed r > 0, let {N (j)
r (·)}j≥1 be independent and identically distributed point processes on

[r,∞) with the same branching structure as N1, but ancestor in r (when r = 0 they are independent

copies of N1). Hereon, we denote by N
(j)
r (s) the number of points of N

(j)
r on the interval [r, s] and

by Q the law of B1,1,1. For any θ ∈ (−∞, bc) and s > 0, similarly to (73), we have

E[eθN1([0,s])] =
∑
k≥0

E[eθN1([0,s]) |K1 = k]pk

=
∑
k≥0

E
[
e
θ
(

1+
∑k
j=1N

(j)
B1,0,j

(s)
)
|K1 = k

]
pk

= eθ
∑
k≥0

pk

(∫
[0,∞)

E[eθN
(1)
r (s)]Q(dr)

)k

= eθGP1,1

(∫
[0,∞)

E[eθN
(1)
r (s)]Q(dr)

)
.

By this relation, (73) and the mean value theorem, we have (since N
(1)
r (s) = 0 for r > s)

E[eθN1([0,s])]− E[eθZ ] = eθ

(
GP1,1

(∫
[0,∞)

E[eθN
(1)
r (s)]Q(dr)

)
−GP1,1(E[eθZ ])

)

= eθ

(∫
[0,∞)

E[eθN
(1)
r (s)]Q(dr)− E[eθZ ]

)
G′P1,1

(ξ)

= eθ

(∫
[0,s]

(E[eθN
(1)
r (s)]− E[eθZ ])Q(dr) + (1− E[eθZ ])Q((s,∞))

)
G′P1,1

(ξ),

for some

ξ ∈

(
min

{∫
[0,∞)

E[eθN
(1)
r (s)]Q(dr),E[eθZ ]

}
,max

{∫
[0,∞)

E[eθN
(1)
r (s)]Q(dr),E[eθZ ]

})
.

Since ξ ≥ 0, a simple computation shows that G′P1,1
(ξ) ≥ p1. Therefore

E[eθN1([0,s])]− E[eθZ ] ≤ eθ

(∫
[0,s]

(E[eθN
(1)
r (s)]− E[eθZ ])Q(dr) + (1− E[eθZ ])Q((s,∞))

)
p1

≤ p1eθ(1− E[eθZ ])Q((s,∞)), for any θ ∈ (0, bc),
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and

E[eθN1([0,s])]− E[eθZ ] ≥ p1eθ(1− E[eθZ ])Q((s,∞)), for any θ < 0.

The claim follows combining these inequalities with (30), (31), (70) and (71).
�

7.6 Proof of Proposition 5.1

We only prove Part (i). Indeed, mutatis mutandis (i.e. applying Theorem 3.2(ii) in place of
Theorem 3.1) the proof of Part (ii) is similar. We start noticing that the upper bound is a simple
consequence of the inequality ψIBNR(u) ≤ ψCL(u), u > 0, and (46). As far as the lower bound is
concerned, note that, for any u, d > 0, we have

ψIBNR(u) ≥ P(Sud − cud ≥ u) = P
(
Sud
ud
≥ c+

1

d

)
. (77)

By the strict convexity of the function

(0, a) 3 γ 7→ λ(E[eγZ ]− 1)− cγ,

we have λE[ZewZ ]− c > 0. Set d := (λE[ZewZ ]− c)−1 > 0 and x := c+ d−1 = λE[ZewZ ]. By the
“net profit” condition and the fact that E[ZeaZ ] > E[ZewZ ] > 0, we have x ∈ (λE[Z], λE[ZeaZ ]).
Moreover, a straightforward computation gives

θx = w and xθx − λ(E[eθxZ ]− 1) = w(λE[ZewZ ]− c).

The lower bound follows by these relations, (77) and Theorem 3.1.

7.7 Proof of Theorems 6.1 and 6.2

In this section we prove Theorems 6.1 and 6.2. In particular, we emphasize that the proof of
Theorem 6.2 exploits the ideas and the techniques developed in [13].
Proof of Theorem 6.1. We divide the proof in two steps. In the first step we prove the inequality

|ψt(iξ)− 1| ≤ (H1(t)|ξ|α +H2(t)|ξ|2α) exp(H1(t)|ξ|α +H2(t)|ξ|2α), ∀ (t, ξ) ∈ (0,∞)× R, (78)

where
ψt(iξ) := E[eiξ(St/t

1/(2α))]e
−
√
tη
cλ1/α,α,β

(iξ)
, t > 0, ξ ∈ R, (79)

H1(t) := λcα
√

1 + (β tan(πα/2))2

∫ t
0 (1− F (s)α) ds

√
t

, t > 0, (80)

and

H2(t) :=
λc2α

2
[1 + (β tan(πα/2))2], t > 0. (81)

In the second step we conclude the proof.
Step 1: Proof of (78).
For any t > 0 and ξ ∈ R, by Lemma 2.2 and the expression of the Laplace functional of a Poisson
process (see e.g. [8]), we have

E[eiξSt/t
1/α

] = exp

(
λ

∫ t

0
(eηc,α,β(iξF (s)/t1/α) − 1) ds

)
= exp

(
λ

∫ t

0
(e

1
t
ηc,α,β(iξF (s)) − 1) ds

)
. (82)
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Again, by the scaling property of the Lévy exponent ηc,α,β(·) and its definition, we have

ηc,α,β

(
iξt

1
2α

)
= ηc,α,β

(
iξ

(t−1/2)1/α

)
=
√
tηc,α,β(iξ), t > 0, ξ ∈ R, (83)

and ηcλ1/α,α,β(iξ) = ληc,α,β(iξ) , ξ ∈ R. By these relations and (82), for any t > 0 and ξ ∈ R, it
follows

ψt(iξ) = exp

(
λ

∫ t

0
(e

1
t
ηc,α,β(iξt1/(2α)F (s)) − 1) ds− λ

√
tηc,α,β(iξ)

)
= exp

(
λ

∫ t

0

(
e

1√
t
ηc,α,β(iξF (s)) − 1− 1√

t
ηc,α,β(iξ)

)
ds

)
= exp

(
λ

∫ t

0

(
e

1√
t
ηc,α,β(iξF (s)) − e

1√
t
ηc,α,β(iξ)

)
ds+ λt

(
e

1√
t
ηc,α,β(iξ) − 1− 1√

t
ηc,α,β(iξ)

))
.

(84)

By Lemma 2.2 and the definition of the Lévy exponent ηc,α,β(·), for any t > 0, s ∈ (0, t) and ξ ∈ R,
we have∣∣∣e 1√

t
ηc,α,β(iξF (s)) − e

1√
t
ηc,α,β(iξ)

∣∣∣ ≤ 1√
t

∣∣∣ηc,α,β(iξF (s))− ηc,α,β(iξ)
∣∣∣e 1√

t
max{Re(ηc,α,β(iξF (s))),Re(ηc,α,β(iξ))}

=
1√
t
|ηc,α,β(iξF (s))− ηc,α,β(iξ)|e−

1√
t
|cξF (s)|α

=
1√
t
|1− iβ tan(πα/2)sgn(ξ)|||cξ|α − |cξF (s)|α|e−

1√
t
|cξF (s)|α

= cα
√

1 + (β tan(πα/2))2
(1− F (s)α)e

− 1√
t
|cξF (s)|α

√
t

|ξ|α.

Therefore, for any t > 0 and ξ ∈ R,∣∣∣λ∫ t

0

(
e

1√
t
ηc,α,β(iξF (s)) − e

1√
t
ηc,α,β(iξ)

)
ds
∣∣∣ ≤ H1(t)|ξ|α. (85)

Applying Taylor’s formula with integral remainder to the function

u 7→ e
u
ηc,α,β(iξ)
√
t , u ∈ [0, 1],

for any t > 0 and ξ ∈ R, we have

e
ηc,α,β(iξ)
√
t − 1 =

ηc,α,β(iξ)√
t

+
(ηc,α,β(iξ))2

t

∫ 1

0
(1− u)e

u
ηc,α,β(iξ)
√
t du.

Therefore, for any t > 0 and ξ ∈ R,∣∣∣λt(e
1√
t
ηc,α,β(iξ) − 1− 1√

t
ηc,α,β(iξ))

) ∣∣∣ ≤ λ

2
|ηc,α,β(iξ)|2 = H2(t)|ξ|2α, (86)

where H2(·) is the constant function defined in (81). Note that in (86) we used the relation

∣∣∣e u√
t
ηc,α,β(iξ)

∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
e

ηc,α,β

 iξ(√
t
u

)1/α


∣∣∣∣∣∣∣∣∣∣

= e
− u√

t
|cξ|α ≤ 1, u ∈ [0, 1],
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which follows by (4) and Lemma 2.2. By Lemma 2.2 and max{Rez, 0} ≤ |z|, z ∈ C, we have

|ez − 1| ≤ |z|e|z|, z ∈ C.

The claim follows combining this elementary inequality with (84), (85) and (86).
Step 2: Conclusion of the proof.
By (78), for any t > 0 and ξ ∈ R, we have∣∣∣ψt(i

ξ

t1/(2α)

)
− 1
∣∣∣ ≤ (λcα√1 + (β tan(πα/2))2

∫ t
0 (1− F (s)α) ds

t
|ξ|α +

λc2α

2t
[1 + (β tan(πα/2))2]|ξ|2α

)

× exp

(
λcα
√

1 + (β tan(πα/2))2

∫ t
0 (1− F (s)α) ds

t
|ξ|α +

λc2α

2t
[1 + (β tan(πα/2))2]|ξ|2α

)
.

(87)

The right-hand side of this latter inequality goes to zero as t→∞, indeed by de l’Hopital’s theorem
and the fact that F (·) is a distribution function, we have

lim
t→∞

1

t

∫ t

0
(1− F (s)α) ds = 0.

The claim then follows by Lévy’s continuity theorem noticing that, for any t > 0 and ξ ∈ R,

ψt

(
i

ξ

t1/(2α)

)
=

E[ei(ξ/t
1/(2α))t−1/(2α)St ]

e
√
tη
cλ1/α,α,β

(i(ξ/t1/(2α)))
=

E[eiξ(St/t
1/α)]

e
η
cλ1/α,α,β

(iξ)
, (88)

where the latter equality follows by (83).
�
Proof of Theorem 6.2. By (78), for any t > 0 and ξ ∈ R, we have (87), which, for η ∈ (0, 1], we
rewrite as ∣∣∣ψt(i

ξ

t1/(2α)

)
− 1
∣∣∣ ≤ (H1,η(t)

t1−η
|ξ|α +

H2

t
|ξ|2α

)
exp

(
H1,η(t)

t1−η
|ξ|α +

H2

t
|ξ|2α

)
, (89)

where

H1,η(t) := λcα
√

1 + (β tan(πα/2))2

∫ t
0 (1− F (s)α) ds

tη
, t > 0,

and H2(·) ≡ H2 is defined by (81); note that H1,1/2(·) ≡ H1(·), where H1(·) is defined by (80).
Letting PX denote the law of a random variable X, we consider the signed measure

µt(dx) := Pt−1/αSt
(dx)− PS(dx), t > 0,

and note that

µ̂t(ξ) := E[eiξ(St/t
1/α)]− E[eiξS ] = E[eiξS ]

(
ψt

(
i
ξ

t
1
2α

)
− 1

)
, t > 0, ξ ∈ R,

where the latter equality follows by (88). Therefore, by (89) and (4), for any t > 0 and ξ ∈ R \ {0},
we have ∣∣∣ µ̂t(ξ)

ξ

∣∣∣ = e−λ|cξ|
α 1

|ξ|

∣∣∣ψt(i
ξ

t
1
2α

)
− 1
∣∣∣

≤
(
H1,η(t)

t1−η
|ξ|α−1 +

H2

t
|ξ|2α−1

)
exp

(
−λ|cξ|α +

H1,η(t)

t1−η
|ξ|α +

H2

t
|ξ|2α

)
. (90)
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Let ρ(·) be the kernel function provided by Lemma 2.13 in [13], and for ε > 0 and x, a ∈ R, put
ρε(x) := ε−1ρ(x/ε), fε(x) := 1(−∞,0] ∗ ρε(x), and fa,ε(x) := fε(x − a). Here the symbol ∗ denotes
the convolution product. We continue by first proving the Part (i) of the theorem, and then the
Part (ii). We present a proof which is a little bit more technical than the necessary since we provide
a constant involved in the big O notation.
Proof of Part (i).
We only prove the claim under the assumption (53). Indeed, if η0 /∈ A, then η0 + ε ∈ A for any
ε > 0 sufficiently small. So let η0 ∈ A and let t∗ > 0 be such that

sup
t≥t∗

∫ t
0 (1− F (s)α) ds

tη0
∈ [0,∞).

For an arbitrarily fixed

γ ∈
(
− η0

α(1− η0)
, 1− η0

α(1− η0)

]
, (91)

we define

ε(t) :=
1

K0t
(1−η0)(γ+

η0
α(1−η0)

)
, t > 0, K0 :=

(
λ

4H2

) 1
α

c, (92)

and consider the family of functions {fa,ε(t)}t>0. By Proposition 2.14 in [13], we have that the
functions fa,ε(t) are smooth test distributions in T1(R) (we refer the reader to Definition 2.9 on p.
11 of [13] for the rigorous definition of such space) with Fourier transform compactly supported on
the interval

It := [−K0t
(1−η0)(γ+

η0
α(1−η0)

)
,K0t

(1−η0)(γ+
η0

α(1−η0)
)
] (93)

and ‖∂fa,ε(t)‖L1(R,dx) = 1. Note that
αγ − 1 ≤ 0. (94)

Indeed, by (91) and the fact that α ≤ 1/(1− η0) (since η0 ≥ (α− 1)/α), we have

αγ − 1 ≤ α− η0

1− η0
− 1 = α− 1

1− η0
≤ 0.

For t ≥ 1 and ξ ∈ It, we have

|ξ|2α

t
= |ξ|α |ξ|

α

t
≤ Kα

0 t
(1−η0)(αγ+

η0
1−η0

)−1|ξ|α

= Kα
0 t

(1−η0)(αγ−1)|ξ|α ≤ λ

4H2
|cξ|α, (95)

where for the latter inequality we used that t(1−η0)(γα−1) ≤ 1 since t ≥ 1 and γα − 1 ≤ 0 by (94).
Let t′ ≥ 1 be such that ∫ t

0 (1− F (s)α) ds

t
≤ λcα

4
√

2λH2
, for any t ≥ t′. (96)

Note that such a t′ exists since the left-hand side of (96) tends to zero as t→∞ by de l’Hopital’s
theorem. By (96) we have

H1,η0(t)

t1−η0
≤ λcα

√
1 + (β tan(πα/2))2

λcα

4
√

2λH2
=
λcα

4
, for any t ≥ t′. (97)
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By (90), (95) and (97), for any t ≥ t′′ := max{t′, t∗} and ξ ∈ It \ {0}, we have∣∣∣ µ̂t(ξ)
ξ

∣∣∣ ≤ (K ′1 |ξ|α−1

t1−η0
+H2

|ξ|2α−1

t

)
exp

(
−λ|cξ|

α

2

)
, (98)

where

K ′1 := λcα
√

1 + (β tan(πα/2))2 sup
t≥t∗

∫ t
0 (1− F (s)α) ds

tη0
.

We note that, for any ν, κ, ρ > 0,

∫
R
|ξ|ν−1e−κ|ξ|

ρ
dξ = 2

∫ ∞
0

ξν−1e−κξ
ρ

dξ = 2

∫ ∞
0

x(ν−1)/ρe−κx dx1/ρ =
2Γ
(
ν
ρ

)
ρκν/ρ

, (99)

where Γ(·) is the Euler gamma function. In particular, for any t ≥ t′′, the function ξ 7→ µ̂t(ξ)
ξ is

integrable. Therefore by Remark 2.11 in [13] we have that the extended Parseval formula applies
and, letting f̂(ξ) :=

∫
R eiξxf(x) dx denote the Fourier transform of f ∈ L1(R, dx), we have

|E[fa,ε(t)(St/t
1/α)]− E[fa,ε(t)(S)]| = 1

2π

∣∣∣ ∫
It

∂̂fa,ε(t)(ξ)
µ̂t(−ξ)
ξ

dξ
∣∣∣

≤
‖∂fa,ε(t)‖L1(R,dx)

2π

∫
It

∣∣∣ µ̂t(−ξ)
ξ

∣∣∣dξ (100)

=
1

2π

∫
It

∣∣∣ µ̂t(−ξ)
ξ

∣∣∣ dξ, for any t ≥ t′′, (101)

where in (100) we used the elementary inequality |f̂(ξ)| ≤ ‖f‖L1(R,dx), for any ξ ∈ R. By (98) and
(99), for any t ≥ t′′, we have∫

It

∣∣∣ µ̂t(−ξ)
ξ

∣∣∣ dξ ≤ K ′1
t1−η0

∫
It

|ξ|α−1e−
λ|c|α

2
|ξ|α dξ +

H2

t

∫
It

|ξ|2α−1e−
λ|c|α

2
|ξ|α dξ

≤ K ′1
t1−η0

4

λαcα
+
H2

t

8

αλ2c2α
≤ 4

λαcα

(
K ′1 +

2H2

λcα

)
1

t1−η0
,

where the latter inequality follows noticing that t′′ ≥ 1. Combining this with (101), for any t ≥ t′′,
we have

|E[fa,ε(t)(St/t
1/α)]− E[fa,ε(t)(S)]| ≤ 2

πλαcα

(
K ′1 +

2H2

λcα

)
1

t1−η0

≤ 2

πλαcα

(
K ′1 +

2H2

λcα

)
1

t
(1−η0)(γ+

η0
α(1−η0)

)
= Bε(t), (102)

where

B :=
2K0

πλαcα

(
K ′1 +

2H2

λcα

)
and the inequality (102) is a consequence of γ ≤ 1− η0

α(1−η0) and t′′ ≥ 1. By Theorem 2.15 in [13],

noticing that S has a density with respect to the Lebesgue measure bounded above by 1
απcλ1/α

Γ
(

1
α

)
(see Subsection 2.3), we have

dKol(St/t
1/α, S) ≤ C

t
(1−η0)(γ+

η0
α(1−η0)

)
, for any t ≥ t′′,
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where

C := inf
ζ>0

{
(1 + ζ)

(
2

πλαcα

(
K ′1 +

2H2

λcα

)
+

(4H2)
1
αΓ
(

1
α

)
π4/3αc2λ2/α

(4(1 + ζ−1)1/3 + 34/3)

)}
. (103)

The claim follows noticing that

inf
− η0
α(1−η0)

<γ≤1− η0
α(1−η0)

1

t
(1−η0)(γ+

η0
α(1−η0)

)
=

1

t1−η0
, t ≥ t′′.

Proof of Part (ii).
We take

γ ∈
(
− 1

α
,min

{
2− 1

α
,

1

α

}]
(104)

and define ε(t) and It as in (92) and (93) with 1/2 in place of η0, i.e.,

ε(t) :=
1

K0t
1
2

(γ+ 1
α

)
, t > 0, (105)

and It = [−ε(t)−1, ε(t)−1]. Then we consider the family of functions {fa,ε(t)}t>0 (the function
fa,ε is defined at the beginning of the proof) which, by Proposition 2.14 in [13], are smooth test
distributions in T1(R) with Fourier transform compactly supported on It. Note that the relations
(95) and (97) hold with 1/2 in place of η0. By the assumption (54), it follows

H1(t)√
t
≤ K ′′1

t
, for any t > 0,

where H1(·) is given by (80) and

K ′′1 := λcα
√

1 + (β tan(πα/2))2

∫ ∞
0

(1− F (s)α) ds ∈ [0,∞).

Combining this with (90), (95) and (97) (again with 1/2 in place of η0), for any t ≥ t′ and ξ ∈ It\{0},
we have ∣∣∣ µ̂t(ξ)

ξ

∣∣∣ ≤ (K ′′1 |ξ|α−1

t
+H2

|ξ|2α−1

t

)
exp

(
−λ|cξ|

α

2

)
. (106)

As in the proof of Part (i), we have that, for any t ≥ t′, the function ξ 7→ µ̂t(ξ)
ξ is integrable, and

one can apply the extended Parseval formula to get (101), with ε(t) defined by (105) and t′ in place
of t′′. By (106) and (99), for any t ≥ t′, we have∫

It

∣∣∣ µ̂t(−ξ)
ξ

∣∣∣dξ ≤ K ′′1
t

∫
It

|ξ|α−1e−
λ|c|α

2
|ξ|α dξ +

H2

t

∫
It

|ξ|2α−1e−
λ|c|α

2
|ξ|α dξ

≤ K ′′1
t

4

αλcα
+
H2

t

8

αλ2c2α
=

4

λαcα

(
K ′′1 +

2H2

λcα

)
1

t
.

Combining this with (101) (with ε(t) given by (105) and t′ in place of t′′), for any t ≥ t′, we have

|E[fa,ε(t)(St/t
1/α)]− E[fa,ε(t)(S)]| ≤ 2

πλαcα

(
K ′′1 +

2H2

λcα

)
1

t

≤ 2

πλαcα

(
K ′′1 +

2H2

λcα

)
1

t
1
2

(γ+ 1
α

)
= B′ε(t), (107)
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where

B′ :=
2K0

πλαcα

(
K ′′1 +

2H2

λcα

)
and the inequality (107) is a consequence of γ ≤ 2− 1

α and t′ ≥ 1. By Theorem 2.15 in [13], noticing
that S has a density (with respect to the Lebesgue measure) bounded above by 1

απcλ1/α
Γ
(

1
α

)
, we

have

dKol(St/t
1/α, S) ≤ C ′

t
1
2

(γ+ 1
α

)
, for any t ≥ t′,

where the constant C ′ is defined as C in (103), but with K ′′1 in place of K ′1. The claim follows taking
the infimum over γ, which satisfies the constraint (104). Indeed, if α ∈ (1, 2], then 1/α < 2− 1/α,
and so

inf
−1/α<γ≤min{1/α,2−1/α}

1

t
1
2

(γ+ 1
α

)
= t−

1
α , t ≥ t′;

if, instead, α ∈ (0, 1], then 1/α ≥ 2− 1/α, and so

inf
−1/α<γ≤min{1/α,2−1/α}

1

t
1
2

(γ+ 1
α

)
= t−1, t ≥ t′.

�

7.8 Proof of Lemma 2.2

For ease of notation, let ai := Rezi and bi := Imzi, i = 1, 2. Hereon, without loss of generality, we
assume a1 ≥ a2. We have:

|ez1 − ez2 | = |ea1+ib1 − ea2+ib1 + ea2+ib1 − ea2+ib2 | = |ea1 − ea2 + ea2(1− ei(b2−b1))|.

By the mean value theorem we have ea1 − ea2 = (a1 − a2)ec, for some c = c(a1, a2) ∈ [a2, a1].
Therefore

|ez1 − ez2 | = |(a1 − a2)ec + ea2(1− ei(b2−b1))| ≤ |(a1 − a2)ea1 + ea2(1− ei(b2−b1))|.

Setting α := a1 − a2 ≥ 0 and β := b2 − b1, we have

|(a1 − a2)ea1 + ea2(1− ei(b2−b1))| = ea1 |α+ e−α(1− eiβ)| = ea1 |α+ e−α(1− cosβ − i sinβ)|.

The claim follows if we prove the inequality

|α+ e−α(1− cosβ)− ie−α sinβ| ≤
√
α2 + β2. (108)

Indeed |z1 − z2| =
√
α2 + β2 and

|α+ e−α(1− cosβ − i sinβ)| = |α+ e−α(1− cosβ)− ie−α sinβ|.

Note that (108) is equivalent to

f1(α, β) := [α+ e−α(1− cosβ)]2 + e−2α(sinβ)2 ≤ α2 + β2 =: f2(α, β). (109)

To prove this latter inequality, we start noticing that f1(α, 0) = f2(α, 0) = α2 and

f1(α, β) = α2 + 2αe−α(1− cosβ) + 2e−2α(1− cosβ) = α2 + 2(α+ e−α)e−α(1− cosβ).
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Then we distinguish two cases: β > 0 and β < 0. Assume first β > 0. For any γ > 0, we have

∂f1(α, γ)

∂γ
= 2(α+ e−α)e−α sin γ ≤ 2γ =

∂f2(α, γ)

∂γ
,

where we used the elementary inequalities sin γ ≤ | sin γ| ≤ |γ| = γ and 0 < (α+ e−α)e−α ≤ 1 (the
latter follows by the elementary relations eα ≥ 1 + α ≥ e−α + α; recall that α ≥ 0). Therefore

f1(α, β) = f1(α, 0) +

∫ β

0

∂f1(α, γ)

∂γ
dγ ≤ f2(α, 0) +

∫ β

0

∂f2(α, γ)

∂γ
dγ = f2(α, β), (110)

and the claim (109) for β > 0 is proved. Now, assume β < 0. By (110) we have f1(α,−β) ≤
f2(α,−β) and the claim (109) for β < 0 follows noticing that fi(α,−β) = fi(α, β), i = 1, 2.
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Lecture Notes in Mathematics, vol 2252. Springer, Berlin, 2019.

[14] A. Ganesh and G.L. Torrisi. A class of risk processes with delayed claims: ruin probability
estimates under heavy tail conditions. Journal of Applied Probability, 43, pp. 916–926, 2006.

[15] A. Ganesh and G.L. Torrisi. Large deviations of the interference in a wireless communication
model. IEEE Transactions on Information Theory, 54, pp. 3505–3517, 2008.

[16] A. Ganesh, C. Macci and G.L. Torrisi. Sample path large deviations for Poisson shot noise
processes, and applications. Electronic Journal of Probability, 10, pp. 1026–1043, 2005.

[17] A. Ganesh, C. Macci and G.L. Torrisi. A class of risk processes with reserve-dependent pre-
mium rate: sample path large deviations and importance sampling. Queueing Systems, 55,
pp. 83–94, 2007.

[18] F. Gao and L. Zhu. Precise deviations of Hawkes processes. Bernoulli, to appear, 2021.

[19] A.G. Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika,,
58, pp. 83–90, 1971.

[20] R. van der Hofstad. Random Graphs and Complex Networks. Volume 1. Cambridge Series in
Statistical and Probabilistic Mathematics, 2017.
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