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Abstract: This paper presents the steady-state stress analysis of single-layered and multilayered
plates and shells embedding Functionally Graded Material (FGM) layers under moisture conditions.
This solution relies on an exact layer-wise approach; the formulation is unique despite the geometry.
It studies spherical and cylindrical shells, cylinders, and plates in an orthogonal mixed curvilinear
coordinate system (α, β, z). The moisture conditions are defined at the external surfaces and evaluated
in the thickness direction under steady-state conditions following three procedures. This solution
handles the 3D Fick diffusion equation, the 1D Fick diffusion equation, and the a priori assumed linear
profile. The paper discusses their assumptions and the different results they deliver. Once defined,
the moisture content acts as an external load; this leads to a system of three non-homogeneous second-
order differential equilibrium equations. The 3D problem is reduced to a system of partial differential
equations in the thickness coordinate, solved via the exponential matrix method. It returns the
displacements and their z-derivatives as a direct result. The paper validates the model by comparing
the results with 3D analytical models proposed in the literature and numerical models. Then, new
results are presented for one-layered and multilayered FGM plates, cylinders, and cylindrical and
spherical shells, considering different moisture contents, thickness ratios, and material laws.

Keywords: functionally graded materials; 3D shell model; steady-state hygro-elastic analysis; Fick
moisture diffusion equation; moisture content profile; layer-wise approach

1. Introduction

The environmental conditions characterizing the service life of structural components
can be adverse in many applications. The aerospace field gives several examples of chang-
ing environments, which results in temperature gradients and moisture concentration
variability. It is crucial to consider such two factors and to include them in a proper struc-
tural analysis: the thermal and hygrometric fields induce an internal stress distribution,
which changes as soon as the environmental conditions change. As with any stress field,
it might induce failures on the structure [1], either on its own or because it sums up to
that caused by classical mechanical loads. Composite, multilayered, and FGM-embedding
structures require a special focus. Composite materials can also be degraded by moisture
absorption and the following diffusion through the matrix [2]; multilayered structures high-
light a strong heterogeneity in the hygro/thermal/mechanical properties; FGMs induce a
further complication due to non-constant terms in governing equations. However, their
boosted implementation in critical structural applications recently increased the attention
of the researchers on these effects.

Laminated structures and composite materials suffer from a clear variation of the
properties at the interfaces, which is the critical source of the delamination process [3]. Elim-
inating this discontinuity and substituting it with a smooth trend is the key achievement
of Functionally Graded Materials (FGMs). They are advanced composite materials made
by two or more different phases mixed with a continuous graded distribution. As a result,
they are heterogeneous materials, delivering optimized responses for each application: the
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advancements in processing technologies made it possible to control a unidirectional and
even multidirectional variation. Combinations of a metallic and a ceramic phase are classic
examples of FGMs finding application in severe thermal environments: they overcome the
differences in thermal properties of the two constituents and, at the same time, deliver a
reduced thermal stress distribution. Stiffness coefficients, hardness, thermal conductivity,
moisture diffusivity, and corrosion resistance are just some examples of the performance
characteristics that can be combined and enhanced [4].

Several recent and relevant works focused on structures embedding FG layers under-
line their importance in practical applications. From an analytical perspective, Sobhani
et al. recently proposed several analytical results in the frame of the vibration analysis
of FG shells. First, the governing equations followed the First-order Shear Deformation
Theory (FSDT); then, they used the Generalized Differential Quadrature Method (GDQM),
a semi-analytical solution method, to solve the system of partial differential equations.
They studied conical shells embedding hybrid matrix/fiber nanocomposites in [5]; the
approach was then extended to paraboloidal and hyperboloidal shells embedding polymer
matrix, carbon fiber, and graphene nanoplatelets in [6]. Using the same approach, they
studied sandwich conical-cylindrical-conical shells [7]. The layers are reinforced with
functionally graded carbon nanotubes and graphene nanoplatelets; they described the
elastic coefficients following an Equivalent Single Layer approach. They also studied five
different patterns of CNT fibers distribution inside of the matrix while defining the vibra-
tional behavior of coupled conical-conical shells [8]. They used the five-parameter shell
theory and solved the differential equations through GDQM. Three-phase nanocomposites
were also studied in hemispherical-cylindrical shells exploiting a similar approach [9] and
defining the governing equations through the first-order shear deformation theory. From a
numerical perspective, Rezaiee-Pajand et al. studied sandwich beams embedding FGM
in two ways: they applied the Ritz method and the principle of minimum total potential
energy within the framework of Timoshenko and Reddy beam theories in [10] to assess the
bending of beams with different cross sections; they also developed a four-node isopara-
metric beam element to study porous beams with FGM [11]. Concerning two-dimensional
geometries, the same authors proposed the nonlinear analysis of FG shells in [12,13] by
improving an isoparametric six-node TRIA element with strain interpolation functions; the
mechanical properties grading followed a power low. They also proposed a three-node
TRIA element [14] using a mixed strain finite element approach and demonstrated that it is
possible to get the exact response of the beams with a low number of elements under large
deformations.

The solutions available in the literature seem to be promising. However, the results
of a hygrometric stress analysis depend not only on the capabilities of the elastic model
implemented but also on how the moisture content field has been evaluated, given the
external boundary conditions. The hygrometric field acts as a field load; its quantification
necessarily influences the stress analysis results. Aerospace applications usually involve
thin components. Consequently, evaluating the moisture content field translates into deter-
mining its profile along with the thickness direction, generally coinciding with the grading
direction of the mechanical/hygrometric properties. Developing a mechanical/elastic
model for a thin component can be done at different levels of detail: 3D or 2D approaches,
coupled with an analytical or numerical method. However, this might not be sufficient
in defining the refinement of a model when hygrometric stresses are concerned. Even an
analytical, exact 3D model would give wrong results when fed from an inaccurate moisture
content field. The molecular diffusion depends on the gradient of the concentration and is
described by Fick’s law. A solid mathematical analogy between Fick’s law and the Fourier
heat conduction equation strongly simplifies the analysis and the dissertation. An exact
solution comes from resolving three-dimensionally the diffusion/conduction equations;
however, simplified solutions might benefit from their unidirectional simplification or
an assumed-linear profile. Those three situations require an external evaluation of the
moisture content field before the mechanical analysis. An alternative consists in defining a
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coupled hygro-mechanical model, in which the moisture content field is a primary variable
of the problem in analogy with the thermal field [15–20].

This paper discusses an hygro-elastic shell model, which relies on the exponential
matrix method. This model does not limit to a specific geometry or lamination scheme; on
the contrary, it handles plates, cylindrical, and spherical shells. Furthermore, it accepts one
or more FGM layers on their own or coupled with homogeneous layers (sandwiches give
an example). It extends the authors’ 3D exact thermo-elastic shell model discussed in [21] to
hygro-elastic stress analysis. The problem is defined under steady-state conditions only; the
solution requires the moisture content amplitudes at the top and bottom external surfaces to
be specified. As a first step, the solution evaluates the moisture content profile through the
thickness direction. The authors considered three possible options: the 3D Fick diffusion
law, its 1D simplified version, and an a priori assumed linear trend. Despite this, the model
handles the solution via a layer-wise approach and through the exponential matrix method.
The present authors are not the only ones using the exponential matrix method for solving
the differential equilibrium equations. Soldatos and Ye [22] already used it in analyzing
the free vibrations of cylinders; Messina [23] applied it to study multilayered plates. The
orthogonal mixed curvilinear coordinate system helped study spherical shells in [24] using
three transverse stress and three displacement components as primary variables of the
problem. The analytical procedure is in analogy with the free vibration analysis and
the static analysis under mechanical load discussed by the first author in [25–30]. Those
previous formulations already handled different materials and geometries but lacked
loads other than the mechanical ones. In those simpler cases, a set of three homogeneous
differential equations are at the basis of the problem. However, the hygrometric load
adds an additional term that makes them not homogeneous. The exponential matrix
method also handles this feature, as discussed in [21] for the thermoelastic stress analysis of
shells with FGMs. The closed-form solution of the problem is possible given the harmonic
forms imposed on the variables (displacements and hygrometric field) and the simply
supported boundary conditions. Moreover, the whole formulation benefits an orthogonal
mixed curvilinear coordinate system, following the suggestions in [31–34]. This strategy
introduces a set of curvature terms, the elements through which the equations automatically
adapt to the different geometries. Such terms are a function of the thickness coordinate,
together with the elastic and hygrometric coefficients in FGM layers. Introducing a set of
fictitious (mathematical) layers allows obtaining constant coefficients and using the method
discussed in [35] to solve the problem.

The literature overview offers different analytical and numerical 2D models handling
the hygrometric stress analysis; they specifically focus on multilayered structures. Far
fewer discuss the problem of structures embedding FGMs. The literature overview will
demonstrate that, to the authors’ knowledge, no analytical 3D shell model exists, in which
the structures are different, provided that they have constant radii of curvature, and the
moisture content evaluation follows three different approaches. Laoufi [36] studied rectan-
gular plates embedding FGMs when subjected to different boundary conditions, including
moisture content and temperature field. They developed an analytical method through the
hyperbolic shear deformation plate model, which satisfied the stress boundary conditions
and required no shear corrections. The volume fractions of the ceramic-metal constituents
were used to define the materials grading in the thickness direction following a power law.
The same power law was included in Inala’s work [37], devoted to studying how the hy-
grothermal environment affects the vibration characteristics of plates embedding FGMs. To
do this, the author developed a finite element model of the structures under investigation.
Dai [38] and his colleagues focused on circular plates with a variable thickness along with
the radial direction. They derived nonlinear governing equations for temperature, moisture
content, and displacement fields and solved them through the differential quadrature
method. Zenkour also studied how the thermal and hygrometric fields affect the bending
and the buckling of plates embedding FGMs [39]. In this case, also, the authors considered
a material grading in the thickness direction of the structure. Their formulation relies on an
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exponential shear deformation theory and applies to plates resting on elastic foundations.
Hamilton’s principle was used to derive the equilibrium equations, and Navier’s method
to obtain the results. Boukelf also studied plates resting on elastic foundations, embedding
FGMs [40]. The author developed a novel higher-order shear deformation theory model,
deducing the problem equations through the virtual work principle. Hygro, thermal, and
mechanical loads are all properties that can be handled. Analogously, Zidi [41] developed
a further model for the same issue. In this case, the author used a four-variable refined
plate theory. Analogous research has been proposed in [42] concerning functionally graded
beams. The author deepened the influence of moisture content field and temperature
on the bost-buckling response of beams. A nonlinear finite element solution was con-
sidered, in which the authors handled the kinematics of the bost-buckling through the
Lagrangian approach.

More substantial is the literature discussing the moisture content effects on isotropic,
orthotropic, and laminated structures. Chiba and Sugano [43] studied multilayered plates
and proposed a two-dimensional analytical solution for hygrothermal effects on multi-
layered plates. The Classical Lamination Plate Theory and an analytical 3D plate model
were compared in [44,45] while performing the hygro-thermal stress analysis. The CLT
also received the attention of Kalil [46] when he investigated composite plates. Kollar [47]
made an analytical investigation of composite cylindrical shells, while Shen [48] focused on
buckling and post-buckling behaviors. The CLT was found to be inadequate in hygrother-
mal mechanical analysis by Lee and his colleagues [49]. There is no shortage of numerical
models in this field; an example is given in [50], where plates with a central hole were
studied. Multilayered structures under hygrometric fields have been the target of the finite
element model by Khoshbakht et al. [51]; Kundu and Han studied buckling and vibration in
multilayered shells with double curvature [52] through a finite element model grasping the
hygrothermal effects. They extended this research to dynamic instability of doubly-curved
shells embedding composite materials through a nonlinear finite element under orthogonal
curvilinear coordinates [53]. Marques and Creus included the Fick diffusion law [54] into
a FE shell model devoted to isotropic and multilayered structures under a hygrothermal
environment. With the same aim, Naidu and Sinha [55] investigated cylindrical shell
panels under large deflections through a higher-order shear deformation theory. Patel also
proposed a higher-order FE for laminated parts [56]. Sereir et al. [57–59] considered the
elastic properties variation in composite plates with the temperature and the moisture
content and discussed a transient hygroscopic stress analysis. In [60–63], simplified solu-
tions for hygro-thermal stresses analysis of composite plates considering the variation in
elastic properties due to the hygrothermal environment are also considered. An analogous
evaluation devoted to dynamic behavior has been proposed in [64,65]. Ghosh [66] used a
FE model to investigate how a severe hygrothermal environment can affect the initiation
and progress of damages in composites.

The literature survey highlighted that the hygromechanical stress analysis of structures
embedding FGM layers still misses general and exact solutions as benchmarks in new
solutions. Instead, the only analytical models work on defined and specific boundary
conditions, laminations, and geometry. This paper intends to fill this gap by extending the
authors’ previous work on multilayered structures to FGMs. The manuscript is organized
as follows. Section 3 describes the hygro-elastic shell problem and its solution with the
exponential matrix method. Section 2 explores the moisture diffusion problem with the
three approaches introduced before. The Fick law of diffusion has the same mathematical
formulation of the Fourier heat conduction equation; the moisture diffusion problem and
the heat conduction problem are in analogy, indeed, as demonstrated in [67], and further
confirmed by Tay and Goh [68,69]. Therefore, Section 2 quantifies the moisture content
profiles. Solving the 3D Fick diffusion law is possible by exploiting the analogy with the heat
conduction problem. Tungikar and Rao [35] give a methodology that can also be applied
in this context; the unidimensional Fick diffusion law disregards the diffusion fluxes in
directions other than the thickness coordinate and can be calculated in analogy. Section 4
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gives two sets of results. The first set, labeled as Assessments, is introduced to validate
the problem. In the absence of 3D exact solutions for hygro-elastic problems in shells with
FGM layers, the section exploits existing results for thermal stress analysis. After validating
the present model and an additional FE model, the section uses this last FE model to verify
the results when the hygrometric load replaces the thermal one. The second set, labeled as
Benchmarks, discusses new results, which introduce further comments on the effects of
moisture content profiles, thickness ratio, material, and lamination scheme, together with
the impact of the geometry. The main conclusions and the further development are then
summarized in Section 5.

2. Fick Moisture Diffusion Equation

This model relies on a decoupled solution, which means that the moisture content
is evaluated separately and enters the elastic part of the problem as a known term. The
essential hypothesis to obtain exact closed-form solutions is that all the problem variables
have a harmonic form. For what concerns the moisture content, this means

Mk(α, β, z) = Mk(z)sin(ᾱα)sin(β̄β) , (1)

Mk(z) indicates the moisture content amplitude. Referring to Figures 1 and 2: m and n are
the half-wave numbers in the two in-plane directions α and β, respectively. a and b are the
shell dimensions referred to the mid-surface Ω0; they allow calculating the terms ᾱ = mπ

a
and β̄ = nπ

b . Note that the harmonic form of the moisture content reduces its assessment
to its profile along with the thickness direction z. What happens in α and β directions is
already defined through the sinusoidal functions.

Ω0 α, β
h

z z˜

FGM

B1 B2

+h/2

−h/2

Figure 1. Geometrical data and coordinate system for plates and cylinders. The figure also shows the
stacking sequence used in Benchmarks 1 and 2.

The hygrometric boundary conditions are the moisture content amplitudes at the
bottom and the top of the shell, Mb, and Mt, respectively. Three approaches exist to evaluate
the moisture content profile; this solution implements all three, allowing a homogeneous
comparison among them and with other methods. The solution is accomplished in analogy
with what the authors achieved in [21] concerning the temperature field. Indeed, the
Fourier heat conduction equation, regulating the thermal phenomenon, features the same
mathematical expression of the Fick diffusion law, which applies to the moisture diffusion
problem. The three approaches are here listed:

• the moisture content profile is defined by solving the 3D Fick diffusion law; the
hygro-elastic model considering it takes the name of 3D(Mc,3D);

• the moisture content profile is defined by solving the 1D version of the Fick diffusion
law; the hygro-elastic model considering it takes the name of 3D(Mc,1D);

• the moisture content profile is “a-priori” assumed as linear along with the thickness
direction; the hygro-elastic model considering it takes the name of 3D(Ma).
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Ω0 α, β

z z˜

FGM core

ceramic skinB3 B4

metallic skin

Figure 2. Geometrical data and coordinate system for cylindrical and spherical shell panels. The
figure also shows the stacking sequence used in Benchmarks 3 and 4.

All the acronyms report the term 3D: it states that the elastic part of the shell model
relies on a three-dimensional solution. Instead, the part of the acronym inside the paren-
theses defines how the moisture content profile has been quantified. “c” means calculated,
either via the 3D or the 1D Fick diffusion laws; “a” means linear assumed.

2.1. 3D Fick Equation

By analogy with the heat flux q, suppose to define a moisture flux g. Then, the
differential equation of moisture diffusion into a homogeneous solid, in the absence of
chemical reactions and under steady-state conditions ( ∂M

∂t = 0) reads:

∇· g(u1, u2, u3) = 0 . (2)

Equation (2) is written in a general orthogonal curvilinear coordinate system (u1, u2, u3);
however, in these conditions, the divergence of the moisture flux takes the following expression:

∇· g =
1
a

[
∂

∂u1

(
a
a1

g1

)
+

∂

∂u2

(
a
a2

g2

)
+

∂

∂u3

(
a
a3

g3

)]
, (3)

g1, g2, g3 express the components of the 3D flux in directions 1, 2, and 3; their explicit
form is

gi = −Di
1
ai

∂M
∂ui

, (4)

Di is the diffusion coefficient along with direction i; a1, a2, and a3 are the so-called scale
factors, with a the product of the three factors (a = a1 a2 a3 ). The problem takes place in a
mixed curvilinear orthogonal coordinate system (α, β, z); Povstenko [32] discussed that, in
this context, Equation (3) might be rewritten as follows:

1
HαHβ

[
∂

∂α

(Hα Hβ

Hα
D1

1
Hα

∂M
∂α

)
+

∂

∂β

(HαHβ

Hβ
D2

1
Hβ

∂M
∂β

)]
+D3

∂2M
∂z2 = 0 , (5)
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FGM layers distinguish from classical isotropic and orthotropic layers as the diffusion
coefficients D1(z), D2(z), and D3(z) are a function of the thickness coordinate z. Despite
the lamination scheme, Hα(z) and Hβ(z) are two parametric coefficients, defined as follows:

Hα(z) =
(

1 +
z

Rα

)
= Hα(z̃) =

(
1 +

z̃− h/2
Rα

)
, (6)

Hβ(z) =
(

1 +
z

Rβ

)
= Hβ(z̃) =

(
1 +

z̃− h/2
Rβ

)
. (7)

When considering shells with constant radii of curvature, Rα and Rβ, they are a linear
function of the thickness coordinate z, which varies from −h/2 to +h/2 or z̃, which varies
from 0 to h. h is the global thickness. The thickness coordinate z (or z̃) is rectilinear;
for consistency, a further coefficient might be defined: Hz = 1. Equation (5) points out
two main blocks; the second block has a simpler formulation as the third coordinate z
is rectilinear. Actually, this point is further confirmed by the work of Leissa [70], which
showed that

a1 = Hα, a2 = Hβ, a3 = Hz = 1 . (8)

The coefficients of Equation (5) are not constant even inside a k-th physical layer. This
issue is due to the parametric coefficients Hα and Hβ, a function of the thickness coordinate
z, and to D1, D2, and D3 which are not constant in FGM layers. A possible solution consists
in dividing each physical layer into sufficiently thin mathematical (fictitious) layers. There,
calculating the parametric and the diffusion coefficients at its middle allows moving the
differential operators to the moisture content only. Inside each mathematical layers it
holds that

D∗1
j ∂2M

∂α2 +D∗2
j ∂2M

∂β2 +D∗3
j ∂2M

∂z2 = 0 . (9)

where

D∗1
j =
D j

1

H2
α

j , D∗2
j =
D j

2

H2
β

j , D∗3
j = D j

3 . (10)

Equation (9) is automatically satisfied by the harmonic expression of the moisture
contentM(α, β, z) already discussed in Equation (1). Still, the form of the moisture content
amplitude in the thickness direction M(z) needs to be clarified. A tentative function is

Mj(z) = Sj
1cosh(sj

1z) + Sj
2sinh(sj

1z) (11)

Each mathematical layer feature a coefficients sj and a pair of coefficients Mj
0. The first

can be computed, introducing the harmonic form of moisture content, provided with the
assumption of Equation (11) on its amplitude, in Equation (9):

sj
1,2 = ±

√√√√D∗1 jᾱ2 +D∗2
j β̄2

D∗3
j , (12)

and choosing the positive solution, referred to as sj
1. Equation (11) shows that a pair of

coefficients per mathematical layer j is needed, in addition to sj
1. Each layer features its

own set of coefficients, which means that still 2× G unknowns are involved. However, at
each interface between the fictitious layers, the following continuity conditions must hold:

M(j+1)
b = Mj

t , (13)
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D∗3
j+1M(j+1)

,zb = D∗3
j Mj

,zt . (14)

The physical meaning of both the equations is obvious; Equation (13) states that the
moisture content at the bottom of any (j + 1)-th layer must equal that at the top of the j-th
layer. Likewise, Equation (14) states that the moisture flux component in the thickness
direction at the bottom of any (j + 1)-th layer must equal that at the top of the j-th layer.
The matrix form of Equations (13) and (14) allows compacting the analysis:[

S1
S2

]j+1

=

[
VM

j+1,j
1 VM

j+1,j
2

VM
j+1,j
3 VM

j+1,j
4

][
S1
S2

]j

. (15)

Both the continuity conditions hold at the interfaces between layers; consequently,
2× (G− 1) conditions can be imposed. The recursive use of Equation (15) allows linking
the coefficients of the bottom layer (j = 1) with those of the top (j = G); such an idea can
be compacted by identifying the transfer matrices of Equation (15) with the name V (j+1,j)

M .[
S1
S2

]G

= V (G,G−1)
M V (G−1,G−2)

M ...........V (3,2)
M V (2,1)

M

[
S1
S2

]1

= V (G,1)
M

[
S1
S2

]1

. (16)

Two conditions are still missing to quantify all the 2 × G coefficients. However,
simply imposing the moisture content at the top and the bottom of the structure gives the
missing information. The coefficients for the external layers derive from this input and
Equation (16). Once they are known, Equation (15) allows calculating all the remaining
ones. Then, the moisture content profile is determined along with the thickness direction.
The 3D hygro-elastic model including this hygrometric profile is referred to as 3D(Mc,3D).

2.2. 1D Fick Equation

The three-dimensional problem of defining the moisture content field can be simplified
when the structure under investigation is thin enough; such condition is expressed through
sufficiently high thickness ratios. By recalling Equation (4) and the harmonic form for the
moisture content field, the three components of the moisture content flux inside a k-th
layer are

gk
1 = D∗1

k(z)ᾱMk(z)cos(ᾱα)sin(β̄β) , (17)

gk
2 = D∗2

k(z)β̄Mk(z)sin(ᾱα)cos(β̄β) , (18)

gk
3 = D∗3

k(z)Mk
,z(z)sin(ᾱα)sin(β̄β) . (19)

As already seen, the diffusion coefficients are, in general, a function of the thickness
coordinate as they are not constant inside FGM layers. The relative weight of the moisture
content fluxes g1 and g2 decreases if compared to g3 the thinner is the shell. When this
happens, the first two components can be disregarded; Equation (19) now becomes

g3(z) =
(
D∗3

∂M
∂z

)
= const. (20)

As already seen in the previous section, there is no practical difference between D∗3
and D3 because the third coordinate 3 ≡ z is rectilinear, and its parametric coefficient
Hz equals 1. Equation (20) implies that g3(z) is actually constant along with z; it can
be specialized for a generic j-th mathematical layer. The coefficient D∗3 does not change
inside it; this implies that the derivative of the moisture content to z is constant: the
moisture content is linear inside each mathematical layer. Consequently Equation (20) can
be simplified and rewritten in an algebraic form:

gj
3 = −D∗3

j ∂Mj

∂z
= −
D∗3

j

hj (Mj
t −Mj

b) . (21)
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For the termD∗3
j/hj, it is possible to exploit the analogy with the electrical conductance,

as already done in [21] where a sort of thermal conductance was defined: the layer diffuses
more, becoming thinner, increasing D∗3 . This analogy is beneficial, as it enables defining an
equivalent moisture content diffusion resistance for the overall structure:

Rzeq =
G

∑
j=1

hj

D∗3
j . (22)

The moisture flux in the thickness direction can now be easily quantified, as the
dissertation demonstrated it is constant and quantified the equivalent diffusion resistance.
Defined Mt the moisture content amplitude on the top external surface and Mb that on the
bottom, g3 is

g3 = − 1
Rzeq

(Mt −Mb) = const. (23)

As g3 is constant across all the layers, the moisture content at any interface (and even
at any z coordinate) is easily obtained:

gj
3 = −D∗3

j (Mj
t −Mj

b)

hj = gj+1
3 = −D∗3

j+1 (Mj+1
t −Mj+1

b )

hj+1 = g3 = const. , (24)

The coefficientD∗3
j changes in the thickness direction when FGM layers are considered

in the stacking sequence. As a consequence, the moisture flux can keep constant only if
the slope of the moisture content profile modifies accordingly. In this perspective, the
effect of the material is considered (which means the stacking sequence and the FGM law),
but the impact of the thickness is disregarded. The 3D hygro-elastic model including this
hygrometric profile is referred to as 3D(Mc,1D).

2.3. Assumed Linear Moisture Content through the Thickness Direction

The analysis is further simplified if also the effect of the material is disregarded, in
addition to that of the thickness. A common assumption in the literature is that the moisture
content profile is linear throughout the thickness direction of the shell: it does not take
into account any change in the hygroscopic properties of the layers, as well as the fluxes
in α and β directions. It is close to reality only when the shell is really thin and embeds a
single layer or even different, but with homogeneous hygroscopic properties. The profile
is immediately determined once the top and bottom external sovra-temperatures are set.
The 3D hygroelastic model including this assumed hygrometric profile is referred to as
3D(Ma).

3. 3D Exact Shell Model for Hygro-Elastic Stress Analysis

The 3D equilibrium equations for shells are written in the orthogonal mixed curvilinear
coordinate system (α, β, z) shown in Figures 1 and 2. These equations are modified using 3D
constitutive equations for Functionally Graded Materials (FGMs) and general geometrical
relations for shells in (α, β, z) coordinates. Therefore, the system includes three differential
equations of second order in z, and the related coefficients are not constant because of the
radii of curvature and elastic coefficients for FGMs. A reasonable number of mathematical
layers is introduced to obtain constant-coefficient equations; redoubling the number of
variables allows reducing the order of the differential equations. Simply-supported sides
and harmonic variables allow the analytical calculation of the partial derivatives in α and β
directions. The final system, including the moisture content profile, has only first-order
partial derivatives in z, and the exponential matrix method allows determining both general
and particular solutions.

The investigated multilayered shells and plates subjected to a moisture content
M(α, β, z) at the external surfaces have k classical/composite layers and/or function-
ally graded material layers. Stains defined in an orthogonal mixed curvilinear reference
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system (α,β,z) are the algebraic summation of mechanical elastic parts (subscript m) and
hygroscopic parts (subscriptM). The 6× 1 vector (εk

αα, εk
ββ, εk

zz, γk
βz, γk

αz, γk
αβ) for each k

layer is defined as

εk
αα = εk

ααm − εk
ααM =

1
Hα(z)

∂uk

∂α
+

wk

Hα(z)Rα
− ηk

α(z)Mk , (25)

εk
ββ = εk

ββm − εk
ββM =

1
Hβ(z)

∂vk

∂β
+

wk

Hβ(z)Rβ
− ηk

β(z)Mk , (26)

εk
zz = εk

zzm − εk
zzM =

∂wk

∂z
− ηk

z(z)Mk , (27)

γk
βz = γk

βzm =
1

Hβ(z)
∂wk

∂β
+

∂vk

∂z
− vk

Hβ(z)Rβ
, (28)

γk
αz = γk

αzm =
1

Hα(z)
∂wk

∂α
+

∂uk

∂z
− uk

Hα(z)Rα
, (29)

γk
αβ = γk

αβm =
1

Hα(z)
∂vk

∂α
+

1
Hβ(z)

∂uk

∂β
, (30)

In the hygro-elastic strains, the three displacement components uk, vk, and wk and
the scalar moisture content Mk are defined in the reference system (α, β, z). Moisture
expansion coefficients ηk

α(z), ηk
β(z) and ηk

z(z) in the k physical layer could depend on the z
coordinate in the case of Functionally Graded Material (FGM) layers; they are defined in
the structural reference system (α, β, z) starting from the moisture expansion coefficients
ηk

1(z), ηk
2(z) and ηk

3(z) in the material reference system (1, 2, 3). The partial derivatives are
defined via the symbol ∂.

As anticipated, an essential hypothesis for exact closed-form solutions is the harmonic
forms for all the variables: displacement components and moisture content. While the
latter has already been discussed, for the displacement components it holds that

uk(α, β, z) = Uk(z)cos(ᾱα)sin(β̄β) , (31)

vk(α, β, z) = Vk(z)sin(ᾱα)cos(β̄β) , (32)

wk(α, β, z) = Wk(z)sin(ᾱα)sin(β̄β) , (33)

displacement amplitudes are indicated as (Uk(z), Vk(z), Wk(z)). As already described, m
and n are the half-wave numbers, a and b the mid-surface dimensions, and ᾱ = mπ

a and
β̄ = nπ

b .
The three-dimensional equilibrium equations for spherical shells having constant

radii of curvature Rα = Rβ and a total number NL of physical k (either classical or FGM)
layers are

Hβ(z)
∂σk

αα

∂α
+ Hα(z)

∂σk
αβ

∂β
+ Hα(z)Hβ(z)

∂σk
αz

∂z
+ (

2Hβ(z)
Rα

+
Hα(z)

Rβ
)σk

αz = 0, (34)

Hβ(z)
∂σk

αβ

∂α
+ Hα(z)

∂σk
ββ

∂β
+ Hα(z)Hβ(z)

∂σk
βz

∂z
+ (

2Hα(z)
Rβ

+
Hβ(z)

Rα
)σk

βz = 0, (35)

Hβ(z)
∂σk

αz
∂α

+ Hα(z)
∂σk

βz

∂β
+ Hα(z)Hβ(z)

∂σk
zz

∂z
−

Hβ(z)
Rα

σk
αα −

Hα(z)
Rβ

σk
ββ + (

Hβ(z)
Rα

+
Hα(z)

Rβ
)σk

zz = 0. (36)

Three-dimensional equilibrium equations for cylinders/cylindrical panels and plates
are obtained from Equations (34)–(36) when one of the two radii of curvature is infinite and
when both the radii of curvature are infinite, respectively.
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The constitutive equations are developed by considering the algebraic summation of
mechanical elastic strains and hygroscopic strains:

σk = Ck(z)εk = Ck(z)(εk
m − εk

M) , (37)

σk is the stress vector having a 6× 1 dimension, Ck(z)is the 6× 6 elastic coefficient ma-
trix and it could depend on the z coordinate in the case of a kth FGM layer. The strains
are included in the constitutive equations by using the form shown in Equations (25)–(30).
Closed-form solutions are possible when orthotropic angles are 0◦ or 90◦ to obtain
Ck

16(z) = Ck
26(z) = Ck

36(z) = Ck
45(z) = 0 in the structural reference system (α, β, z).

Therefore,

Ck(z) =



Ck
11(z) Ck

12(z) Ck
13(z) 0 0 0

Ck
12(z) Ck

22(z) Ck
23(z) 0 0 0

Ck
13(z) Ck

23(z) Ck
33(z) 0 0 0

0 0 0 Ck
44(z) 0 0

0 0 0 0 Ck
55(z) 0

0 0 0 0 0 Ck
66(z)


. (38)

The explicit form of the constitutive equations develops thanks to the introduction of
the geometrical Equations (25)–(30) into the constitutive Equation (37):

σk
αα =

Ck
11(z)

Hα(z)
uk

,α +
Ck

11(z)
Hα(z)Rα

wk +
Ck

12(z)
Hβ(z)

vk
,β +

Ck
12(z)

Hβ(z)Rβ
wk + Ck

13(z)w
k
,z − ξk

α(z)Mk , (39)

σk
ββ =

Ck
12(z)

Hα(z)
uk

,α +
Ck

12(z)
Hα(z)Rα

wk +
Ck

22(z)
Hβ(z)

vk
,β +

Ck
22(z)

Hβ(z)Rβ
wk + Ck

23(z)w
k
,z − ξk

β(z)Mk , (40)

σk
zz =

Ck
13(z)

Hα(z)
uk

,α +
Ck

13(z)
Hα(z)Rα

wk +
Ck

23(z)
Hβ(z)

vk
,β +

Ck
23(z)

Hβ(z)Rβ
wk + Ck

33(z)w
k
,z − ξk

z(z)Mk , (41)

σk
βz =

Ck
44(z)

Hβ(z)
wk

,β + Ck
44(z)v

k
,z −

Ck
44(z)

Hβ(z)Rβ
vk , (42)

σk
αz =

Ck
55(z)

Hα(z)
wk

,α + Ck
55(z)u

k
,z −

Ck
55(z)

Hα(z)Rα
uk , (43)

σk
αβ =

Ck
66(z)

Hα(z)
vk

,α +
Ck

66(z)
Hβ(z)

uk
,β , (44)

partial derivatives ( ∂
∂α ), ( ∂

∂β ), and ( ∂
∂z ) are indicated in Equations (39)–(44) through sub-

scripts (, α), (, β), and (, z), respectively. Terms ξk
α(z), ξk

β(z), and ξk
z(z) designate the hygro-

mechanical coupling coefficients in the structural reference system (α, β, z), and they could
depend on z in the case of FGM layers:

ξk
α(z) = Ck

11(z)η
k
α(z) + Ck

12(z)η
k
β(z) + Ck

13(z)η
k
z(z) , (45)

ξk
β(z) = Ck

12(z)η
k
α(z) + Ck

22(z)η
k
β(z) + Ck

23(z)η
k
z(z) , (46)

ξk
z(z) = Ck

13(z)η
k
α(z) + Ck

23(z)η
k
β(z) + Ck

33(z)η
k
z(z) . (47)

The final system is obtained thanks to the substitution of the harmonic form equations
for displacements and moisture content Equations (1)–(31) and the modified constitutive
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relations Equations (39)–(44) into the three-dimensional equilibrium Equations (34)–(36)
developed for spherical shells:

Aj
1U j + Aj

2V j + Aj
3W j + Aj

4U j
,z + Aj

5W j
,z + Aj

6U j
,zz + Lj

1 Mj = 0 , (48)

Aj
7U j + Aj

8V j + Aj
9W j + Aj

10V j
,z + Aj

11W j
,z + Aj

12V j
,zz + Lj

2 Mj = 0 , (49)

Aj
13U j + Aj

14V j + Aj
15W j + Aj

16U j
,z + Aj

17V j
,z + Aj

18W j
,z + Aj

19W j
,zz + Lj

3 Mj
,z + Lj

4 Mj = 0. (50)

The above equations have no constant coefficients because the parametric coefficients
Hα and Hβ depend on z in the case of shell geometries and/or elastic and hygrometric
coefficients depend on z in FGM layers. For these reasons, each k physical layer is divided
into a suitable number of mathematical layers indicated with a new index j which changes
from 1 to the global number of mathematical layers G. In each j mathematical layer, the
parametric coefficients Hα and Hβ and the variable elastic and hygrometric coefficients for
FGM layers can be exactly defined by using the z coordinate in the middle of each j layer.
Therefore, coefficients Aj

s (s from 1 to 19) and Lj
r (r from 1 to 4) become constant terms in

the compact form of the system of differential equations in z defined in Equations (48)–(50).
Equations (48)–(50) indicate a system of three differential equations of second order in

z. The unknowns are the displacement and moisture content amplitudes and the associated
derivatives calculated to z. The derivatives in α and β have already been calculated via the
harmonic forms for displacements and moisture content previously introduced. In this
system, decoupling the variables is possible: this means a separate quantification of the
moisture content profile through the thickness direction z, addressed in an appropriate
section. Therefore, it becomes a known term.

The consequence of these choices is that the system contains second-order differential
equations only, in the displacement amplitudes U j, V j, W j and their derivatives in z.
Redoubling the variables as proposed in [71,72] allows reducing the system into a first-
order one in z. In each j layer, the 3× 1 vector of unknowns (U j, V j, W j) becomes a 6× 1

unknown vector (U j, V j, W j, U j
′
, V j

′
, W j

′
); superscript ′ indicates derivatives performed to

z (also written as ∂
∂z ). Terms Mj and Mj′ can be considered as known terms because they

can be opportunely calculated, as will be demonstrated in the next section:

Aj
6 0 0 0 0 0

0 Aj
12 0 0 0 0

0 0 Aj
19 0 0 0

0 0 0 Aj
6 0 0

0 0 0 0 Aj
12 0

0 0 0 0 0 Aj
19





U j

V j

W j

U j
′

V j
′

W j
′



′

=



0 0 0 Aj
6 0 0

0 0 0 0 Aj
12 0

0 0 0 0 0 Aj
19

−Aj
1 −Aj

2 −Aj
3 −Aj

4 0 −Aj
5

−Aj
7 −Aj

8 −Aj
9 0 −Aj

10 −Aj
11

−Aj
13 −Aj

14 −Aj
15 −Aj

16 −Aj
17 −Aj

18





U j

V j

W j

U j
′

V j
′

W j
′


+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−Lj

1 0 0 0 0 0
−Lj

2 0 0 0 0 0
−Lj

4 −Lj
3 0 0 0 0





Mj

Mj
′

0
0
0
0


, (51)

By defining vectors U j = [U j V j W j U j
′
V j
′
W j

′
]T , U j

′
= ∂U j

∂z and M j

= [Mj Mj
′

0 0 0 0]T (where T means the transpose of a vector), the following compact
form is possible:

DjU j
′
= AjU j + Lj M j , (52)
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the above equation, thanks to the definitions A∗
j
= Dj−1

Aj and L∗
j
= Dj−1

Lj, can be
rewritten as

U j
′
= Dj−1

AjU j + Dj−1
Lj M j , (53)

U j
′
= A∗

j
U j + L∗

j
M j . (54)

The moisture content profile through the thickness direction z can be calculated using
one of the three methods proposed in the previous section. This profile can be reconstructed
using a linear approximation of the moisture content in each j mathematical layer. This
reconstruction can be defined as

Mj(z̃j) = aj
M z̃j + bj

M , (55)

in a jth mathematical layer, aj
M and bj

M are two constant coefficients. The first represents the
slope of the moisture content profile inside a mathematical layer; the second the moisture
content at the bottom. z̃j is a local thickness coordinate for each j mathematical layer, and it
changes from 0 at the bottom of the considered j mathematical layer to the top value hj of
the same mathematical layer.

The system of first-order differential equations in z̃ or z shown in Equation (54) is not
homogeneous because the hygroscopic term L∗

j
M j depends on z̃j or zj. In the case of a

generic system of non-homogeneous first-order differential equations having an unknown
G× 1 vector x, a G× G |A matrix containing constant coefficients, and a known function
vector f (t) = [ f1(t) ... fG(t)]T ,we can write

dx
dt

= Ax + f (t) , (56)

a possible solution of the Equation (56) can be obtained via the exponential matrix method:

x(t) = eA(t−t0)x0 +
∫ t

t0

eA(t−s) f (s)ds . (57)

The known term in Equation (54) can be given in the following complete form:

M∗
j
= L∗

j
M j =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−L∗

j

1 0 0 0 0 0
−L∗

j

2 0 0 0 0 0
−L∗

j

4 −L∗
j

3 0 0 0 0





aj
M z̃j + bj

M
aj

M
0
0
0
0


=



0
0
0

−L∗
j

1 (aj
M z̃j + bj

M)

−L∗
j

2 (aj
M z̃j + bj

M)

−L∗
j

4 (aj
M z̃j + bj

M)− L∗
j

3 aj
M


. (58)

Therefore, Equation (54) can be rewritten as

U j
′
= A∗

j
U j + M∗

j
, (59)

M∗
j

includes only linear and known functions in z̃j coordinate. The Equation (59) can be
solved through the exponential matrix method:

U j(z̃j) = e(A∗
j
z̃j)U j(0) +

∫ z̃j

0
e(A∗

j
(z̃j−s))M∗

j
(s)ds . (60)

A∗∗
j
= e(A∗

j
hj) and L∗∗

j
=
∫ hj

0 e(A∗
j
(hj−s))M∗

j
(s)ds must be opportunely defined for each j

layer having thickness hj. In this way, the displacement vector at the top of each j mathe-
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matical layer is calculated. Both terms are defined via the exponential matrix opportunely
expanded and evaluated in each j mathematical layer with thickness hj:

A∗∗
j
= e(A∗

j
hj) = I + A∗

j
hj +

A∗
j 2

2!
hj2 +

A∗
j 3

3!
hj3 + · · ·+ A∗

j N

N!
hj N

, (61)

L∗∗
j
=
∫ hj

0
e(A∗

j
(hj−s))M∗

j
(s)ds =

∫ hj

0

(
I + A∗

j
(hj − s) +

A∗
j 2

2!
(hj − s)2 +

A∗
j 3

3!
(hj − s)3+

· · ·+ A∗
j N

N!
(hj − s)N

)
M∗

j
(s)ds , (62)

where I is the 6× 6 identity matrix, and the integral given in Equation (60) can be calculated
in each j layer having thickness hj by using the exponential matrix and the same order
N already shown in Equation (61). By using Equations (61) and (62), Equation (60) is
modified as

U j(hj) = A∗∗
j
U j(0) + L∗∗

j
, (63)

where U j
t indicates U j(hj) and it is defined at the top t of each j layer, and U j

b indicates
U j(0) and it is defined at the bottom of each j layer. In this way, Equation (63) is defined as

U j
t = A∗∗

j
U j

b + L∗∗
j
. (64)

Using Equation (64) allows to connect displacements and their derivatives in z defined
at the top of the j mathematical layer with the same variables defined at the bottom of the
same j layer.

The general three-dimensional shell model is developed using a layer-wise approach.
Inter-laminar continuity conditions in displacements and transverse stresses must be
defined at each interface between the two adjacent mathematical layers. The inter-laminar
continuity conditions for displacements come through congruence hypotheses:

uj
b = uj−1

t , vj
b = vj−1

t , wj
b = wj−1

t . (65)

The inter-laminar continuity conditions for transverse shear and normal transverse
stresses are defined employing equilibrium hypotheses:

σ
j
zzb = σ

j−1
zzt , σ

j
αzb = σ

j−1
αzt , σ

j
βzb

= σ
j−1
βzt

. (66)

The formulation of this solution requires rewriting the inter-laminar continuity con-
ditions, Equations (65) and (66), in a displacement form. Achieving this task is possible
by recalling the constitutive Equations (39)–(44) and the harmonic form of the variables of
the problem, Equations (1) and (31)–(33). This procedure allows writing the inter-laminar
continuity condition in the amplitude displacements and their derivatives to the thickness
coordinate. Then, compacting the notation is possible, recalling the vectors U j and M j, and
introducing a pair of transfer matrices. The procedure is similar to that employed in [25];
exception made for an additional coefficient multiplying the moisture content amplitude:



U
V
W
U
′

V
′

W
′



j

b

=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
T1 0 T2 T3 0 0
0 T4 T5 0 T6 0
T7 T8 T9 0 0 T10



j−1,j

U
V
W
U
′

V
′

W
′



j−1

t

+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

T11 0 0 0 0 0



j−1,j

M
M
′

0
0
0
0



j−1

t

. (67)
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The first three rows of Equation (67) denote the displacement continuity equations; the
last three are the continuity conditions for stresses. The compact form of Equation (67) follows:

U j
b = T j−1,j

U U j−1
t + T j−1,j

M M j−1
t . (68)

Equation (68) expresses the link between the displacements and their z derivatives,
calculated at the bottom of the jth layer, with their corresponding values plus the moisture
content (and its z derivative), at the top of the (j− 1)th layer.

The harmonic form implemented in all the variables of the problem automatically
satisfies the simply supported boundary conditions, here reported for exhaustiveness:

w = v = 0, σαα = 0 for α = 0, a , (69)

w = u = 0, σββ = 0 for β = 0, b (70)

This solution extends the model already seen in [25] for the static analysis of shells
subjected to static loads. In that context, mechanical loads can act on the external top and
bottom surfaces, with components defined in the three directions α, β, and z. They are
grouped into vectors P = (Pα Pβ Pz)T ; the superscript G means the one acting on the top
surface; the one with superscript 1 identifies the one acting on the lower one. The effect of
the external loads affects the displacements:

BG
t UG

t = PG
t , (71)

B1
bU1

b = P1
b , (72)

more details are available in [25]. The hygro-elastic analysis does not involve anything
different; once applied, the moisture content induces an equivalent load, which sums up
the (possible) mechanical load. The matrices B convert the mechanical and/or hygrometric
loads into displacements. BG

t , in Equation (71) handles the top (t) of the last layer (G); B1
b,

in Equation (72), the bottom (b) of the first layer (1).
The algebraic system of Equations (71) and (72) can be reformulated into a matrix form,

rewriting the displacements UG
t = UG(hG) as a function of U1

b = U1(0). This rewriting is
possible through a recursive substitution of Equation (68) into Equation (64), linking the
displacements at the top of the last layer (and their z derivatives) to those at the bottom of
the first layer:

UG
t =

(
A∗∗GTG−1,G

U A∗∗G−1TG−2,G−1
U ...... A∗∗2T1,2

U A∗∗1

)
U1

b+

(
A∗∗GTG−1,G

U A∗∗G−1...... A∗∗2T1,2
U L∗∗1+

A∗∗GTG−1,G
U A∗∗G−1...... A∗∗3T2,3

U L∗∗2+

...

A∗∗GTG−1,G
U L∗∗G−1+ (73)

L∗∗G+

A∗∗GTG−1,G
U A∗∗G ...... A∗∗2T1,2

M M1
t +

A∗∗GTG−1,G
U A∗∗G ...... A∗∗3T2,3

M M2
t +

...

A∗∗GTG−1,G
U A∗∗G−1TG−2,G−1

M MG−2
t +

A∗∗GTG−1,G
M MG−1

t

)
.
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Equation (73) consists of two main blocks. The first has as a common multiplication
factor the bottom displacements of the first layer U1

b; the content in the brackets is a
6× 6 matrix, which is identical to that defined Hm for classical elastic analysis in [25].
The hygrometric field brings with it additional terms included in the second block. The
terms L∗∗ j explicitly include the hygrometric profile; they are G as each mathematical
layer features its own profile. The terms M j

t set the moisture content at each interface;
consequently, they are G− 1. This block is a known and constant term; it takes the form
of a 6× 1 vector, from now on referred to as HM. Therefore, the compact expression of
Equation (73) takes the following form:

UG
t = HmU1

b + HM . (74)

Given this result, Equation (71) can be rewritten in terms of U1
b:

BG
t HmU1

b = −BG
t HM . (75)

Equations (72) and (75) now share the same unknown; they can be put to system
as follows:

EU1
b = PM , (76)

where

E =

[
BG

t Hm
B1

b

]
(77)

and

PM =

[
−BG

t HM
0

]
. (78)

One of the main advantages of this solution is that the dimensions of the matrix E keep
low, 6× 6, despite the number G of mathematical layers and the layer-wise approach to the
problem. Furthermore, E is the same as that needed for the classical elastic analysis (see
in [25]). The vector PM adds the hygrometric load as an equivalent mechanical action and
sums up the (possible) mechanical load P. Solving the system allows getting the bottom
displacement components (and their z derivatives); Equations (64) and (68) allow then
calculating their values at any coordinate in the thickness direction.

4. Results

This section is of fundamental importance. First of all, it defines the properties of the
Functionally Graded (FM) layers, presenting the mechanical and hygrometric properties of
their constituents and the law defining their variation in composition. Then, it features two
subsections. The first one validates this exact 3D solution for shells embedding layers made
of FGM. Validations of new solutions are often conducted comparing the new outputs with
those already available in the literature. Besides verifying the accuracy of this solution,
this phase helps define how many mathematical layers should be used to consider with
confidence the effects of the curvature and those of the FGM law and the order of expansion
to use in the exponential matrix calculation. Strengthened by those results, the second
subsection presents a set of new results. The effect of the moisture content field is studied on
different geometries, featuring different stacking sequences, thickness ratios, and moisture
content boundary conditions.

In all the assessments and benchmarks, the FGM layers rely on two constituents: a
metal and ceramic. The metal is Monel, 70Ni30Cu, a nickel-based alloy; the ceramic is
Zirconia. An estimate of the mechanical properties is given in terms of the bulk modulus K
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and the shear modulus µ of the two materials; the moisture expansion coefficients η and
the moisture diffusion coefficients D are given explicitly:

Km = 227.24 GPa, µm = 65.55 GPa, ηm = 2× 10−3 1
%

, Dm = 10−9 kg
ms

, (79)

Kc = 125.83 GPa, µc = 58.077 GPa, ηc = 1× 10−3 1
%

, Dc = 10−10 kg
ms

, (80)

The metal and the ceramic phases are denoted by the subscripts m and c. The estimate
of the thermal properties is also given, as they will be necessary in the assessment phase:

γm = 15× 10−6 1
K

, κm = 25
W

mK
(81)

γc = 10× 10−6 1
K

, κc = 2.09
W

mK
(82)

γ denotes the thermal expansion coefficient, while κ the conductivity coefficient. This work
assumes that the volume fraction of the ceramic phase follows a power law of order p.
Introducing the thickness of the FG layer hFG and a local thickness coordinate z̃FG inside it
(0 at its bottom, h at its top), the FG law takes the following expression:

Vc = (z̃FG /hFG )
p (83)

At the bottom of the FG layer, where z̃FG = 0, Equation (83) implies Vc = 0, meaning
that it is made of metal only. At the top of the FG layer, where z̃FG = hFG , Equation (83)
implies Vc = 1, meaning that it is made of ceramic only. The bulk and the shear moduli of
the FG layer evolve along with the thickness direction following the Mori–Tanaka estimates:

K− Km

Kc − Km
=

Vc

1 + (1−Vc)
Kc−Km

Km+ 4
3 µm

,
µ− µm

µc − µm
=

Vc

1 + (1−Vc)
µc−µm
µm+ fm

, fm =
µm(9Km + 8µm)

6(Km + 2µm)
(84)

The same applies to the effective moisture expansion and moisture diffusion coeffi-
cients, by analogy with the estimates of Hatta and Taya for the corresponding thermal
properties:

D −Dm

Dc −Dm
=

Vc

1 + (1−Vc)
Dc−Dm

3Dm

,
η − ηm

ηc − ηm
=

1
K −

1
Km

1
Kc
− 1

Km

(85)

The estimates reported in Equation (85) are also valid for the thermal properties,
following the parallel of the moisture diffusion coefficient D with the thermal conductivity
coefficient κ, and that of the moisture expansion coefficient η with the the thermal expansion
coefficient γ.

4.1. Assessments

The present solution handles several geometries and different load cases. As discussed,
it can study plates, cylinders, cylindrical and spherical shells under mechanical, thermal,
and hygrometric load. Furthermore, it is not limited to isotropic monolayer structures, but
it also handles orthotropic and multi-layered lamination schemes, and it can go up to layers
embedding FGM. However, confident use of the model is possible only after validated
against established solutions already offered in the literature. The authors did not find
hygro-elastic results from exact 3D solutions in the literature which were applied to FGMs.
For this reason, the validation process of the model is built by separately validating its
different sections against the results provided by other researchers, exploiting the parallel
of the moisture content field and the thermal field, and complementing this process with
the assistance of 3D FE (Finite Element) models. A static 3D FE model is solved through
the Nastran solver SOL101. IsoMesh meshed the geometry of each plate with 3D HEX8
elements; the mesh did not change with the thickness ratio and included 25 elements in the
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thickness direction and 30 in both the in-plane ones. Solid elements were necessary to define
the mechanical properties evolution in the thickness direction and build significant thermal,
hygrometric, and mechanical variables profiles. Depending on the geometry, the coordinate
system of the model has one, two, or none curvilinear coordinate. For consistency with the
analytical model, the displacement-related boundary conditions are defined on the lateral
surfaces of the structure following the harmonic form hypotheses: a pair of displacement
coordinates is set 0 on each surface. First, the harmonic thermal/hygrometric field is
introduced in an equation, following Equation (1). It is applied to the top and bottom
surfaces of the structure; the preprocessor automatically calculates the field values at each
node of the external surfaces through their coordinates. The first run solves the thermal
part of the problem and returns the temperature (or moisture content) at each node. This
field is then applied to a further (and identical) FE model, which solves the elastic part. The
thermal, hygrometric, and mechanical properties of the FGM layer are given imagining
to split the structures into a number of fictitious layers coinciding with the number of
elements in the thickness direction. The properties of each fictitious layer are calculated at
its midpoint, following Equations (83)–(85). Needless to say, they are not exact solutions,
but they can guide in benchmarking the proposed model.

The first assessment considers a simply-supported one-layered FGM square plate. It
investigates different thickness ratios (a/h = 4, 10, 50) in plates with in-plane dimensions
of a = b = 100 m. The FGM layer relies on a metallic constituent, and a ceramic one, whose
mechanical, thermal, and hygrometric properties are defined at the beginning of Section 4.
The volume fraction power law considers p = 2 as the exponent. An external sovra-
temperature field acts on the top (θt = +1 K) and bottom (θb = 0 K) surfaces. The thermal
field has a harmonic form, with half-wave numbers m = n = 1. The reference solution
is the asymptotic method of Reddy and Cheng [73], which considers a 3D temperature
profile along with thickness direction. Table 1 proposes a pair of results for each thickness
ratio at different coordinates along with direction z in terms of a displacement, w or
u, and an in-plane shear component, σαα. The results show that the 3D shell model
always coincides with Reddy and Cheng’s asymptotic method, despite the thickness
ratio and the considered variable, when the number of mathematical layers is sufficiently
high. NL = 300, coupled with an order of expansion N = 3 for the exponential matrix,
always delivers the correct results. Therefore, this assessment verified that the 3D shell
model correctly handles the thermomechanical analysis of FGM plates. Furthermore, it
simultaneously assessed the 3D FE model, which will be helpful in the following assessment
to validate the hygromechanical analysis.

The second assessment is meant to validate the hygroelastic part of the 3D solution
for plates embedding an FGM layer. To this end, it considers the previous test case as a
reference and removes the thermal field in favor of a hygrometric one. Consequently, it
focuses on a simply-supported one-layered FGM square plate; the in-plane dimensions
are a = b = 100 m, the thickness varies to obtain different thickness ratios (a/h = 4, 10,
50). The FGM layer relies on the same metallic and ceramic constituents, whose volume
fraction follows the same power-law with p = 2. An external hygrometric field acts on
the top (Mt = 1.0%) and bottom (Mb = 0.5%) surfaces; it has a harmonic form, with
half-wave numbers m = n = 1. The reference results are obtained through the same 3D
FE model of the previous assessment, in which the hygrometric field replaces the thermal
one. Its previous validation allows considering it as a reliable source for reference results.
Table 2 proposes a pair of results for each thickness ratio at different coordinates along
with direction z in terms of a displacement, w or u, and an in-plane shear component, σαα.
Consistent with the previous test case, the results show that the 3D shell model always gives
comparable results with the 3D FE model, despite the thickness ratio and the considered
variable, when the number of mathematical layers is sufficiently high. NL = 300, coupled
with an order of expansion N = 3 for the exponential matrix, always delivers the correct
results. Therefore, this assessment confirmed the capabilities of the 3D shell model in
handling the hygromechanical analysis of FGM plates.
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Table 1. First assessment. One-layered FGM square plate (a/b = 1), featuring different thickness ra-
tios. The volume fraction power law considers p = 2 as the exponent. An external sovra-temperature
field acts on the top (θt = +1 K) and bottom (θb = 0 K) surfaces; m = n = 1. The reference solution is
the asymptotic method of Reddy and Cheng [73], considering a 3D temperature profile along with
thickness direction. A 3D FE model is also assessed. The results of the present solution are obtained
with N = 3 and for a varying number of mathematical layers NL.

Present Solution 3D FEM Ref. 3D [73]NL → 10 50 100 200 300

a/h = 4

w̃ at z = h
3D(θa) 4.2943 4.2842 4.2838 4.2837 4.2836

3.067 3.0433D(θc, 1D) 3.3331 3.2130 3.2083 3.2071 3.2068
3D(θc, 3D) 3.1791 3.0482 3.0431 3.0418 3.0415

σ̃αα at z = 0
3D(θa) 288.99 290.12 290.21 290.23 290.24

−75.57 −73.533D(θc, 1D) −27.47 −22.16 −21.92 −21.85 −21.84
3D(θc, 3D) −81.37 −73.99 −73.67 −73.58 −73.57

a/h = 10

ũ at z = h/2
3D(θa) −1.3433 −1.3417 −1.3417 −1.3417 −1.3417

−0.7910 −0.78623D(θc, 1D) −0.8287 −0.8026 −0.8016 −0.8014 −0.8014
3D(θc, 3D) −0.8134 −0.7871 −0.7861 −0.7859 −0.7858

σ̃αα at z = h
3D(θa) −599.6 −490.7 −476.4 −469.2 −466.8

−1058 −10063D(θc, 1D) −1102 −1021 −1006 −999.3 −996.7
3D(θc, 3D) −1117 −1036 −1021 −1014 −1011

a/h = 50

w̃ at z = h/2
3D(θa) 35.97 35.81 35.80 35.80 35.80

28.57 28.453D(θc, 1D) 29.64 28.50 28.46 28.45 28.45
3D(θc, 3D) 29.64 28.50 28.45 28.44 28.44

σ̃αα at z = h/2
3D(θa) −759.3 −730.7 −726.8 −724.9 −724.2

−250.4 −251.23D(θc, 1D) −269.9 −255.3 −253.5 −252.5 −252.2
3D(θc, 3D) −269.3 −254.7 −252.9 −252.0 −251.7

The third assessment considers a simply-supported one-layered FGM cylindrical shell.
Again, the dimensions of the reference surface are fixed, as in the previous cases; they are
a = 1 m and b = π

3 Rβ, with Rβ = 10 m. This test case also considers different thickness
ratios Rβ = 50, 1000) to evaluate their influence on the performance of the solution. The
constituents of the FGM layer are the same as those defined at the beginning of Section 4
and considered in the previous assessments. The power law is also the same, with p = 2.
The top and bottom external surfaces are subjected to an external sovra-temperature field
with amplitudes θt = +1 K and θb = 0 K. The half-wave numbers of the thermal field are
m = n = 1. The reference solution is a refined 2D layer-wise solution based on the Unified
Formulation [74], which considers a 3D temperature profile along with thickness direction.
Table 3 proposes six results for each thickness ratio: the transverse displacement w and an
in-plane displacement, evaluated at three different coordinates along with direction z. The
table also assesses a 3D FE model, solved through the Nastran solver, which helps evaluate
the hygroelastic analysis of the following assessment. IsoMesh meshed the geometry of
each shell with 3D HEX8 elements; the mesh did not change with the thickness ratio and
included 25 elements in the thickness direction and 30 in both the in-plane ones. Solid
elements were necessary to define the mechanical properties evolution in the thickness
direction and build significant thermal and mechanical variables profiles. The results
show that the 3D shell model always coincides with the quasi-3D method [74], despite the
thickness ratio and the considered variable, when the number of mathematical layers is
sufficiently high. NL = 300, coupled with an order of expansion N = 3 for the exponential
matrix, always delivers the correct results. Therefore, this assessment verified that the 3D
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shell model correctly handles the thermomechanical analysis of FGM shells. Furthermore, it
simultaneously assessed the 3D FE model, which will be helpful in the following assessment
to validate the hygromechanical analysis.

Table 2. Second assessment. One-layered FGM square plate (a/b = 1), featuring different thickness
ratios. The geometry, materials, and FGM power law are the same as the first assessment. The
thermal load is substituted by an external moisture content acting on the top (Mt = 1.0%) and bottom
(Mb = 0.5%) surfaces; m = n = 1. The reference solution is the 3D FE model, already validated in the
previous assessment. The results of the present solution are obtained with N = 3 and for a varying
number of mathematical layers NL.

Present Solution 3D FEMNL → 10 50 100 200 300

a/h = 4

w̃ at z = h
3D(Ma) 227.5 225.7 225.6 225.6 225.6

143.33D(Mc, 1D) 177.9 171.1 170.8 170.7 170.7
3D(Mc, 3D) 151.0 141.9 141.6 141.5 141.5

σ̃αα at z = 0
3D(Ma) −32,309 −32,391 −32,383 −32,380 −32,380

−751,6623D(Mc, 1D) −53,262 −53,245 −53,234 −53,230 −53,230
3D(Mc, 3D) −75,532 −75,561 −75,551 −75,548 −75,548

a/h = 10

ũ at z = h/2
3D(Ma) −262.4 −262.1 −262.1 −262.1 −262.1

−226.03D(Mc, 1D) −231.9 −230.5 −230.4 −230.4 −230.4
3D(Mc, 3D) −227.3 −225.8 −225.7 −225.7 −225.7

σ̃αα at z = h
3D(Ma) −55,689 −35,256 −32,575 −31,224 −30,772

−63,8253D(Mc, 1D) −83,669 −64,410 −61,712 −60,336 −59,873
3D(Mc, 3D) −87,250 −68,062 −65,359 −63,979 −63,515

a/h = 50

ũ at z = 0
3D(Ma) −257.3 −258.1 −258.1 −258.1 −258.1

−236.83D(Mc, 1D) −236.0 −237.0 −237.0 −237.0 −237.0
3D(Mc, 3D) −235.9 −236.8 −236.8 −236.9 −236.9

σ̃αα at z = h/2
3D(Ma) −145,561 −137,645 −136,589 −136,056 −135,878

−105,1493D(Mc, 1D) −114,235 −107,530 −106,648 −106,203 −106,054
3D(Mc, 3D) −114,035 −107,338 −106,457 −106,013 −105,865

The fourth assessment is meant to validate the hygro-elastic part of the 3D solution for
shells embedding an FGM layer. To this end, it considers the previous test case as a reference
and removes the thermal field in favor of a hygrometric one. Consequently, it focuses
on a simply-supported one-layered FGM square shell. The dimensions of the reference
surface are a = 1 m and b = π

3 Rβ, with Rβ = 10 m, the thickness varies to obtain different
thickness ratios (Rβ = 50, 100). The FGM layer relies on the same metallic and ceramic
constituents of the previous test cases, whose volume fraction follows the same power-
law with p = 2. An external hygrometric field acts on the top (Mt = 1.0%) and bottom
(Mb = 0.5%) surfaces; it has a harmonic form, with half-wave numbers m = n = 1. The
reference results are obtained through the same 3D FE model of the previous assessment,
in which the hygrometric field replaces the thermal one. Its previous validation allows
considering it as a reliable source for reference results. Table 4 proposes six results for each
thickness ratio: the transverse displacement w and an in-plane displacement, evaluated at
three different coordinates along with direction z. Consistent with the previous test case, the
results show that the 3D shell model always gives comparable results with the 3D FE model,
despite the thickness ratio and the considered variable, when the number of mathematical
layers is sufficiently high. NL = 300, coupled with an order of expansion N = 3 for
the exponential matrix, always delivers the correct results. Therefore, this assessment



Appl. Sci. 2022, 12, 512 21 of 38

confirmed the capabilities of the 3D shell model in handling the hygromechanical analysis
of FGM shells.

Table 3. Third assessment. One-layered FGM cylindrical shell (Rβ = 10 m), featuring different
thickness ratios. The volume fraction power law considers p = 2 as the exponent. An external
sovra-temperature field acts on the top (θt = +1 K) and bottom (θb = 0 K) surfaces; m = n = 1.
The reference solution is a refined 2D layer-wise solution based on the Unified Formulation [74],
considering a 3D temperature profile along with thickness direction. A 3D FE model is also assessed.
The results of the present solution are obtained with N = 3 and for a varying number of mathematical
layers NL.

Present Solution 3D FEM Ref. [74]NL → 10 50 100 200 300

Rβ/h = 50

w̃ at z = h
3D(θa) 9.8080 9.7773 9.7762 9.7759 9.7759

7.2722 7.13373D(θc, 1D) 7.5570 7.2809 7.2703 7.2676 7.2671
3D(θc, 3D) 7.4312 7.1467 7.1358 7.1330 7.1325

w̃ at z = h/2
3D(θa) 8.6672 8.6375 8.6365 8.6362 8.6362

6.5284 6.41313D(θc, 1D) 6.7886 6.5371 6.5274 6.5250 6.5245
3D(θc, 3D) 6.6843 6.4250 6.4150 6.4125 6.4120

w̃ at z = 0
3D(θa) 8.1689 8.1401 8.1391 8.1388 8.1388

6.2996 6.19423D(θc, 1D) 6.5471 6.3026 6.2932 6.2908 6.2903
3D(θc, 3D) 6.4582 6.2058 6.1960 6.1936 6.1931

ũ at z = h
3D(θa) −5.3944 −5.3825 −5.3821 −5.3820 −5.3820

−3.6252 −3.54663D(θc, 1D) −3.7791 −3.6488 −3.6438 −3.6426 −3.6423
3D(θc, 3D) −3.6863 −3.5527 −3.5476 −3.5463 −3.5461

ũ at z = h/2
3D(θa) −2.5669 −2.5643 −2.5642 −2.5642 −2.5642

−1.4900 −1.45323D(θc, 1D) −1.5635 −1.5150 −1.5131 −1.5127 −1.5126
3D(θc, 3D) −1.5046 −1.4554 −1.4536 −1.4531 −1.4530

ũ at z = 0
3D(θa) 0.0300 0.0239 0.0237 0.0236 0.0236

0.4816 0.48333D(θc, 1D) 0.4850 0.4578 0.4567 0.4564 0.4564
3D(θc, 3D) 0.5136 0.4846 0.4835 0.4832 0.4831

Rβ/h = 1000

w̃ at z = h
3D(θa) 69.477 69.348 69.344 69.343 69.342

44.402 43.5903D(θc, 1D) 45.154 43.661 43.604 43.589 43.587
3D(θc, 3D) 45.150 43.657 43.600 43.586 43.583

w̃ at z = h/2
3D(θa) 69.424 69.294 69.290 69.289 69.289

44.364 43.5533D(θc, 1D) 45.116 43.624 43.567 43.553 43.550
3D(θc, 3D) 45.113 43.620 43.563 43.549 43.546

w̃ at z = 0
3D(θa) 69.417 69.287 69.283 69.282 69.282

44.365 43.5543D(θc, 1D) 45.117 43.625 43.568 43.554 43.551
3D(θc, 3D) 45.114 43.621 43.564 43.550 43.547

ũ at z = h
3D(θa) −2.994 −2.991 −2.990 −1.990 −2.990

−1.8211 −1.78683D(θc, 1D) −1.848 −1.789 −1.787 −1.786 −1.786
3D(θc, 3D) −1.847 −1.789 −1.787 −1.786 −1.786

ũ at z = h/2
3D(θa) −1.903 −1.901 −1.901 −1.901 −1.901

−1.1238 −1.10213D(θc, 1D) −1.138 −1.103 −1.102 −1.102 −1.102
3D(θc, 3D) −1.138 −1.103 −1.102 −1.102 −1.102

ũ at z = 0
3D(θa) −0.8129 −0.8132 −0.8132 −0.8132 −0.8132

−0.4269 −0.41783D(θc, 1D) −0.4298 −0.4183 −0.4179 −0.4177 −0.4177
3D(θc, 3D) −0.4297 −0.4182 −0.4178 −0.4177 −0.4177
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Table 4. Fourth assessment. One-layered FGM cylindrical shell (Rβ = 10 m) featuring different
thickness ratios. The geometry, materials, and FGM power law are the same as the third assessment.
The thermal load is substituted by an external moisture content acting on the top (Mt = 1.0%) and
bottom (Mb = 0.5%) surfaces; m = n = 1. The reference solution is the 3D FE model, already
validated in the previous assessment. The results of the present solution are obtained with N = 3
and for a varying number of mathematical layers NL.

Present Solution 3D FEMNL → 10 50 100 200 300

Rβ/h = 50

w̃ at z = h
3D(Ma) 557.35 551.43 551.22 551.17 551.16

411.973D(Mc, 1D) 440.34 423.22 422.60 422.44 422.41
3D(Mc, 3D) 417.06 398.20 397.51 397.34 397.31

w̃ at z = h/2
3D(Ma) 399.25 393.43 393.22 393.16 393.15

279.923D(Mc, 1D) 303.27 287.38 286.80 286.66 286.63
3D(Mc, 3D) 285.49 268.05 267.42 267.26 267.23

w̃ at z = 0
3D(Ma) 228.40 222.78 222.58 222.53 222.52

131.173D(Mc, 1D) 148.66 133.28 132.72 132.58 132.55
3D(Mc, 3D) 136.53 119.68 119.07 118.91 118.88

ũ at z = h
3D(Ma) −654.1 −651.9 −651.8 −651.8 −651.8

−538.013D(Mc, 1D) −563.3 −555.6 −555.3 −555.2 −555.2
3D(Mc, 3D) −539.7 −531.1 −530.8 −530.7 −530.7

ũ at z = h/2
3D(Ma) −515.9 −515.5 −515.5 −515.5 −515.5

−435.013D(Mc, 1D) −456.3 −453.7 −453.6 −453.6 −453.6
3D(Mc, 3D) −438.5 −435.4 −435.3 −435.3 −435.3

ũ at z = 0
3D(Ma) −424.7 −426.0 −426.0 −426.1 −426.1

−380.503D(Mc, 1D) −392.8 −394.8 −394.9 −394.9 −394.9
3D(Mc, 3D) −379.6 −381.7 −381.8 −381.8 −381.8

Rβ/h = 1000

w̃ at z = h
3D(Ma) 11,564 11,545 11,544 11,544 11,544

10,1283D(Mc, 1D) 10,150 10,065 10,062 10,061 10,061
3D(Mc, 3D) 10,149 10,064 10,061 10,060 10,060

w̃ at z = h/2
3D(Ma) 11,558 11,539 11,538 11,538 11,538

10,1233D(Mc, 1D) 10,145 10,060 10,057 10,056 10,056
3D(Mc, 3D) 10,144 10,059 10,056 10,055 10,055

w̃ at z = 0
3D(Ma) 11,551 11,532 11,531 11,531 11,531

10,1173D(Mc, 1D) 10,139 10,054 10,051 10,050 10,050
3D(Mc, 3D) 10,138 10,053 10,050 10,049 10,049

ũ at z = h
3D(Ma) −589.0 −588.5 −588.5 −588.5 −588.5

−520.373D(Mc, 1D) −521.1 −518.0 −517.9 −517.8 −517.8
3D(Mc, 3D) −521.1 −517.9 −517.8 −517.8 −517.8

ũ at z = h/2
3D(Ma) −407.4 −407.2 −407.2 −407.2 −407.2

−361.323D(Mc, 1D) −361.8 −359.9 −359.9 −359.9 −359.8
3D(Mc, 3D) −361.7 −359.9 −359.8 −359.8 −359.8

ũ at z = 0
3D(Ma) −225.9 −226.0 −226.0 −226.0 −226.0

−202.423D(Mc, 1D) −202.5 −202.0 −202.0 −202.0 −202.0
3D(Mc, 3D) −202.5 −202.0 −201.9 −201.9 −201.9

4.2. New Benchmarks

This section proposes a set of four benchmarks; those new results examine simply sup-
ported structures that undergo different moisture content profiles in steady-state conditions.
They follow the harmonic form previously defined, precondition to get an exact solution to
the problem. The assessments of the previous subsection validated the results of this new
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3D shell model when applied to FGM layers: the results converge and are exact when the
order of expansion N = 3 for the exponential matrix is coupled with a minimum number
of M = 300 mathematical layer for the through the thickness mechanical properties and
curvature approximation. The results of all the following benchmarks consider N = 3 and
M = 300 as an a priori prerequisite for results accuracy.

The first benchmark studies a square plate with a single FGM layer and simply-
supported sides. The plate has a = b = 10 m as in-plane dimensions but comes with
several and different thicknesses, which allow the effect of this geometrical parameter to be
evaluated. In fact, the thickness ratio goes from a/h = 2 to a/h = 100, thus ranging from
very thick to very thin plates. In this benchmark, the volume fraction Vc of the ceramic
phase evolves linearly: p = 1 is set in the material law defined through Equation (83).
This relation also implies a fully ceramic top surface and a fully metallic bottom one.
The moisture content is imposed on the top and the bottom external surfaces; it has a
harmonic form on both with amplitudesMt = 1.0% andMb = 0.0%, on top and bottom,
respectively. The harmonic form of the moisture content has m = n = 1 as half-wave
numbers in α and β directions, respectively. The elastic and hygroscopic properties of
the metallic and ceramic phases are the same as those introduced at the beginning of this
section. The FGM nature of the layer makes its mechanical properties evolve through the
thickness direction; Figure 3a,b, respectively, shows how the volume fraction Vc and the
bulk modulus K evolve with respect to non-dimensional thickness coordinate z̃/h. Note
that K is not linear as Vc due to Equation (85). Table 5 and Figures 4 report an extract
of the main results. The results in tabular form give the amplitude of some variables
of the problem; they reflect the three different ways of evaluating the moisture content.
3D(Ma) implies the assumed linear moisture content profile; 3D(Mc, 1D) relies on the 1D
version of the Fick moisture diffusion equation; finally, 3D(Mc, 3D) relies on a 3D solution
of the moisture diffusion problem. The prefix 3D underlines that the elastic part of the
solution is three-dimensional in all three models. Such an analysis allows grasping the
differences between the three approaches. The 3D(Mc, 3D) shell model considers both the
mechanical/hygrometric properties evolution through z and the three-dimensional nature
of the problem. As discussed in the previous section, it always delivers an accurate result.
Table 5 underlines that the 3D(Mc, 1D) model results get closer to those of the 3D(Mc, 3D)
model as the thickness decreases. It considers how the mechanical/hygrometric properties
evolve through z but disregards the moisture diffusion through alpha and beta direction,
which have a negligible weight in thin structures. The results of the 3D(Ma) model are
always unreliable, as they are built on a moisture content profile that is far from the actual
scenario in a layer embedding an FGM. Figure 3c,d further facilitates understanding these
concepts; it compares the three moisture content profiles for a thick and a thin plate. In
thick structures, the difference between the three profiles is very pronounced: the three-
dimensionality of the problem and the mechanical/hygrometric properties variability in
the thickness direction make the 3D profile differ from the linear assumption. Even the
1D profile differs from the linearity: the hygrometric properties vary through z, reflecting
on the moisture content at different thickness coordinates. These concepts also apply to
thin structures; however, the three-dimensionality of the problem is insignificant, and the
3D and 1D profiles coincide. Figure 4 shows the complete profile of the tree displacement
components, two stresses, and a strain. Note that all the quantities evolve with continuity,
which is essential as it demonstrates both the graded elastic/hygrometric properties and
the correct introduction of the continuity conditions. The transverse stress σzz and the
transverse shear strain γβz satisfy the external mechanical boundary conditions: it equals 0
at both the top and the bottom surfaces as no external load acts on them.
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Figure 3. First benchmark: one-layered FGM (p = 1) square plate with an imposed moisture content
on the top and bottom surfaces. The figures show the volume fraction of the ceramic phase, the bulk
modulus, and the moisture content profiles for a thick and a thin structure through their thickness.
(a) Volume fraction of the ceramic phase Vc. (b) Bulk modulus K. (c) Moisture content profile of the
a/h = 2 plate. (d) Moisture content profile of the a/h = 100 plate.
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Figure 4. First benchmark: one-layered FGM square plate with an imposed moisture content on the
top and bottom surfaces. The results are calculated for a moderately thick (a/h = 4) structure via the
3D(Mc, 3D) model. (a) Amplitude of u displacement component. (b) Amplitude of v displacement
component. (c) Amplitude of w displacement component. (d) Amplitude of σzz stress component.
(e) Amplitude of σαα stress component. (f) Amplitude of γβz strain component.
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Table 5. First benchmark: square plate with a single FGM layer subject to an external moisture
content applied to the top and bottom surfaces. The results of all the 3D models consider N = 3 and
NL = 300.

a/h 2 4 10 50 100

M at (α = a/2, β = b/2; z̃ = 4h/5)[−]

3D(Ma) 0.8000 0.8000 0.8000 0.8000 0.8000
3D(Mc, 1D) 0.5595 0.5595 0.5595 0.5595 0.5595
3D(Mc, 3D) 0.4351 0.5197 0.5525 0.5592 0.5594

v at (α = a/2, β = 0; z̃ = 4h/5) [mm]

3D(Ma) −2.094 −2.089 −2.087 −2.086 −2.086
3D(Mc, 1D) −1.454 −1.461 −1.462 −1.462 −1.462
3D(Mc, 3D) −1.148 −1.362 −1.445 −1.462 −1.462

w at (α = a/2, β = b/2; z̃ = h/2) [mm]

3D(Ma) 1.226 2.661 6.791 34.07 68.16
3D(Mc, 1D) 1.103 2.405 6.144 30.83 61.68
3D(Mc, 3D) 1.008 2.336 6.113 30.83 61.67

σzz at (α = a/2, β = b/2; z̃ = h/5) [kPa]

3D(Ma) −5915 −982.6 −127.7 −4.879 −1.218
3D(Mc, 1D) −1197 44.77 26.65 1.217 0.3054
3D(Mc, 3D) 515.5 173.0 30.09 1.222 0.3057

σαα at (α = a/2, β = b/2; z̃ = h) [MPa]

3D(Ma) −7.939 −34.86 −43.94 −45.68 −45.73
3D(Mc, 1D) −63.24 −3.08 −89.55 −90.74 −90.78
3D(Mc, 3D) −90.78 −90.95 −90.83 −90.79 −90.79

γβz at (α = a/2, β = 0; z̃ = h/3) [10−6]

3D(Ma) −173.7 −57.29 −18.35 −3.489 −1.741
3D(Mc, 1D) −39.06 3.440 4.709 1.072 0.5379
3D(Mc, 3D) 19.67 12.49 5.321 1.076 0.5384

The second benchmark focuses on a closed cylinder, featuring a single FGM layer
and simply-supported sides. The dimensions of the reference mid-surface, a = 2πRα and
b = 30 m, are a function of the radii of curvature of the shell, one of which is infinite:
Rα = 10 m and Rβ = ∞. Different thicknesses have been considered; the thickness ratio
Rα/h is expressed with respect to Rα and ranges from 2 to 100 also in this second case
study. The material volume fraction of the ceramic phase is a quadratic function of the
thickness coordinate; the material law defined through Equation (83) consider p = 2.
Given that a single layer is considered, the cylinder is metallic in the inner surface and
ceramic in the outer. The moisture content is imposed on the outer external surface,
Mt = 1.0%, and on the inner one, Mb = 0.0%. The half wave numbers of both the
harmonic forms are the same, m = 2 and n = 1. The elastic and hygroscopic properties of
both the phases introduced previously also apply here. Figure 5a,b, respectively, shows the
volume fraction Vc and moisture diffusion coefficient D vs. the non-dimensional thickness
coordinate z̃/h. Vc follows a power-law of order p = 2, D follows Equation (85). Table 6
and Figure 6 summarize an extract of the main results. This second benchmark also reports
three different sets of results: the elastic model is the same (prefix 3D), but the moisture
content profile follows the different approaches. This leads to models 3D(Ma), in which the
moisture content is a priori assumed, and 3D(Mc, 1D)–3D(Mc, 3D), in which the profile
is calculated following a monodimensional or three-dimensional approach. This analysis
allows highlighting the distinctions between the three methods. The last one is the only
model in which no assumptions are made concerning the three-dimensionality of the
problem as the moisture content amplitude derives from Fick’s law of diffusion. The
results coming from 3D(Ma) are always wrong because the moisture content evaluation is
inaccurate. The differences between 3D(Mc, 1D) and 3D(Mc, 3D) are less pronounced if
compared with the previous benchmark and decrease with the thickness. The differences
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in the three moisture content profiles are shown in Figure 5c,d for two different cylinders:
a thick and a thin one. The discrepancies between the calculated and assumed fields are
really pronounced; the 1D and 3D computed profiles do not significantly differ, which
is even more true as the thickness ratio increases. Figure 6 shows the profiles of the tree
displacement components: two stresses and a strain. There is continuity in all the plots:
this qualifies the correct introduction of the continuity conditions and elastic/hygrometric
properties grading. No external mechanical loads are applied, and this is coherent with the
transverse stress values at the bottom and top surfaces, 0.
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Figure 5. Second benchmark: one-layered FGM (p = 2) cylinder with an imposed moisture content
on the top and bottom surfaces. The figures show the volume fraction of the ceramic phase, the
diffusion coefficient, and the moisture content profiles for a thick and a thin structure through their
thickness. (a) Volume fraction of the ceramic phase Vc. (b) Diffusion coefficient D. (c) Moisture
content profile of the Rα/h = 2 cylinder. (d) Moisture content profile of the Rα/h = 100 cylinder.
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Figure 6. Second benchmark: one-layered FGM closed cylinder with an imposed moisture content
on the top and bottom surfaces. The results are calculated for a moderately thin (Rα/h = 5) structure
via the 3D(Mc, 3D) model. (a) Amplitude of u displacement component. (b) Amplitude of v
displacement component. (c) Amplitude of w displacement component. (d) Amplitude of σzz stress
component. (e) Amplitude of σββ stress component. (f) Amplitude of γαβ strain component.
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Table 6. Second benchmark: closed cylinder with a single FGM layer subject to an external moisture
content applied to the top and bottom surfaces. The results of all the 3D models consider N = 3 and
NL = 300.

Rα/h 2 4 10 50 100

M at (α = a/2, β = b/2; z̃ = h/2)[−]

3D(Ma) 0.5000 0.5000 0.5000 0.5000 0.5000
3D(Mc, 1D) 0.2627 0.2627 0.2627 0.2627 0.2627
3D(Mc, 3D) 0.2439 0.2577 0.2619 0.2626 0.2627

u at (α = 0, β = b/2; z̃ = h/3) [mm]

3D(Ma) 8.248 7.982 7.370 6.902 6.844
3D(Mc, 1D) 5.538 5.125 4.582 4.210 4.161
3D(Mc, 3D) 5.332 5.067 4.573 4.210 4.161

w at (α = a/2, β = b/2; z̃ = h/2) [mm]

3D(Ma) 14.95 15.14 14.72 14.32 14.27
3D(Mc, 1D) 9.600 9.488 9.056 8.714 8.667
3D(Mc, 3D) 9.187 9.371 9.037 8.713 8.666

σzz at (α = a/2, β = b/2; z̃ = 2h/3) [MPa]

3D(Ma) 4.442 4.370 2.346 0.5349 0.2716
3D(Mc, 1D) 7.308 5.035 2.383 0.5161 0.2605
3D(Mc, 3D) 7.578 5.055 2.384 0.5161 0.2605

σββ at (α = a/2, β = b/2; z̃ = h) [MPa]

3D(Ma) 37.63 −6.103 −36.31 −52.37 −54.33
3D(Mc, 1D) −53.79 −85.52 −106.3 −116.9 −118.2
3D(Mc, 3D) −60.83 −87.15 −106.5 −116.9 −118.2

γαβ at (α = 0, β = 0; z̃ = 0) [10−6]

3D(Ma) 516.7 292.5 119.2 23.61 11.78
3D(Mc, 1D) 390.8 209.0 82.62 16.12 8.025
3D(Mc, 3D) 381.8 207.4 82.50 16.11 8.205

The third benchmark considers a cylindrical sandwich shell panel with an FGM core
and simply-supported edges. The top and the bottom skin are in line with the FGM law:
the top skin is ceramic as the top surface of the core is; at the same time, the bottom skin is
metallic as the bottom surface of the core is. p = 0.5 is the coefficient for the volume fraction
law across the FGM core, which defines how the elastic and hygrometric properties evolve
in the thickness direction. The elastic and hygroscopic properties of both the phases already
introduced in the assessments also apply here. The radii of curvature are coherent with
those proposed in the previous benchmark, Rα = 10 m and Rβ = ∞. The dimension of the
reference mid-surface in α direction is a function of the radius of curvature Rα and equals
a = π

3 Rα; the dimension in the remaining direction β is fixed and equals b = 30. m = 2
and n = 0 have been chosen as half-wave numbers for the harmonic form of the moisture
content imposed at the bottom and the top of the shell. The amplitude of the external fields
discussed so far are as follows: the moisture content amplitude isMt = 1.0% on the top
andMb = 0.0% on the bottom. This third case study also considers different thickness
ratios to evaluate the effects of this parameter; as in the previous case, it is expressed with
respect to Rα and ranges from 2 to 100. The volume fraction Vc of the ceramic phase runs
from 0 to 1 inside the core; it equals 0 inside the bottom skin as it is fully metallic, 1 inside
the top coat as it is fully ceramic. This is visible in Figure 7a,b, showing the volume fraction
and the shear modulus along with the thickness coordinate z; the shear modulus of the
top skin coincides with that of the ceramic; the shear modulus of the bottom skin coincides
with that of the metal. The amplitudes of some variables are reported for all the thickness
ratios and at different thickness coordinates in Table 7; Figure 8 explores six variables
and shows their trend through z. The Figures rely on the 3D calculated moisture content
profile; the table also reports the results obtained throughMa andMc, 1D. The differences
between the three models can be already seen at the moisture content level and directly
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reflect the mechanical quantities. Figure 7c,d compares the three moisture content profiles
for a thick and a thin cylindrical shell panel and confirms that the differences are sharp not
only at a specific thickness coordinate, but throughout all the thickness. The 3D(Mc, 1D)
model results get closer to those of the 3D(Mc, 3D) model as the thickness decreases, and
this is clear from the results of Table 7. Figure 8 gives the profile of the tree displacement
components, two stresses, and a strain. As in the previous cases, all the quantities evolve
with continuity: the mechanical properties are introduced into the model with continuity.
The transverse stress σzz satisfies the external mechanical boundary conditions: it equals 0
at both the top and the bottom surfaces as no external load acts on them.
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Figure 7. Third benchmark: cylindrical sandwich shell panel featuring an FGM (p = 0.5) core
with an imposed moisture content on the top and bottom surfaces. The figures show the volume
fraction of the ceramic phase, the shear modulus, and the moisture content profiles for a thick and
a thin structure through their thickness. (a) Volume fraction of the ceramic phase Vc. (b) Shear
modulus µ. (c) Moisture content profile of the Rα/h = 2 shell. (d) Moisture content profile of the
Rα/h = 100 shell.
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Figure 8. Third benchmark: cylindrical sandwich shell panel featuring an FGM (p = 0.5) core
with an imposed moisture content on the top and bottom surfaces. The results are calculated for a
thick (Rα/h = 4) structure via the 3D(Mc, 3D) model. (a) Amplitude of u displacement component.
(b) Amplitude of v displacement component. (c) Amplitude of w displacement component. (d) Am-
plitude of σzz stress component. (e) Amplitude of σββ stress component. (f) Amplitude of γαz strain
component.
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Table 7. Third benchmark: cylindrical sandwich shell panel with an FGM core subject to an external
moisture content applied to the top and bottom surfaces. The results of all the 3D models consider
N = 3 and NL = 300.

Rα/h 2 4 10 50 100

M at (α = a/2, β = b/2; z̃ = h/2)[−]

3D(Ma) 0.5000 0.5000 0.5000 0.5000 0.5000
3D(Mc, 1D) 0.2087 0.2087 0.2087 0.2087 0.2087
3D(Mc, 3D) 0.1014 0.1672 0.2008 0.2083 0.2086

u at (α = a/2, β = 0; z̃ = 3h/4) [10−3 mm]

3D(Ma) −16.26 −15.23 −11.79 11.86 41.40
3D(Mc, 1D) −10.53 −9.736 −6.559 15.20 42.34
3D(Mc, 3D) −7.942 −8.844 −6.416 15.20 42.34

w at (α = a/2, β = b/2; z̃ = h/2) [10−5 mm]

3D(Ma) 0.5350 1.184 3.310 17.49 35.22
3D(Mc, 1D) 0.5000 1.152 3.125 16.16 32.44
3D(Mc, 3D) 0.4660 1.116 3.102 16.16 32.44

σzz at (α = a/2, β = b/2; z̃ = h/4) [kPa]

3D(Ma) −108.2 −7.415 0.3735 0.2473 0.1354
3D(Mc, 1D) 0.6797 5.001 −1.110 −0.5867 −0.3135
3D(Mc, 3D) 30.91 6.099 −1.162 −0.5875 −0.3136

σββ at (α = 0, β = 0; z̃ = 0) [kPa]

3D(Ma) 298.9 142.1 87.89 81.26 81.57
3D(Mc, 1D) −3.571 −92.06 −116.7 −116.9 −116.3
3D(Mc, 3D) −77.09 −112.7 −120.0 −117.0 −116.3

γαz at (α = a/2, β = 0; z̃ = h/3) [10−8]

3D(Ma) −191.6 −51.36 −11.08 −1.956 −0.9857
3D(Mc, 1D) 0.9706 46.64 26.65 5.584 2.790
3D(Mc, 3D) 81.83 61.98 27.77 5.593 2.791

The fourth and last benchmark proposes a sandwich spherical shell panel, which
embeds an FGM core and features simply supported edges. The lamination scheme is
analogous to that discussed in the third benchmark: the bottom skin is metallic, and the top
ceramic. Then, the volume fraction of the ceramic phase evolves inside the core through
the thickness direction following an exponential law with p = 0.5 as chosen coefficients.
The hygrometric and elastic properties of the sandwich skin are the same proposed in the
previous benchmark and assessments for the metallic and ceramic phases, respectively;
those of the core follow the volume fraction law. The exponential trend of the volume
fraction Vc vs. the non-dimensional thickness coordinate z̃/h can be seen in Figure 9a; for
completeness, the evolution of the moisture expansion coefficient η through the thickness
direction is also given in Figure 10. The spherical shell panel is the only structure among
those studied in which both the radii of curvature are non-infinite; furthermore, they take
the same value, which equals Rα = Rβ = 10 m. Furthermore, the dimensions of the
reference mid-surface are the same in α, and β directions as both are a function of the radii
of curvature; it holds a = π

3 Rα and b = π
3 Rβ. Those dimensions are fixed; however, a

wide range of thinner/thicker shells is considered by choosing different thickness ratios:
Rα/h ranges from 2 to 100. The amplitude of the moisture content is imposed on the
top and the bottom surfaces; it equals Mt = 1.0% and Mb = 0.0%, respectively. As
discussed, the external fields are required to have a harmonic form in order for the problem
to be exactly solved; m = 2 and n = 2 are the half-wave numbers considered in this
last case study. Table 8 and Figures 9 and 10 summarize an extract of the main results.
This fourth benchmark also reports three different sets of results: the elastic model is
the same (prefix 3D), but the moisture content profile follows the different approaches.
This analysis highlights the distinctions between the three methods. The 3D one is the
only model in which no assumptions are made concerning the three-dimensionality of
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the problem as the moisture content amplitude derives from Fick’s law of diffusion. The
results coming from 3D(Ma) are always wrong because the moisture content evaluation
is inaccurate. Considerable differences are present between the calculated and assumed
fields. The moisture content profiles of Figure 9c,d once again demonstrate that the 1D
and 3D moisture fields get closer in thin structures; despite the thickness, they always
differ from the assumed profile, which completely disregards the physics of the problem.
This reflects on the results in terms of displacements, strains, and stresses: the differences
are high, and 3D(Ma) does not provide a reasonable estimate. 3D(Mc, 1D) provides
acceptable results, but only when the shell is sufficiently thin. As in the previous cases,
three displacement components, two stresses, and a strain are shown in their entirety along
with the thickness direction. Figure 10 further qualifies the correct introduction of the
continuity conditions, elastic/hygrometric properties grading, and mechanical boundary
conditions. The transverse stresses σβz and σzz satisfy the external mechanical boundary
conditions: they equal 0 at both the top and the bottom surfaces as no external load acts on
them. All the quantities are continuous throughout the thickness; this qualifies the division
into fictitious layers: they are thin enough to describe the mechanical properties evolution
with continuity.
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Figure 9. Fourth benchmark: spherical sandwich shell panel featuring a FGM (p = 0.5) core with an
imposed moisture content on the top and bottom surfaces. The figures show the volume fraction of
the ceramic phase, the moisture expansion coefficient, and the moisture content profiles for a thick
and a thin structure through their thickness. (a) Volume fraction of the ceramic phase Vc. (b) Moisture
expansion coefficient η. (c) Moisture content profile of the Rα/h = 2 shell. (d) Moisture content
profile of the Rα/h = 100 shell.
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Figure 10. Fourth benchmark: spherical sandwich shell panel featuring a FGM (p = 0.5) core with
an imposed moisture content on the top and bottom surfaces. The results are calculated for a thin
(Rα/h = 50) structure via the 3D(Mc, 3D) model. (a) Amplitude of u displacement component.
(b) Amplitude of v displacement component. (c) Amplitude of w displacement component. (d) Am-
plitude of σzz stress component. (e) Amplitude of σβz stress component. (f) Amplitude of εαα strain
component.
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Table 8. Fourth benchmark, sandwich spherical shell panel with an FGM core subject to an external
moisture content applied to the top and bottom surfaces. The results of all the 3D models consider
N = 3 and NL = 300.

Rα/h 2 4 10 50 100

M at (α = a/2, β = b/2; z̃ = h/2)[−]

3D(Ma) 0.5000 0.5000 0.5000 0.5000 0.5000
3D(Mc, 1D) 0.2087 0.2087 0.2087 0.2087 0.2087
3D(Mc, 3D) 0.0612 0.1376 0.1933 0.2080 0.2085

v at (α = a/2, β = 0; z̃ = h/3) [10−3 mm]

3D(Ma) −3.894 −2.822 −1.076 1.741 1.182
3D(Mc, 1D) −1.004 −0.628 0.4564 1.626 1.003
3D(Mc, 3D) 0.2033 −0.1980 0.5091 1.625 1.003

w at (α = a/2, β = b/2; z̃ = h/2) [10−3 mm]

3D(Ma) 4.294 9.003 24.12 59.21 58.93
3D(Mc, 1D) 3.366 7.349 18.73 38.36 36.02
3D(Mc, 3D) 2.910 6.711 18.31 38.31 36.00

σzz at (α = a/2, β = b/2; z̃ = h/3) [kPa]

3D(Ma) −337.9 −31.28 −0.2497 6.395 4.422
3D(Mc, 1D) −32.33 35.10 10.25 5.996 3.714
3D(Mc, 3D) 85.74 45.62 10.43 5.991 3.713

σβz at (α = a/2, β = 0; z̃ = 2h/3) [kPa]

3D(Ma) 240.7 125.3 61.39 −8.396 −9.287
3D(Mc, 1D) 83.57 25.04 7.627 −17.21 −12.08
3D(Mc, 3D) 13.41 3.374 5.225 −17.22 −12.08

εαα at (α = a/2, β = b/2; z̃ = h) [10−6]

3D(Ma) 0.5547 −0.8651 −1.008 −2.249 −3.381
3D(Mc, 1D) −1.988 −3.376 −3.732 −5.260 −6.114
3D(Mc, 3D) −3.912 −4.182 −3.909 −5.268 −6.116

5. Conclusions

The authors proposed a closed-form 3D shell solution that handles the hygro-elastic
stress analysis of plates, cylinders, cylindrical shells, and spherical shells while embedding
Functionally Graded Material (FGM) layers. First, the author imposed the external moisture
content on the top and the bottom surfaces. The moisture conditions act in steady state
as an external load; calculating the moisture content profile is a prerequisite. The authors
showed that three approaches might be used to determine the moisture content profile
along the thickness direction and coupled them with a consolidated elastic solution. The
results demonstrated the importance of a correct moisture content profile evaluation in the
thickness direction. The 3D Fick’s law of diffusion is the only way to obtain exact results
when the structures embed FG layers; it is also necessary when the structures are sufficiently
thick. On the other hand, the 1D Fick’s law of diffusion comes closer to it only when
structures are thin; as a rule of thumb, the results of the two models are almost coinciding
only from a thickness ratio of 50. The problem relies on a set of differential equations in
the thickness direction. The authors demonstrated that the exponential matrix method
is a reliable way to solve it, provided that the structures are divided into a sufficiently
high number of mathematical layers. This layer-wise approach is critical to get a reliable
description of the material properties grading; as a rule of thumb, 300 mathematical layers
always deliver the correct results. This achievement is general and does not depend on the
geometry, FGM law, and lamination sequence/scheme.
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