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A user-centric view of a Demand Side Management
program: from surveys to simulation and analysis

Claudia De Vizia, Edoardo Patti, Member, IEEE,
Enrico Macii, Fellow, IEEE and Lorenzo Bottaccioli, Member, IEEE

Abstract—Residential Demand Side Management (DSM)
strategies increase the efficiency of the smart grid. However,
the efficacy of these strategies relies on the participation of
customers in DSM programs, an issue usually neglected in the
analysis. To encompass all aspects, we tried to identify what are
the drivers for the user engagement, focusing on the social and
psychological behaviour of the user in order to simulate and
analyse a residential DSM program with a centralised approach.
In particular, the DSM program minimises costs taking into
account different energy sources and performing load shifting
considering and learning users’ acceptance of requests. The
results show the advantage of a preferences-aware approach,
highlighting the importance of user satisfaction on participation.

Index Terms—Demand Side Management, Energy Community
Participation, Multi-Agent System, Users’ Preference, Linear
Programming, Social and Behavioural Sciences

NOMENCLATURE

Abbreviations
ALA Acceptance Learning Algorithm
att Attitude Toward the Behaviour
b Behaviour
bi Behavioural Intention
DOI Diffusion of Innovation Theory
DR Demand Response
DSM Demand Side Management
EC Energy Communities
ESS Energy Storage System
ISTAT Italian National Institute of Statistics
M2A Market Agent to Aggregator Agent
MAS Multi-Agent System
MILP Mixed Integer Linear Programming
OPT Optimisation
P2A Prosumer Agent to Aggregator Agent
P2P Prosumer Agent to Prosumer Agent
pbc Perceived Behavioural Control
PV Photovoltaic Panel
RA Relative Agreement
RES Renewable Energy Sources
sn Subjective Norm
SWN Small World Network
TPB Theory of Planned Behaviour
Indices
i appliances, i ∈ {1,2,3}
j households (prosumers), j ∈ {1,2,..,N}
t time slots, t ∈ {1,2,..96}
f i interval “allowed” for i, f i ∈ {lowi,..,upperi}

C. De Vizia, E. Patti and L. Bottaccioli are with the Department of Com-
puter and Control Engineering and with the Energy Center Lab, Politecnico
di Torino, Turin, IT.
E. Macii is with the Interuniversity Dept. of Regional and Urban Studies and
Planning, Politecnico di Torino, Turin, IT.
E-mail: name.surname@polito.it

Data
δ time interval duration (h) → 1/4
capacity battery capacity [kWh]
Cdischt discharging price of the battery at time t [e/ kWh]
Cfromt market price at time t (buying) [e/ kWh]
Cmax/Dmax max charge/discharge rate [kW]
Cpvt PV price at time t [e/ kWh]
Ctot market price at time t (selling) [e/ kWh]
Ebat init battery initial condition [kWh]
eff battery efficiency [%]
Lshifti,j

f,t cycle matrix for each appliance, for each user
minCharge min stored energy [kWh]
NOTshiftt power needed by not shiftable i at time t [kW]
PV t PV generated at time t [kW]
requesti,j there is/not a request for appliance i from user j

(1/0)
Decision Variables
Ebatt amount of energy in the battery at time t [kWh]
PCbatt charging power of the battery at time t [kW]
PDbatt discharging power of the battery at time t [kW]
PDont/PCont binary variable that indicates if the battery is

discharging or charging at time t
Pfromt amount of power from the grid at time t [kW]
Ptot amount of power given to the grid at time t [kW]
xf

ij ∈ {0, 1} binary variable that selects the day load profile of
the appliance i of the customer j

I. INTRODUCTION

In the energy transition towards a sustainable economy, the
presence of smart grids and the newly formed Energy Commu-
nities (EC) play an important role, enabling Renewable Energy
Sources (RES) usage, CO2 and energy cost reduction [1].
To enhance energy savings and energy management, Demand
Side Management (DSM) strategies might be adopted [2].
DSM comprises everything done on the demand side of an
energy system, from energy efficiency to Demand Response
(DR), with different timing and user involvement [3]. Hence,
the willingness of the users plays a pivotal role in this context
and should be emphasised. Needless to say, that without user
consensus, none of these DSM strategies is applicable.

Regrettably, several studies concentrate on technical and
economic aspects only, addressing this problem in the future,
e.g. [4]. Instead, other works deal with the problem of user’s
discomfort without including upstream cognitive processes.
Indeed, a copious amount of works does not consider that
before accepting a program event request, the customers must
decide first whether to sign up for a DSM program, e.g.
”Customers are assumed to enrol in the price-based DR
program of the Service Provider” [5].

On the one hand, several studies on resource optimisation,
i.e. RES and loads, exist. On the other hand, diverse research
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projects survey what factors affect the decision to participate in
EC and DSM programs employing regression analysis [6], [7],
however, they are not used in simulations.

Thus, besides optimising costs applying Mixed Integer
Linear Programming (MILP), w.r.t. previous works,nspecial
attention is given to the analysis of prosumers’ behaviour,
their mutual influence and the individual response to requests
at different shifts in time. Therefore, we adopt a user-centric
view where the needs of the users and their experiences are
taken into account to try building a long-lasting customer
relationship. Indeed, many prior articles that use Linear Pro-
gramming consider the time slots allowed for the shift fixed
and established a priori. Instead, we tackle this problem by
mixing the MILP formulation with an algorithm that learns the
time slots accepted by the simulated users without any prior
knowledge. In particular, since it emerges that a significant
portion of users wants to have control of the appliances [8], we
propose to ask consumers for confirmation. This information
- acceptance or refusal of the proposed shift - increases the
knowledge of users acceptance.

The analysis was performed thanks to a dynamic framework
obtained coupling a co-simulator platform, i.e. MOSAIK [9],
and a Multi-Agent System (MAS) called AIOMAS [10].
MASs are composed of autonomous agents that operate in
a networked environment. Large MASs comprise Smart Grids
[11], as in our case. Our framework allows changing simu-
lators effortlessly, resulting in a tool to test the diffusion of
different DSM programs besides the proposed one.

Given the chosen context, we focus on residential loads
shifting in EC through a centralised approach. Thus, in our
simulated EC, we selected three main entities that became
the Agents for our simulations: i) the Aggregator, which is
responsible for the DSM program and manages the shared
resources - i.e. the Energy Storage System (ESS) and the RES,
ii) the Prosumer - producer and consumer at the same time and
iii) the day-ahead Market.

The remainder of this paper is organised as follows. Sec-
tion II reviews surveys and related works in literature. A
quick overview of the psychological theories that have been
used in our work is given in Section III. Then, Section IV
introduces our methodology, presenting the agents and the
models, describing the formulation of the MILP problem and
the algorithm for learning the maximum delay tolerated by
users. Section V shows the results obtained and Section VI
provides a final discussion on the results. Finally, Section VII
discusses concluding remarks.

II. RELATED WORKS

Since our study tries to consider and accurately model cer-
tain aspects of the user, we wanted to identify the key factors
that drive people to participate in DSM programs. Indeed, the
recommendations from the European projects focusing also on
this topic (e.g. INVADE, STORY, GOFLEX) are to understand
the consumers and keep them ”happy and engaged”, without
affecting ”their initial comfort and satisfaction” [23].

Thus, we undertook an exhaustive review of the surveys on
factors affecting participation in energy-related projects.

The main reason for participating in DR programs is
reducing the overall spending on energy, i.e. the financial
reward [8], [24]–[26]. Secondary motivations include avoiding
malfunction in the smart grid and supporting the transition to
RES [25].

Moreover, it emerges that participants in DR programs
proactively find ways for reducing the bill and have an aware-
ness of energy use and existing programs [24]–[26]. Thus,
energy-related education favours or hinders participation.

Therewith, it emerges that those who have a low energy con-
sumption - i.e. families with a few members, using appliances
a few times - perceive it as an obstacle in participating [26],
e.g. they receive few requests and have little savings.

In a survey on Direct Load Control of appliances such as
air conditioner and water heater involving 600 people [8], the
46% would prefer paying a flat monthly fee, while the others
would choose ”per interruption” payment. Among the latter
group, 74% would prefer to have the possibility to override
the interruption. Indeed, it appears that the user wants to feel
that it is in control of its energy usage. Furthermore, 72%
would prefer to receive notifications of control events, ideally,
24h in advance. Customer satisfaction might translate into user
willingness to enrol more appliances. Certain users claim that
they would use the washing machine before or after the Direct
Load Control event. The suggestion of an overriding option
to reduce the concerns about losing control is underlined
by [27], too. Only 25% of respondents would accept Direct
Load Control for the washing machine (22% maybe, 53% no),
and only 23% for the dishwasher (27% maybe, 51% no).

Many participants pointed out that bills are unclear and user-
hostile that is perceived as a lack of transparency from the
retailer [26]. Thus, trust is needed.

Furthermore, the majority of users of a DR program [24]
was not satisfied with the rewards and communications. Thus,
utility providers should improve communications to increase
awareness, understanding and acceptance [24], bearing in mind
that people expressed a desire for learning to save energy [26].

We used this information for the prosumer characterisation.
Moreover, we examined how related works consider users’
preferences to find out what solutions have already been
proposed. These have been divided based on the way used
to consider user preference in: i) Fixed - the appliance usage-
times are equal and established for all users, i.e. predefined;
ii) Communicated by the user - the users specify explicitly
their preferences; iii) Trade-off between cost and satisfaction -
costs and user satisfaction are weighted properly; iv) Objective
choice - the user selects what it wants to minimise (e.g.
CO2 emissions or costs); v) Survey based - users’ preferences
are learnt through a survey. In the following, we provide an
overview of the literature solutions for each of these categories.

i) Fixed. Solar panels and ESS are considered in a building
with 30 houses in [20]. Both costs and CO2 emissions are
minimised. Similarly, [21] considers the same technologies but
it uses a MAS to model the chosen entities. The optimisation
problem minimises costs for consumers satisfying their needs.

ii) Communicated by the user. In [12], authors formulate
the problem as Mixed Integer Programming. The 250 users
express the level of preference for each period where each ap-
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TABLE I
COMPARISON AMONG OUR FRAMEWORK AND THE ANALYSED LITERATURE SOLUTIONS

User
preference

HHs
no

Time
slots RES ESS Agents Co-Simulation

Framework
Behavioural &
Social Theories

[12] Communicated
by the user 250 1 hour 7 7 7 7 7

[13] Trade-off between cost
and satisfaction 1 15 min 7 7 7 7 7

[14] Trade-off between cost
and satisfaction 1 15 min 7 3 7 7 7

[15] Trade-off between cost
and satisfaction 1 (x3HHs) 1 hour 3 3 7 7 7

[16]
Trade-off between cost

and satisfaction
(Learnt)

1 1 hour 7 7 7 7 7

[17] Objective choice 1 1 hour 3 3 7 7 7

[18] Survey based 427 real user for the survey
+1000 for the simulation 30 min 3 7 7 7 7

[19] Survey based Ekbatan residential complex 15 min 3 3 7 7 7
[20] Fixed 30 30 min 3 3 7 7 7

[21] Fixed
4 groups of residential/small

commercial users + 25 houses,
each represented by an agent.

1 hour 3 3 3 7 7

Our previous
work [22]

ALA
(Learnt) 1011 15 min 3 3 3 3 7

Proposed
solution

ALA
(Learnt) 10046 15 min 3 3 3 3 3

pliance may be used. The user does not have to communicate
preference every single day, but only if they change.

iii) Trade-off between cost and satisfaction. In [13], authors
minimise electricity costs and maximise user convenience at
the same time. The homeowner chooses between three levels
of priority for each appliance, giving the highest priority to
the period in which the appliance is desirable to be turned
on, and the lowest level to the lowest priority time interval.
The solution proposed in [16] uses iterative learning to set
parameters in the objective function, keeping a proper trade-
off between consumption expense and user satisfaction. The
consumer communicates if it feels satisfied with the proposed
schedule plan. The load scheduling algorithm is based on
a linear programming relaxation technique. Wei et al. [14]
proposed a multi-objective optimization model for residential
DR based on day-ahead electricity price solved thanks to a
genetic algorithm. It considers non-flexible deferrable loads
(e.g. washing machines), flexible deferrable loads (e.g. electric
vehicles) and thermal loads (e.g. air conditioners). In the
objective function, it uses a weighting factor representing the
proportion of power consumption cost and discomfort cost.
The scenario with both power consumption and discomfort
costs - equally weighted - is compared with a second scenario
with consumption cost only. Authors in [15] presented a multi-
objective DR optimization model to manage the scheduling
of home appliances minimizing both electricity consumption
costs and dissatisfaction of the user while considering RES and
ESS. It uses the constrained many-objective non-dominated
sorted genetic algorithm to solve the multi-objective model.

iv) Objective choice. In [17], authors consider RES - PV,
wind turbine and combined heat and power - and ESS for one
house. The user selects whether it wants to minimise costs,
CO2 or user comfort, i.e. appliances start when decided by
the user. Moreover, [17] employs Artificial Neural Networks

to predict energy demand and RES production.

v) Survey based. In [18], authors follow a Quality of
Experience driven approach. First, [18] surveys 427 people
without finding any correlation between users’ data and ap-
pliances usage habits. Thus, [18] classifies consumers using
the k-means algorithm, relying on preferences expressed on a
scale ranging from 1 (minimum annoyance) to 5 (maximum
annoyance), obtaining various profiles. As an example, for
certain users the appliance, e.g. dishwasher, may be turned
on only at the nearest hours to the favourite time, i.e. the level
of annoyance increases with the amount of delay. Meanwhile,
others are willing to shift the appliance’s usage at any time
(in ±3 hours). Although their level of annoyance is always the
minimum one in ±3 hours, the effects of a larger shift on the
annoyance level are not investigated. New customers do not
need to complete a questionnaire. Indeed, they only have to
answer to some annoyance rating questions due to task shifting
for a brief testing period to assign to the new customer one
of the obtained profiles. Then, two different algorithms are
proposed to assign an optimal time interval to the load. [19]
presents a new formulation for electrical appliances, such as
washing machines, dishwashers and heating/cooling systems.
The maximum time for load shifting considers the consumers’
welfare extracted from a survey. The loads are shifted to a
time-period when the difference between load and RES power
generation is maximum, by considering also the welfare of
consumers.

Table I summarises this literature review highlighting the
main features for each solution. The main difference between
our solution and previous works resides in modelling also
social and behavioural theories (see column “Behavioural &
Social Theories” in Table I). Indeed, ”social interactions do
not just happen alongside energy behaviour - the two are
intrinsically linked” [28].
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For the sake of completeness, we want to point out that other
approaches might be used to investigate the response from the
users. As an example, Rahmani-andebili [29] modelled the
reaction of the responsive load for different DR programs with
both linear and nonlinear responsive load behavioural models.
Different levels of participation of the responsive load in DR
programs - i.e. 40% and 100% - are investigated in several
power markets, noticing that sometimes the DR programs
might not be beneficial. In [30], nonlinear emergency DR
program and nonlinear time of use program are applied in
the Unit Commitment problem. Simulated annealing algorithm
is used to solve the optimisation problem. It demonstrates
the advantages of including residential customers in the Unit
Commitment problem.

W.r.t. [16], we consider time preference in the dynamic
constraints of the MILP formulation thanks to the developed
framework, including ESS and PV. Some literature solutions,
e.g. [20], [21], that exploit these two technologies and a
MILP formulation, used only a Fixed or Objective choice
method.Their formulation turns loads on exactly once per day.
Instead, in pursuit of reality, our users decide whether to use
an appliance daily. This dynamism has been achieved thanks
to the proposed framework, resulting from the combination of
MOSAIK - a co-simulation platform that provides for synchro-
nisation - with AIOMAS - an agent-based model that allows
having a distributed system. Due to the heterogeneity of the
agents, a MAS is the right solution to model independent enti-
ties with different objectives. MOSAIK enables more complex
simulations can be performed, even distributed across different
internet-connected computational resources (i.e. servers and
computers). Instead, w.r.t. the problem analysed, from the
literature it does not emerge that other solutions consider all
the above mentioned heterogeneous aspects combined in a
single simulation framework. Thus, the scientific contribution
of the paper is twofold: i) a novel agent-based framework to
evaluate day-ahead DSM strategies following a co-simulation
paradigm; ii) modelling social and psychological theories
of a realistic population and evaluating the acceptance of
prosumers to a DSM program and its possible diffusion. Con-
cerning the first contribution, the framework has been designed
to be agnostic to the specific DSM strategy to be simulated.
Hence, it can be seen as a virtual environment (or virtual box)
where DSM strategies can be easily replaced one with another.
As for the second contribution in our view, there is a gap in the
simulation tools in literature in modelling the user social and
psychological behaviour, which would contribute to a greater
understanding of the forthcoming distribution network and the
evaluation of possible business models.

As highlighted in Table I, this work is a significant extension
of our previous work [22], as detailed in the following.
Cognitive processes have been modelled thanks to social and
behavioural theories, which include Relative Agreement (RA),
Theory of Planned Behaviour (TPB), Small World Network
(SWN) and Diffusion of Innovation Theory (DOI). To apply
these theories, we characterised each prosumer by a larger
number of parameters. Therefore, the factors that affect the
sign of the contract discovered in the surveys have been
considered in the TPB. Furthermore, the influence that people

have on the behaviour of other users has been considered
either in the sign of the contract or - to a lesser extent -
in everyday behaviour. To simulate realistic interactions, the
SWN has been considered since a prosumer meets with major
probability who lives in the nearby area, but it is also a friend
with distant people. Then, the possible effects of the diffusion
of a DSM program have been studied by comparing results
with DOI. Last but not least, the number of families considered
for the optimisation has been increased from 1011 to 10046
to perform more realistic simulations and evaluate the impact
in a wider and more lifelike scenario.

To sum up, w.r.t. the literature solutions, we did exhaustive
research of existing surveys to model upstream cognitive
processes as realistically as possible. Thus, we simulated
the sign of the DSM contract to test the consequences of
a pleased or unappreciated program in the EC. Following
what was discovered, we proposed a program where on a
virtual application the prosumers communicate the day before
when they want to use certain appliances and the aggregator
can shift these loads in liked time slots after confirmation
from prosumers. We try to join the user needs, i.e., [8], with
the Acceptance Learning Algorithm (ALA) presented in our
previous work [22] that learns user accepted shifts based on
the answer it collects when there is a request. The users’
acceptance has been modelled considering the user profiles
identified in the survey conducted in [18].

In a nutshell, the main contribution of the paper is to
provide a tool that includes the psychological and social
aspects to simulate future smart grids. To achieve this goal,
the parameters that influence the behaviour of the user had
been first identified and then modelled in the framework.
The framework has been tested using our previously proposed
DSM program [22].

III. SOCIAL AND BEHAVIOURAL THEORIES

With the aim of modelling properly the user, we selected
social-psychological theories widely used to explain people
behaviours. In our view, those selected in [31] represent a
comprehensive subset of the theories used for agent based
modelling, which are particularly suitable for the problem
faced in this article since they simulate well the psychological
mechanisms described in the surveys. The rest of this section
gives a brief overview of these theories.

A. The Theory of Planned Behaviour

Mengolini et al. [32] suggest that the Theory of Planned
Behaviour is one of the most influential attitude-behaviour
model, easily expressible with a mathematical model.

According to TBP, the way of acting of each individual
depends on three independent attributes: i) Attitude Toward
the Behaviour (att) - “the degree to which a person has
a favourable or unfavourable evaluation or appraisal of the
behaviour in question” [33], thus, people approval/disapproval
in acting in a certain way; ii) Subjective Norm (sn) - “the
perceived social pressure to perform or not the behaviour” [33]
and iii) Perceived Behavioural Control (pbc) - “the perceived
ease or difficulty of performing the behaviour” [33], factors
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that increase or reduce the perceived difficulty of performing
a behaviour. The relative importance of the attributes in
predicting the intention varies according to the situations and
personal beliefs. Thus, att is influenced by behavioural beliefs
and sn is affected by normative beliefs. Control beliefs have
impact on the pbc. The weighted linear combination of att, sn
and pbc forms the Behavioural Intention (bi, Eq. 1).

bi = wattatt+ wsnsn+ wpbcpbc (1)

It indicates how much a person is ready to take action. Indeed,
from bi derives the actual Behaviour (b) in Eq. 2.

b = wbibi+ wpbc′pbc (2)

B. The Relative Agreement

Relative Agreement well simulates opinion dynamics thanks
to two parameters:

• opinion yi with a value between [-1,1], where the positive
extreme may represent a person wholly in favour of a
certain idea, while the negative one an opposite view.

• uncertainty ui - the level of confidence in the opinion in
(0,2), the smaller the values, the higher the confidence.

These parameters can be visualised as a segment with the
opinion value plus/minus the uncertainty. When individual
i interacts with another one, depending on how much the
confidence intervals overlap, i may influences individual j.

hij = min(yi + ui, yj + uj)−max(yi − ui, yj − uj) (3)

If the overlapping part hij (Eq. 3) is larger than ui, xj and uj

are modified (Eq. 4-5):

yj = yj + µ[(hij/ui)− 1](yi − yj) (4)

uj = uj + µ[(hij/ui)− 1](ui − uj) (5)

A high value of the ”learning rate” µ increases the speed of
population convergence.

C. The Small World Network

Small-world networks model well real-world networks. As
pointed out in [34], the properties of a SWN graph are: i)
high clustering coefficient - sub-networks with edges between
almost all vertices - and ii) small characteristic path length -
the small average distance between two nodes.

This network topology lies in between a completely random
topology - small path length and small clustering coefficient -
and one fully regular - large path length and large clustering
coefficient. To obtain a SWN, starting from a regular topology,
some edges should be rewired randomly with probability p.

D. The Diffusion of Innovation Theory

The Diffusion of Innovation Theory (DOI) developed by
Rogers explains how an idea perceived as new by people
spreads through the population [35], i.e. the time at which
different people adopt a ”new” idea. Besides the concept of
innovation, other key terms are the communication channel,
the time aspect, the social system.

Each individual follows a 5-step process: i) it becomes
aware of the idea; ii) it develops a positive/negative attitude
towards the idea; iii) it may adopt the innovation; iv) the inno-
vation is “used”; v) it evaluates the choice made, confirming
or not its decision.

The population is split into groups sorted by time of
adoption. The rate of adoption is the ”speed with which an
innovation is adopted by members of a social system” [35].
The cumulative distribution is an S-shaped curve.

IV. MULTI-AGENT SYSTEM IMPLEMENTATION

In this section, we examine in-depth the selected agents, the
interactions among each pair of agents and the models.

A. The agents and interactions

Agents - the entities endowed with intelligence - are re-
sponsible to manage the resources (e.g. ESS, load), which are
treated like models. Therefore, the proposed system is made
up of three agents as follows:

i) Prosumer Agent. All the Prosumer Agents belong to the
EC benefitting from the usage of PV and ESS. At its core, the
Prosumer Agent implements the TPB (that models the sign of
the contract) and the RA, talking only to its friends, selected
thanks to the SWN (see Section III). Thus, each Prosumer
Agent has its own opinion on the proposed DSM program.
The heterogeneity of the population has been considered
thanks to a set of attributes that assumes different values for
different prosumers. Indeed, the user is also characterised by
a certain level of education and by the family size from which
the related energetic load profile is derived. Therefore, each
Prosumer Agent owns a fair amount of appliances. Moreover,
different Prosumer Agents have different tolerances to delay
an appliance that depends on the discomfort perceived;

ii) Aggregator Agent. The Aggregator Agent manages the
battery banks and the PV generation, which are considered as
resources owned by the whole community. It implements the
DSM program. Thus, for those who signed the DSM contract,
it optimally shifts the appliances of the Prosumer Agents. In
order to have a win-win situation for both prosumers and
aggregator, it learns prosumers’ tolerance thanks to the ALA
(see Section IV-E);

iii) Market Agent. It has no intelligence and it just knows
the day-ahead market price of the energy.

The possible interactions are:
i) Prosumer Agent to Prosumer Agent (P2P). They exchange

opinions on the DSM program via the RA. Thus, they can
influence the acquaintances with their opinions, fostering or
hindering the diffusion of the DSM program;

ii) Prosumer Agent to Aggregator Agent (P2A). Prosumer
Agents - who sign the contract - communicate the planning
of shiftable loads for the day after. They also respond to
the request from the Aggregator Agent to shift the loads. It
is supposed that the total load profile curve of all Prosumer
Agents is known one day in advance;

iii) Market Agent to Aggregator Agent (M2A). The Market
Agent communicates one day in advance the next 24-hours
energy prices to the Aggregator Agent.
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B. The available resources

The models have been implemented for the resources listed
in the following:

i) Prosumers’ Loads. The load curves of each Prosumer
Agents have been generated using the model developed by
Bottaccioli et al. [36], which generates both the load profile
for the single appliance and the total demand curve. Moreover,
the appliances have been divided into shiftable - if their use
can be delayed - and not-shiftable. We considered shiftable
the washing machine and the dishwasher. Instead, appliances
such as the television or lights are not-shiftable;

ii) Expected PV. The PV production is estimated following
the methodology developed in our previous work [37]. For
simplicity, we suppose that the forecast is 100% correct;

iii) Battery. For simplicity, batteries are considered as a
single virtual battery with a total capacity equal to the sum
of capacities of all the batteries in the systems. A simplified
empirical model with a constant efficiency has been used as
done in [20], [21];

iv) Market. Market information is available online as open
data. Then, taxes, system and network charges can be added.

C. The EC simulation

In this Section, we present the main steps performed during
a simulation to better understand the working principle of the
system, see Fig. 1.

STEP-1: The first day of the month, the Aggregator Agent
asks the Prosumer Agents whether they want to sign the DSM
contract for one year. The answer of Prosumer Agents is
modelled with TPB. If Prosumer Agents join the program,
they undertake to use an imaginary application where if they
want to use a shiftable appliance they have to send the hour
(time slot) at which the appliance should be turned on the next
day. Instead, all the appliances belonging to those who did not
sign the contract will be switched on by the users according
to preferences. This step determines which appliances will be
considered as potentially shiftable by the aggregator. It is a
P2A interaction.

STEP-2: At 9 p.m. the Aggregator Agent is informed on
the market price (M2A interaction), the foreseen production
of PV panels and load curves of prosumers (P2A interaction).
The Prosumer Agent who signed the contract send both the
total load curve and the dis-aggregated curves of the shiftable
appliances.

STEP-3: At 11 p.m. two optimisations are performed. The
first one (1’ OPT) is computed considering the total load
curves, thus turning on the appliances exactly when users
want to. The objective is to minimise the cost considering
the different sources (PV, ESS, from/to the grid). The ob-
tained cost represents the worst case. The second optimisation
(2’ OPT) gives the opportunity to shift loads in the best time
slot allowed, according to the information known up to that
moment. Then, each Prosumer Agent evaluates the proposal
and communicates the decision to the Aggregator Agent (P2A
interaction). If it accepts, its loads are turned on according to
Aggregator Agent decisions. Otherwise, the loads are turned
on exactly when the Prosumer Agent wants. Each appliance

is considered individually. This step increases the information
of the Aggregator Agent on user acceptance.

STEP-4: A third optimisation (3’ OPT) - with the load
curves decided in Step-3 - i.e. according to the answer of
prosumers - is performed. This step determines the actions to
be taken during the day after, e.g. when to charge the battery.
This optimisation computes also the actual cost.

STEP-5: The Prosumer Agents may talk to each other
during the day, fostering or hindering the diffusion of the DSM
program. The exchange of opinion is simulated thanks to RA.
Therefore, it is a P2P interaction. It has been supposed that
they talk about the DSM program experience twice a week,
but this value can be easily configured.

D. The Prosumer Agent

In line with what was reported in the surveys [8], [24]–[26],
the key parameters chosen to characterise the prosumers are:

i) Opinion. Each Prosumer Agent has its own opinion on
whether it considers more important comfort or price. This
coefficient is strictly linked to an opinion in favour of the
DSM or not, since a prosumer who cares more about money
is prone to join the DSM program. The opinion assumes a
value between [-1,1], where the positive extreme represents a
Prosumer Agent that only cares about price, while ”-1” means
that the Prosumer Agent is only interested in its comfort. A
zero value means that it is neutral. The opinion of an individual
Prosumer Agent can change according to the virtual discussion
with other Prosumer Agents, modelled through the RA. The
individual opinion can also evolve if the Prosumer Agent likes
the proposed shift or not - i.e. the opinion becomes more
favourable or more contrary, respectively. Indeed, if a rational
user joins the DSM program, it answers affirmatively when it
is not bothered, thus it cuts down on the energy costs and it
should be satisfied. The opinion is the primal motivation that
drives people to take part in a DSM program. It is the att
parameter in TPB and has a great influence;

ii) Level of Confidence. It is the uncertainty or level of
belief in the opinion of the RA. It is difficult that who has
a neutral opinion on the DSM program, strongly believes in
it. According to Schiera et al. [31], the level of confidence is
formulated as:

−2 · (opinion2 − 1) (6)

iii) Price. The Opinion is translated into a price coefficient
in the range [0,1].

pricecoeff = (opinion− (−1)) · 0.5 (7)

iv) Comfort. It is complementary to the Price;
v) Geographic Coordinates. They are the x and y co-

ordinates of the house where the Prosumer Agent lives in.
They influence the creation of the Social Circle. Basically, if
prosumers live in the same area, they have major opportunities
to meet and chat. The coordinates of the centroids of buildings
can be used for calculating the distance among all apartment
blocks as:

dist =

√
(xhome − xj)2 + (yhome − yj)2 (8)
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Fig. 1. The agents, the models, the flowchart (with a brief description) and the interactions that take place at each step.

where xhome and yhome are the latitude and the longitude of the
considered home, while xj and yj are those of the j-family;

vi) Social Circle. It is composed of friends and acquain-
tances who the Prosumer Agent can meet under the SWN;

vii) Family Size. It is one of the pbc inputs for TPB.
Following the logic described in Section II, large families have
a better chance to save up. Theoretically, on average, they
have more appliances that could be shifted. Thus, they might
be more interested in participating in the DSM program. The
coefficients used are shown in Table II

viii) Trust. It is a binary value to indicate the Prosumer
Agent trust (1) or un-trust (0) in the energy provider. It favours
or hinders participation. It is a pbc input.

ix) Education. It is the sn input. The possible values it
can assume are shown in Table III. We supposed that those
who have a higher level of education have also a higher
education on energy. Moreover, it is more informed about
environmental problems and possible strategies to contribute,
or it has a higher knowledge of its energy consumption and
interest in reducing energy costs. Furthermore, it could have
a strong propensity towards technology and new ideas related
to it. In other words, being more conscious means being more
influenced by government/local action plans and news;

TABLE II
FAMILY SIZE

No. Normalised
1 0.00
2 0.25
3 0.5
4 0.75
>5 1

TABLE III
EDUCATION

Education Normalised
Primary School 0.00
Middle School 0.33

Secondary School 0.66
University 1

x) µ. It is the learning rate of the RA. It is equal for
everyone. It weights the influence that a Prosumer Agent has
on the others in exchanging opinions;

xi) Acceptance. It indicates the maximum acceptable delay.
Many previous works, e.g. [38], [39], use a dis-utility function
to model the dissatisfaction derived from the delay of the usage
of an appliance. The increase of the shift from the desired time
slots translates into an increase in value of the dissatisfaction,
similarly to what emerges for some users of the survey in [18].

In [40], it is modelled as a convex, but not strictly convex
function. Thus, there might be no dissatisfaction at all for
small shifts, but then significant dis-utility for larger shifts.
We model it as the square difference between the desired and
the proposed start time normalised following Eq. 9.

Dissat(tprop) =

(
tdes − tprop

96

)2

(9)

where the difference between desired and proposed is in
number of time slots, while 96 is the number of slot in a day.
The level of tolerance after which the user cannot stand the
delay and refuses the proposal made by the Aggregator Agent
is modelled as a threshold T- different for each Prosumer
Agent - w.r.t the dissatisfaction function, i.e. high level of
annoyance in [18]. Before that value, which corresponds to
a certain amount of delay, the user accepts the proposal made
by the Aggregator Agent. Moreover, we took the following
assumption. For each Prosumer Agent, the threshold T is not
static: it varies a little depending on the opinion on the DSM
program (Eq. 10), where Tbase is the fixed part of T.

T = Tbase + opinion · 0.01 (10)

The terms introduced above are graphically represented in
Fig. 2.

Fig. 2. The dissatisfaction curve and the related terms

When the user realises that the DSM program is rewarding
it, the prosumer may be more prone to make a little effort.
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Instead, if the mechanism is not working, it is less willing
to contribute. Indeed, the user experience may affect user
behaviour. Furthermore, since the opinion is influenced by the
RA, the prosumer’s friends have a little weight in the decision
of the single individual, i.e. a social pressure.

E. The Aggregator Agent

The Aggregator Agent is the central entity responsible for
battery and PV systems. It learns the acceptance of users and
performs the three optimisations described in Section IV-C.

1’ OPT and 3’ OPT find the minimum cost without shifting
loads. Thus, they take into account the Levelised Cost of
Energy (used to compare different methods of electricity
generation) of the PV ( Cpv), the battery (Cdisch ), the cost
of buying energy from the grid ( Cfrom), the gain derived by
the sale of the surplus of energy to the grid (Cto) and P, which
is the corresponding amount of power. This is formalised in
Eq. 11, which aims at finding the best strategy for the day after.
Thus, it suggests the amount of power that must be taken from
or given to the grid at time t (Pfromt and Ptot, respectively)
and discharging power (PDbatt) of the battery at time t.

min
96∑
t=1

δ · [Cpvt PVt + Cfromt Pfromt

+Cdischt PDbatt − Ctot Ptot] (11)

where δ is the time interval duration. Since the 2’ OPT has
the formulation of the other two with more constraints, the
MILP formulation will be described once for the 2’ OPT
optimisation.
♦ ESS Constraints:

Ebatt = Ebatt−1 + δ · eff · PCbatt
−PDbatt · δ/eff ∀t > 0 (12)

PCont + PDont 6 1 ∀t (13)

PCbatt 6 PCon · Cmax∀t (14)

PDbatt 6 PDon ·Dmax∀t (15)

Ebatt 6 capacity ∀t (16)

Ebatt > minCharge ∀t (17)

Ebatt=1 = Ebat init (18)

Ptot 6M · (1− PDont) ∀t (19)

Equation 12 models the behaviour of the battery. Ebatt is
the amount of energy in the battery at time t, that depends
on Ebatt-1, PDbatt and PCbatt, i.e. the charging power of the
battery at time t. The battery cannot be simultaneously charged
and discharged (Eq. 13), where PCont and PDont are binary
variables indicating if the battery is charging or discharging
at time t, respectively. The ESS must fulfil the maximum
charge/discharge rate (Eq. 14-15, respectively). The energy
stored in the battery must be lower than the maximum capacity
and higher than the minimum charge (Eq. 16-17, respectively).
The energy stored at the beginning of a new day (t=1) must

be equal to the energy stored at the end of the previous day
(t=96, Eq. 18). Moreover, it cannot be discharged to sell its
energy to the grid (Eq. 19).
♦ User request:

up∑
f=low

xijf = requestij ∀i, j (20)

In Eq. 20, Low and Up bounds for each appliance usage
are defined. Without the prosumer request (i.e. requestij=0) the
appliance is not turned on. xf

ij is a binary variable that selects
the daily load profile of the appliance i of the customer j.
♦ Balance Constraint:

NOTshiftt +

3∑
i=1

N∑
j=1

M∑
f=1

xijf Lshiftij =

= PVt + Pfromt − PCbatt + PDbatt − Ptot ∀t (21)

Power balance must be respected (Eq. 21). Lshiftij is a dic-
tionary that contains the possible allocation of the consumption
vector of each shiftable appliance i, of each prosumer j. It can
be viewed as a cycle matrix.

In Eq. 20, the lower and upper time slots allowed for the
shift, dynamically change thanks to ALA, the algorithm pre-
sented in our previous work [22]. ALA learns the acceptance
of the user based on the household’s answer using an explore-
exploit mechanism. According to this algorithm, there are 25
possible actions, including “0” when no shift is needed, “±1”
when the shift is between plus/minus one hour, “±2” and so
on up to “±24”. ALA goes through the following steps (see
Fig. 3):
Pre-action: A decreasing ε-greedy algorithm has been chosen
to select the pre-action. Therefore, 2’ OPT receives in input
a vector containing time slots in between a number randomly
large for a fraction ε of the requests (Explore). Otherwise, if
the algorithm Exploits, the vector in between the shift (action)
that gives the major reward is chosen as input (Fig. 3, top-left).
Action: 2’ OPT decides the shift that will be proposed to the
Prosumer Agent. It is the “action” that is evaluated (Fig. 3,
top-right).
Prosumer evaluation: Each Prosumer informs the Aggregator
Agent of the decision according to its own threshold (Fig. 3,
bottom-right).
Update: In case of a refusal, the action is penalised. Otherwise,
that action is rewarded proportionally to the introduced delay
in such a way that larger time shifts receive higher rewards R
(Fig. 3, bottom-left). New answers are weighted more w.r.t.
previous since the prosumer’s opinion is not static. Thus,
information on the chosen action is updated according to
Eq. 22.

Qn+1 = Qn + α(Rn −Qn) (22)

where Qn is the estimated value after its n-1 selections, α is
a constant step-size parameter and Rn is the nth reward [41].
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Fig. 3. The Acceptance Learning Algorithm

V. CASE STUDY AND RESULTS

To test the whole structure and analyse the proposed al-
gorithm, the city of Turin - a city in the north of Italy -
has been chosen as our case study. Specifically, part of the
neighbourhood ”Center” has been considered (Fig. 4).

Fig. 4. The selected area

Using the cadastral map, the centroids containing the lati-
tude and longitude of each building have been extracted from
a shapefile. In addition, using data provided by the Italian
National Institute of Statistics (ISTAT) [42], the number of
families per building has been distributed proportionally to
the square meters of the buildings. Non-residential buildings
have been excluded. 10046 residential households have been
considered.

Using ISTAT data, each household has been given a certain
level of education and family size. Based on the family size,
a load profile [36] has been associated. Different load profiles
contain a diverse number of appliances. Thus, a prosumer may
own a washing machine or a dishwasher or both. Since all the

Prosumer Agents belong to the EC, we supposed that only
very few of them have the trust coefficient equal to 0, i.e. 4%.

At the beginning of the simulation, each Prosumer Agent’s
opinion is picked from a normal distribution truncated to the
range [-0.6,0.6] (µ=0, σ=1/3). We made this assumption since
it is uncommon that people have a really strong opinion on a
new DSM program just introduced. Thus, too strong opinions,
either favourable or contrary, have been excluded.

The amount of shifts accepted has been modelled with a
normal distribution (µ=3, σ=1) truncated to the range [1,5]
hours. As already mentioned, for a small shift there could be
no dissatisfaction at all, but a significant discomfort for larger
shifts. Since we have information on real users only up to ±3
hours, we do not know if the user profile that is not bothered
at all in ±3 would behave as described in [40] or would be
comfortable in shifting the appliance usage at any time during
that day. Thus, in this scenario, we imagined users that accept
up to 5 hours of delay.

To select Prosumer Agent’s friends, Prosumer Agents have
been first ”connected” to the spatially closest Prosumer Agents,
then the local connections have been replaced with random
individuals with probability p.

Table IV lists the value chosen for the coefficients of the
different social theories. We chose reasonable values consistent
with the information found in the surveys.

TABLE IV
COEFFICIENTS

Coeff. Theory Value Motivation
µ RA 0.1 avoid that opinions converge too fast
b TPB ≥ 0.67 arbitrary

watt TPB 0.75 primary motivation
wsn TPB 0.15 secondary motivation
wpbc TPB 0.1 secondary motivations
wbi TPB 0.9 major factor

wpbc’ TPB 0.1 secondary factor
p SWN 0.06 inside the range for the rewiring

The day-ahead market prices have been taken from Gestore
Mercati Energetici - the Italian Power Exchange - of 2013
(NORTH) [43], adding system and network charges [44]
and fees (excise tax and VAT [45]). The period goes from
January 1st, 2013 to December 31st, 2013. We supposed that
each Prosumer Agent is equipped on average with a 1 kW
photovoltaic system. The Levelised Cost of Energy has been
set to 0.13 e/kWh [46], while the photovoltaic energy in
surplus is plausibly sold to the grid for 0.1 e/kWh. The ESS
cost is 0.12 e/kWh.

We simulated an entire year with a 15 minutes time step.
Results are presented in Fig. 5-11.

At the beginning of both simulations, 20,42% of prosumers
sign the contract. Later on, if ALA is not used, i.e., if the shifts
asked do not take into account the preferences of the users, the
participation reaches only 21.08% in the first months and then
no further increase in the level of participation is observed.
Instead, with ALA the participation curve has a shape similar
to the one described by Roger (Section III-D). With ALA,
98.36% had signed the DSM contract by the end of the year.

This is also highlighted in the opinion trend in Fig. 6. With
ALA when an Exploration phase for a new customer starts,
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Fig. 5. Participation evolution

the opinion coefficient may decrease a little bit, but it increases
shortly after towards a positive one.

Fig. 6. Opinions. Preference-aware

Fig. 7. Opinions. Preference-unaware

Starting from the same situation, Fig. 7 shows that during
the first months Prosumer Agents are uncertain, while at the
end the opinion is in between neutral and a contrary one.

Fig. 8 reports the acceptance rate. Each month new people
join the program, and a Learning phase starts for them. At
first, the DSM subscriptions do not increase that much, thus
ε (the amount of exploration) for those who joined at the

beginning decreases down to 10% from the 5th month and
Prosumer Agents receive more and more requests for shifting
the appliance usage of an amount they like. Then, the majority
starts to sign up - and their strong Exploration phase starts
as well. In any case, the acceptance rate oscillates around
80%. In the end, when few prosumers still have to sign the
contract, this rate increases. Without ALA, the acceptance rate
decreases since Prosumer Agents are getting annoyed and they
are unwilling to make an effort.

Fig. 8. Acceptance rate comparison

Fig. 9. Information on a user in January, February and March

Fig. 10. Information on a user in April, May and December
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To understand how ALA works, Fig. 9-10 report an example
of a prosumer that signed the contract on the 1st of January. At
the beginning, there is no information on the user preference
(yellow dots in both figures). During the first months, ALA
collects information on the user. If the user gives a negative
answer the state is penalised with a very small negative reward
(not visible in scale, see red dots in both figures). If a positive
answer is given, that action increases its value (green dots in
both figures). If ALA is in the Exploitation phase, the MILP
problem receives as input the action with the highest value,
i.e. dark green dots in both figures.

The costs obtained per month in different situations are
compared in Fig. 11. The pink curve is obtained before the
implementation of the DSM program. If a preference-unaware
strategy is applied the light blue curve is obtained. Thus,
only very few of those who signed accept the shift and there
are almost no savings. When ALA is not applied, if the
possibility to refuse the proposed shift is not given to the
Prosumer Agents, the results show that the obtained savings
are lower than the one obtained if we adopt a preference-aware
strategy, i.e. grey curve. Thus, it is possible to see, that from
July savings are greater when ALA is used. For the sake of
completeness, the best obtainable cost is also plotted (green
curve). It represents the case where all prosumers have signed
the DSM contract on the 1st of January and cannot refuse the
proposed shift. Considering the selected appliances, it is an
unrealistic case, but it represents the optimal lower bound.

Fig. 11. Savings comparison

VI. DISCUSSION

The proposed co-simulation framework does not just focus
on technical and economical aspects, it also looks at the
evolution of a DSM program and the social-psychological
factors to cover the discussed gap in the literature, testing
different DSM strategies in the future smart grids.

W.r.t. our proposed solution, the obtained results depend
on the input parameters and the assumptions taken. Thus, we
are not claiming that the proposed program would please all
real users. Rather, we provide a tool that links the energy
behaviour to the social dimension, realistically simulating the
possible effects of DSM programs on the population. When the
aggregator starts asking for shifts into the tolerated interval,

the Prosumer Agents - that signed the contract during the first
months of the year - start to be satisfied, influencing the others
positively, who in their turn sign the contract as well. This
mechanism boosts the diffusion of the DSM in the Energy
Community.

However, social interaction might also disincentive the
diffusion of DSM programs. Indeed, the failure of a program
that ignores the preferences is not only the consequence of
requests not liked by the Prosumer Agents, but also by the
negative influence of the few who signed the DSM contract.

The comparison of cost savings in Fig. 11 underlines the
importance of taking into account the preference of users.
Indeed, the preference-aware strategy, i.e. the trend in orange
in Fig. 11, is more profitable than the trend in grey where
the aggregator decides the optimal shifts. Moreover, as shown
in Fig. 6, the Prosumer Agents have all a favourable opinion,
thus they will sign the DSM contract also the year after.

VII. CONCLUSION

Thanks to the existing surveys in literature, we consider
upstream cognitive processes that may lead to the signing of
a DSM program and we model accurately some aspects of the
Prosumer Agent. In particular, we investigate in our simulated
EC the effectiveness of the proposed strategy that results from
the information discovered in the surveys.

The participation, the effects of positive or negative word-
of-mouth on Prosumer Agents and savings for the selected
parameters have been shown for one year. Results demonstrate
the strong impact of the opinion on participation. It has been
stressed the importance of keeping in mind user acceptance.
Indeed, there could be a segment of the population that is
comfortable with a central entity in full control of appliances,
thanks to which the maximum savings (considering only
users who signed the DSM contract) are obtained. But, if
another large amount of individuals does not appreciate this
mechanism, we will end up saving much less than if almost
all the community participate with less flexibility. Thus, it
might happen to have a higher initial financial gain if we
consider only the utility profits, but this will translate into
lower economical benefits in time. We tried to achieve a win-
win situation where the aggregator maximises its profit and
the prosumers maximise their utility, which is a combination
of monetary gain and comfort.

The presented results are obtained from a realistic simula-
tion scenario where the population has a quite neutral opinion
at the beginning and, then, it is influenced by those who are in
the DSM program. By changing the composition of the pop-
ulation, different types of convergence would be given. But,
the importance of the user preferences is still valid. Prosumer
Agents are simplified models of people, but the whole analysis
paraphrases well the EU recommendations [23].

In future works, the initial annoyance created to the user
will be avoided and grid constraints will be added.
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