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High Energy and Thermal Neutrons Sensitivity of
Google Tensor Processing Units

Rubens Luiz Rech Junior∗, Sujit Malde†, Carlo Cazzaniga†, Maria Kastriotou†,
Manon Letiche‡, Christopher Frost†, and Paolo Rech∗§

Abstract—In this paper we investigate the reliability of
Google’s Coral Tensor Processing Units (TPUs) to both high
energy atmospheric neutrons (at ChipIR) and thermal neu-
trons from a pulsed source (at EMMA) and from a reactor
(at TENIS). We report data obtained with an overall fluence
of 3.41 × 1012n/cm2 for atmospheric neutrons (equivalent to
more than 30 million years of natural irradiation) and of
7.55×1012n/cm2 for thermal neutrons. We evaluate the behavior
of TPUs executing elementary operations with increasing input
sizes (standard convolutions or depthwise convolutions) as well
as eight CNNs configurations (SSD MobileNet v2 and SSD
MobileDet, trained with COCO dataset, and Inception v4 and
ResNet-50, with ILSVRC2012 dataset). We found that, despite
the high error rate, most neutrons-induced errors only slightly
modify the convolution output and do not change the CNNs
detection or classification. By reporting details about the error
model we provide valuable information on how to design the
CNNs to avoid neutron-induced events to lead to miss detections
or classifications.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are today the most
effective (and efficient) way to detect an object in a scene.
By applying various filters to the input image, convolutional
layers extract information (feature maps) that is then passed
to the downstream layers to detect and/or classify objects. The
number of layers, the kind of filter applied, and the structure
of the CNN is engineered to achieve the desired accuracy
and efficiency. The prediction process is highly computational
demanding, as it is necessary to apply several filters to each
feature map. The filtering process is mapped into a matrix
multiplication operation, which can be efficiently executed
in parallel accelerators, such as Graphics Processing Units
(GPUs) or Field Programmable Gate Arrays (FPGAs).

To ensure very high accuracy along with real-time detection
(at least 40 frames per seconds must be processed), both
being fundamental for autonomous vehicles, it is necessary
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to execute CNNs on highly performant, costly, and power
hungry devices, such as the latest GPUs or very big FPGAs.
Nevertheless, the field of adoption of CNNs is not limited
to self-driving cars. Many other applications, with less strict
accuracy and timing constraints, can benefit from CNNs
execution. This is the case of Internet of Things (IoT), smart
homes, or smart cities, in which detecting or identifying a
relatively low number of objects can significantly improve the
user experience and the overall system features. In these appli-
cations the cost and power consumption must be minimized,
while still guaranteeing sufficient accuracy.

Lately, vendors have developed low-cost accelerators for
CNNs execution, named EdgeAI devices, such as NeuroShield
or Google Coral Tensor Processing Units (TPU). These
EdgeAI devices are only able to execute elementary operations
(i.e., convolutions and some other matrices operations) in low
precision (16-bit floating point or even 8-bit integer). Coupled
with a good software framework (e.g., Tensor Flow) that runs
on a host device, EdgeAI devices significantly reduce the
time and power consumption of the convolution, which is
the most computational demanding operation of CNNs. As
EdgeAI devices are likely to be used at scale and in distributed
systems, it is fundamental to investigate their reliability, in
particular their neutron-induced error rate. Preliminary studies
showed that, despite being small, EdgeAI devices have a not
negligible neutrons- or protons-induced error rate [1], [2].

In this paper, we investigate the reliability to neutrons
of Google Coral TPU. Unlike previous works on EdgeAI
reliability, we deeply investigate the fault model on the main
elementary operations (standard and depthwise convolutions).
Moreover, we compare the error rate and the prediction failures
of eight CNNs configurations: SSD MobileNet v2 and SSD
MobileDet, trained with COCO dataset, as well as Inception
v4 and ResNet-50, trained with ILSVRC2012 dataset.

To have a broad evaluation, we test the Coral TPU with both
high energy neutrons, at the ChipIR facility, and with thermal
neutrons, at the EMMA facility in UK and at TENIS facility at
Institut Laue-Langevin (ILL) in Grenoble, France. While the
high-energy neutrons cross section of the Coral TPU is much
higher than the thermal neutrons cross section, regardless of
the type of neutrons, the results are consistent in the sense
that depthwise convolutions are shown to have higher error
rate than standard convolutions and SSD MobileDet is less
reliable than SSD MobileNet V2.

The rest of the paper is organized as follows. In Section II,
we provide a solid background on CNNs and on the hardware
and software architecture of the Coral TPU, useful to under-
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stand the experimentally observed behaviors. In Section III,
we describe the high energy and thermal neutrons setups
we developed and the software (convolutions and CNNs)
we test. Experimental results are presented and discussed in
Section IV, highlighting the implications for future hardening
solutions for Coral TPU, while Section V concludes the paper.

II. BACKGROUND

In this Section, we review the main characteristics of CNNs,
the architecture of EdgeAI devices (focusing on the Coral
TPU), and the software framework used to train and execute
CNNs on EdgeAI accelerators.

A. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are today widely
adopted to perform object detection [3]. One of the key steps
when using CNNs for object detection is convolution. A CNN
is a sequence of layers of different kind, each applying a
specific function to the input frame (or feature map).

Convolution layers are the computing core of CNN. By
applying filters, convolution layers extract information from
the input frame that is then processed to identify objects.
More than 80% of the computation in a CNN is dedicated to
convolution, which is why most device architects are focusing
on making convolution more and more efficient, producing
novel devices such as the Coral TPU.

Lately, it has been shown that the efficiency of CNNs
execution can be significantly improved approximating op-
erations [4] or hardware component [5], [6] and it has
been shown that the same object detection accuracy can
be achieved, through re-training, representing data in 16-bit
floating-point [7], 8-bit integer, or even in binary values [8].
Most low-power accelerators take advantage of reduced-
precision operations to reduce the computing power required to
run CNNs. The Coral TPU we used in this study, for instance,
executes operations in 8-bit integer.

B. EdgeAI accelerators

EdgeAI accelerators, like NeuroShield and Google Coral
TPU, are low-power and low-cost devices designed to per-
form heavy machine learning computations in the context of
embedded applications.

Figure 1 shows the high level schematic of the Coral TPU
architecture which is mainly composed by a systolic array
fed by a large set of input buffers (not protected by ECC).
The array outputs the product of the model weights and each
layer’s input into the activation unit, where the partial sums are
accumulated and the activation function is applied. Therefore,
this device can perform a set of operations, mainly convo-
lutions, which are a fundamental block for machine learning
applications, in an extremely power- and performance-efficient
manner, i.e., the TPU delivers 2 TOPS per watt.

For minimizing data transfers and storage and speed up
calculations, all data that is computed and stored within the
TPU is represented as 8-bit unsigned integers (UINT8). The
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Fig. 1. High level schematic of the Coral Edge TPU architecture. Adapted
from [9].

device is capable of performing the quantization and de-
quantization steps for interfacing with the host floating-point
representations.

Since Coral TPU is simply an accelerator, it must be
connected to a host device. Google provides two versions of
the accelerator: one that interfaces with the host via PCIe and
the other uses USB 3.0. On our setup, we have a Raspberry
Pi 4 as host, connected to the Coral USB accelerator.

The software layer of the Coral TPU is based on Tensor-
Flow Lite, which is a light version, optimized for embedded
devices, of the TensorFlow framework developed by Google
for machine learning [10]. Most of the development effort is
very similar as if the ML model would run on a normal CPU,
however there is an EdgeTPU compiler that is responsible for
deploying the TensorFlow Lite model targeting the Coral Edge
TPU architecture.

C. CNNs Reliability

CNNs have already been shown to be particularly sus-
ceptible to transient faults [11], [12]. Through beam ex-
periments and fault-injection, it has been demonstrated that
the corruption of each layer has a different probability of
affecting the CNN output, being the convolution layer the
responsible for most observed errors [11]. The corruption
of a layer or an operation inside a layer can be masked
without affecting the output, can reach the output but keep the
classification/detection unaltered, or can spread and modify the
output in a way that impact the CNN functionality. Thanks to
the intrinsic approximate nature of CNN computation, most
of the errors do not turn into system failures, i.e., they do not
affect the CNN accuracy. This has been proved for GPUs [11],
FPGAs [13], and NeuroShield devices [1], [2]. Unfortunately,
despite the intrinsic approximate nature, the misdetections and
misclassifications rates in CNN executed in modern computing
devices are still too high to be employed in safety-critical
applications [11], [12]. As discussed in Section III-A, we dis-
tinguish between critical and tolerable errors in CNN execution
on the Coral TPU. Additionally, we investigate the corrupted
element distribution at the output of atomic convolutions.
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The Coral TPU, to improve performances, executes op-
erations in 8-bit unsigned integers. It has been shown that
reducing operation precision, while bringing unquestionable
benefits to efficiency, has the drawback of increasing the
(negative) impact of a fault in the operation output [14]. For
CNNs, precision reduction turns into a higher probability for
a fault to modify detection. It has been shown that a fault in
a FP16 CNN has ∼2x the probability of causing misdetection
than a fault in a FP32 CNN [15]. Part of our contribution is
to evaluate whether the execution of CNNs using 8-bit integer
is harmful for the system reliability.

Recently, some works have discussed the reliability of
EdgeAI devices to neutrons and protons, focusing specifi-
cally the Arduino NeuroShield [1], [2]. To the best of our
knowledge, this is the first work presenting experimental data
on Coral TPU devices error rate. Previous studies showed
that the error rate of the small EdgeAI accelerators is far
from being negligible (higher than 102 Failure In Time - FIT
rates). Unlike previous publications, we engineered a setup
to test also atomic operations performed by the accelerator
(convolutions) with different sizes and depths (2D and 3D).
This information is useful to deeply investigate the fault model
induced by neutrons.

III. METHODOLOGY

In this Section, we detail the Coral TPU device we test, the
software we run, and the (high energy and thermal) neutrons
beam experiment setups.

A. Hardware and Software

Fig. 2. The Coral TPU aligned with the high energy neutron beam at ChipIR.
The host device, a Raspberry Pi 4, is connected with a 2 meters USB-3 cable
and placed well out of the beam.

Coral Edge TPU is designed to accelerate machine learning
algorithms, especially neural networks. Considering that most
of the deep neural networks are fundamentally convolution op-
erations, the atomic, basic operation of a Coral TPU is indeed
convolution. As a first experiment, we want to evaluate the
reliability of the two types of convolution that are supported
by Coral: standard and depthwise. Standard convolutions are

normal 2D convolutions while depthwise convolutions have
an input composed by multiple channels and each one is
convolved with its respective kernel separately. Since CNNs
usually perform image prediction, in our experiments, the
inputs of depthwise convolutions are always composed of three
channels, as for the RGB colors, and this type is referred
as 3D convolutions. We run tests with squared matrixes of
sizes ranging from 256 to 1,250 (INT8) as inputs and squared
kernels of fixed sizes: 40 for standard convolutions and 20 for
the depthwise ones.

Besides convolutions, we evaluate the reliability of eight
neural network configurations in which we vary the network
architecture, the dataset, and the training methodology. We
consider neural networks that perform the two main machine
learning tasks supported by Coral: image classification and
object detection. In image classification, the goal is to classify
the object in the image, e.g., a dog, a car or a tree, without
indicating the position. Object detection is a more complex
task, as multiple objects in the image have to be located and
then classified.

We consider four different network architectures. Two of
them, Inception V4 [16] and ResNet-50 [17], target image
classification. Both are trained with ILSVRC [18] dataset
and support a wide range of 1,000 different object classes.
The other two, SSDLite MobileDet [19] and SSD MobileNet
V2 [20], perform object detection and are trained with
COCO [21] dataset which embraces 90 classes. The models
for these NNs are based on TensorFlow Lite.

In addition to these four models/configurations, we also
retrain SSD MobileNet V2 with two other datasets: a subset of
the COCO dataset (14 classes) and a subset of the Oxford-IIIT
Pet [22] dataset (2 classes). Our goal is to evaluate whether
and how a reduced number of objects to be detected impact
the device error rate. The retraining process is done with
and without the application of transfer learning technique, in
which the knowledge from another machine learning model is
reused in order to speed up the learning process.

Considering both types and multiple sizes of convolutions,
as well as the different NN configurations, we provide exper-
imental data obtained on 16 benchmarks.

B. Neutron Experiment Setup

Atmospheric neutrons experiments were performed at the
ChipIR facility at the ISIS spallation neutron source of the
Rutherford Appleton Laboratory (RAL), UK. ChipIR [23] is
the reference beamline dedicated to the irradiation of micro-
electronics and it features a high energy neutron spectrum,
as similar as possible to the atmospheric one. The flux with
neutron energy above 10 MeV is 5.4×106n/cm2/s, while the
thermal component (E < 0.5eV ) is 4×105n/cm2/s [24]. The
Coral TPU was positioned 0.8m away from the ChipIR beam-
stop with a collimated beam size of 70×70 mm. A picture of
the Coral TPU at ChipIR is shown in Figure 2. At the position
of the Coral, the average flux was of about 3.9×106n/cm2/s.
We test the device for more than 241 effective hours (without
considering the setup, load input, download output, and reboot
time), resulting in a fluence of more than 3.41× 1012n/cm2.
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Fig. 3. Cross section of the beam profile at TENIS and the error rate for
256 and 1024 standard convolutions normalized to the error rate measured at
the center of the beam. The beam is very stable in an area of 2cm x 2cm for
then decreasing rapidly. If the flux at the center is too high the device can be
placed at the beam edge to reduce the error rate.

When scaled to the terrestrial flux (13n/cm2/h [25]), this
fluence correspond to more than 30 million years of natural
irradiation.

The ISIS neutron source also feature various thermal neu-
trons facilities, such as the equipment materials and mechanics
analyzer (EMMA) [26], that has a line of sight on the water
moderator of the main neutron source. The thermal neutron
beam is achieved from the pulsed neutrons source thanks to
a chopper (a rotating device used to block a portion of the
neutron beam in time) that is synchronous with the proton
pulse, thus cutting the fast neutron portion of the spectrum,
letting through only the thermal component. The thermal neu-
tron flux delivered at EMMA is of about 2.32×106n/cm2/s.
More details about the neutrons spectrum and the flux mea-
surements at EMMA can be found in [26]. The availability
of both high energy (ChipIR) and thermal (EMMA) neutrons
facilities at ISIS is very convenient, as the same setup and
the same devices can be tested back-to-back in both beam
lines, allowing a direct comparisons of the sensitivity of the
same device to two different neutrons spectra. Nevertheless,
considering that thermal neutrons cross section is normally
significantly lower than the high-energy-neutrons one, EMMA
flux might be too low to test small configurations. We have
used EMMA to characterize the TPU configurations with the
higher error rate (MobDet and MobNet CNNs). After more
than 25h of test at EMMA the 1024 convolutions provide only
10s of SDCs, making the characterization impractical.

To measure the thermal neutrons cross section of the TPU
executing convolutions, that would not be possible at EMMA
due to the low error rate, we also perform experiments at
the new Thermal and Epithermal Neutron Irradiation Station
(TENIS) hosted by the Institut Laue-Langevin (ILL). This new
facility aims to replace D50 as a facility where thermal neutron
experiments were conducted at the Platform for Advanced
Characterisation of Grenoble (PAC-G) [27], [28]. A captured
flux of 1.92 × 109n/cm2/s has been measured by Au foil
activation. TENIS beam is a 5x5 cm2 square. As shown in
Figure 3, the flux is very stable in a 2x2 cm2 square for

Fig. 4. Comparison of the neutron energy spectra of EMMA and TENIS.
TENIS has a much higher component of epithermal neutrons.

then decreasing rapidly. The sample was tested initially in the
middle of the beam spot where the flux is well characterized.
In that position the error rate is so high that in few hours
we observed more than 100 SDCs on the smallest convolution
configuration (256). Because of the high flux, in center it is not
possible to test bigger configurations, though. The high flux
of the center position was also problematic as after few hours
the devices died, probably due to the gamma rays induced
Total Ionizing Dose, and we could no longer have it working.
We have then shifted the device at the edge of the beam,
moving it with steps of 1mm from 2.7cm to 3.1cm from
the center. According to the horizontal beam profile shown
in Figure 3, the flux significantly drops starting at 2cm from
the center, being approximatively 1.4 × 107n/cm2/s at 3cm
from the beam center. As shown in the Figure, the error rate
of the 256 and 1024 convolutions, normalized to the error rate
observed at the beam center, follows very well the beam profile
measurement. The expected dose rate in SIlicon at TENIS is
of about 1, 000Gv/h from neutron interactions and 250Gv/h
due to gammas coming directly from the reactor. We do not
observe any Total Ionizing Dose effect during our experiments.

To compare EMMA and TENIS results, normally the
EMMA flux is normalized with the 25meV equivalent flux (the
peak energy at room temperature). The neutron energy spectra
of EMMA and TENIS, shown in Figure 4, can be described,
in first approximation, as a Maxwell-Boltzmann distribution
with a broad peak for thermal neutrons.TENIS, as shown in
the plot, has a different spectral contribution of epithermal
neutrons than EMMA. To compare EMMA and TENIS results,
we convert the “thermal flux” to “25meV-equivalent flux”
(25 meV being the peak-energy at room temperature). The
“thermal flux”, as defined in the JESD89A standard and also
as common practice in nuclear physics, is the integrated flux <
0.4 eV/cm2/s. The conversion factor between “thermal flux”
and “25meV-equivalent flux” is calculated by integrating the
differential flux multiplied by the cross section of B-10 and
divided by the cross section of B-10 at 25 meV. The result for
EMMA is a factor of 0.71.

All experiments are performed at room temperature, using
the standard power and frequency configuration of the Coral
TPU. We have tested a total of 4 TPUs.

As a consequence of the Covid-19 pandemic situation,
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experiments in the UK were performed remotely, thanks to
the tireless and precious help of the ChipIR team in mounting
the setup and granting remote access to the researchers in
Brazil and Italy. Experiments in Grenoble were performed in
person, which gave to the researchers an optimistic feeling for
the close future of radiation experiments.

IV. EXPERIMENTAL RESULTS

In this Section we present neutron experiments data ob-
tained irradiating the TPUs with atmospheric and with low
energy neutrons. We consider both Silent Data Corruptions
(SDCs, i.e., errors at the output) and Detected Unrecover-
able Errors (DUEs, i.e., crashes or hangs). We first discuss
the reliability of atomic operations, i.e. standard (2D) and
depthwise (3D) convolutions and then the reliability of four
different neural networks that were trained with multiple
datasets for a total of 8 neural networks configurations. All
data is reported with 95% confidence intervals, considering a
Poisson distribution.

A. Atomic Operations

Aiming to analyze how faults affect the execution of the
simplest and most light-weighted operations that the TPU can
execute, we run two different types of convolutions: standard
and depthwise. Standard convolution stands for normal 2D
convolutions while, in depthwise convolution, the input has
multiple channels and each one is convolved with its respective
kernel separately. In our experiments, the inputs of depthwise
convolutions always have three channels (as for the RGB
colors) and, because of that, this type is referred as 3D
convolutions. We performed tests with squared matrixes of
varying sizes as inputs and squared kernels of fixed sizes:
40 for standard convolutions and 20 for the depthwise ones.
We choose a kernel size that is both representative (kernel
size is normally much smaller than the feature size) but yet
sufficient to saturate the TPU computing capabilities (a 40
kernel would exceed the TPU computing capabilities for the
3D convolution).

Figure 5 plots the cross sections (SDCs in blue and DUEs
in yellow) for the tested sizes of both convolution types
resulting from the high energy neutrons experiments at ChipIR
and TENIS facilities. Due to the low error rate at EMMA
(more than 5 hours of experiment was needed to observe 1
error), we decide to test the TPU executing convolutions at
TENIS, that provides a 3 order of magnitude higher flux, with
cold moderation of neutrons. The results for size 256 of the
standard convolution algorithm were obtained at TENIS and
are highlighted with a different fill pattern in the left side of
the graph. Depthwise convolution for 1,250 input cannot be
executed on the TPU since it exceeds the device computing
capabilities.

As shown in Figure 5, the SDC cross section increases
with the size of the convolution input. Intuitively, this is
justified as the systolic array becomes more occupied due
to the increasing amount of data that needs to be processed.
On the contrary, the DUE cross sections does not follow this
trend. This should not surprise since, as shown in one of our

previous publications [29], DUEs normally have a component
that depend exclusively on the hardware and not the software
layer. DUEs, then, are biased by the sensitivity of resources
that are independent of the executed code (or input size).

From Figure 5, we observe that, for a given input size,
depthwise convolutions have higher SDCs cross section when
compared to standard convolutions (on average, 179% higher).
Also, the cross sections of 3D convolutions increase with the
input size at a higher rate than the 2D convolutions. This is,
again, related to the fact much more area of the TPU device
is used when processing 3D convolutions.

The cross sections for standard convolutions of size 256,
that were irradiated with thermal neutrons, have the device
positioned in the beam center at TENIS facility. The flux
in this position is too high to test bigger configurations.
Compared to the Conv 500 values obtained during the ex-
periments with high energy neutrons at ChipIR facility, the
cross section at TENIS is about 5 times smaller. This is in
line with previous data on thermal VS high energy neutrons
obtained in various devices [28], [30]. We recall that the
sensitivity to thermal neutrons is strictly related to the amount
of Boron-10 used in the device production, which is normally
a business sensitive information not available to the public.
As observed in [30], the flux of thermal neutrons depends
on various factors, including the environmental conditions. It
is not possible to provide an expected FIT rate for thermals
without knowing the details on the environment surrounding
the device.

Figure 6 shows the geometric distribution of the output
elements that were corrupted during the experiments with con-
volutions at ChipIR. When an SDC is detected we download
the whole output matrix and identify how many elements in
the output are corrupted. When multiple elements are found
corrupted we categorize the corruption based on the spatial
distribution of the wrong elements. When more than one
element is corrupted and these elements sit in the same row or
column, we count a Line error. When the corrupted elements
are distributed in a square (a whole portion of the output matrix
is corrupted), we count a Square error. When we see multiple
corrupted elements that are neither on a Line nor on s Square,
we count a Random error. It is worth noting that we engineered
the experiments (input sizes and flux) not to have more than
one neutron generating an error in one execution, since this
would be an artifact unlikely for a realistic application. Thus,
eventual multiple errors are caused by the spread of the single
neutron corruption to multiple operations and not by multiple
neutrons corruption.

Regardless of the convolution type, we observe that the
distribution is very similar across all sizes. Most of the time, a
single element of the output matrix was corrupted. The second
most frequent SDC geometry is Square, meaning that the
elements corruption occurred within square/rectangular blocks,
followed by Random distribution, in which the position of the
errors does not match any geometric shape. Finally, element
corruptions arranged in a single Line was the least frequent
geometric distribution.

The fact that simple corrupted elements is the more common
distribution for the TPU is in contrast with what has been
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observed for Graphics Processing Units (GPUs) [11], [31],
[32], for which the majority of the corrupted matrices have
multiple corrupted elements. This is due to the different
way matrix multiplication is implemented. On GPUs, matrix
multiplication is executed as a code, with a sequence of
instructions while on the TPU the execution is done with a
single instruction in a systolic array. Executing a sequence
of instruction might, then, lead to a higher spread of the
error in the output. As it has been shown that multiple
corrupted elements in the output matrix are the main cause
for misdetections or misclassifications in convolutional neural
networks [11], the fact that the TPU is less prone to have

multiple output errors than GPUs could be a promising results
for its reliability in executing CNNs.

Additionally, we have observed that the magnitude of the
errors (i.e., how much the corrupted value is different from the
expected one) is, overall, very small. The absolute difference
between the expected and the corrupt element value is, in fact,
exactly one (e.g. the expected value is 80 and the corrupted
one is 81 or 79) in 91% of the observed SDCs. Please recall
that only INT8 operations can be performed on the TPU. Also,
when the error magnitude is greater than one, the difference
with the corrupted and expected value is a power of 2 (i.e.,
a single bit flip usually occurs). This happens regardless of
the convolution type. Again, this is in contrast with data
observed for GPUs, for which the magnitude of the error can
be significantly higher (orders of magnitude) [11], [32]. This
is another promising result for the TPU reliability in executing
CNNs, as a higher error magnitude can have a greater impact
on the output value.

B. Neural Networks

With regards to neural networks, we test the reliability
of eight different configurations by varying the network ar-
chitecture, dataset and training procedure, with or without
transfer learning, in which the knowledge learned by other
model is reused especially to reduce the training time, but
also, in most cases, the resulting NN achieves better prediction
performance/accuracy).

We leveraged on four NNs models that were trained and
made available by Google (Inception V4, ResNet-50, SSD
MobileDet, and SSD MobileNet V2). We also retrained Mo-
bileNet using two different datasets (a subset of the COCO
dataset and a subset of the Oxford-IIIT Pet dataset) with and
without applying transfer learning techniques. By retraining
the NN models, we want to evaluate: (1) how the number of
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Fig. 7. Cross sections for the eight neural network configurations that were exposed to high energy neutrons at Chip IR facility and to thermal neutrons
at EMMA facility. The four configurations on the left side are the original models that Google provide on the Coral Edge TPU official website. The ones
disposed on the right side are retrained versions, with and without transfer learning, of the MobileNet with different datasets. The values for SDC cross
sections are ploted on the left Y-axis and DUEs on the right.

object classes supported by the NN impacts its reliability, since
the datasets used for retraining have much less classes than the
original COCO dataset and (2) whether transfer learning has
a positive effect into the detection resilience.

Figure 7 plots both SDC cross sections (left Y-axis) and
DUE cross sections (right Y-axis) for the eight NN configura-
tions obtained during experiments with high energy neutrons
at Chip IR facility and for the two NN configurations tested
at EMMA (MobDet and MobNet). Other configurations could
not be tested at EMMA due to the low error rate and none of
the NNs could be tested at TENIS because the error rate was
too high.

At ChipIR, the lowest SDC cross section is measured
for ResNet, a similar neural network as the one tested for
the NeuroShield in [1]. Considering a 13n/cm2/h flux for
atmospheric neutrons at sea level, the ∼ 19 × 109cm2 cross
section of the ResNet neural network translates in about 270
FIT, very similar to the 102 FIT measured for the NeuroShield.

At EMMA, MobileDet is confirmed to be 50% more likely
to experience SDCs than MobileNet. Although the trend is
the same, the SDC cross sections are, on average, 25 times
smaller than the corresponding values obtained for these two
network configurations when exposed to high energy neutrons.
From the results plotted in Figure 7, we observe that detection
networks are less tolerant than classification ones. This can
be justified because, although the classification models are
larger and, possibly execute more operations, the detection
output is much more complex. For the classification task, the
output values simply represent the probability of each object
class while, in the detection task, the output is composed
of six values for each possibly detected object: its class, its
probability and its position (x, y, width, height). The position
elements are much more sensitive to the effects of faults
and, thus, detection NNs will have higher error rates. This
behavior is in accordance with what has been observed in

GPUs architectures [11].
Transfer learning (TL) does not seem to have a significant

impact on the NN cross section. This technique has shown to
decrease the SDC cross section in 2-5% when compared to the
analogous configuration without TL. Furthermore, the training
process tend to converge much faster with this strategy and,
in our case, it reduced the learning time of the NNs in around
50%. TL is a good solution when a quick re-training of the
NN is needed, as it is fast but does not impact the error rate.

Our results also confirm that the retraining of MobileNet
with the COCO subset (14 classes) lowers the cross sections
when compared to the original model trained with the total
amount of 90 classes of the original COCO dataset. The same
network but trained with the Pets dataset (2 classes) have
higher cross sections than the one trained with Sub-COCO,
but still smaller than the one obtained for the original with the
entire COCO dataset. This trend evinces that, with less classes
to be considered, the detection process gets simpler and the
cross section is reduced. Therefore, the training of NNs should
target the real application needs and include classes of object
that are really relevant to the context of the application.

Finally, ResNet and Inception, which are NNs that perform
image classification (not detection), have the highest DUEs
cross sections. This might be related to the size of the model
for these two networks which are 5 to 7 times larger than the
MobileNet model. Apart from the retrained networks, which
have the lowest value for DUE cross sections, the overall DUE
rate is similar among the other NNs which enforces the fact
that DUEs are mostly related to the hardware attributes rather
than the algorithm.

It is well known that not all SDCs are critical for neural
networks execution. Figure 8 shows, for the configurations pre-
sented in Figure 7, the percentage of SDCs that critically affect
the classification/detection outcome, i.e, SDCs that change the
number of detected objects or their classes or even significantly
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outcome of the neural network configurations that were exposed to high energy
neutrons at Chip IR facility.

altered their position (less than 50% of intersection between
the expected and the corrupted result).

From Figure 8, it is clear that SDCs in MobileDet tend
to be way more critical than the other network architectures.
Comparing it to the MobileNet network architecture, which
also performs the detection task, MobileDet has less model
parameters, a 13% larger input size and a 50% smaller output.
The fact that MobileDet has half of the number of output
elements makes each one of them twice more significant
fot the detection outcome and, therefore, the corruption of a
single output value tend to be more critical in MobileDet than
MobileNet.

Transfer learning does not seem to have a consistent impact
on the criticality of the SDCs. In the case where MobileNet is
retrained with the Pets dataset, the application of this technique
has shown to decrease the number of critical errors by almost
3 times. On the other hand, when trained with COCO subset,
it makes the NN 20% more susceptible to critical SDCs.
Further studies are necessary to understand the reasons for this
opposite trend. The differences, though, are not very high.

Naturally, SDCs in classification NNs are considerably less
critical since only a few values, the highest ones, out of
1,000 output values are indeed relevant to the outcome of
the classification process. Therefore, although the SDCs are
propagated to the network raw output, most of them do not
influence the classification result, as confirmed by our data
plot in Figure 8.

V. CONCLUSIONS

In this paper we have evaluated the reliability of Google
Tensor Processing Units through high energy and thermal
neutrons. First, we have understood how neutrons impact the
execution of 2D and 3D convolutions, which are the atomic
operation for the TPU, of increasing input size. Besides the
not surprising linear dependence between the input size and
the cross section, we have seen that most neutrons corrupt only
one element of the output matrix and the corrupted value is
very close to the expected value. Then, we have executed eight
different configurations of neural networks on the irradiated
TPU. We have seen that detection networks have a much

higher error rate than classification networks and that transfer
learning does not significantly modify the error rate. Also, the
great majority of errors are not critical for the neural network
execution, which is strictly related to the fault model observed
for convolutions. Finally, the TPU seems more prone to be
corrupted by high energy neutrons than by thermal neutrons.
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