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Reaching law based SMC for spacecraft applications with actuators
constraints

Mauro Mancini1 and Elisa Capello2

Abstract— This paper considers a robust sliding mode con-
trol method for a spacecraft attitude control. The design of
the control law is based on the reaching law approach for
continuous-time systems. A novel method is proposed to design
the parameters of both the reaching law and the sliding surface.
The reaching law ensures that during the reaching phase the
states of the system remains bounded. Then, taking into account
the parameters of the mathematical model, the bounds are
defined so that the control law does not overload the actuator
limits, whatever the initial conditions. Furthermore, a variable
gain is considered for the control law, to provide chattering
alleviation of the control input. Numerical simulations are
performed to show the effectiveness of the proposed approach.

I. INTRODUCTION

Attitude Control System (ACS) has a fundamental impor-
tance in space missions. In order to ensure that the spacecraft
achieves the mission objectives, ACS must guarantee precise
pointing accuracy, fast maneuvering, low control effort and
robustness against parametric uncertainties and external dis-
turbances [1]. Reaction wheels are widely used as actuators
for ACS, since a minimum set of three wheels can provide
a 3-axis active control with high pointing accuracy without
using a consumable propellant [2]. Despite the great benefits
that reaction wheels present, there are some issues on the
performance that these actuators can develop. Firstly, there
are structural constraints on the maximum rotational speed
of the wheel, i.e. there is a maximum angular momentum
that can be stored into the wheel [3]. Given the purposes of
ACS, reaction wheels can be actuated either to perform an
attitude maneuver or to counteract a non-conservative torque
acting in the system. In both cases there is an accumulation
of angular momentum stored into the wheel, which can
lead to saturation of the actuator, i.e. it can no longer store
any angular momentum [4]. This situation may arise if the
maneuver is performed at a high angular speed or if a secular
external torque acts on the spacecraft [5], [6]. In both cases,
if a reaction wheel is saturated, it can not accelerate further,
which means that the spacecraft can not be controlled around
the axis of the saturated wheel. Due to the secular non-
conservative torques, this condition can occur during the
space mission. For this reason, a spacecraft is equipped
with devices to provide momentum dumping, i.e. thrusters
or magnetorquers [7]. On the other hand, a well designed
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ACS should ensure that the actuators do not saturate during
the maneuver, to successfully complete it. The second issue
for ACS concerns the torque exchanged between the wheels
and the spacecraft. In fact, the torque developed by the
brushless electric motor is closely related to the electrical
power required to drive it [8]. Moreover, on one hand there
is a saturation value on the maximum torque supplied, and
on other hand the ACS must ensure low control effort, so that
the on board electrical power suffices to achieve real-time 3-
axis control [9]. Constraints on the saturation of the actuators
and the need for low energy consumption complicate the
design of the ACS, which already has the inherent difficulty
of dealing with a non-linear system such as the spacecraft’s
attitude dynamics. The nonlinearity of the model can be
handled by a nonlinear control system. In this paper, the
main objective is to design a Sliding Mode Control (SMC)
algorithm, in which the actuator constraints are included.

SMC are nonlinear control techniques with remarkable
properties of precision, robustness, tuning, and ease of im-
plementation. In SMC a generic nth-order non-linear system
with l inputs is replaced by an equivalent n− l order problem,
as in [10]. The equivalent control problem can be obtained
designing the SMC controller in two steps: (I) a sliding
variable is defined as a function of the system output and its
time derivatives, (II) a discontinuous control law is defined to
force the system trajectory. When the sliding variable is equal
to zero, the trajectories of the system are enclosed in domain
named sliding surface, ensuring that the output of the system
can reach the desired target. Then, the system trajectory, as
previously said, is forced to reach the sliding surface and to
remain on it in spite of the uncertainties and perturbations
[11]. Starting from any initial condition, there is a phase,
named reaching phase, in which the system trajectories reach
the sliding surface. Then, they move along the sliding surface
during the sliding phase, and the error tends to zero exponen-
tially [12]. So, during the sliding phase, the trajectories of
the system are enclosed in the domain of the sliding surface
and they are insensitive to perturbations, but these properties
are lost during reaching phase. In this first stage of SMC, the
states of the system are unconstrained and the trajectories are
sensitive to perturbations [13]. Therefore, a control gain must
be defined to overcome the perturbations in order to bring the
system towards the sliding surface. In [14], a barrier function
is defined to avoid control gain overestimation. However, the
states of the system are not limited during the reaching phase
and, for example, the reaction wheels could saturate in this
phase. A widely used method to deal with reaching phase is
the reaching law approach [15], [16]. This approach consists



of first setting the desired evolution of the sliding variable,
i.e. the reaching law. Then, the control signal is designed so
that the system follows the established reaching law during
the reaching phase. In this work, a suitable reaching law is
derived for ACS problem. Then, a novel strategy is used
to define the parameters of both the reaching law and the
sliding surface. Taking into account the saturation values of
the actuators, this strategy successfully avoid the saturation
problem. In addition, an innovative rule is proposed to adjust
on-line the parameters of the reaching law according to the
system states. The aim of this gain variation is to alleviate
the chattering in the command line due to control law
discontinuity. Then, this strategy is validated by extensive
simulations performed with a three degree-of-freedom (DOF)
orbital simulator.

The paper is organized as follows. The mathematical
models for both the attitude dynamics and kinematics of
the spacecraft and the problem of reaction wheels saturation
are presented in Section II. The SMC based control laws
able to provide chattering avoidance and to avoid actuator
saturations is derived in Section III. In the same section, a
proof of the Lyapunov stability is also presented. The nu-
merical example and the simulation results are introduced in
Section IV. Finally, some concluding remarks are described
in Section V.

II. MATHEMATICAL MODELS

This section provides the mathematical models used to
simulate the attitude dynamics and kinematics of a spacecraft
actuated by reaction wheels. For this purpose, two different
reference frames are defined: (I) FI = (xI ,yI ,zI) is the
inertial reference system [17] and (II) FB = (xB,yB,zB) is
fixed to the spacecraft. The spacecraft is supposed to be rigid
and with three principal central axes of inertia, which are
aligned to the body reference frame. Instead, reaction wheels
are arranged in a cluster whose center of mass is coincident
with the spacecraft’s center of mass. Furthermore, each wheel
has its rotation axis aligned with a principal central axis of
the spacecraft. So, each wheel provides active control around
one axis of the body frame and a full 3-axis active control
is achieved.

A. System dynamics

The spacecraft attitude dynamics is described by the
Euler’s equation

Jω̇ +ω ×
(
Jω +hrw

)
= τ +d, (1)

where ω̇,ω ∈R3 are the vectors of the angular accelerations
and angular velocities of the spacecraft with respect to
inertial frame. J ∈R3,3 is the inertia matrix of the spacecraft
and it is diagonal. d ∈ R3 is the external non-conservative
torque due to disturbances acting on the spacecraft. Finally,
hrw,τ ∈ R3 are related to the actuation system (i.e. reaction
wheels). In fact, τ is the torque provided by the reaction
wheels, that represents the spacecraft actuation input pro-
vided by the controller, while each component of hrw is the

angular momentum stored into a single wheel. Then, τ and
hrw are linked by the following relationship [18]

ḣrw =−τ. (2)

Since τ is an internal conservative force, if d = 0 the
angular momentum of the system is constant over time, i.e.
Jω +hrw = constant. So, if reaction wheels are started with
zero angular momentum and ACS has to keep the attitude
inertially fixed, the angular momentum hrw is different from
zero only during the maneuver, and the stored angular
momentum (by the reaction wheels) is hrw,m = −Jω . Now,
the case in which d is different from zero is analyzed. The
role of ACS is to counteract the external disturbance, so the
the surplus of angular momentum injected into the system
by the external non-conservative torque is absorbed by the
wheels. This quantity of angular momentum is indicated by
hrw,d =

∫ t
0 d(t)dt.

Lemma 1: It is assumed that both the desired and initial
system states are given by an arbitrary angular position and
a zero angular speed. So, ACS must keep the spacecraft
inertially fixed. Besides, it is assumed that the reaction
wheels are started with zero angular speed, so the system
has initially zero angular momentum.
From Lemma 1, it follows that the angular momentum
permanently stored into the wheels is only due to the external
disturbance d, while hrw,m ̸= 0 only during the maneuver.
So, we have hrw,m + Jω = 0 and Eq. (1) can be rewritten as
follows

Jω̇ = τ +ξ ξ =−ω ×
(
hrw,d

)
+d. (3)

B. Actuators saturation

As highlighted in the Introduction, τ and hrw suffer from
saturations, i.e. in each wheel these quantities cannot exceed
an absolute maximum value. Note that the three wheels are
equal to each other, so the outcome is

max|τi|= τ̄ max|hrwi |= h̄ i = xB,yB,zB

where τ̄, h̄ are the saturation values of the torque and the
angular momentum, respectively. Then,

τi ∈ [−τ̄, τ̄] hrwi ∈ [−h̄, h̄] i = xB,yB,zB

Furthermore, as in the previous Subsection, the maximum
speed allowed for the spacecraft during the maneuver ω̄

is derived to avoid angular momentum saturation of the
wheels. This value is function of both h̄ and the angular
momentum accumulated in the wheels before the beginning
of the maneuver hrw,d according to

ω̄i =
h̄−|hrw,di |

Jii
> 0 i = xB,yB,zB (4)

It follows that, to avoid saturations on the angular momentum
of the wheels, the angular speed of the spacecraft must
respect the following conditions during the maneuver∣∣ωi

∣∣≤ ω̄i ωi ∈ [−ω̄i, ω̄i] i = xB,yB,zB (5)

Finally, the additional angular momentum accumulated in
the wheels during the maneuver to counteract the external



disturbance has been neglected in Eq. (4). However, this is
acceptable if the maneuver is sufficiently fast. In fact, this
quantity is given by

∫
tm d(t)dt, where tm is maneuver time.

C. Attitude kinematics

The orientation of the body frame FB with respect to the
inertial frame FI is expressed by the vector of Euler’s angles
Φ = [φ ,θ ,ψ]T . Then, the relationship between the derivative
of Euler angles and the body angular velocities ω is

Φ̇ = Bω, (6)

as in [4] and with

B =
1

cθ

 cψ −sψ 0

cθsψ cθcψ 0

−sθcψ sθsψ cθ


III. CONTROL STRUCTURE DESIGN

The control algorithms to steer the attitude of the space-
craft described by the equations in Section II are derived in
this section. First of all, note that the inertia matrix J of the
spacecraft is diagonal, due to the assumption that it has three
central axes of inertia. Therefore, in the rotation dynamics
each DOF has a dedicated control channel. Thus, in this
work a control law is derived separately for each axis of the
system FB . For each axis, we follow the same procedure.
So, we first define the sliding surface and the reaching law.
From the reaching law, the control law is derived to ensure
the system is able to reach the sliding surface while avoiding
saturation of the actuators.

A. Sliding surface

First of all, the states errors are defined as

Φe,i = Φi −Φd,i ωe,i = ωi −ωd,i = ωi i = xB,yB,zB

where Φd,i,ωd,i, i = xB,yB,zB are the desired angular posi-
tions and angular velocities respectively, while Φi,ωi are the
states of the systems, whose derivatives are given by Eqs.
(6) and (1) respectively. ωe,i is obtained from Lemma 1.
Since the ACS problem for each axis of the spacecraft is
a second-order dynamic system, the following conventional
sliding surface is used

si = ωi +λiΦe,i λi > 0 i = xB,yB,zB (7)

For this second-order system the sliding surface can also be
presented as follows [10]

si =

(
d
dt

+λi

)
Φe,i i = xB,yB,zB (8)

B. Reaching law

In this work, a novel reaching law is introduced and
specified for the attitude dynamics of a spacecraft. The
starting point is the constant rate reaching law initially
presented in [15]

ṡ =−Q sgn(s) Q > 0. (9)

Looking at Eq. (9), a compromise is required for the choice
of Q parameter, and this should be a drawback. In fact,
high Q values increase the speed of convergence towards the
sliding surface, but at the same time they cause an increase
in chattering during the sliding phase. In addition, if the Q
parameter is not properly tuned, it can lead to excessive
magnitude of the control signal and state variables during
the reaching phase. So, in this paper, the constant coefficient
Q in Eq. (9) is replaced by a variable gain k, the value of
which is defined by an appropriate function of s, i.e. k = k(s).
The aim is to ensure that, through the variable gain, Eq. (9)
can provide a satisfactory convergence speed even with the
chattering phenomenon. Then, k is given by

ki = k̄i
arctan

(
Gi|si|

)
π/2

> 0 ∀ si i = xB,yB,zB (10)

It can be seen that ki < k̄i ∀ si, so k̄ > 0 is an upper
bound. As detailed later, this gain is defined to avoid actuator
saturations, instead the gain G determines the value of s for
which k approaches k̄. Then, the new reaching law for the
ACS is introduced taking into account Eq. (3)

ṡi =−ki sgn(si)+ξi i = xB,yB,zB (11)

C. Control law

Now, the structure of the control law is derived to drive
the dynamic system towards the sliding surface, i.e. where
si = 0, i = xB,yB,zB.

Remark 1: The domain of the space defined by si = 0 is
not subject to any transformation if Eq. (7) is multiplied by
a constant Ci > 0.
As a result of Remark 1, it is possible to select Ci = Jii,
i = xB,yB,zB, and the sliding surface can be written as

si = Jiiωi +λiJiiΦe,i λi > 0 i = xB,yB,zB (12)

or
si =

(
d
dt

+λi

)
JiiΦe,i i = xB,yB,zB (13)

Lemma 2: In order to derive the control law, it is assumed
that Φ̇i = ωi, with i = xB,yB,zB.
Thanks to Lemma 2 and Eq. (3) the time derivative of Eq.
(12) is given by

ṡi = λiJiiωi + τi +ξi i = xB,yB,zB (14)

Then, the control law, which ensures the system is governed
by the reaching law in Eq. (11) during reaching phase, is
obtained from Eqs. (11) and (14)

τi =−ki sgn(si)−λiJiiωi i = xB,yB,zB (15)

D. Control parameters design

Now, the strategy to define the parameters of the controller
is synthesized. These parameters are the upper bound of
the control gain k̄i in Equation (10) and the slope of the
sliding surfaces λi, i = xB,yB,zB. As mentioned earlier,
the most significant outcome of this strategy is to avoid
actuator saturation. First of all, it is important to point
out that reaching law in Eq. (11) has a bound, because it



is kisgn(si) ∈ (−k̄i, k̄i) from Eq. (10). Furthermore, ξ also
consists of two bounded terms. Indeed, d is usually due
to external non-conservative torques produced by orbital
perturbations, and they are bounded [4], [19], while hrw,d
is bounded by saturation constraints. Finally, if the initial
system states respect the condition in Eq. (4), then the control
law synthesized in this work succeeds to maintain the system
within limits imposed by the same condition. It follows that
it is possible to define a bound for ξ :

∣∣ξi
∣∣≤ µi, i = xB,yB,zB.

Then, when the system dynamics is ruled by Eq. (15), for
any si it is obtained that

|ṡi|< k̄i +µi i = xB,yB,zB (16)

Then, differentiating Eq. (13) with respect to time, we have

ṡi =

(
d
dt

+λi

)
Jiiωi i = xB,yB,zB (17)

As is pointed out in [10], [20], Eq. (17) reveals that Jiiωi is
obtained as the output of a first-order linear filter fed with ṡi.
Thus, taking into account Eq. (16) and the initial conditions
of the system, it is possible to conclude that the output of
first order filter is bounded as follows

|ωi|<
k̄i +µi

Jiiλi
i = xB,yB,zB (18)

Since ωi must satisfy Eq. (5), to avoid the saturation of the
reaction wheels angular momentum, it follows that

k̄i +µi

Jiiλi
≤ ω̄i ⇒ λi ≥

k̄i +µi

Jiiω̄i
i = xB,yB,zB (19)

From Eq. (19) we define values of λi that ensures the com-
pliance of constraint in Eq. (5), guaranteeing no saturation
of the angular momentum of the wheel. To compute λi, the
bound k̄i should be established. As briefly mentioned above,
this bound is defined without saturation of the wheel torque,
so τi ≤ τ̄ ∀ si. Then, from Eq. (15), we have∣∣τi

∣∣< k̄i +
∣∣λiJiiωi

∣∣< k̄i +
∣∣λiJiiω̄i

∣∣ i = xB,yB,zB (20)

Now, as in Eq. (19), λi is substituted in the last of Eq. (20),∣∣τi
∣∣< k̄i +

k̄i +µi

Jiiω̄i
Jiiω̄i = 2k̄i +µi i = xB,yB,zB (21)

Finally, the choice of the upper bound k̄i is given by, ensuring
that wheel torque saturation is avoided

k̄i ≤
τ̄ −µi

2
i = xB,yB,zB (22)

E. Proof of stability
In order to provide the asymptotic stability of the dynamics

system about the equilibrium point si = 0, the control law
must guarantee the following condition [12]

siṡi < 0 i = xB,yB,zB (23)

Thus, Eqs. (3), (10), (12), (15) are introduced in Eq. (23) to
obtain

si (λiJiiωi + τi +ξi) = si

(
−k̄i

arctan(Gi|si|)
π/2

sgn(si)+ξi

)
≤

≤ |si|
(
−k̄i

arctan(Gi|si|)
π/2

+µi

)
i = xB,yB,zb

(24)

So, to verify that the control law (15) is able to steer the
dynamics system (1) to the sliding surface domain, with
k defined by Eq. (10), the last term of Eq. (24) has to
be negative for all si ̸= 0. First of all, the upper bound
of the control gain must be greater then the bound of the
perturbation terms: k̄i > µi, i = xB,yB,zB. Together with Eq.
(22), this leads to a constraint on the choice of the actuators.
In fact, they must provide a maximum torque given by

τ̄ −µi

2
> µi ⇒ τ̄ > 3µi (25)

Then, Eq. (10) is introduced to avoid chattering of the
command lines near the sliding surface. Still, the role of
Eq. (10) is to introduce a boundary layer around the sliding
surface where the switching control is smoothed out, thus a
boundary layer sliding mode is obtained [10]. In fact, since
ki → 0 if si → 0, this novel reaching law can not longer
guarantee convergence of the system state to the sliding
surface, but only to a band around si = 0. Then, as mentioned
above, the thickness of the boundary layer can be adjusted
by the parameter Gi. In fact, this parameter can modify the
shape of the arctangent function, and so it allows to set the
value ±s̄i, s̄i > 0 at which ki ≃ k̄i, and so the condition (23)
is achieved. Then, for |si|< s̄i the value of ki decreases faster
the larger Gi is, therefore the condition (23) can not longer
be guaranteed for |si|< s̄i. So, the boundary layer is defined
as

Bi =
{
[Φe,i,ωi] : |si|< s̄i

}
i = xB,yB,zB

IV. NUMERICAL EXAMPLE
In this section, numerical simulations are conducted

through Matlab software to demonstrate the performance
of the proposed control strategy. The dynamic system is
given by Eqs. (1), (2), (6) and a targeting maneuver is
considered as a reference. Therefore, at the initial step, the
spacecraft is affected by an attitude error, which must be
steered to zero by the control system. Then, when the zero
error is reached, the attitude must be kept constant. Thus,
performance are evaluated (I) on the accuracy with which
the control law achieves the desired attitude and (II) on the
ability of the control law to ensure that the reaction wheels
do not saturate during the maneuver. The parameters of

Table 1 System parameters and initial conditions

Jxx = 6 kgm2
Φ0 = [40, −30, 20]T deg

Jyy = 2 kgm2
ω0 = [0, 0, 0]T rad

s

Jzz = 4 kgm2
Φd = [0, 0, 0]T deg

τ̄ = 2 ·10−3 Nm hrw,d = [1.5, 0.75, 0]T ·10−2 kgm2

s

h̄ = 3 ·10−2 kgm2

s d = [0.9, 0.45, 0]T ·10−5Nm

the dynamic systems and the initial and objective conditions
are listed in Table 1. The initial angular momentum stored
in the reaction wheels is due to the action of the secular
disturbance torques d acting on the system, as explained in
Section II. Then, the bounds on the angular velocity at which
the maneuver can be carried out are obtained from Eq. (4):

[ω̄x, ω̄y, ω̄z] = [0.25, 1.12, 0.75] ·10−2 rad/s.



Table 2 Control parameters

[µx,µy,µz] = [2, 2, 2] ·10−4 Nm

[λx,λy,λz] = [7.33, 4.89, 3.67] ·10−2

[k̄x, k̄y, k̄z] = [0.9, 0.9, 0.9] ·10−3

[Gx,Gy,Gz] = [104, 104, 104]

After, the control parameters listed in Table 2 are obtained.
The Euler angles are shown in Figure 1. The error in xB is
the slowest to converge to zero, in accordance with the more
restrictive bound on the allowed angular velocity and the
greater inertia of the spacecraft on this axis. Nevertheless,
the control law manages to cancel the initial error on the
Euler angles despite the external disturbance torque, with
the following final accuracy

[φ , θ , ψ] f = [0.94, −0.48, −0.04] ·10−3 deg.

Then, Figure 2a shows that the control law succeeds in
respecting the constraints imposed on the angular velocities
throughout the duration of the maneuver. As explained in
detail above, the angular velocities remaining within the
bounds ensure that the angular momentum of the wheels
does not saturate, as demonstrated in Figure 2b. Instead, the
torques provided by the actuators are shown in Figure 3a
and it can be seen how the control law manages both to
avoid torque saturation and to eliminate chattering in the
command line. This last objective is achieved through the
variable control gains, which are shown in Figure 4a. Instead,
Figure 3b shows the comparison between the control torque
and the external disturbance torque for t ∈ [350, 400] s. In
this time interval, as it is shown in Figure 1, the spacecraft
is at the desired equilibrium point Φe = 0, ω = 0. Therefore,
the objective of the ACS is to counteract the disturbance
torque. Then, Figure 3b shows that the control law is able
to compensate the disturbance torque, and thus to keep the
spacecraft at the desired equilibrium point. Finally, a compar-
ison between the control gains and the sliding variables for
t ∈ [350, 400] s is provided in Figure 4b. As it was pointed
out in Section III, the control law (15) is not able to drive the
sliding variable s to zero if an external disturbance affects
the dynamic system. Indeed, Figure 4b shows that sz = 0
because dz = 0, but sx ̸= 0 and sy ̸= 0, and this is due to
the external disturbances dx ̸= 0, dy ̸= 0. In fact, by defining
k = k(s) as described in Eq. (10), it is possible to smooth
out the discontinuity in the control law and thus to avoid
chattering in the command line. Nevertheless, the drawback
is that s → 0 only for d = 0, otherwise, for d ̸= 0 the result is
|s| ∈ (0, s̄]. Then, according to Eq. (10) it can be concluded
that k → 0 only if d = 0, otherwise, for d ̸= 0 the result is
k ∈ (0,k(s̄)]. It can be observed that Figure 4b confirm those
results. Now, a comparison with a control structure derived
as in [21] is performed, and the same variation law (10) is
used for the control gains. In this case, the control law and
the sliding surface are respectively

τi = ρ sign(σi)− cωi σi = ωi + cΦe,i i = xB,yB,zB (26)
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Fig. 1. Euler angles.
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Fig. 2. (a) Angular velocities and (b) Angular momentum of reaction
wheels.

Then, the control parameters are defined as ρ̄ = 2 · 10−3,
c = 0.1 and the same gain G as in Table 2. The same initial
conditions and system parameters of Table 1 are used for
the numerical simulations, and Figure 5 shows that in this
case the control structure (26) fails to prevent the actuators
from saturating during the maneuver. So they are unable
to physically realise the output of the control law and the
system cannot realise the maneuver in one step. In fact,
once the wheels accumulate the maximum amount of angular
momentum, it must be dumped so that the wheels can again
provide torque and thus the maneuver can continue.
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Fig. 4. (a) Control gain. (b) Control gain (black line) vs sliding variable
(red line) during the last 50 seconds.
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Fig. 5. (a) Angular momentum of reaction wheels and (b) torque variation.
Blue line is for classical control law, the black and dotted lines are as in
Figure 2b and Figure 3a, respectively.

V. CONCLUSIONS

In this paper, a SMC is designed to manipulate the attitude
dynamics of a spacecraft, and the control law is derived
starting from the definition of a suitable reaching law. The
proposed reaching law introduces a time-varying parameter
in the classical constant rate reaching law to guarantee a
good convergence time towards the sliding surface while
avoiding the chattering phenomena. Furthermore, a novel
strategy is introduced to define the parameters of the control
structure. The key feature of the proposed approach to derive
the control law is that it succeeds to avoid saturation of the
reaction wheels during the maneuver. The simulation results
show that, compared to control structure defined as in [21],
the control laws proposed in this paper prevents the reaction
wheels from saturation during maneuvering. Thus, the output
of the control law defined in this paper can be realised by
actuators of a real system, in contrast to the control law in
[21]. Moreover, although the control law realises a boundary
layer sliding mode, it is able to reach and then maintain the
desired attitude with high precision, even under the action of
an external disturbance.
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