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Abstract

In this paper, a sample-based procedure for obtaining simple and computable approximations of chance-constrained sets is
proposed. The procedure allows to control the complexity of the approximating set, by defining families of simple-approximating
sets of given complexity. A probabilistic scaling procedure then scales these sets to obtain the desired probabilistic guarantees.
The proposed approach is shown to be applicable in several problems in systems and control, such as the design of Stochastic
Model Predictive Control schemes or the solution of probabilistic set membership estimation problems.

1 Introduction

In real-world applications, the complexity of the phe-
nomena encountered and the random nature of data
makes dealing with uncertainty essential. In many cases,
uncertainty arises in the modeling phase, in some others
it is intrinsic to both the system and the operative envi-
ronment, as for instance wind speed and turbulence in
aircraft or wind turbine control [1]. Deriving results in
the presence of uncertainty is of major relevance in differ-
ent areas, including, but not limited to, optimization [2]
and robustness analysis [3]. However, with respect to ro-
bust approaches, where the goal is to determine a feasi-
ble solution which is optimal in some sense for all pos-
sible uncertainty instances, the goal in the stochastic
framework is to find a solution that is feasible for al-
most all possible uncertainty realizations, [4, 5]. In sev-
eral applications, including engineering and finance, un-
certainties in price, demand, supply, currency exchange
rate, recycle and feed rate, and demographic condition
are common. In these situations, it is acceptable, up to a
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certain safe level, to relax the inherent conservativeness
of robust constraints enforcing probabilistic constraints.
More recently, this probabilistic approach has been used
also in unmanned autonomous vehicle navigation [6, 7]
as well as in optimal power flow [8,9].

In the optimization framework, constraints involving
stochastic parameters that are required to be satisfied
with a pre-specified probability threshold are called
chance constraints (CC). In general, dealing with CC
implies facing two serious challenges: the solution of
difficult parameterized probability integrals and the
nonconvexity of the ensuing constraints [10]. Conse-
quently, while being attractive from a modeling view-
point, problems involving CC are often computationally
intractable, generally shown to be NP-hard, which se-
riously limits their applicability. However, being able
to efficiently solve or approximate chance-constrained
problems remains an important challenge, especially in
systems and control. In the case of approximated so-
lutions, there exists of course a fundamental trade-off
between complexity of the approach and goodness of
the approximation.

The scientific community has devoted large research in
devising computationally efficient approaches to deal
with chance-constraints. We review such techniques in
Section 3, where we highlight three mainstream ap-
proaches: i) exact techniques; ii) robust approximations;
and iii) sample-based approximations.

Preprint submitted to Automatica 24 March 2022



In this paper, we present what we consider an important
step forward in the sample-based approach. More pre-
cisely, our developments stem from the observation that,
while in the general situation one is interested in finding
an optimal solution to a chance-constrained problem,
there exists a significant class of practical applications in
which, instead, what it is really needed is being able to
construct good approximation of the chance-constrained
set . This is the case, for instance, of stochastic model
predictive control (SMPC), where this approximation
is necessary for post-processing in real time, see for in-
stance [11,12].

Motivated by these considerations, we propose a simple
and efficient strategy to obtain a probabilistically guar-
anteed inner approximation of a chance-constrained set,
with given confidence.

In particular, we describe a two-step procedure that in-
volves: i) the preliminary approximation of the chance-
constrained set by means of a so-called Simple Approx-
imating Set (SAS); ii) a sample-used scaling procedure
that allows to properly scale the SAS so to guarantee
the desired probabilistic properties. The proper selec-
tion of a low-complexity SAS allows the designer to
easily tune the complexity of the approximating set, sig-
nificantly reducing the sample complexity. We propose
several candidate SAS shapes, grouped in two classes:
i) sampled-polytopes; and ii) norm-based SAS.

The approach we propose distinguishes itself from the
previous literature on CC in the following main points.

(1) It is specifically tailored towards the specific prob-
lem of approximating the chance-constrained set, as
opposed to solving a specific instance of a chance-
constrained problem.

(2) It is very general : it applies to a very general class
of uncertainty configurations. A large part of the
methods available in the literature are limited to
cases where the constraints depend in a “nice” way
on the uncertainty. This is the case for instance
of the solution proposed in [13, 14]. The reader is
referred to Section 3 for an overview.

(3) It is highly tunable: by selecting the complexity of
the approximating set, the designer has a very effi-
cient way to control the trade-off between compu-
tational complexity and potential goodness of the
approximation.

The probabilistic scaling approach was presented in the
conference papers [15,16] and it is based on recent results
on order statistics [17]. The present work extends [15,16]
in several directions. First, we perform here a thorough
mathematical analysis of probabilistic scaling. Second,
we provide probabilistic guarantees for a more general
class of norm-based SAS. Third, we consider here joint
chance constraints. This choice is motivated by the fact

that enforcing joint chance constraints, which have to
be satisfied simultaneously, adheres better to some ap-
plications, despite the inherent complexity. Finally, we
present here a second application, besides SMPC, re-
lated to probabilistic set-membership identification.

The paper is structured as follows. Section 2 provides
a general preamble of the problem formulation and of
chance-constrained optimization, including two moti-
vating examples. An extensive overview on methods for
approximating chance-constrained sets is reported in
Section 3 whereas the probabilistic scaling approach has
been detailed in Section 4. Section 5 and Section 6 are
dedicated to the definition of selected candidate SAS, i.e.
sampled-polytope and norm-based SAS, respectively.
Last, in Section 7, we validate the proposed approach
with a numerical example applying our method to a
probabilistic set membership estimation problem. Main
conclusions and future research directions are addressed
in Section 8.

Notation

Given an integer N , [N ] denotes the integers from 1
to N . Given x ∈ R, bxc denotes the greatest integer no
larger than x. Given the `p-norm ‖ · ‖p, we denote with
Bsp the `p-norm ball of radius one in Rs, i.e. Bsp

.
= { z ∈

Rs : ‖z‖p ≤ 1 }. The Chebyshev center of a given set
X, with respect to norm ‖ · ‖p, is denoted as Chebp(X),
and it is defined as the center of the largest `p-norm ball
inscribed in X. Given an `p-norm ‖ · ‖p, its dual norm
‖ · ‖p∗ is defined as ‖c‖p∗

.
= supz∈Bsp c

>z, ∀c ∈ Rs. In

particular, the couples (p, p∗): (2, 2), (1,∞), (∞, 1) give
rise to dual norms [18, A.1.6].
Given two sets S1 and S2, the notation S1⊕S2 (S1	S2)
stands for the Minkovski sum (difference) between the
two sets. Given integers k,N , and parameter ε ∈ [0, 1],
the Binomial cumulative distribution function is denoted
as

B(k;N, ε)
.
=

k∑
i=0

(
N

i

)
εi(1− ε)N−i.

The following definition is borrowed from the field of
order statistics [17,19].

Definition 1 (Generalized Min) Given a collection
of N scalars Γ = {γi}Ni=1 ∈ RN , and an integer r ∈ [N ],
we say that γ−r ∈ Γ is the r-smallest value of Γ if there is
no more than r−1 elements of Γ strictly smaller than γ−r .

Hence, γ−1 denotes the smallest value in Γ, γ−2 the second
smallest one, and so on until γ−N , which is equal to the
largest one. We also use the alternative notation

min(r)(Γ)
.
= γ−r .
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2 Problem formulation

Consider a robustness problem, in which the controller
parameters and auxiliary variables are parametrized by
means of a decision variable vector θ ∈ Rnθ , which is
usually referred to as design parameter.

Furthermore, the uncertainty vectorw ∈ Rnw represents
one of the admissible uncertainty realizations of a ran-
dom vector with given probability distribution PrW and
(possibly unbounded) support W.

This paper deals with the special case where the design
specifications can be decoded as a set of n` uncertain
linear inequalities

F (w)θ ≤ g(w), (1)

where

F (w) =


f>1 (w)

...

f>n`(w)

 ∈ Rn`×nθ , g(w) =


g1(w)

...

gn`(w)

 ∈ Rn` ,

are measurable functions of the uncertainty vector w ∈
Rnw .

In Section 8 we discuss possible extensions of this ap-
proach to more general settings, in which the constraints
may be nonlinear and even nonconvex. Also note that
the proposed setup captures the special case of chance
constraints with random right-hand side. These corre-
spond to the choice F (w) = F and g(w) = w. Similarly,
the case of chance constraints with random technology
matrix is captured by our general case.

We also note that hard linear constraints on θ may be
directly incorporated by introducing deterministic in-
equalities of the form f>` θ ≤ g`, where f` and g` do not
depend on the uncertainty w.

The inequality in (1) is to be interpreted component-
wise, i.e.f>` (w)θ ≤ g`(w), ∀` ∈ [n`]. Due to the random
nature of the uncertainty vector w, each realization of w
corresponds to a different set of linear inequalities. Con-
sequently, each value of w gives raise to a corresponding
set

X(w)
.
= { θ ∈ Rnθ : F (w)θ ≤ g(w) }. (2)

In every application, one usually accepts a risk of vio-
lating the constraints. This often translates into a two-
step strategy: i) a set W̃ is obtained such that w ∈ W̃
is satisfied with a pre-specified high probability; ii) a ro-
bust design problem in which inequality (1) is forced to

be satisfied for every w ∈ W̃ is solved. This is for in-
stance the approach proposed in [13,20]. This approach

suffers from several drawbacks: i) there is not guaran-
tee that the ensuing robust problem is easily solvable.
Indeed, this may be in general very hard, and to obtain
computable solutions the authors of [13] need to make
additional assumptions on the dependence of F, g on the
uncertainty w. ii) the approach in [13] does not provide
a safe region (i.e. a probabilistic approximation of the
chance-constrained set), but just a point satisfying the
probabilistic constraint. If one uses this approach, then
the result may be conservative due to the two-step pro-
cedure.

In this paper, we observe that a less conservative solu-
tion can be found by choosing the set W to encompass
all possible values and characterizing the region of the
design space in which the fraction of elements of W, that
violate the constraints, is below a specified level. This
concept is rigorously formalized by means of the notion
of probability of violation (see [5]).

Definition 2 (Probability of violation) Consider a
probability measure PrW over W and let θ ∈ Rnθ be given.
The probability of violation of θ relative to inequality (1)
is defined as

Viol(θ)
.
= PrW {F (w)θ 6≤ g(w) }.

Given a constraint on the probability of violation, i.e.
Viol(θ) ≤ ε, we denote as (joint) chance-constrained set
of probability ε (shortly, ε-CCS) the region of the design
space for which this probabilistic constraint is satisfied.
This is formally stated in the next definition.

Definition 3 (ε-CCS) Given ε ∈ (0, 1), we define the
chance-constrained set of probability ε as follows

Xε
.
= { θ ∈ Rnθ : Viol(θ) ≤ ε }. (3)

Note that the ε-CCS represents the region of the design
space Rnθ for which this probabilistic constraint is sat-
isfied and it is equivalently defined as

Xε
.
=
{
θ ∈ Rnθ : PrW {F (w)θ ≤ g(w)} ≥ 1− ε

}
. (4)

Remark 1 (Joint vs. individual CC) The chance-
constraint θ ∈ Xε, with Xε defined in (4), describes
a joint chance constraint. That is, it requires that the
joint probability of satisfying the inequality constraint
F (w)θ ≤ g(w) is guaranteed to be no smaller than the
probabilistic level 1 − ε. We remark that this constraint
is notably harder to impose than individual CC, i.e.
constraints of the form

θ ∈ X`ε`
.
=
{
θ ∈ Rnθ : PrW

{
f`(w)>θ ≤ g`(w)

}
≥ 1− ε`

}
,

` ∈ [n`],

with ε` ∈ (0, 1). A discussion on the differences and im-
plications of joint and individual chance constraints may
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be found in several papers, see for instance [10, 21] and
references therein. Note that a well-known (conservative)
approximation to the joint chance-constrained set is the
use of multiple individual CC.

While there exist simple examples for which a closed-
form evaluation of Xε is possible, see e.g. [15, Figure 1],
we remark that this is not the case in general. Indeed,
as pointed out in [10], typically the computation of the
ε-CCS is extremely difficult, since the evaluation of the
probability Viol(θ) amounts to the solution of a multi-
variate integral, which is NP-Hard [22].
Moreover, the set ε-CCS is often nonconvex, except for
very special cases. For example, [23, Lemma 4.60] shows
that the solution set of separable chance constraints can
be written as the union of cones, which is nonconvex in
general.

Example 1 (Example of nonconvex ε-CCS) To il-
lustrate these inherent difficulties, we consider the fol-
lowing three-dimensional example (nθ = 3) with w =
{w1, w2}, where the first uncertainty w1 ∈ R3 is a three-
dimensional normal-distributed random vector with zero
mean and covariance matrix

Σ =


4.5 2.26 1.4

2.26 3.58 1.94

1.4 1.94 2.19

 ,
and the second uncertainty w2 ∈ R3 is a three-
dimensional random vector whose elements are uni-
formly distributed in the interval [0, 1]. The set of viable
design parameters is given by n` = 4 uncertain linear
inequalities of the form

F (w)θ ≤
[

1 1 1 1
]>

, (5)

F (w) =
[
w1 w2 (2w1 − w2) w2

1

]>
,

where the square power w2
1 is to be interpreted element-

wise.
In this case, to obtain a graphical representation of the
set Xε, we resorted to gridding the design set, and, for
each point θ in the grid, to approximate the probability
through a Monte Carlo method. This procedure is clearly
unaffordable for higher dimensions. In Figure 1 we report
the plot of the obtained ε-CCS set for different values
of ε. We observe that the set is indeed nonconvex.

2.1 Chance-constrained optimization

Finding an optimal θ ∈ Xε for a given cost function
J : Rnθ → R, leads to the chance-constrained optimiza-
tion (CCO) problem

min
θ∈Xε

J(θ), (6)

Fig. 1. The ε-CCS set for ε = 0.15 (smaller set), ε = 0.30
(intermediate set), and ε = 0.45 (larger set). We observe
that all sets are nonconvex, but the nonconvexity is more
evident for larger values of ε, corresponding to larger levels of
accepted violation, while the set Xε appears “almost convex”
for small values of ε. This kind of behaviour is in accordance
with a recent result that proves convexity of the ε-CCS for
small enough values of ε, and it is usually referred to as
eventual convexity [24], [25].

where the cost-function J(θ) is usually assumed to be a
convex, often even quadratic or linear, function.

We remark that the solution of the CCO problem (6) is
in general NP-hard, for the same reasons reported be-
fore. We also note that several stochastic optimization
problems arising in different application contexts can be
formulated as a CCO. Typical examples are for instance
the reservoir system design problem proposed in [26],
where the problem is to minimize the total building and
penalty costs while satisfying demands for all sites and
all periods with a given probability, or the cash matching
problem [27], where one aims at maximizing the portfo-
lio value at the end of the planning horizon while cover-
ing all scheduled payments with a prescribed probability.
CCO problems also frequently arise in short-term plan-
ning problems in power systems. These optimal power
flow (OPF) problems are routinely solved as part of the
real-time operation of the power grid. The aim is deter-
mining minimum-cost production levels of controllable
generators subject to reliably delivering electricity to
customers across a large geographical area, see e.g. [8]
and references therein.

Recently, approaches based on a probabilistic approxi-
mation of chance-constrained sets have emerged in the
context of Stochastic MPC, see [11, 12, 28]. These ap-
proaches exploit the sample-based results we summa-
rize in Section 3.3 to construct offline a probabilistically
guaranteed approximation of the set of all couples of con-
trol input/initial states that guarantee fulfillment of the
desired input/state constraints. The possibility of con-
structing the approximation offline constitutes a winning
feature with respect to similar approaches based on sam-
ples, since it moves all the cumbersome computation to
the control design phase. In the online implementation,
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the only operation to be performed is to “evaluate” this
set in correspondence to the current initial state. In this
way, the original stochastic optimization program is re-
duced to an efficiently solvable quadratic program. This
represents an undiscussed advantage, which has been
demonstrated for instance in [12]. We stress that the key
element of this procedure is exactly the construction of
a “good” approximation of the ε-CCS.

In the next subsection, we report an additional motivat-
ing example, which further highlights the importance of
the problem at hand.

2.2 Motivating example: probabilistic set-membership
estimation

Consider the problem of finding θ̄ ∈ Rnθ such that

|y − θ̄Tϕ(x)| ≤ ρ, ∀(x, y) ∈W ⊆ Rnx × R,

where ϕ : Rnx → Rnθ is a (possibly non-linear) regressor
function, and ρ > 0 is a given hyperparameter account-
ing for modelling errors. The (deterministic) set mem-
bership estimation problem, see [29–31], consists of com-
puting the set of parameters θ that satisfy the constraint
|y− θTϕ(x)| ≤ ρ for all possible values of (x, y) ∈W. In
the literature, this set is usually referred to as the feasi-
ble parameter set, that is

FPS
.
= { θ ∈ Rnθ : |y − θTϕ(x)| ≤ ρ, ∀(x, y) ∈W }.

We notice that FPS could be empty if ρ is chosen too
small. If, for given w = (x, y), we define the set

X(w) = { θ ∈ Rnθ : |y − θTϕ(x)| ≤ ρ },

then the feasible parameter set FPS can be rewritten as

FPS = { θ ∈ Rnθ : θ ∈ X(w), ∀w ∈W }.

The deterministic set membership problem suffers from
the following limitations in real applications: i) due to
the possible non-linearity of ϕ(·), checking if a given
θ ∈ Rnθ satisfies the constraint θ ∈ X(w), for every
w ∈ W, is often a difficult problem; ii) in many situa-
tions the robust constraint can not be checked because
only samples of W are available and therefore, only outer
bounds of FPS can be computed; and iii) there are prob-
lem instances where, because of outliers and possible
non-finite support of W, there is no point in Rnθ guar-
anteeing the fulfilment of every possible constraint, and
thus, the set FPS is empty (even for large values of ρ).

To deal with this issue, one can resort to a probabilistic
relaxation of the FPS. If a probability distribution is de-
fined on W, the probabilistic set membership estimation

problem is that of characterizing the set of parameters
θ that satisfy

PrW{|y − θTϕ(x)| ≤ ρ} ≥ 1− ε,

for a given probability parameter ε ∈ (0, 1). Hence, we
can define FPSε as the set of parameters that satisfy the
previous probabilistic constraint, that is,

FPSε = { θ ∈ Rnθ : PrW{θ ∈ X(w)} ≥ 1− ε }.

It is immediate to notice that this problem fits in the
formulation proposed in this section: It suffices to define

F (w) =

[
ϕT (x)

−ϕT (x)

]
, g(w) =

[
ρ+ y

ρ− y

]
.

2.3 Chance-constrained set approximations

Motivated by the discussion above, we are ready to for-
mulate the main problem studied in this paper.

Problem 1 (ε-CCS approximation) Given the set of
linear inequalities (1), and a violation parameter ε, find
an inner approximation of the set Xε. The approxima-
tion should be: i) simple enough; ii) accurate enough, iii)
easily computable.

A solution to this problem is provided in the paper. In
particular, regarding i), we present a solution in which
the approximating set is represented by few linear in-
equalities. Regarding ii) and iii), we propose a highly
tunable and computationally efficient procedure for its
construction (see Algorithm 1).

Before presenting our approach, in the next section we
provide a brief literature overview of different methods
presented in the literature to construct approximations
of the ε-CCS set.

3 Overview on different approaches to ε-CCS
approximations

The construction of computational efficient approxima-
tions to ε-CCS is a long-standing problem. In particular,
the reader is referred to the recent reviews [10,32], which
provide rather complete discussions on the topic, and
cover the most recent results. The authors of [10] distin-
guish three different approaches, which we very briefly
revisit here.
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3.1 Exact techniques

In some very special cases, the ε-CCS is convex and
hence the CCO problem is efficiently computable. This
is the case, for instance, of individual chance constraints
with w being Gaussian [33]. Other important examples
of convexity of the set Xε involve log-concave distribu-
tion [1,34]. General sufficient conditions on the convexity
of chance constraints may be found in [24,35–37]. How-
ever, all these cases are very specific and hardly extend
to the joint chance constraints considered in this work.

All these previously cited references deal with contin-
uous distributions. A different line of research concen-
trates instead on discrete distributions, which arise fre-
quently in applications, either directly, or as empirical
approximations of the underlying distribution (see, for
example, [1, 38]). For this particular case, exact results
based on the concept of p-efficiency points [39] or dual
methods [40] have been proposed.

3.2 Deterministic approximations

A second class of approaches consist in finding determin-
istic conditions that allow to construct a set X, which is
a guaranteed inner convex approximation of the proba-
bilistic set Xε. The classical solution consists in the ap-
plications of Chebyshev-like inequalities, see e.g. [41,42].
More recent techniques, which are proved particularly
promising, involve robust optimization [3], as the convex
Bernstein-based approximations introduced in [14, 43].
A particular interesting convex relaxation involves the
so-called Conditional Value at Risk (CVaR), see [44]
and references therein. Finally, we point out some recent
techniques based on Genz’ code for Gaussian probabili-
ties of rectangles [45], or on polynomial moments relax-
ations [46,47].

Specific solutions have been proposed for the case of dis-
crete distributions, see the recent survey [48]. In partic-
ular, we point out the recent works proposing a Boolean
reformulation of the feasible set of individual and joint
chance constraints (see [49,50]).

Nonetheless, it should be remarked that these tech-
niques usually suffer from conservatism and computa-
tional complexity issues, especially in the case of joint
chance constraints.

3.3 Sample-based techniques

In recent years, a novel approach to approximate chance
constraints, based on random sampling of the uncertain
parameters, has gained popularity, see e.g. [4, 5, 51, 52]
and references therein. Sampling-based techniques are
characterized by the use of a finite number N of iid
samples of the uncertainty

{
w(1), w(2), . . . , w(N)

}
drawn

according to a probability distribution PrW. With each
sample w(i), i ∈ [N ], we can associate the following sam-
pled set

X(w(i)) = { θ ∈ Rnθ : F (w(i))θ ≤ g(w(i)) }, (7)

sometimes referred to as scenario, since it represents an
observed instance of the uncertain constraint.

Then, the scenario approach considers the CCO prob-
lem (6) and approximates its solution through the fol-
lowing scenario problem

θ∗sc = arg min J(θ) (8)

subject to θ ∈ X(w(i)), i ∈ [N ].

We note that, if the function J(θ) is convex, problem (8)
becomes a linearly constrained convex program, for
which very efficient solution approaches exist. Under
some technical assumptions (feasibility of the prob-
lem and non-degeneracy), a fundamental result [53–56]
provides a probabilistic certification of the constraint
satisfaction for the solution to the scenario problem. In
particular, it is shown that

PrWN {Viol(θ∗sc) > ε} ≤ B(nθ − 1;N, ε), (9)

where the probability in (9) is measured with respect to
the samples {w(1), w(2), . . . , w(N)}.

A few observations are at hand regarding the scenario
approach and its relationship with Problem 1. First, if
we define the sampled constraints set as

XN
.
=

N⋂
i=1

X(w(i)), (10)

we see that the scenario approach consists in approxi-
mating the constraint θ ∈ Xε in (6) with its sampled
version θ ∈ XN . On the other hand, it should be re-
marked that the scenario approach cannot be used to de-
rive any guarantee on the relationship existing between
XN and Xε.

Indeed, the nice probabilistic property in (9) holds only
for the optimum of the scenario program θ∗sc. This is a
fundamental point, since the scenario results build on
the so-called support constraints, which are defined for
the optimum point θ∗sc only.

On the contrary, in our case we are interested in estab-
lishing a direct relation (in probabilistic terms) between
the set XN and the ε-CCS Xε. This is indeed possible,
but one needs to resort to results based on Statistical
Learning Theory [57] and in [52, Theorem 8], summa-
rized in the following lemma.
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Lemma 1 (Statistical Learning Theory bound)
Given probabilistic levels δ ∈ (0, 1) and ε ∈ (0, 0.14), if
the number of samples N is chosen so that N ≥ NLT ,
with

NLT
.
=

4.1

ε

(
ln

21.64

δ
+ 4.39nθ log2

(8en`
ε

))
, (11)

then PrWN {XN ⊆ Xε} ≥ 1− δ.

The lemma, whose proof is reported in Appendix A.1,
is a direct consequence of the statistical learning theory
results on the so-called (α, k)-Boolean functions, given in
[52, Corollary 4], where more general results are reported
for cases in which ε is not constrained in (0, 0.14).

Remark 2 (Sample-based SMPC) The learning
theory-based approach discussed in this section has been
applied in [11] to derive offline a probabilistic inner
approximation of the chance-constrained set defining
the couples of input/state guaranteeing the desired in-
put/state chance. In particular, the bound (11) is a
direct extension to the case of joint CC of the result
proved in [11] for individual CC. To this regard, we
note that the results in the previous section allow to
develop a novel SMPC scheme which considers multiple
constraints at the same time. These developments are
omitted here for brevity, and are reported in an extended
version available at [58]. This work highligths the limits
of [11]: even for a moderately sized MPC problem with
nx = 5 states, nu = 2 inputs, prediction horizon of
T = 10, simple interval constraints on states and inputs,
and for a reasonable choice of probabilistic parameters
ε = 0.05, δ = 10−6, we get more than 1.6 million linear
inequalities.

Remark 2 motivates the approach presented in the next
section, which builds upon the results presented in [15].
We show how the probabilistic scaling approach directly
leads to approximations of user-chosen complexity,
which can be directly used in applications instead of
creating the need for a post-processing step to reduce
the complexity of the sampled set.

4 The Probabilistic Scaling Approach

We propose a novel sample-based approach, alterna-
tive to the randomized procedures proposed so far. This
scheme allows to maintain the nice probabilistic features
of these techniques, while at the same time providing
the designer with a way of tuning the complexity of the
approximation.

The main idea behind this approach consists of a two-
step procedure: i) first a simple initial approximation
θc ⊕ S of the shape of the probabilistic set Xε is ob-
tained, and ii) a scalable simple approximating set (Scal-

able SAS) of the form

S(γ)
.
= θc ⊕ γS (12)

is considered.

These sets are described by a center point θc and a low-
complexity shape set S. The center θc and the shape S
constitute the design parameters of the proposed ap-
proach. By appropriately selecting the shape S, the de-
signer can control the complexity of the approximating
set. The nonnegative scalar γ controls instead the scale
of the set S(γ): the larger γ, the larger will be the set.

Note that we do not ask this initial set to have any guar-
antee of probabilistic nature. What we ask is that this
set is being able to “capture” somehow the shape of the
set Xε. Recipes on a possible procedure for constructing
this initial set are provided in Section 5. The center θc
and the set S constitute the starting point of a scaling
procedure, which allows to derive a probabilistic guar-
anteed approximation of the ε-CCS, as detailed in the
next subsection.

4.1 Probabilistic Scaling

In this section, we address the problem of how to scale
the set S(γ) around its center θc to guarantee, with con-
fidence level δ ∈ (0, 1), the inclusion of the scaled set
into Xε. Within this sample-based procedure we assume
that Nγ iid samples {w(1), . . . , w(Nγ)} are obtained from
PrW and, based on these, we show how to obtain a scalar
γ̄ > 0 such that

PrWNγ {S(γ̄) ⊆ Xε} ≥ 1− δ.

To this end, we first define the scaling factor associated
to a given realization of the uncertainty.

Definition 4 (Scaling factor) Given a Scalable SAS
S(γ), with given center θc ∈ Rnθ and shape S, and a
realization w ∈ W, we define the scaling factor of S(γ)
relative to w as

γ(w)
.
=

 0 if θc 6∈ X(w)

max
S(γ)⊆X(w)

γ otherwise,
(13)

with X(w) = { θ ∈ Rnθ : F (w)θ ≤ g(w) }.

That is, γ(w) represents the maximal scaling that can
be applied to S(γ) = θc ⊕ γS around the center θc so
that S(γ) ⊆ X(w). The following theorem, whose proof
is reported in Appendix A.2, states how to obtain, by
means of sampling, a scaling factor γ̄ that guarantees,
with high probability, that S(γ̄) ⊆ Xε.
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Theorem 1 (Probabilistic scaling) Given a candi-
date Scalable SAS S(γ), with θc ∈ Rnθ and shape S,
suppose that accuracy parameter ε ∈ (0, 1), confidence
level δ ∈ (0, 1), integer parameter r ≥ 1 and Nγ ≥ r are
chosen such that

B(r − 1;Nγ , ε) ≤ δ. (14)

Draw Nγ iid samples {w(1), w(2), . . . , w(Nγ)} from distri-
bution PrW, compute the corresponding scaling factors

γi
.
= γ(w(i)), i ∈ [Nγ ]

according to Definition 4, and let Γ
.
= {γi}

Nγ
i=1. Define

γ̄ = γ−r = min(r)(Γ),

i.e. γ̄ is the r-th smallest value of Γ (see Notation). Under
these assumptions:

(i) If γ̄ > 0 then, with probability no smaller than 1−δ,

S(γ̄) = θc ⊕ γ̄S ⊆ Xε.

(ii) If θc 6∈ Xε then γ̄ = 0 with probability no smaller
than 1− δ.

We now state a Lemma, whose proof is reported in Ap-
pendix A.3, which is a generalization of a previous re-
sult presented in [19]. The Lemma provides a way to
relate the choice of r and Nγ by introducing the value
βεNγ . This latter represents the desired fraction of the
expected number of violations, which can be interpreted
as a trade-off parameter between the number of samples
and the tightness of the solution.

Lemma 2 Let r = dβεNγe, where β ∈ (0, 1), and define

κ
.
=

(√
β +
√

2− β√
2(1− β)

)2

.

Then, inequality (14) is satisfied for

Nγ ≥
κ

ε
ln

1

δ
. (15)

In particular, the choice β = 0.5 leads to r =
⌈
εNγ
2

⌉
and

Nγ ≥ 7.47
ε ln 1

δ .

The above result leads to the following simple algorithm,
in which we summarise the main steps for constructing
the scaled set, and we provide an explicit way of deter-
mining parameter r.

Algorithm 1 Probabilistic SAS Scaling

1: Given a candidate Scalable SAS S(γ), and probabil-
ity levels ε and δ, choose

Nγ ≥
7.47

ε
ln

1

δ
and r =

⌈
εNγ

2

⌉
. (16)

2: DrawNγ samples of the uncertaintyw(1), . . . , w(Nγ).
3: for i = 1 to Nγ do
4: Compute, according to Definition 4, the Nγ scal-

ing factors

γi
.
=γ(w(i)), i ∈ [Nγ ]. (17)

5: end for
6: Return γ̄ = γ−r = min(r)(Γ), the r-th smallest value

of Γ = {γi}
Nγ
i=1.

A few comments are in order regarding the algorithm
above. In step 4, for each uncertainty sample w(i) one
has to solve an optimization problem, which amounts to
finding the largest value of γ such that S(γ) is contained
in the set X(w(i)) defined in (7). If the SAS is chosen
appropriately, we can show that this problem is convex
and computationally very efficient: this is discussed in
Section 5. Then, in step 6, one has to re-order the se-
quence Γ = {γ1, γ2, . . . , γNγ} so that the first element is
the smallest one, the second element is the second small-
est one, and so on and so forth, and then return the r-th
element of the reordered sequence.

The properties of the output of Algorithm 1 can be de-
rived by a direct application of Theorem 1 and Lemma
2. In particular, if the output γ̄ is larger than zero, then
S(γ) ⊆ Xε with probability no smaller than 1− δ.

In the next sections, we provide a “library” of possible
candidate SAS shapes. We remind that these sets need
to comply with two main requirements: i) being a simple
and low-complexity representation; and ii) being able to
capture the original shape of the ε-CCS. Moreover, in
the light of the discussion after Algorithm 1, we also ask
these sets to be convex.

5 Candidate SAS: Sampled-polytope

First, we note that the most straightforward way to de-
sign a candidate SAS is again to recur to a sample-
based procedure: we draw a fixed number NS of “de-
sign” uncertainty samples 1 {w̃(1), . . . , w̃(NS)}, and con-
struct an initial sampled approximation by introducing

1 These samples are denoted with a tilde to distinguish them
from the samples used in the probabilistic scaling procedure.
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the sampled-polytope

XNS =

NS⋂
j=1

X(w̃(j)). (18)

Note that the sampled polytope XNS , by construction, is
given by the intersection of n`NS half-spaces. Hence, we
observe that this approach provides very precise control
on the final complexity of the approximation, through
the choice of the number of samples NS . However, it is
also clear that a choice for which NS << NLT implies
that the probabilistic properties of XNS before scaling
will probably not meet the required specifications (see
Lemma 1). However, we emphasize again that this ini-
tial geometry doesn’t have nor require any probabilistic
guarantees, which are instead provided by the proba-
bilistic scaling discussed in Section 4.1. It should be also
remarked that this is only one possible heuristic. For
instance, along this line one could as well draw many
samples and then apply a clustering algorithm to boil it
down to a desired number of samples.

We remark that, in order to apply the scaling procedure,
we need to define a center around which to apply the
scaling procedure. To this end, we could compute the so-
called Chebyshev center, which for a given norm ‖ · ‖p,
is defined as the center of the largest ball inscribed in
XNS , i.e. θc = Chebp(XNS ). Once the center θc has been
determined, the scaling procedure can be applied to the
sampled-polytope SAS defined as

SNS (γ)
.
= θc ⊕ γ{XNS 	 θc}. (19)

We note that computing the Chebyshev center of a given
polytope is an easy convex optimization problem, for
which efficient algorithms exist, see e.g. [18]. A possible
alternative would be the analytic center of XNS , whose
computation is even easier (see [18] for further details).
Note that the choice of θc only affects the goodness of
the shape, but we can never know a priori if the analytic
center is a better choice than any random center in the
candidate SAS.

Example 2 [Sample-based approximations] To illus-
trate how the proposed scaling procedure works in practice
in the case of sampled-polytope SAS, we revisit Exam-
ple 1. To this end, a pre-fixed number NS of uncertainty
samples were drawn, and the set of inequalities

F (w̃(j))θ ≤ g(w̃(j)), j ∈ [NS ],

with F (w), g(w) defined in (5), were constructed, leading
to the set XNS . Then, its Chebyshev center with respect to
norm ‖·‖2 was computed, and Algorithm 1 was applied to
the sampled-polytope SAS SNS (γ) defined in (19), with
ε = 0.05, δ = 10−6, leading to Nγ = 2, 065.

We note that, in this case, the solution of the optimization
problem in (13) may be obtained by bisection on γ. Indeed,
for given γ, checking if SNS (γ) ⊆ X(w(i)) amounts to
solving some simple linear programs.

Two different situations were considered: a case where
the number of inequalities is rather small NS = 100, and
a case where the complexity of the SAS is higher, i.e.
NS = 1, 000. The outcome procedure is illustrated in Fig-
ure 2. We can observe that, for a small NS – Fig. 2(a)
– the initial approximation is rather large (although it
is contained in Xε, we remark that we do not have any
guarantee that this will happen). In this case, the prob-
abilistic scaling returns γ = 0.8954 which is less than
one. This means that, in order to obtain a set fulfilling
the desired probabilistic guarantees, we need to shrink it
around its center. In the second case, for a larger number
of sampled inequalities – Fig. 2(b) - the initial set (the
red one) is much smaller, and the scaling procedure in-
flates the set by returning a value of γ greater than one,
i.e. γ = 1.2389. Note that choosing a larger number of
samples for the computation of the initial set does not
imply that the final set will be a better approximation of
the ε-CCS.

Finally, we compare this approach to the scenario-like
ones discussed in Subsection 3.3. To this end, we also
draw the approximation obtained by directly applying the
Statistical Learning Theory bound (11). Note that in
this case, since nθ = 3 and n` = 4, we need to take
NLT = 13, 011 samples, corresponding to 52, 044 lin-
ear inequalities. The resulting set is represented in Fig.
2(c). We point out that using this approximation i) the
set is much more complex, since the number of involved
inequalities is much larger; ii) the set is much smaller,
hence providing a much more conservative approxima-
tion of the ε-CCS. Hence, the ensuing chance-constrained
optimization problem will be computationally harder, and
lead to a solution with a larger cost or even to an infeasi-
ble problem, in cases where the approximating set is too
small.

6 Candidate SAS: Norm-based SAS

In this section, we propose a procedure in which the
shape of the scalable SAS is selected a-priori. This cor-
responds to situations where the designer wants to have
full control over the final shape in terms of structure and
complexity. The main idea is to define so-called norm-
based SAS of the form

S`p(γ)
.
= θc ⊕ γHBsp, (20)

where Bsp is an `p-ball in Rs,H ∈ Rnθ×s, with s ≥ nθ, is a
design matrix (not necessarily square), and γ is the scal-
ing parameter. Note that when the matrix H is square
(i.e. s = nθ) and positive definite these sets belong to the
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(a) SNS with NS = 100. → γ = 0.8954 (b) SNS with NS = 1, 000. → γ = 1.2389 (c) Based on Lemma 1 ( NLT = 52, 044)

Fig. 2. (a-b) Probabilistic scaling approximations of the ε-CCS. Scaling procedure applied to a sampled-polytope withNS = 100
(a) and NS = 1, 000 (b). The initial sets are depicted in red, the scaled ones in green. (c) Approximation obtained by direct
application of Lemma 1. Note that, in this latter case, to plot the set without out-of-memory errors a pruning procedure [59]
of the 52, 044 linear inequalities was necessary.

class of `p-norm based sets originally introduced in [60].
In particular, in case of `2 norm, the sets are ellipsoids.
This particular choice is the one studied in [16]. Here,
we extend this approach to a much more general family
of sets, which encompasses for instance zonotopes, ob-
tained by letting p = ∞ and s ≥ nθ. Zonotopes have
been widely studied in geometry, and have found sev-
eral applications in systems and control, in particular for
problems of state estimation and robust Model Predic-
tive Control, see e.g. [61]. Zonotopes proved to be very
flexible and yield very efficient implementations.

6.1 Scaling factor computation for norm-based SAS

We recall that the scaling factor γ(w) is defined as 0 if
θc 6∈ X(w) and as the largest value γ for which S`p(γ) ⊆
X(w) otherwise. The following theorem, whose proof is
reported in Appendix A.4, provides a direct and simple
way to compute in closed form the scaling factor for a
given candidate norm-based SAS.

Theorem 2 (Scaling factor for norm-based SAS)
Given a norm-based SAS S(γ) = θc ⊕ γHBsp and a re-

alization w ∈ W, define τ`(w)
.
= g`(w) − fT` (w)θc and

ρ`(w)
.
= ‖HT f`(w)‖p∗ , with ‖ · ‖p∗ being the dual norm

of ‖ · ‖p.

The scaling factor γ(w) can be computed as

γ(w) = min
`∈[n`]

γ`(w),

with γ`(w), ` ∈ [n`], given by

γ`(w) =


0 if τ`(w) < 0,

∞ if τ`(w) ≥ 0 and ρ`(w) = 0
τ`(w)

ρ`(w)
if τ`(w) ≥ 0 and ρ`(w) > 0

.

Note that γ(w) is equal to zero if and only if θc is not
included in the interior of X(w).

6.2 Construction of a candidate norm-based set

Similarly to Section 5, we first draw a fixed number NS
of “design” uncertainty samples {w̃(1), . . . , w̃(NS)}, and
construct an initial sampled approximation (sampled-
polytope SAS) XNS by means of (18). Again, we consider
the Chebyshev center of XNS , or its analytical center as
a possible center θc for our approach.

Analogously to what was proposed in [16], given XNS ,
s ≥ nθ and p ∈ {1, 2,∞}, the objective is to compute
the largest set θc⊕HBsp included in XNS . To this end, we
assume that we have a function Volp(H) that provides
a measure of the size of HBsp. That is, larger values of
Volp(H) are obtained for increasing sizes of HBsp.

Remark 3 (On the volume function)
The function Volp(H) may be seen as a generalization of
the classical concept of Lebesgue volume of the set XNS .
Indeed, whenH is a square positive definite matrix, some
possibilities are Volp(H) = log det(H) – which is di-
rectly proportional to the classical volume definition, or
Volp(H) = tr H – which for p = 2 becomes the well known
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sum of ellipsoid semiaxes (see [62] and [18, Chapter 8]).
These measures can be easily generalized to non square
matrices. It suffices to compute the singular value de-
composition. If H = UΣV T , we could use the measures
Volp(H) = tr Σ or Volp(H) = log det(Σ).
For non square matrices H, specific results for particu-
lar values of p are known. For example, we remind that
if p = ∞ and H ∈ Rnθ×s, s ≥ nθ, then θc ⊕ HBs∞ is
a zonotope. Then, if we denote as generator each of the
columns of H, the volume of a zonotope can be computed
by means of a sum of terms (one for each different way
of selecting nθ generators out of the s generators of H);
see [63], [64]. Another possible measure of the size of a
zonotope θc ⊕HBs∞ is the Frobenious norm of H [63].

Given an initial design set XNS , we elect as our candi-
date Scalable SAS the largest “volume” norm-based SAS
contained in XNS . Formally, this rewrites as the follow-
ing optimization problem

max
θc,H

Volp(H)

subject to θc ⊕HBsp ⊆ XNS .
(21)

As it has been shown (see Appendix A.4), problem (21)
is equivalent to

min
θc,H

−Volp(H)

s.t. fT` (w̃(j))θc + ‖HT f`(w̃
(j))‖p∗ − g`(w̃(j)) ≤ 0,

` ∈ [n`], j ∈ [NS ], (22)

where we have replaced the maximization of Volp(H)
with the minimization of -Volp(H).

We notice that the constraints are convex on the deci-
sion variables; also, the functional to minimize is con-
vex under particular assumptions. For example when
H is assumed to be square and positive definite and
Volp(H) = log det(H). For non square matrices, the con-
straints remain convex, but the convexity of the func-
tional to be minimized is often lost. In this case, local
optimization algorithms should be employed to obtain a
possibly sub-optimal solution.

Example 3 (Norm-based SAS) We revisit again Ex-
ample 1 to show the use of norm-based SAS. We note
that, in this case, the designer can control the approxima-
tion outcome by acting upon the number of design sam-
plesNS used for constructing the set SNS . In Figure 3 we
report two different norm-based SAS, respectively with
p = 1 and p = ∞, and for each of them we consider
two different values of NS, respectively NS = 100 and
NS = 1, 000. Similarly to what observed in Example 2,
we see that for larger NS, the ensuing initial set becomes
smaller. Consequently, we have a shrinkage process for
small NS and an inflating one for large NS. However, we
observe that in this case, the final number of inequalities
is independent of NS (8 for S`1and 6 for S`∞).

6.2.1 Relaxed computation

It is worth remarking that the minimization problem
of the previous subsection might be infeasible. In or-
der to guarantee the feasibility of the problem, a soft-
constrained optimization problem is proposed. With a
relaxed formulation, θc is not guaranteed to satisfy all
the sampled constraints. However θc ∈ SNS is not nec-
essary to obtain an ε-CCS.

Given ξ > 0, the relaxed version of optimization problem
(22) is

min
θc,H,η1,...,ηNS

− Volp(H) + ξ

NS∑
j=1

max{ηj , 0} (23)

s.t. fT` (w̃(j))θc + ‖HT f`(w̃
(j))‖p∗ − g`(w̃(j)) ≤ ηj ,

` ∈ [n`], j ∈ [NS ].

The parameter ξ serves to provide an appropriate trade
off between satisfaction of the sampled constraints and
the size of the obtained region. A possibility to choose
ξ would be to choose it in such a way that the fraction
of violations nviol/NS (where nviol is the number of ele-
ments ηj larger than zero) is smaller than ε/2.

7 Numerical example: Probabilistic set mem-
bership estimation

We now present a numerical example in which the re-
sults of the paper are applied to the probabilistic set
membership estimation problem, introduced in subsec-
tion 2.2. We consider the universal approximation func-
tions given by Gaussian radial basis function networks
(RBFN) [65].

Given the nodes [x1, x2, . . . , xM ] and the variance pa-
rameter c, the corresponding Gaussian radial basis func-
tion network is defined as

RBFN(x, θ) = θTϕ(x),

where θ =
[
θ1 . . . θM

]T
represents the weights and

ϕ(x) =
[

exp
(
−‖x−x1‖2

c

)
. . . exp

(
−‖x−xM‖2

c

) ]T
is the regressor function. Given δ ∈ (0, 1) and ε ∈ (0, 1),
the objective is to obtain, with probability no smaller
than 1 − δ, an inner approximation of the probabilistic
feasible parameter set FPSε, which is the set of param-
eters θ ∈ RM that satisfies

PrW{|y − θTϕ(x)| ≤ ρ} ≥ 1− ε, (24)
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(a) γ = 0.9701 (b) γ = 1.5995 (c) γ = 0.9696 (d) γ = 1.5736

Fig. 3. Scaling procedure applied to (a) S`1 -SAS with NS = 100, (b) S`1 -SAS with NS = 1, 000, (c) S`∞ -SAS with NS = 100,
and (d) S`∞ -SAS with NS = 1, 000. The initial set is depicted in red, the final one in green. The sampled design polytope SNS
is represented in black.

where ρ = 5, x is a random scalar with uniform distri-
bution in [−5, 5], and

y = sin(3x) + σ,

where σ is a random scalar with a normal distribution
with mean 5 and variance 1.

We use the procedure detailed in Sections 4, 5 and 6 to
obtain a SAS of FPSε. We have taken a grid of M =
20 points in the interval [−5, 5] to serve as nodes for
the RBFN, and a variance parameter of c = 0.15. We
have taken NS = 350 random samples w = (x, y) to
compute the initial geometry, which has been chosen
to be an `∞ norm-based SAS of dimension 20 with a
relaxation parameter of ξ = 1 (see (23)). The chosen
initial geometry is θc⊕HB20

∞, where H is constrained to
be a diagonal matrix.

When the initial geometry is obtained, we scale it around
its center by means of probabilistic scaling with Algo-
rithm 1. The number of samples required for the scaling
phase to achieve ε = 0.05 and δ = 10−6 is Nγ = 2065
and the resulting scaling factor is γ = 0.3803. The scaled
geometry θc ⊕ γHB20

∞ is, with a probability no smaller
than 1−δ, an inner approximation of FPSε which we will
refer to as FPSδε. Since it is a transformation of an `∞
norm ball with a diagonal matrix H, we can write it as

FPSδε = {θ : θ− ≤ θ ≤ θ+},

where the extreme values θ−, θ+ ∈ R20 are represented
in Figure 4, along with the central value θc ∈ R20.

Once the FPSδε has been computed, we can use its center
θc to make the point estimation y ≈ θTc ϕ(x). We can
also obtain probabilistic upper and lower bounds of y
by means of equation (24). That is, every point in FPSδε

Fig. 4. Representation of the extreme values θ+ and θ− and
the central value θc of the FPSδε.

satisfies, with confidence 1− δ:

PrW{y ≤ θTϕ(x) + ρ} ≥ 1− ε,
PrW{y ≥ θTϕ(x)− ρ} ≥ 1− ε.

(25)

We notice that the tightest probabilistic bounds are ob-
tained with θ+ for the lower bound and θ− for the upper
one. That is, we finally obtain that, with confidence 1−δ:

PrW{y ≤ θ−
T
ϕ(x) + ρ} ≥ 1− ε,

PrW{y ≥ θ+
T
ϕ(x)− ρ} ≥ 1− ε.

(26)

Figure 5 shows the results of both the point estimation
and the probabilistic interval estimation.

8 Concluding remarks

In this paper, we proposed a general approach to con-
struct probabilistically guaranteed inner approxima-
tions of the chance-constrained set Xε. The approach
is very general and flexible. In this section, we report
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Fig. 5. Real values of y vs central estimation (blue) and
interval prediction bounds (red).

a few final remarks on some important aspects of the
presented methodology.

8.1 On scalability of the proposed approach

We point out that our framework provides different
schemes, with different computational requirements. In
particular, regarding the norm-based sets discussed in
Section 6, Theorem 2 provides a closed-form expres-
sion for the scaling computations. Hence, the approach
scales extremely well when the initial candidate set
θc ⊕ HBsp is given. In the case the initial set is for in-
stance a generic polytope (as for the sampled-polytopes
discussed in Section 5), the scaling computation is in-
deed more involved, since there is not a close-form
expression in general. In this case, the solution of the
optimization problem in (17) may be obtained by bisec-
tion on γ. Note that, in this case, for given γ, checking if
SNS (γ) ⊆ X(w(i)) amounts to solving a linear program.

Otherwise, when the set θc ⊕ HBsp is not available, its
computation will clearly constitute the most demanding
step of our scheme. In this case, as detailed in Section 6,
θc and H can be obtained by means of a convex opti-
mization problem when H is a square matrix. Depend-
ing on the choice on H, the number of decision variables
increases linearly with the dimension of θc (e.g. H is a
diagonal matrix), or quadratically (ifH is a full matrix).
Again, we stress that the richer is the family of initial
candidate sets (e.g. when the initial set is a zonotope),
the more demanding will be its computation.

In any case, we are not claiming that the approach we
propose is to be preferred to other approaches in ev-
ery situation. For instance, if the uncertainty enters in a
“nice” way, better solutions surely exist. And of course,
there will be situations where the solutions discussed in
Section 3 may be preferable. On the other hand, a nice
and distinctive feature of our approach is that it can be
seen as complementary to these approaches: for instance,

imagine one has constructed a safe tractable approxima-
tion based on the procedure proposed in [43], i.e. an ap-
proximation given by a convex set [43, Proposition 1] of
the form H(θ) ≤ 0. Then, nothing forbids the designer
to use this set as initial SAS to which applying our scal-
ing procedure, thus further improving its approximation
properties.

Moreover, it should be remarked that the tunability of
our method, while allowing high flexibility, entails by
definition the problem of parameter selection. In our
case, the main degree of freedom is the choice of the ini-
tial scalable set. In this case, the trade-off is evident: the
more complex the set, the better may be the obtained
approximation, at the expense of a possibly larger com-
putational effort. Besides this clear implication, a more
detailed analysis, both theoretical and experimental, is
needed to understand the effect of specific choices of the
initial set (as those introduced in Section 5 and 6). This is
an important point that however goes beyond the scope
of the present paper, and is the subject of ongoing re-
search.

8.2 Extensions to nonlinear setups

We remark that the proposed scaling approach is not
limited to sets defined by linear inequalities, but may be
extended to more general sets using very similar argu-
ments. Indeed, we may consider a generic binary perfor-
mance function ψ : Rnθ ×W→ {0, 1} defined as 2

ψ(θ, w) =

{
0 if θ meets design specifications for w

1 otherwise.

(27)
In this case, the violation probability may be written as
Viol(θ)

.
= PrW {ψ(θ, w) = 1 }, and we can still define

the set Xε as in (3). Then, given an initial SAS candi-
date, Algorithm 1 still provides a valid approximation.
However, it should be remarked that, even if we choose a
“nice” SAS as those previously introduced, the noncon-
vexity of ψ will most probably render step 4 of the al-
gorithm intractable. Also, sample-size bounds different
from (16) would need to be derived, due to nonconvexity.
To further elaborate on this point, let us focus on the
case when the design specification may be expressed as
a (nonlinear) inequality of the form

ζ(θ, w) ≤ 0.

Then, the computation of each scaling factor γi of step 4
consists, provided that θc ∈ X(w(i)), in solving the fol-

2 Clearly, this formulation encompasses the setup discussed,

obtained by simply setting ψ(θ, w) =

 0 if F (w)θ ≤ g(w)

1 otherwise.
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lowing nonconvex optimization problem

γi
.
= arg max γ

s.t. θc ⊕ γS ⊆ X(w(i)) =
{
θ ∈ Rnθ | ζ(θ, w(i)) ≤ 0

}
.

We note that this is generally a hard problem. However,
there are cases when this problem is still solvable. In
particular, we remark that whenever ζ(θ, w) is a convex
function of θ for fixed w and the set S is also convex,
the above optimization problem may be formulated as a
convex program. Moreover, in this case, the bound (16)
would still hold. Hence, in such situations, the approach
proposed here is still completely viable, since all the
derivations continue to hold.

8.3 Future directions

In the previous subsection, we discussed how the method
might be extended to nonlinear setups. These extensions
always consider continuous variables. One may wonder
if the approach may also be extended to the important
class of problems involving integer values, such as the
mixed-integer programs studied in [38]. This is a prob-
lem currently under investigation, however we remark
that the extension in this case is far from being trivial,
and while we understand that the presented approach is
generalizable in theory, we have not yet found any com-
putationally efficient implementation for it.

We also remark that the paper opens the way to the
design of other families of Scalable SAS. For instance, we
are currently working on using the family of sets defined
in the form of polynomial superlevel sets (PSS) proposed
in [66].

A Appendix

A.1 Proof of Lemma 1

To prove the lemma, we first recall the following defini-
tion from [52].

Definition 5 ((α, k)-Boolean function) The func-
tion h : Rnθ × W → R is an (α, k)-Boolean function
if for fixed w it can be written as an expression con-
sisting of Boolean operators involving k polynomials
p1(θ), p2(θ), . . . , pk(θ), in the components θi, i ∈ [nθ]
and the degree with respect to θi of all these polynomials
is no larger than α.

Let us now define the binary functions

h`(θ, w)
.
=

{
0 if f`(w)θ ≤ g`(w)

1 otherwise
, ` ∈ [n`].

Introducing the function h(θ, w)
.
= max
`=1,...,n`

h`(θ, w), we

see that the violation probability can be alternatively
written as Viol(θ)

.
= PrW {h(θ, w) = 1 }. We notice that

h(θ, w) is an (1, n`)-Boolean function, since it can be
expressed as a function of n` Boolean functions, each
of them involving a polynomial of degree 1. The proof
now follows from Theorem 8 in [52] that states that if
h : Rnθ × W → R is an (α, k)-Boolean function and
ε ∈ (0, 0.14) then, with probability greater than 1 − δ,
we have PrW {h(θ, w) = 1 } ≤ ε if N is chosen such that

N ≥ 4.1

ε

(
ln

21.64

δ
+ 4.39nθ log2

(8eαk

ε

))
.

A.2 Proof of Theorem 1

To prove the theorem, we first prove the following prop-
erty.

Property 1 Given ε ∈ (0, 1), δ ∈ (0, 1), and r ≥ 1,
let N ≥ r be such that B(r − 1;N, ε) ≤ δ. Draw N iid
samples {w(1), w(2), . . . , w(N)} from a distribution PrW.
For i ∈ [N ], let γi

.
= γ(w(i)), with γ(·) as in Definition 4,

and suppose that γ̄ = min(r){γi}Ni=1 > 0. Then, with
probability no smaller than 1− δ, it holds that PrW{θc⊕
γ̄S 6⊆ X(w)} ≤ ε.

Proof: It has been proven in [55,56] that if one discards
no more than s constraints on a convex problem with
N random constraints, then the probability of violating
the constraints with the solution obtained from the ran-
dom convex problem is no larger than ε ∈ (0, 1), with
probability no smaller than 1− δ, where

δ =

(
s+ d− 1

s

)
s+d−1∑
i=0

(
N

i

)
εi(1− ε)N−i,

and d is the number of decision variables. We apply this
result to the following optimization problem

max
γ

γ subject to θc ⊕ γS ⊆ X(w(i)), i ∈ [N ]. (A.1)

From Definition 4, we could rewrite this optimization
problem as

max
γ

γ subject to γ ≤ γ(w(i)), i ∈ [N ].

We first notice that the problem under consideration is
convex and has a unique scalar decision variable γ. That
is, d = 1. Also, the non-degeneracy and uniqueness as-
sumption required in the application of the results of [55]
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and [56] are satisfied. We notice that γ̄ = min(r){γi}Ni=1,
is the optimal solution to the optimization problem when
s = r − 1 constraints are discarded. Thus, we have that
with probability no smaller than 1− δ, where

δ =

(
r − 1

r − 1

)
r−1∑
i=0

(
N

i

)
εi(1− ε)N−i = B(r − 1;N, ε),

the choice γ̄ = min(r){γi}i=1N satisfies PrW{γ̄ >
γ(w)} ≤ ε.

We conclude from this, and Definition 4, that with prob-
ability no smaller than 1− δ, PrW{θc⊕ γ̄S 6⊆ X(w)} ≤ ε.

Proof of Theorem 1

We consider first the case γ̄ > 0. From Property 1, we
have that γ̄ > 0 satisfies, with probability no smaller
than 1 − δ, that PrW{S(γ̄) 6⊆ X(w)} ≤ ε. Equivalently,
PrW{S(γ̄) ⊆ X(w)} ≥ 1 − ε. This can be rewritten as
PrW{F (w)θ ≤ g(w), ∀θ ∈ S(γ)} ≥ 1− ε, and it implies
that the probability of violation in θc ⊕ γ̄S is no larger
than ε, with probability no smaller than 1 − δ. This
proves the first claim.
Suppose now that θc 6∈ Xε. This is equivalent to
Viol(θc) = ε̄c > ε. Suppose that the sample constraints
θc ∈ X(w(i)), i ∈ [Nγ ] are violated vc times. This would
imply, because of the definition of scaling factor, that
there are at least vc scaling factors γ(w(i)) equal to zero.
From this and Viol(θc) = ε̄c > ε, we obtain

PrWNγ {γ̄ > 0}= PrWNγ {min(r){γi}
Nγ
i=1 > 0}

≤ PrWNγ {vc < r}
=B(r − 1;Nγ , εc) ≤ B(r − 1;Nγ , ε) ≤ δ.

From here we conclude that θc 6∈ Xε implies

PrWNγ {γ̄ = 0} = 1− PrWNγ {γ̄ > 0} ≥ 1− δ.

A.3 Proof of Lemma 2

From [67, Corollary 1] we have that (14) is satisfied for

Nγ ≥
1

ε

(
r − 1 + ln

1

δ
+

√
2(r − 1) ln

1

δ

)
. (A.2)

Since r − 1 = dβεNγe − 1 ≤ βεNγ , we obtain the suffi-
cient condition

Nγ ≥
1

ε

(
βεNγ + ln

1

δ
+

√
2βεNγ ln

1

δ

)

= βNγ +
1

ε
ln

1

δ
+

√
2βNγ

1

ε
ln

1

δ
.

Letting a
.
=
√
Nγ and b

.
=
√

1
ε ln 1

δ , the previous expres-

sion can be rewritten as (1− β)a2 − (
√

2βb)a− b2 ≥ 0.
The largest root of this second order equation is(√

β +
√

2− β√
2(1− β)

)
b.

Thus, (A.2) is satisfied if

√
Nf ≥

(√
β +
√

2− β√
2(1− β)

)√
1

ε
ln

1

δ
.

This proves the claim.

A.4 Proof of Theorem 2

Note that, by definition, the condition θc ⊕ γHBsp ⊆
X(w) is equivalent to

max
z∈Bsp

fT` (w)(θc + γHz)− g`(w) ≤ 0, ` ∈ [n`].

Equivalently, from the dual norm definition, we have

fT` (w)θc + γ‖HT f`(w)‖p∗ − g`(w) ≤ 0, ` ∈ [n`].

Denote by γ` the scaling factor γ` corresponding to the
`-th constraint

fT` (w)θc + γ`‖HT f`(w)‖p∗ − g`(w) ≤ 0.

With the notation introduced in the theorem, this con-
straint rewrites as γ`ρ`(w) ≤ τ`(w). The result follows
noting that the corresponding scaling factor γ`(w) can
be computed as

γ`(w) = max
γ`ρ`(w)≥τ`(w)

γ`,

and that the value for γ(w) is obtained from the most
restrictive one.
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