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Angle-Aware Coverage Control for 3-D Map Reconstruction
with Drone Networks*

Takumi Shimizu1, Shunya Yamashita1, Takeshi Hatanaka1, Kuniaki Uto2,

Martina Mammarella3, and Fabrizio Dabbene3

Abstract—In this paper, we address environmental monitoring
for 3-D map reconstruction using drone networks. In view of
the fact that the 3-D reconstruction requires images from a
variety of viewing angles, we first formulate a novel angle-aware
coverage control problem, based on a concept of virtual field that
combines the position of a monitoring target and the viewing
angle. Then, we define an objective function with an importance
index, updated according to the history of the past coverage
states. In the present scenario, drones are required not only
to minimize the objective function but also to take situation-
adaptive actions, e.g. a drone should quickly escape a region
having low importance indices. To this end, we design a QP-
based controller that switches actions depending on the current
importance index. We finally demonstrate the effectiveness of
the presented controller through simulations on Robot Operating
System.

I. INTRODUCTION

Drones have increasingly been a key technology in environ-

mental monitoring in several fields, e.g., smart farming [1],

airborne gas sensing [2], and wildfire tracking [3]. In par-

ticular, drone networks with distributed control are expected

to enhance the monitoring efficiency and robustness against

failures while ensuring computational scalability. Coverage

control [4] is a promising distributed solution to environmental

monitoring with drone networks, as reported in the literature

[5], [6], [7]. Most of such studies assume that the drone moves

with a camera overlooking the ground.

A motivation for sampling images over environment is 3-

D map reconstruction through techniques like Structure from

Motion (SfM), e.g., in the applications of 3-D printable prefab-

ricated structures [8], the landslide inventory map [9], and farm

mapping [10]. In a scenario, each point in the environment

needs to be sampled from various viewing angles. Nonetheless,

standard coverage control [5] does not distinguish samples

from different viewing angles. Some papers like [5] reflect the

viewing angle in the sensing performance function, but it is

irrelevant to the above issue. Additionally, coverage control

typically leads drones/robots to a stationary configuration.
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Meanwhile, in the present case, drones are required to move

around over the environment for taking rich images. To address

the issue, the papers [11], [12], [13], [14] present persistent

coverage control, wherein the drones/robots take patrolling

motion persistently by raising or lowering the so-called density

function (or importance index) according to the history of the

past coverage states. Performance guarantees for such time-

varying density functions are also addressed in [15], [16], and

an online update of the density is also investigated in [17],

[18]. However, the motion is also not always suitable for the

considered scenario. In the present case, drones do not need

to revisit a point to take the same image.

The above requirement is trivially reflected by prohibit-

ing the importance index from raising, but it poses another

challenge. Namely, if a drone is approaching a well-observed

region having low importance indices, the objective function

gets low and the standard gradient-based coverage schemes

tend to decelerate the drones. However, the drones are actually

expected to quickly escape such a region with high speed.

Rather, they should slow down when they are in monitoring

regions with high indices not fully observed in the past.

In short, the drones need to take situation-adaptive actions

depending on the current importance index.

In this paper, we present a novel angle-aware coverage

control scheme for 3-D map reconstruction. We first present a

new problem formulation of environmental monitoring, taking

into account the viewing angle. In particular, we employ

a higher dimensional virtual field that combines not only

the position of a monitoring target but also the viewing

angle. Then, we present a quadratic programming(QP)-based

controller to reflect the aforementioned situational adaptability.

Furthermore, in order to ensure the viability of the con-

troller, we present a computationally efficient implementation

with safety certificates. Finally, we verify that the proposed

controller achieves ideal situation-adaptive and angle-aware

monitoring through simulations.

The contributions of this paper are summarized below:

• We present a novel angle-aware coverage control problem

suitable for map reconstructions using a concept of a

higher dimensional virtual field and monotonically de-

creasing importance index.

• We present a novel situation-adaptive controller based on

the QP-based controller.

• We present a computationally efficient version of the

controller in order to ensure implementability.
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II. PRELIMINARY: ZEROING CONTROL BARRIER

FUNCTION AND QP-BASED CONTROLLER

Let us consider the system ẋ = f(x) + g(x)u, where x ∈
R

N is the state, u ∈ U ⊆ R
M is the control input, and f :

R
N → R

N and g : RN → R
N×M are the vector fields, which

are Lipschitz continuous. We assume that x(t) has a unique

solution on [t0, t1].
Following the approach in [19], we consider a contin-

uously differentiable function b : R
N → R and a set

C :=
{
x ∈ R

N | b(x) ≥ 0
}

. The function b is said to be

zeroing control barrier function (ZCBF) for the set C if there

exists a set D with C ⊆ D ⊂ R
N such that,

sup
u∈U

[Lfb(x) + Lgb(x)u+ α(b(x))] ≥ 0, ∀x ∈ D,

where Lfb(x), Lgb(x) are the Lie derivatives of b(x) along

f(x) and g(x), and α is an extended class K function. The

above inequality means that there always exists u ∈ U that

enforces the constraint x ∈ C at the boundary of the set C as

long as b is a ZCBF.

A set S ⊆ R
N is said to be forward invariant if x(t) ∈ S

holds for all t ∈ [t0, t1] and for any x(t0) ∈ S . It is shown in

[19] that the forward invariance of the set C will be rendered

by any Lipschitz continuous controller u which satisfies the

constraint Lfb(x)+Lgb(x)u+α(b(x)) ≥ 0. Given a nominal

input unom, [19] also presents the following QP-based (state

feedback) controller.

u∗(x) = argmin
u∈U

‖u− unom‖2

s.t. Lfb(x) + Lgb(x)u+ α(b(x)) ≥ 0.

The controller achieves the closest control action to the

nominal one while satisfying the forward invariance of the

set C.

III. PROBLEM SETTINGS

A. Drones, Virtual Field, and Geometry

We consider a situation where n drones, with the index

set I := {1, . . . , n}, equipped with an on-board camera, live

in a 3-D space as shown in Fig. 1. Throughout this paper,

we assume that all drones are locally controlled so that their

altitudes and attitudes are both constant and common among

all drones, and all drones lie on a 2-D plane as illustrated in

Fig. 1 1. Without loss of generality, the world frame Σw is

arranged so that its z-axis is perpendicular to the plane. The

set of (x, y)-coordinates on the plane is denoted by P .

The position coordinates of the drone i ∈ I with respect

to Σw are represented by xi, yi, and zi. As mentioned above,

zi (i ∈ I) are assumed to take a common value zc among

all drones. In this paper, we mainly consider a 2-D motion of

pi := [xi yi]
T ∈ P ⊆ R

2. Then, the dynamics of each drone

i ∈ I is then assumed to follow

ṗi = ui, ui ∈ U ⊆ R
2,

1This assumption is motivated by the fact that path planning of a drone for
aerial image sampling normally focuses on the 2-D coverage while keeping the
flight altitude constant as in Fig. 1 [2]. The present approach is in principle still
applicable with a few modifications even in the absence of this assumption,
but more detailed investigations on 3-D motion control are left as future work.

Fig. 1: Illustration of the drone field (blue plane) P and the

target field (gray box) B with the world frame Σw. The i-th
drone is monitoring a [θh θv] side of a object inside B.

where ui is the velocity input to be designed. In the sequel,

we denote the collocations of p1, . . . , pn and u1, . . . , un by

p = (p1, . . . , pn) and u = (u1, . . . , un), respectively.

The target scenario addressed in this paper is the following:

the drones take images of the ground in order to reconstruct a

3-D map of a compact subset of the ground itself, e.g. using

the SfM techniques [8], [9], [10]. To this end, every point on

the ground needs to be monitored from rich viewing angles.

Now, in view of this objective, the exact shape of the ground

is not available for the control of drones. Instead, we assume

that a compact set B ⊂ R
3, containing the ground surface, is

available as a prior knowledge. Then, the objective is relaxed

to observe every point in B from rich viewing angles. In the

sequel, B is termed target field.

In order to characterize the viewing angle, we define

two angles, θh and θv, for every point in B, as illustrated

in Fig. 1. The angle θh is a horizontal angle defined as

θh ∈ Θh ⊆ [−π, π), and θv is a vertical angle defined as

θv ∈ Θv ⊆ (0, π/2]. For the 3-D map reconstruction, we have

to take images of every point in the target field [x y z]T ∈ B
relative to

∑
w from various θh and θv. To this end, we propose

the virtual field defined as (x, y, z, θh, θv)-coordinated region,

which is denoted by a compact set Qc ⊂ R
5. Consequently, we

address the angle-aware monitoring problem as the coverage

problem of the virtual field.

We next consider the geometry between the drones and the

virtual field. The drone’s position to monitor [x y z] from

the viewing angle characterized by θh and θv is uniquely

determined as the intersection between P and the viewing

axis (red vector illustrated in Fig. 1). Precisely, we define the

mapping ζ : Qc → P as

ζ :[x y z θh θv]
T 	→

[
x− (zc − z) tan

(
π
2 − θv

)
cos θh

y − (zc − z) tan
(
π
2 − θv

)
sin θh

]
.

We assume that the monitoring performance of the i-th
drone at point q ∈ Qc is modeled by the distance between

the drone’s position pi and the monitoring position ζ(q).
Specifically, we employ the following performance function

h : P × Qc → [0, 1] with a design parameter σ > 0 which

should be tuned depending on the characteristics of the sensor

so that h is small enough for all q ∈ Q such that the first

three elements of q, namely [x y z]T , are outside of the field
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of view.

h(pi, q) := exp

(
−‖pi − ζ(q)‖2

2σ2

)
. (1)

There are various options for the performance function, but

the present one provides remarkable benefits as shown in the

following sections. In particular, taking ‖pi − ζ(q)‖ gives a

computationally efficient solution, as shown in Section V-A.

B. Objective Function

In the present scenario, if a drone observes a point q ∈ Qc

once, it is reasonable to assume that the importance of the

point decays. To reflect this issue, we discretize the virtual

field Qc as a collection of m 5-D polyhedra, termed cells in

the sequel, and define Q := {qj}j∈M, M := {1, . . . ,m},

where qj implies the gravity point of j-th cell. Note that each

cell is assumed to have the same volume A. Let us now assign

a value φj ∈ [0,∞), termed importance index, to each cell

j ∈ M. In the sequel, we denote the collocations of φj by

φ = (φ1, . . . , φm).
The importance index φj should decay if qj is monitored

by drones. It is also reasonable to assume that the decay rate

depends on the performance function h defined in (1). Thus,

we present the following update rule of the index φj , i.e.,

φ̇j = −δmax
i∈I

h(pi, qj)φj (δ > 0). (2)

A rule similar to (2) is presented in [11], [12], [13], [16], where

the authors increase the index if a point is not observed by any

drone. This rule allows drones to take persistently patrolling

motion over the field, but such persistent motion is not required

in the present scenario. This is why we consider the rule (2)

that renders each φj monotonically decreasing.

Let us now present an aggregate objective function to be

minimized as:

J :=

m∑
j=1

φjA. (3)

We see from (1) and (2) that ideal images are expected to be

taken by drones if J goes to zero. Thus, the primary objective

is to control drones so that J approaches zero. However, φj

in (2) is inherently monotonically decreasing and any control

algorithm, e.g., random motion, achieves this objective over

an infinitely long time interval. To rule out such inefficient

solutions, we impose a secondary objective on the drones

motion in the sequel.

To enhance the mission efficiency, each drone needs to

change its behavior depending on the progress of the image

sampling. Specifically, they are expected to escape a region

with small φj that was well-observed in the past, while they

have to be stick to a region with large φj that has not been

fully observed in the past. We add this requirement as the

secondary objective. To describe the objective more precisely,

we present a metric Ii for the value of taking images at a

position pi. To this end, we present a partition of the set M
as

Vi(p) := {j ∈ M | ‖pi − ζ(qj)‖ ≤ ‖pk − ζ(qj)‖ ∀k ∈ I} .

The metric Ii is then defined as Ii :=
∑

j∈Vi(p)
δh(pi, qj)φjA

which corresponds to the contribution by drone i to reducing

J in (3) since

J̇ =

m∑
j=1

φ̇jA = −
m∑
j=1

δmax
i∈I

h(pi, qj)φjA

=−
n∑

i=1

∑
j∈Vi(p)

δh(pi, qj)φjA = −
n∑

i=1

Ii.

Suppose now that drone i is located at pi such that Ii < γ,

for a given γ > 0. If the drone is controlled so as to achieve

Ii ≥ γ, it must try to escape the region with small φj . The

secondary objective is thus rephrased as controlling each drone

i so that it pursues Ii ≥ γ if Ii < γ, while it tries to stay at

pi otherwise. Such mode switches are embodied by the QP-

based controller in Section II by taking bi(p, φ) := Ii−γ as a

candidate of the ZCBF and unom = 0. Additionally, if drones

are controlled so that bi ≥ 0, namely Ii ≥ γ, the primary

objective J → 0 would be expected to be met eventually.

This is why we mainly focus on the secondary objective.

IV. QP-BASED CONTROLLER DESIGN

In this section, we present a solution to meet the objective

stated in the previous section. To this end, we employ the

concept of the QP-based controller in Section II taking b =
bi(= Ii − γ) and unom = 0. The function bi is however not a

ZCBF, as confirmed by the scene with φj = 0 ∀j ∈ M. The

constraint in the QP-based controller is thus softened as:

(u∗
i , w

∗
i ) = argmin

(ui,wi)∈U×R

ε‖ui‖2 + |wi|2 (4a)

s.t. ḃi + α(bi) ≥ wi, (4b)

where wi is a slack variable and ε is a positive constant that

determines strength of the penalty on constraint violations, the

second term of (4a). Even though bi is not a ZCBF, the QP-

based controller brings the following two benefits.

First, the constraint (4b) gives a condition for the input ui

to meet bi ≥ 0 as below, although the inequality itself does

not contain the input.

Theorem 1. Suppose that no qj (j ∈ M) is located on the

boundary of Vi(p). When α : R → R is set as a linear function

α(bi) = abi, where a > 0 is a positive scalar, the problem (4)

is equivalently reformulated as

(u∗
i , w

∗
i ) = argmin

(ui,wi)∈U×R

ε‖ui‖2 + |wi|2

s.t. ξT1iui + ξ2i ≥ wi,
(5)

where

ξ1i :=
∑

j∈Vi(p)

−δ
pi − ζ(qj)

σ2
h(pi, qj)φjA,

ξ2i := −aγ +
∑

j∈Vi(p)

(−δ2h2(pi, qj) + aδh(pi, qj)
)
φjA.

Proof. See Appendix.

When a qj is exactly on the boundary of Vi(p), bi is indif-

ferentiable. However, it does not affect the applicability of
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the approach in practice since the boundaries of the Voronoi

cells have measure zero and the controller is implemented on

a digital processor.

Secondly, the controller embodies the situation-adaptive

motion raised as secondary objective. In other words, if bi
is far bigger than 0, the constraint gets inactive and ui gets

equal to zero, which implies that the drone tends to stay at

the current position when Vi contains many cells not fully

observed in the past. Conversely, if bi ≥ 0 is violated or close

to be violated, ui takes a large value to increase bi, and the

drone tends to escape from a well-observed region.

Given φj (j ∈ Vi), the controller (5) would be imple-

mentable in a distributed manner since the Voronoi partition

is locally computed. Note however that the importance update

(2) must be executed by the central computer, as assumed in

[11], [12], [13], since each drone hardly knows if other drones

have monitored point qj ∈ Q in the past. Some readers may

have a concern about using a central computer, but we remark

that the computation at the computer is almost scalable and

it is viable in many applications. Please refer to Remark 1 in

[16] for more details.

We also add one more remark. [11] and [16] ignore depen-

dency of pi on the evolution of φj in the input computation

since the first order derivative of J is independent of ui. On

the other hand, the present controller employs the second order

derivative and explicitly reflects the dependency.

V. COMPUTATIONALLY EFFICIENT

IMPLEMENTATION WITH SAFETY CERTIFICATES

A. Computationally Efficient Implementation

The QP-based controller (5) is hardly implemented in real

time since the cardinality of Q tends to be very large.

To address the issue, we discretize the drone field P by a

collection of l polygons A := {A1, ...,Al} and their gravity

points X := {χk}k∈L ⊂ P,L := {1, ..., l}, where l � m.

Note that each polygon has the same area. According to the

compression of Q onto X by the mapping function ζ, we can

compress the importance index φ onto ψk ∈ [0,∞).

ψk :=
∑

j∈M s.t. ζ(qj)∈Ak

φj .

Since the calculation is done before monitoring, given φ(t0)
the initial value of ψk can be set as

ψk(t0) =
∑

j∈M s.t. ζ(qj)∈Ak

φj(t0). (6)

We assume that each polygon Ak is small enough to approx-

imate ζ(qj) ≈ χk if ζ(qj) ∈ Ak. Once the initial value of ψk

is defined, it can be updated without φ as follows.

ψ̇k =
∑

j∈M s.t. ζ(qj)∈Ak

φ̇j

=
∑

j∈M s.t. ζ(qj)∈Ak

−δmax
i∈I

h(pi, qj)φj

≈ −δmax
i∈I

h̄(pi, χk)ψk,

where h̄ : P × X → [0, 1] is the performance function

h̄(pi, χ) := exp

(
−‖pi − χ‖2

2σ2

)
.

It is fully expected that the above approximation is reasonable

due to the Lipschitz continuity of the function h̄. Based on the

approximation, the objective function J is also approximated

as J ≈ ∑l
k=1 ψkA.

Under the above approximation, the QP-based controller is

then derived in the same way as (5):

(u∗
i , w

∗
i ) = argmin

(ui,wi)∈U×R

ε‖ui‖2 + |wi|2

s.t. ξ̄T1iui + ξ̄2i ≥ wi,
(7)

where

ξ̄1i :=
∑

k∈V̄i(p)

−δ
pi − χk

σ2
h(pi, χk)ψkA,

ξ̄2i := −aγ +
∑

k∈V̄i(p)

(−δ2h2(pi, χk) + aδh(pi, χk)
)
ψkA,

and the sets V̄i(p)i∈I is the Voronoi-like partition for X :

V̄i(p) := {k ∈ L | ‖pi − χk‖ ≤ ‖pj − χk‖ ∀j ∈ I} .
The QP-based controller (7) keeps track of only l impor-

tance indices ψk (k ∈ L) rather than φj (j ∈ M). Therefore,

its implementation gets much more efficient computationally

than (5) by accepting the light approximation ζ(qj) ≈ χk.

B. Safety Certificates

Standard coverage control inherently ensures safety due to

territorial partitions in the control algorithm. Meanwhile, since

the present algorithm expands the field to be monitored to the

5-D virtual field Qc, the mapping with ζ of two distant points

in Qc may be close to each other on P . Accordingly, safety in

the proposed algorithm tends to be more critical than standard

coverage control.

We thus incorporate the collision avoidance scheme pre-

sented in [20] into (7). We denote pi,near as the nearest

drone’s position to drone i, and dca as the acceptable distance

between drones. Then, the distance between drone i and the

other drones is ensured to be longer than dca if bca,i(pi) :=
‖pi−pi,near‖2−d2ca satisfies bca,i ≥ 0. It is proved in [20] that

the function bca,i is a ZCBF for collision avoidance. We can

satisfy collision avoidance by just adding the ZCBF condition

for bca,i ≥ 0 to (7):

(u∗
i , w

∗
i ) = argmin

(ui,wi)∈U×R

ε‖ui‖2 + |wi|2

s.t. ξ̄T1iui + ξ̄2i ≥ wi(
∂bca,i
∂pi

)T

ui + β(bca,i(pi)) ≥ 0.

(8)

VI. SIMULATION RESULTS

We demonstrate our control algorithm through simulations

on ROS environment, where the quadratic programming of (8)

is solved by CVXOPT.
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The simulation considers three drones (n = 3) whose

initial positions are selected as p1 = [1.0 0.2]T m, p2 =
[−1.0 − 0.2]T m, and p3 = [0.0 0.5]T m. The speed of drones

are restricted by setting input space U as [−0.5, 0.5]m/s ×
[−0.5, 0.5]m/s. The local controller for each drone is designed

to maintain an altitude of 1.0m. The viewing angle space Θh

is set to [−π, π), and Θv is set to [π3 ,
π
2 ]. We set the target

field as a [−1.0, 1.0]m × [−1.0, 1.0]m × [0.0, 0.5]m Drones

can move through the 3.0m × 3.0m field P to monitor

all position of the target field with all angles. The Qc is

discretized to a m = 1.5× 107 cells. Each cell is a 0.02m ×
0.02m × 0.1m × π

30 rad × π
30 rad polyhedron whose volume is

A = 4π2

9 × 10−7[m3rad2].2

The P is discretized to a l = 1.0× 104 polygons A. Each

polygon is 0.03m × 0.03m square. We assign the initial value

of importance indices φj = 1, ∀j ∈ M and compress it onto

{ψk}k∈L by (6). We set σ = 0.1 to let h be almost zero at a

drone’s viewing range 1.0m away. Other parameters are set

as ε = 0.0001, dca = 0.5, γ = 0.1, δ = 5, and a = 5.
We verify from the snapshots in Fig. 2 of the simulation that

the primary objective, J → 0, is achieved by the proposed QP-

based controller. The color map on the field shows the value

of the importance index ψ, where the red region has high

importance while the blue one indicates low importance. The

drones behave to paint the field with deep blue, that is, they

monitor all the field with all angles. Fig. 3(a) shows the time

series of J . We see from the figure that J is monotonically

decreasing and approaches 0.
Next, we verify that our method meets the secondary

objective. Fig. 3(b) shows the time series data of a drone’s

velocity input ‖u1‖ and the sum of importance index near the

drone p1, namely Jnear :=
∑

k∈L s.t. ‖p1−χk‖<2σ ψkA. This

result shows that the speed ‖u1‖ tends to be small during the

time when Jnear is high, and vice versa. This suggests that

the secondary objective is achieved.
Finally, we verify from the snapshots in Fig. 4 of the simula-

tion that our controller is effective in the angle-aware monitor-

ing. The snapshots are the importance function φ of all viewing

angles of some points [−0.5,−0.2, 0], [0, 0, 0], [0.7, 0.7, 0] in

the target field B at t = 40 s where drones are controlled

by (a) our proposed QP-based controller and (b) previous

controller proposed in [16]. It is seen that drones monitor these

points from almost all viewing angles in (a), while they miss

some viewing angles in (b), e.g., the [0.7, 0.7, 0] point from

θv = π
2 . The result exemplifies the benefit of angle-aware

coverage control itself. Finally, the average computational time

required by the algorithm in Section V at each time instant was

0.0579 s for a PC with CPU Intel®Core™i7-8650U running

at 1.90GHz, 4 Cores, 8 Threads and RAM 7.5 GB, while the

PC was down in the original algorithm with 5-D cells. The

result exemplifies the benefit of the algorithm in Section V.

VII. CONCLUSIONS

In this paper, we presented a new formulation of angle-

aware coverage control for 3-D map reconstruction and a

2We have determined the cells in an ad-hoc manner. More careful selection
of the cells might enhance the performance but this exceeds the scope of this
paper.

QP-based controller for situation-adaptive actions. To ensure

viability, a computationally efficient implementation of the

controller was presented. We finally demonstrated the algo-

rithm through simulation with three drones.

APPENDIX: PROOF OF THEOREM 1

First, the term ḃi in (4b) can be calculated as

ḃi =
∑

j∈Vi(p)

∂bi
∂φj

φ̇j +

(
∂bi
∂pi

)T

ui. (9)

The first term
∑

j∈Vi(p)
∂bi
∂φj

φ̇j in (9) can be calculated as
∂bi
∂φj

φ̇j = −δ2h(pi, qj)
2φjA. In addition, the second term can

be calculated as(
∂bi
∂pi

)T

ui =

(
∂(Ii − γ)

∂pi

)T

ui

=

(
∂
∑

j∈Vi(p)
δh(pi, qj)φjA

∂pi

)T

ui

=

⎛
⎝ ∑

j∈Vi(p)

−δ
pi − ζ(qj)

σ2
h(pi, qj)φjA

⎞
⎠

T

ui.

Furthermore, remarking α(bi) = abi, we obtain

α(bi) = −aγ + a
∑

j∈Vi(p)

δh(pi, qj)φjA.

By substituting the above to (9), we can find that ḃi + abi =
ξT1iui + ξ2i holds. Thus, the problem (4) is equivalent to (5).
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