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Agriculture 4.0 comprises a set of technologies that combines sensors, information sys-

tems, enhanced machinery, and informed management with the objective of optimising

production by accounting for variabilities and uncertainties within agricultural systems.

Autonomous ground and aerial vehicles can lead to favourable improvements in man-

agement by performing in-field tasks in a time-effective way. In particular, greater benefits

can be achieved by allowing cooperation and collaborative action among unmanned ve-

hicles, both aerial and ground, to perform in-field operations in precise and time-effective

ways. In this work, the preliminary and crucial step of analysing and understanding the

technical and methodological challenges concerning the main problems involved is per-

formed. An overview of the agricultural scenarios that can benefit from using collaborative

machines and the corresponding cooperative schemes typically adopted in this framework

are presented. A collection of kinematic and dynamic models for different categories of

autonomous aerial and ground vehicles is provided, which represents a crucial step in

understanding the vehicles behaviour when full autonomy is desired. Last, a collection of

the state-of-the-art technologies for the autonomous guidance of drones is provided,

summarising their peculiar characteristics, and highlighting their advantages and short-

comings with a specific focus on the Agriculture 4.0 framework. A companion paper re-

ports the application of some of these techniques in a complete case study in sloped

vineyards, applying the proposed multi-phase collaborative scheme introduced here.

© 2021 The Authors. Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/

).
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Nomenclature

Acronyms

ASM Ackerman steering mechanism

CoM Centre of mass

DWA Dynamic window approach

FAO Food and agriculture organization of the

United Nations

FW Fixed-wing

GNC Guidance, navigation and control

GSD Ground sampling distance

ICR Instantaneous centre of rotation

ITU International telecommunication union

LOS Line-of-sight

LPV Linear parameter-varying control

LQR Linear-quadratic regulator

LTV Linear time-varying

MPC Model predictive control

NED North-east-down frame

NMPC Nonlinear model predictive control

NN Neural network

PD Proportional-derivative

PID Proportional-integral-derivative

PLOS Sight-based path following

PSO Particle swarm optimisation

PRM Probabilistic roadmap

RPFs Randomised potential fields

RRTs Rapidly-exploring random trees

RW Rotary-wing

SfM Structure from motion

SLAM Simultaneous localisation and mapping

SMC Sliding mode control

UAVs Unmanned aerial vehicles

UGVs Unmanned ground vehicles

UVs Unmanned vehicles

VTOL Vertical take-off and landing

WPs Waypoints

2WS Two-wheels steering

4WS Four-wheels steering

Symbols

dij Distance from the ICR to the ij-th wheel

F ¼ ½FX FY FZ�u Components of the force acting on the

system

Fi Quadcopter i-th rotor vertical force

FBz Quadcopter total vertical force in the body

frame

g Gravity acceleration

I ¼ ½Ixx Iyy Izz Ir�u Quadrotor inertia moments

J ¼ ½JX JY JZ JXZ�u Moments of inertia

kF; kM Quadcopter proportional force and torque

constants

L Quadrotor characteristic length

mFW Mass of the FW-UAV

mRW Mass of the RW-UAV

M ¼ ½L M N�u Roll, pitch and yaw moments

Mi Quadcopter i� th rotor control torque

R Wheel radius

q ¼ ½qs q1 q2 q3�u Quaternion components

V ¼ ½u v w�u Longitudinal, lateral and vertical components

of the total airspeed

½VN VE VD�u Components of the total airspeed in the North-

east-down (NED) frame

vij Velocity component for the ij-th wheel

x ¼ ½x y h�u Position vector in the North-east-down (NED)

frame

di;o Steering angle for the inner/outer wheel

dij Steering angle for the ij-th wheel

dm Steering motor angular position

t ¼ ½tf tq tj� Quadcopter control torque components in in

the body frame

½f w j�u Euler angles (roll, pitch and yaw)

u ¼ ½p q r�u Components of the angular speed

ui Quadcopter i-th rotor angular velocity

uij Angular velocity of the electric motor

connected to the wheels

U Angular velocity of the vehicle around the

ICR

Ur Quadcopter hover rotational speed
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1. Introduction

In recent years, unmanned aerial vehicles (UVs), commonly

referred to as drones, have been rapidly growing in popularity

for a variety of task. Tactical unmanned systems are now

extensively used by themilitary and various security services,

whilst professional unmanned systems are becoming

increasingly common in a variety of civilian fields. This

expanding use of unmanned systems is not only related to

advances in technology but also to the increment in versatility

and the reduction in size, risks, and costs that remotely

operated systems offer as a result of not having a pilot or

operator on board. One of the civilian fieldsmore interested in

exploiting drones is surely farming, which is finally undergo-

ing the so-called fourth agricultural revolution by exploiting
emerging technologies such as robotics (Rose& Chilvers, 2018)

and artificial intelligence (Mazzia, Comba, Khaliq, Chiaberge,

& Gay, 2020).

The concept of Agriculture 4.0 consists in the harmonious

and interconnected use in agriculture of two different digital

technologies: (i) precision agriculture for carrying out targeted

agronomic interventions, which take into account both

farming requirements (Khaliq et al., 2019) and the physical

and biochemical features of the land (Morellos et al., 2016);

and (ii) smart farming, i.e. the digital connection between field

activities and all other related processes (Gebbers &

Adamchuk, 2010). The Food and Agriculture Organization of

the United Nations (FAO) and the International Telecommu-

nication Union (ITU) have identified the use of autonomous

unmanned systems as a crucial technology to support and

address some of the most pressing challenges in farming in

https://doi.org/10.1016/j.biosystemseng.2021.11.008
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terms of access to actionable real-time quality data and crop

monitoring (Sylvester, 2018). Indeed, both unmanned aerial

vehicles (UAVs) and unmanned ground vehicles (UGVs) could

be favourable complementary tools to conventional farming

machines, enhancing operations efficiency as well as human

safety and health, thus reducing the environmental impact.

Despite the fact that in the near future, according to the

current situation, the market for drone-powered solutions in

agriculture will reach $32.4 billion (Mazur, 2016), nowadays

the adoption of drones is mainly confined to remote sensing

applications, such as crop monitoring (Comba et al., 2019),

soil/field analysis (Comba et al., 2021), and irrigation planning

(Garrido-Rubio et al., 2020). However, there are many more

complex tasks that could be assisted by UVs. In some cases,

UVs can even replace conventional machines. These typically

involve specific scenarios, as e.g.:

� flat terrains covered by crops with homogeneous can-

opies (e.g., wheat or paddy fields), where operations

need to be performed above crops without interacting

with the soil (Kharim, Wayayok, Shariff, Abdullah, &

Husin, 2019);

� heavily sloped vineyards or other fields which are not

accessible by standard tractors and implements.

Motivated by the above considerations, this paper and its

companion provide an overview on the current panorama of

agricultural machines cooperation, providing hints on

possible cooperative schemes, as well as proposing a collec-

tion of technologies and algorithms devoted to the autono-

mous navigation of drones in the Agriculture 4.0 framework.

In the spirit of Agriculture 4.0 principles, the focus is set on

solutions which are autonomous, in the sense that the drones

do not require a human to drive and control them, but should

be able to perform the required operations in an independent

and unmanned way. Moreover, this work also devises inno-

vative solutions for extending the use of UAVs in agriculture

to scenarios in which they could represent a reliable and valid

alternative (or support) to conventional machines, especially

whenever the latter are not employable. This manuscript is

intended as a form of “user-guide” for researchers and prac-

titioners on the main concepts and technologies currently

proposed and exploited for cooperative agricultural vehicles

in the framework of autonomous navigation and that can

support researchers on three main levels: i) to better under-

stand the concept of collaborativemachines, highlighting how

the vehicles can collaborate within a complex scenario with

respect to the cooperative system architecture and the redis-

tribution of tasks among (either similar or heterogeneous)

drones; ii) to have a complete overview of the standard kine-

matic and dynamic models for the unmanned agricultural

vehicles typically exploited in this field, which are critical to

analyse, design and implement innovative solutions in the

direction of autonomous navigation; and iii) to have a thor-

ough review on the main guidance, navigation and control

(GNC) strategies that are currently available in the literature

for the fully-autonomous navigation of drones, including ex-

amples of agricultural machines that have already been

experimenting and validating some of these emerging tech-

nologies and algorithms.
Moreover, an unconventional cooperative scheme is pro-

posed. The envisioned architecture involves heterogeneous

autonomous vehicles operated within a complex and un-

structured scenario such as vineyards on slopped terrains.

This solution goes beyond the standard scheme of coopera-

tion by tasks parallelisation, aiming at enhancing productiv-

ity, as e.g. proposed in McAllister, Osipychev, Davis, and

Chowdhary (2019). Indeed, it is based on a so-called multi-

phase approach, where each UV agent has a specific task

assigned, whose successful completion is dependent and at

the same time instrumental to the tasks of the other agents in

order to reach the global result in a precise and time-effective

way. In the proposed cooperative framework, different un-

manned aerial and ground vehicles are envisioned to perform

a combination of remote sensing and in-field operations to

properly map the selected area and later provide agrochemi-

cals distribution, also via aerial and ground vehicles. To design

and optimise every single step of the proposed framework, a

crucial and necessary preliminary step consists in analysing

and understanding the technological and methodological

challenges of the main problems involved: i) mission planning,

within the multi-phase cooperative approach; ii) autonomous

navigation, to allow fully-automated operations by the agents

involved; and iii) in-field operations, which significantly rely on

the preliminary remote sensing mission to allow autonomous

navigation within the vine rows thanks to georeferenced, low-

complexity maps.

Summarising, in this paper a complete overview of the

approaches proposed in the literature which addresses

different problems, i.e. machines cooperation, trajectory

design, and autonomous guidance, is provided, highlighting

their peculiar characteristics, advantages and shortcomings

in the Agriculture 4.0 framework. Section 2 focuses on coop-

erative schemes for agricultural machines and presents a new

multi-phase cooperation scheme for the heterogeneous

agents involved in agricultural tasks whilst section 3 includes

a collection of kinematic and dynamic models for different

unmanned vehicles. Section 4 provides a thorough overview

of the state-of-the-art algorithms and technologies currently

available in the autonomous guidance framework in terms of

navigation, guidance and control. The main conclusions and

final considerations are provided in section 5, whereas our

companion paper (Mammarella, Comba, Biglia, Dabbene, &

Gay, 2021) reports a complete case study in sloped vineyards

where, following the multi-phase approach preliminarily

introduced in this paper, unmanned aerial and ground vehi-

cles are programmed and controlled during their in-field tasks

on the basis of a low-complexity vineyard model, constructed

starting from a large 3D point cloud obtained during a remote

sensing mission performed by a fixed-wing UAV (FW-UAV).
2. UV cooperative schemes

The joint use of multiple unmanned vehicles with the objec-

tive of fulfilling a complex job was found to be effective in

many simulated and practical applications (McAllister et al.,

2019). Indeed, they have been shown to provide increased

performance with respect to monolithic systems in terms of

flexibility, reduction of working time and costs, increased

https://doi.org/10.1016/j.biosystemseng.2021.11.008
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safety, and reduced failure occurrences (Albiero, Pontin

Garcia, Umezu, & Leme de Paulo, 2020; Tokekar, Vander

Hook, Mulla, & Isler, 2013). In the agricultural framework,

there are numerous operations that can profitably be per-

formed by cooperating machines, both fully unmanned or

hybrid human-robotic systems. Some examples are repre-

sented by crop monitoring (Dusadeerungsikul & Nof, 2019),

spraying (Ivi�c, Andrej�cuk, & Dru�zeta, 2019; Xue, Lan, Sun,

Chang, & Hoffmann, 2016), weeding (McAllister et al., 2019),

ploughing (Albiero et al., 2020), irrigation (Gonz�alez-Briones,

Castellanos-Garz�on, Mezquita-Martı́n, Prieto, & Corchado,

2019), seeding (Blender, Buchner, Fernandez, Pichlmaier, &

Schlegel, 2016, pp. 6879e6886), and harvesting (Millard,

Ravikanna, Groß, & Chesmore, 2019).

As testified by the numerous examples that can be found in

both research studies and commercial solutions, when groups

of robots are involved in agricultural operations, they can be

composed of either homogeneous or heterogeneous agents. In

terms of tasks assignment strategies and architectures, sys-

tems of cooperative UVs can be defined as:

� peer to peer (Fig. 1a): the machines involved are typically

similar/identical, and the whole job is split into many

parallel tasks, individually performed by each machine.

This is the case, e.g., of mechanical weed control by a

set of weeder bots (McAllister et al., 2019), or autono-

mous seeding process made by a group of small robots

(Blender et al., 2016). In this case, the task assignment

can be either dynamic (Davoodi, Mohammadpour Velni,

& Li, 2018), i.e. updated in real-time during operation, or

a-priori (Cao et al., 2021), when a field survey is

available.

� master-slave (Fig. 1b): one or more robotic machines are

controlled by a master. This solution can be very

effective when a set of different (and/or subsequent)

operations have to be performed in the field (Ju & Son,
Fig. 1 e Cooperative architectures: (a) peer-to-p
2019). This is the case, e.g., of grain threshing, collect-

ing and transportation (Kurita, Iida, Suguri, & Masuda,

2012). Another example is represented by tillage oper-

ations (Pfaffmann, de Moraes Boos, Tarasinski, & Kegel,

2019), which can be performed by autonomous UGVs

(slaves) following a master, such as a combined

harvester-thresher. In this case, a specific task is

assigned to each player, which has to be properly co-

ordinated to accomplish the overall goal.

� team robots (Fig. 1c): a joint action of multiple robots is

required to fulfil a single task, like in the case of moving

large items with a set of small machines (Arab, Shirazi,

& Hairi-Yazdi, 2021; Tanner, Kyriakopoulos, & Krikelis,

2001).

Systems of cooperative UVs can be also classified based on

the degree of interaction among players and the adopted

control strategy. In this case, the following may be identified:

1. multi-agent systems (or self-organised systems): compu-

terised systems composed of multiple interacting

intelligent agents (Hu, Bhowmick, Jang, Arvin, &

Lanzon, 2021). The peculiarity of this cooperative sce-

nario is that the UVs are part of amore complex system,

in which other agents (e.g. computers, in-field sensors,

human operators, etc.) are also involved. A centralised

control strategy is typically considered in this case

(Arguenon, Bergues-Lagarde, Rosenberger, Bro,& Smari,

2006; Chevalier, Copot, De Keyser, Hernandez, &

Ionescu, 2015), but decentralised solutions may also be

considered.

2. swarm robots: characterised by a set of autonomous

machines with simpler control strategies than other

categories, and by a high interaction capability among

players (Song et al., 2020). A relevant aspect of this

strategy is that the desired system behaviour emerges
eer; (b) master-slave; and (c) team-robots.

https://doi.org/10.1016/j.biosystemseng.2021.11.008
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only by considering the whole system, while single

machines cannot usually reach themission target alone

(Brambilla, Ferrante, Birattari, & Dorigo, 2013). In addi-

tion, swarm robotics have the potential to change the

size economies in agriculture, impacting on farm size,

structure, and mechanisation (Lowenberg-DeBoer,

Behrendt, Godwin, & Frankin, 2019). An example is

described in Albiero et al. (2020). where the authors

replaced a large tractor with a swarm of small electric

robotic machines, that together have the same field

capacity. Additional successful industrial applications

were recently presented, such as for instance theMARS/

Xaver project by Fendt (Blender et al., 2016), the swarm

concept by John Deere (Pfaffmann et al., 2019), and the

flying autonomous robots for fruit picking by Tevel

(Tevel Aerobotics Technologies Ltd, 2021).

A third type of classification can be envisioned by consid-

ering whether the cooperation among the robots/agents takes

place simultaneously or deferred (e.g. in subsequent phases).

The first cooperative scheme, i.e. simultaneous collaboration,

represents the most employed operative solution. On the

other hand, when agents operate in subsequent phases, they

can be assigned completely different missions, sharing stra-

tegic information, e.g. regarding the environment in which

they are acting, which is essential to the operations success,

even if the tasks are not performed simultaneously. This

structure can be assimilated within the shared-world approach

mentioned by Rossi, Bandyopadhyay,Wolf, and Pavone (2018).

In the case of agricultural operations performed by fully-

autonomous aerial and ground agricultural vehicles, build-

ing a mapwhich report the position, shape and dimensions of

the crops becomes crucial, both for obstacle avoidance during

navigation and for target localisation (e.g. fruits, canopy, trunk

etc.), allowing for the operations of the proper implements.

The limited computational resources which typically charac-

terize the currently available low-cost, commercial or exper-

imental, autonomous vehicles as well as the different

velocities involved and the complexity of the scenarios envi-

sioned, e.g. vineyards on slopped terrains, discourages on-line

simultaneous localisation and mapping (SLAM) procedures.

Moreover, as highlighted in Aguiar, dos Santos, Cunha,

Sobreira, and Sousa (2020), autonomous mobile robots work-

ing in agriculture and forestry are still highly dependent on

GNSS-free localisation systems. Robotic localisation and

mapping in this framework is still an open issue, even though

many solutions have already been proposed. Hence, it is clear

that there still are several working lines to be improved. The

difficulty of this problem could lead to the creation of new

solutions and the development of new concepts to localise

and autonomously operate outdoor robots in agriculture.

Within this still-in-evolution framework, an alternative to

common cooperative schemes is hereby proposed. When

long-cycle crops such as vineyards are considered, it is ad-

vantageous to build a simplified geometrical (and georefer-

enced) model of the crops (referred to as simplified map),

identified by using 3D clouds of points acquired during a-priori

explorative UAVmissions (by LiDAR and/or photogrammetry).

Then, thismodel can be used to plan the tasks to be performed

within the crops by the in-field drones, i.e. UAVs and UGVs. In
this sense, the classic cooperative approach, in which all the

involved agents simultaneously interact and share useful in-

formation to properly complete the job, cannot be applied. On

the other hand, in a slightly broader sense, the proposed

approach is indeed to be considered cooperative, in the sense

that the drones that are called to operate in the vineyard rely

heavily on both the information about the crops, automati-

cally extrapolated from the data collected during the recon-

naissance flight, and the georeferenced maps, generated from

the point cloud map for autonomous navigation and precise

operations in the field.

Moreover, for the UVs involved in the in-field operations,

the system architecture shall be considered cooperative in a

stricter sense. In particular, the joint functioning of groups of

UAVs and UGVs gives place to a heterogeneous cooperation,

as defined in Vu, Rakovi�c, Delic, and Ronzhin (2018). Typically,

different vehicles in a heterogeneous robot group have the

ability to compensate for the each other's weaknesses. Indeed,

in the specific case considered, the load that aerial vehicles

can carry is limited compared to ground-based vehicles. On

the other hand, UGVs often have limitedmobility compared to

UAVs. Within the proposed scenario, i.e. operation in-field

using UVs, such as for spraying agrochemicals while oper-

ating in vineyards on a slopped terrain, the heterogeneous

system of drones can cooperate in different ways. In the

specific case envisioned in this paper, the cooperation among

fully-autonomous drones is implemented in the following

description:

� UAVs and UGVs are called to operate along vine rows,

simultaneously, to properly and efficiently distribute

agrochemicals on the crops, by minimising spray drift

in order to reducewasted chemicals and lower costs, via

dedicated spraying systems.

� In order to equally distribute the product on the grape-

vines, the UAV could take care of the upper part of the

crop whereas the UGV can cover the lower/lateral parts.

In this way, the spraying dispersion can be reduced and

drift reduced and improving the uniformity of

application.

Hence, according to this solution, the approach can be

considered as decentralised since each agent/UV cannot see

the local states and local actions of other agents, and has to

decide the next local action on its own, according to the

definition of decentralised systems/policies in (Xuan & Lesser,

2002). To this regard, it is important to remark that an

important ability of decentralised cooperative agents is their

ability to communicate.

Indeed, the communication architectures allowing and

managing the information exchange between UVs is an

important aspect, which has been the subject of different

studies. The interested reader is referred to the works of Pitt

and Mamdani (2000); Campion, Ranganathan, and Faruque

(2018) and Potrino, Serianni, and Palmieri (2019), and refer-

ences contained therein. In the present work, we decided not

to deepen the discussion on communication protocols, since it

would distract from the main focus of the paper.

Going into more details, in this work an unconventional

cooperative architecture is proposed, in which in-field tasks

https://doi.org/10.1016/j.biosystemseng.2021.11.008
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conducted by two (or fleets of) agents, i.e. an UGV and a rotary

wing UAV (RW-UAV), can profitably be planned and controlled

by the preparatory mission of a FW-UAV, during which all the

needed features of the operative scenario are acquired by the

on-board set of sensors and cameras and automatically

elaborated in georeferenced, low-complexity maps exploit-

able in-field by the agents. In particular, the envisionedmulti-

phase approach is summarised in Fig. 2, where it is possible to

observe the two deferred tasks of remote sensing and in-field

operations.

The first task consists in flying over the selected area,

with the aim of collecting aerial imagery of the target crop

via a multispectral camera for mapping purposes. For this

task, FW-UAV was selected since it is still the preferred

solution in agriculture for remote sensing missions (or

similar, e.g. cartography/monitoring) when the area to be

covered is quite large and homogeneous (as in the case of

the considered vineyard), as also highlighted in Vu et al.

(2018). On the other hand, it is important to remark that in

the case of small and irregular heterogeneous areas, multi-

rotor drones could be preferable due to their improved

capability for hovering (see e.g. Kulbacki et al., 2018). In this

second cases, the proposed approach can still be extended

to the use of RW-UAV, by adapting the mission planning

and corresponding requirements to the envisioned vehicle
Fig. 2 e Schematic representation of the proposed multi-

phase approach.
and equipped instrumentation. For the first phase of the

proposed approach, a precise knowledge of the crops layout

is not required and the mission can be planned by relying

only on external cartography. Conversely, the main tech-

nical challenges when considering a full-autonomous flight,

as in the proposed framework, are represented by the

design of ad hoc advanced GNC strategies that can guar-

antee: i) real-time generation of the desired trajectory, ac-

cording to the field profile and mission/operative/system

requirements (e.g. relative altitude from the terrain, ground

sampling distance (GSD), etc.); and ii) proper tracking ca-

pabilities in order to follow the desired path while guaran-

teeing limited (and safe) deviations, despite the presence of

external disturbances, e.g. wind gust or turbulence.

The data collected during the remote sensing task is then

automatically elaborated to derive the crops layout, starting

from the dense 3D point clouds obtained via structure from

motion (SfM) techniques, by exploiting the approach first

proposed in (Comba, Zaman, et al., 2020). In particular, the

obtained point clouds are processed to retrieve a set of rele-

vant information regarding crops, such as planting location

and canopy shape, arranged in low complexity and semanti-

cally interpreted georeferenced 3Dmaps, which are crucial for

performing tasks within the crops in an autonomous way

while guaranteeing collision avoidance. Indeed, in this way

the UVs involved in the in-field operations (e.g. spraying) can

interact with the crops in a precise and effective ways,

exploiting the knowledge of the position and shape of each

single crop.
3. Drones kinematic and dynamic modelling

This section introduces the basic kinematic and dynamic

modelling for the unmanned vehicles that could be involved

in the scenarios previously described: i) FW- and RW-UAVs in

section 3.1 and section 3.2, respectively; and ii) 2 and 4 wheels

steering (WS) UGVs in Section 3.3. The standard models re-

ported below are crucial to design ad-hoc GNC strategies,

especially when model-based schemes are envisioned.

3.1. FW-UAV dynamical model

The nonlinear model considered for UAV dynamics is based

on a set of nine equations, written in a body reference frame,

as reported in (Etkin & Reid, 1996). Classic assumptions for

rigid body and flat non-rotating Earth are made. These as-

sumptions are supported by their application to mini-UAVs,1

such as those typically used for agricultural applications in

Europe. In particular, the total airspeed V ¼ ½u v w�u can be

decomposed into its longitudinal, lateral and vertical compo-

nents along the three body axes, respectively, as

_u¼ FX

mFW
� qwþ rv� gsinw (1)
1 The classification of UAVs based on different criteria can be
found in the UAS Yearbook. Based on their all-up weight, mini-
UAVs are in the 2e25 kg MTOW range.
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Fig. 3 e Quadrotor dynamics reference frames: Inertial

frame (blue) and Body frame (red). (For interpretation of the

references to color in this figure legend, the reader is

referred to the Web version of this article.)

2 Another possibility would be to consider a NED frame
attached to the UAV instead of the inertial frame, with the z-axis
pointing downward.

3 To recover Euler angles ðf; q;jÞ from the quaternion q, it is

possible to use the following formulation f ¼ atam

 
2ðqsq1þq2q3Þ
1�2ðq21þq22Þ

!
;

q ¼ a sinð2ðqsq2 � q1q3ÞÞ;j ¼ atam

 
2ðqsq3þq1q2Þ
1�2ðq22þq23Þ

!
.
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_v¼ FY

mFW
þ pw� ruþ gcoswsinf (2)

_w¼ FZ

mFW
� pvþ quþ gcoswcosf (3)

withmFW being the FW-UAVmass, ½FX FY FZ�u the forces acting

on the system, g the gravity acceleration, w the pitch angle,

and f the roll angle. The dynamic model related to the tem-

poral evolution of the angular speed components ½p q r�u can

be written as

_p¼ L
Jx
þ
�
Jxzð _rþ pqÞ þ qr

�
Jy � Jz

��
Jx

(4)

_q¼M
Jy

þ ½Jxzðp2 � r2Þ þ prðJz � JxÞ�
Jy

(5)

_r¼N
Jz
þ
�
Jxzð _p� prÞ þ pq

�
Jx � Jy

��
Jz

(6)

where ½L M N�u are the roll, pitch and yaw moments, respec-

tively, and Ji are the moments of inertia with i ¼ x; y; z; xz.

Furthermore, the aircraft attitude, expressed in terms of Euler

angles ½f w j�u, is defined by the following kinematic

equations

_f¼ pþ qsinftanwþ rcosftanw (7)

_w¼qcosf� rsinf (8)

_j¼ qsinf
cosw

þ rcosf
cosw

(9)

Last, the position vector ½x y h�u is defined in the vehicle-

carried vertical reference frame or North-east-down (NED)

frame, as

VN ¼ucoswcosjþ vðsinfsinwcosj� cosfsinjÞ
þwðcosfsinwcosjþ sinfsinjÞ (10)

VE ¼ucoswsinjþvðsinfsinwsinjþ cosfcosjÞ
þwðcosfsinwsinj� sinfcosjÞ (11)

VD ¼ � usinwvcoswsinfþwcosfcosw (12)

where ½VN VE VD�u are the components of the total airspeed

along the three axes in the NED frame. This frame is centered

on the aircraft centre of gravity. The axis XV is directed North,

the axis YV is directed East and the axis ZV is directed along the

local gravity acceleration vector. Starting from the nonlinear

model previously introduced, a linearised system of equations

in the body axes can be obtained for the design of a linear

controller, following the guidelines provided in Casarosa

(2004), both for straight-line flights and waypoints (WPs)

transitions at non-zero turn rate.

3.2. RW-UAV kinematic and dynamic models

To describe the kinematics and dynamics of a quadrotor, it is

convenient to identify twomain reference frames, as reported
in Fig. 3: i) an inertial frame I ¼ ðxI; yI; zIÞ with the z-axis zI
pointing upward2; and ii) a moving reference frame B ¼ ðxB;yB;
zBÞ, attached to the UGV body with oriented axes, in which we

consider a so-called “þ” configuration, with the body axes

aligned with the quadrotor's arms. In this configuration, there

is a pair of rotors (1 and 3) spinning counter-clockwise

whereas the other pair (2 and 4) spins clockwise with the

angular speed of the i-th blade denoted as ui with i2N4
1.

Each rotor is able to generate a vertical force Fi and a

moment Mi according to the laws

Fi ¼kFu
2
i and Mi ¼ kMu

2
i (13)

where the proportional constants kF and kM can be deter-

mined by experimentation with the fixed rotors or by

matching the performance of a simulation to the performance

of the real system (Capello, Quagliotti, & Tempo, 2013). Ac-

cording to these assumptions, the models that describe the

kinematics and dynamics of the quadrotor can be defined

with respect to the inertial and body frames as reported in

(Kim, Gadsden, & Wilkerson, 2020), and detailed below.

As in Sabatino (2015), by defining the UAV angular velocity

in the body frame as uB ¼ ½p;q; r�u, the quadrotor kinematic

equations are the same ones provided for the FW-UAV (7e9).

Because of the singularity given by q ¼ p=2, it is possible to

describe the UAV kinematics with respect to the quaternion

basis, which is able to encode any rotation in a 3D coordinate

system, without suffering singularity issues. Technically, a

quaternion is a four-element vector q ¼ ½qs; q1;q2;q3�u
composed by a scalar element qs and three vectorial compo-

nents q1;q2;q3: Hence, the kinematics of quadrotor can be

expressed in quaternion terms as3
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4 An Ackerman steering mechanism is a geometric arrange-
ment of linkages in the steering of a vehicle, designed to turn the
inner and outer wheels of the steering axis at appropriate angles.
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_q¼

2
6664

_qs

_q1

_q2

_q3

3
7775¼

2
6664
�q1 �q2 �q3

qs �q3 q2

q3 qs �q1

�q2 q1 qs

3
7775
2
64
p

q

r

3
75:3 (14)

Then, similar to the FW-UAV, the Euler equations are used

to describe the quadrotor rotational dynamics. In this case,

the moments generated by the rotors are defined in the body

frame by three torques ðtf; tq; tjÞ and the contribution of the

rotating blades is defined by the rotormoment of inertia Ir and

the hover rotational speed Ur. Thus, neglecting the aero-

dynamics effects, the rotational dynamic model is given by:

8>>>>>>>><
>>>>>>>>:

_p ¼ tf

Ixx
þ Iyy � Izz

Ixx
qr� Ir

Ixx
qUr

_q ¼ tq

Iyy
þ Izz � Ixx

Iyy
prþ Ir

Iyy
pUr

_r ¼ tj

Izz
þ Ixx � Iyy

Izz
pq

(15)

On the other hand, to model the translational dynamics,

Newton's equations are used (Powers, Mellinger, & Kumar,

2015), expressed in the inertial frame as:

8>>>>>>>>><
>>>>>>>>>:

€xI ¼ ðcosfsinqcosjþ sinfsinjÞ FB
z

mRW

€yI ¼ ðcosfsinqsinj� sinfcosjÞ FB
z

mRW

€zI ¼ ðcosfcosqÞ FB
z

mRW
� g

(16)

where mRW is the mass of the RW-UAV, g is the gravity ac-

celeration, and FB
z is the vertical control force, generated by

the rotors, defined in the body frame. Now, it is possible to

relate the control inputs, i.e. FB
z ; tf; tq; tj, to the quadrotor's

geometry, the rotors angular velocities ui, and the generated

thrust Fi, knowing that:

i. the thrust command given by FBz corresponds to the sum

of the thrust contributions Fi generated by each rotor, i.e.

FB
z ¼

X4
i¼1

Fi ¼
X4
i¼1

kFu
2
i (17)

Then, the simple vertical motion is obtained equally vary-

ing the angular velocity of the rotors, which generates an

equal variation of thrust from each blade;

ii. the rolling torque tf is produced by a different angular

velocity variation of the rotors 2 and 4 such that:

tf ¼ LðF2 �F4Þ¼kFL
�
u2

2 �u2
4

�
(18)

where L is the quadrotor's characteristic length, i.e. the dis-

tance between any rotor and the centre of the drone;

iii. analogously, the pitching torque tq is produced by a

different angular velocity variation of the rotors 1

and 3 such that:
tq ¼ LðF3 � F1Þ¼ kFL
�
u2

3 �u2
1

�
(19)

iv. the yawing torque tj derives from the drag generated

by the propellers on the quadrotor itself, with a tor-

que direction opposite to the one of the rotors' mo-

tion such that:

tj ¼kM

kF
ðF1 � F2 þ F3 � F4Þ¼ kM

�
u2

1 �u2
2 þu2

3 �u2
4

�
(20)

Summarising, the forces and torques on the quadrotor can

be written in matrix form as:

2
6666664
FB
z

tf

tq
tj

3
7777775
¼

2
664
kF kF kF kF

0 kFL 0 �kFL
�kFL 0 kFL 0
kM �kM kM �kM

3
775

2
666666664

u2
1

u2
2

u2
3

u2
4

3
777777775
¼ M

2
666666664

u2
1

u2
2

u2
3

u2
4

3
777777775

(21)

from which it is possible to recover the actual rotor com-

mands in terms of ui by inverting matrix. M:

3.3. UGV kinematic model

Since a 4WS configuration is considered highly preferable for

the envisioned scenarios, it is reasonable to assume that each

wheel has its own Ackerman steering mechanism (ASM).4

Such geometrical structuring implies that the rotation axis

of all wheels be arranged as the radii of circles with a common

centre point called instantaneous centre of rotation (ICR), as

represented in Fig. 4 for the case of two (left) and four (right)

wheel steering mechanisms.

For the kinematic description of this type of UGV, the

starting point is represented by the 2WS model. So, let us as-

sume to apply a virtual wheel on the centre of the (front)

steering axis and define the corresponding steering angle as d

(see Fig. 4a). Then, for a generic turn, it is possible to recover

the steering angles for the inner (di) and the outer (do) wheels

as

di ¼ arctan
2Lsind

2Lcosd� Tsind
; do ¼ arctan

2Lsind
2Lcosdþ Tsind

(22)

Then, to obtain the kinematic model for a 4WS UGV, non-

holonomic constraints need to be introduced, as described

in (De Luca & Oriolo, 1995) and reported hereafter:

�
vFjcosdFl � vRjcosdRj ¼ 0
vilsindFl � vircosdir ¼ 0

; i¼F;R; j ¼ l; r (23)

An interesting interpretation of these constraints can be

promoted: the angular velocity of the vehicleU around the ICR

shall be the same for each wheel, i.e.
vij
dij

¼ U , where dij is the

distance from the ICR to the ij-th- wheel (see Fig. 4b).

To obtain a reliable kinematicmodel, the velocity terms are

firstly decomposed into their body-frame components as:
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Fig. 4 e ASM geometry for a two-wheels steering (a) and a four-wheels steering (b) arrangements.
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�
vijx ¼ vijcosdij
vijy ¼ vijsindij

(24)

Then, their mean values with respect to the left/right and

front/rear wheels are computed:

8>>>>>>>>>>><
>>>>>>>>>>>:

vlx ¼
vFlx þ vRlx

2

vrx ¼
vFrx þ vRrx

2

vFy ¼
vFly þ vFry

2

vRy ¼
vRly þ vRry

2

(25)

Last, the meanmotion of the vehicle's CoM is recovered as:

8>>>>>><
>>>>>>:

_x ¼ vlx þ vrx

2

_y ¼ vFy þ vRy

2

_q ¼ vFy � vRy

L

(26)

To conclude this subsection, first the model related to the

electric motors mounted on the steering axes and then to

those mounted on the wheels are briefly recalled. Regarding

the steering motors, each one is constrained to drive from its

initial position dm0 at time t0 to the desired angular position ddes

at time tf according to the relationship:

dmðtÞ¼ dm0 þ _dm , ðt� t0Þþ 1
2
€dm,ðt� t0Þ2 (27)

until the maximum speed _dmax is reached at t ¼ t1. Then, the

acceleration remains null for t2½t1; t2� before becoming nega-

tive until _d goes to zero and dm ¼ ddes at t ¼ tf .
However, for thewheel electricmotors, each one has to run

at a constant angular velocity uij unless different commands

are provided by a dedicated controller in terms of desired

velocity uijdes . Hence, the wheel motor behaviour can be

described as follows

uijðtÞ¼
8<
:

uijðt0Þ þ _uij,ðt� t0Þ if uijðt0Þ<uijdes ðtÞ
uijðt0Þ if uijðt0Þ ¼ uijdes ðtÞ
uijðt0Þ � _uij,ðt� t0Þ if uijðt0Þ>uijdes ðtÞ

(28)

fromwhich it is possible to obtain the linear velocity for the ij-

th wheel as vij ¼ uijR; with R being the wheel radius.
4. GNC strategies for drones in agricultural
applications

The guidance, navigation, and control functions are vital to all

forms of (not only autonomous) vehicles, even if they are

mostly referred to aerospace systems. Despite the acronym,

the actual GNC loop sees the three functionalities performed

in a different order sequence. First, the navigation sensors

allow the determination, at a given time, of the vehicle's
location, velocity and attitude with respect to a given refer-

ence frame. This data is typically filtered to obtain a refined

state vector. Then, guidance refers to the determination of the

desired path (i.e. the trajectory) given the current vehicle

location and the desired one, providing also the ideal velocity,

acceleration and attitude profile for following that path. Last,

control provides the required force and torque sequences,

needed to allow the vehicle to follow the desired trajectory

while maintaining stability.

Despite the fact that an increasing number of commercial

vehicles is available on the market, some of them being

designed ad-hoc to operate in specific agricultural scenarios,

https://doi.org/10.1016/j.biosystemseng.2021.11.008
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there still are gaps that need to be addressed to improve ve-

hicles performance when oriented towards full autonomous

navigation. One example is represented by the negative effects

on UAV stability due to wind gust or turbulence, which can

disturb remote sensing tasks by additional uncontrolled

movements of the drone, leading to inaccurate measure-

ments. Also for aerial drones operating within the crops (e.g.

for spraying or pruning), it is crucial to guarantee robustness

not only against external disturbances but also against the so-

called model uncertainties, which could be related to: i)

unmodelled dynamics (for experimental/research vehicles); ii)

relevant variations of physical parameters, e.g. centre of mass

or inertia (due e.g. to biopesticides release); iii) sensor mea-

surements uncertainties, due to their intrinsic noise errors;

and iv) unknown model uncertainties introduced by the

manufacturing process. Another crucial aspect, when dealing

with autonomous vehicles, is related to safety issues, i.e. to

guarantee that the vehicles remain ‘‘close” to the planned/

desired trajectory within a tolerance range defined by the

mission requirements while ensuring collision avoidance.

Considering all the aforementioned issues which could

arise when selecting completely autonomous vehicles (i.e. no

human in the loop), it becomes crucial to consider the possi-

bility of operating on the GNC functionalities of the (even

commercial) aerial/ground vehicles in order to introduce

advanced GNC features tailored for autonomous navigation

and optimised for the selected job/task. Hence, in the

following sections, a vast literature review of the state-of-the-

art GNC technologies and algorithms for autonomous drone

navigation in the Agriculture 4.0 framework is provided.

4.1. Simplified maps for in-field navigation

To implement fully autonomous navigation and operations

within complex, irregular and unstructured scenarios, in

addition to the crop status monitoring tasks (Kerkech,

Hafiane, & Canals, 2020; Comba, Biglia, et al., 2020), which

have been already object of thorough studies, the accurate

spatial description of the environment in which the drones

are going to operate (e.g. inter-row width and crop canopy

position and shape to avoid damage) are mandatory to prop-

erly accomplish given tasks. This information are essential

inputs of path planning and navigation algorithms, which

should be specifically developed and tuned to be compatible

with the agricultural scenario requirements. In this context,

enhanced performance can be achieved by 3D path planning,

which exploit 3Dmodels of the environment (Jin& Tang, 2011;

Gao, Xiao, & Jia, 2020). These representations (see e.g. Fig. 5),

which can be in the form of triangulated mesh or point clouds

(a set of points in an arbitrary reference frame which repre-

sents the surface of given objects), can be generated using 3D

sensors (such as LiDAR or depth cameras) or by photogram-

metry (Chakraborty, Khot, Sankaran, & Jacoby, 2019; Escol�a

et al., 2017). Since this kind of dataset are usually generated

by integrating a set of multiple raw aerial images, proper

geometric processing and radiometric calibration are essen-

tial to obtain reliable orthomosaics or point clouds (Aasen,

Honkavaara, Lucieer, & Zarco-Tejada, 2018). However, these

kinds of datasets are usually huge if acquired with the request

degree of detail (e.g. more than 1 Gb for modelling about 1 ha).
To be exploited for path planning and navigation purposes,

they have to be properly processed in order to extract valuable

information (e.g. crop and obstacle locations, parcel bound-

aries and headlands, inter-row path layout etc.) (Comba,

Zaman, et al., 2020). In addition, to enable a rapid communi-

cation and data exchange between in-field actors, the draw-

back of these models related to their complexity and

computational demand for the real-time exploitation,must be

addressed. The process of “simplifying” maps is thus twofold:

firstly, to detect relevant elements and obstacles in the sce-

nario; secondly, to allow the adoption of cost-effective devices

for real time application. In agriculture, a crucial constraint

which should be fulfilled by any innovative solution is the

economic feasibility and, thus, a well assessed approach is to

simplify mechanical systems and hardware requirements,

and thus enhance algorithms and data processing techniques,

without compromising overall performance.

For this reason, when considering cooperating machines

and scenarios including drones, unsupervised methods to

semantically interpret the models and to perform data

reduction are key elements in the presented framework. To

this aim, an innovative point cloud processing pipeline, which

automatically detects parcels and vine rows locations, was

proposed in (Comba, Biglia, Ricauda Aimonino, & Gay, 2018)

and later extended in (Comba, Zaman, et al., 2020) to generate

low complexity 3D mesh vine row models. The aforemen-

tioned algorithms were specifically conceived to automati-

cally process the point clouds of the vineyards. The output of

this processing flow is generated by a reduced set of elements

which still properly describe the spatial layout and the shape

of the vines, allowing a drastic reduction of the amount of data

required without losing relevant crop shape information.

During the first phase of the pipeline, the parcel boundaries

together with a set of vine row information (e.g. the local vine

rows orientation and the inter-rows spacing) are detected.

This process can be divided into three mains steps: i) precise

local terrain surface and height evaluation of each point of the

cloud; ii) point cloud scouting and scoring procedure on the

basis of a vineyard likelihood measure; and iii) detection of

vineyard areas and local features evaluation. More details can

be found in Comba et al. (2018). Thus, once themodel has been

semantically interpreted, by detecting the portion of the

model representing the vines canopies, its complexity can be

reduced by a methodology based on a combination of convex

hull filtration and minimum area c-gon design (Comba,

Zaman, et al., 2020). This process was specifically conceived

to produce a light mesh model, without losing relevant crop

shape information, for path planning and navigation purposes

of UGVs and UAVs.

4.2. Optimal guidance algorithms for UVs

To ensure the UV autonomy, it is crucial to guarantee the

ability to generate optimal paths according to the current

location, mission tasks compliance, as well as the fulfilment

of environmental, safety and kinematic/dynamic/mechanic

constraints. The criteria for the optimal path are often based

on one or more features such as shortest distance, low risk,

smoothness, maximum area coverage, and fewer energy re-

quirements considering different application constraints.
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Fig. 5 e Raw point cloud of a vine row (a), semantically segmented point cloud (b) and low complexity model of the vine

canopy (c) (Comba, Zaman, et al., 2020).
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More generally, the motion planning problem can be defined

as follows: given a robot with d degrees-of-freedom in an

environment with n obstacles, find a collision-free path con-

necting the current configuration (start) of the robot to the

desired one (goal). In this section, an overview of the principal

algorithms typically exploited for the path planning of

autonomous vehicles in the agricultural framework is

provided.

4.2.1. Guidance strategies for UAVs
Different guidance algorithms can be implemented depending

on the mission of the UAV (either fixed or rotary wing) was

designed for, as surveyed in Sujit, Saripalli, and Sousa (2014),

Rubı́, P�erez, and Morcego (2019), and Quan, Han, Zhou, Shen,

and Gao (2020). One possibility is to exploit a so-called tra-

jectory smoother that transforms a waypoint-based path

(identified either by a mission planner or a trajectory gener-

ator algorithm) into a time-stamped kinematically and

dynamically feasible trajectory, such as the carrot chasing

guidance law proposed in Breivik and Fossen (2005) or the

trajectory smoother in Capello, Guglieri, and Quagliotti (2013).

This second approach was applied in Mammarella, Capello,

and Dabbene (2018) to generate 2D feasible trajectories,

starting from assigned waypoints sequences, for different

operative missions, such as in precision farming. Indeed,

these scenarios are typically characterised by grid patterns for

territorial coverage, with variable levels of resolution and

image overlap, which are required for an accurate and uni-

form mapping of the area (crop). Then, the trajectory

smoother allowed the generation of a feasible bi-dimensional

path that a mini-UAV was following to properly map a (flat)

paddy field. By contrast, the well-known line of sight-based

path following (PLOS) is a geometric guidance technique that

guides the UAV to the following waypoint while steering the

vehicle towards the line-of-sight (LOS) (Ambrosino et al.,

2009). Another broadly exploited approach is based on direc-

tion field theory. The vector field approach is a well-known

tool for guidance problems and is based on the construction

of a vector field that represents the desired ground track of the

aircraft (Meenakshisundaram, Gundappa, & Kanth, 2010). The

main drawback of this approach is due to the local minimum

point which characterizes the traditional artificial potential

field method. Hence, Yingkun (2018) proposed a new vector

field-based algorithm for the path planning of the agricultural

UAV that is able to include the collision avoidance of different
type of obstacles (both static and dynamic) thanks to an

improved repulsive force function. A different scheme for

path planning in the agricultural framework was proposed by

Popovi�c et al. (2017) where the authors proposed an informa-

tive path planning approach for active classification using

UAVs. Their algorithmused a combination of global viewpoint

selection and evolutionary optimisation to refine the planned

trajectory in continuous 3D space while satisfying dynamic

constraints and it was evaluated for weed detection for pre-

cision agriculture.

4.2.2. Optimal path planning for UGVs
Path planning in (ground) mobile robotics has been a subject

of study for the last decades (Bonadies & Gadsden, 2019).

Typically, planning techniques are classified in four groups, as

reported in Gonz�alez, P�erez, Milan�es, and Nashashibi (2016): i)

graph search-based planners, i.e. motion planning methods

which use graph search schemes to compute paths or trajec-

tories over a discrete representation of the problem (i.e. oc-

cupancy maps); ii) sampling-based planners, which consist in

randomly sampling the configuration space, looking for con-

nectivity inside it and providing suboptimal trajectories; iii)

interpolating curve planners, often used as path smoothing so-

lutions for a given set of waypoints; and iv) numerical optimi-

sation planners, which aim at minimizing a given cost function

subject to different constrained variables. The classic

approach to path planning, also for agricultural machines,

consists in splitting the guidance task into a global planning

followed by a local planning (Gonz�alez et al., 2016). As defined

in (Kunchev, Jain, Ivancevic, & Finn, 2006), the global path

planner is in charge of generating local goals (i.e. waypoints)

towards the final one, whereas the local path planner gua-

rantees the smoothness and affordability of the reference

trajectory which interconnects those goals. Since the global

path planner controls identification, within a given grid/oc-

cupancy map, intermediate WPs between the initial configu-

ration and the desired one, graph searches or sampling-based

path planners are typically used for global planning. On the

other hand, interpolating curve planners and numerical

optimisation approaches are mainly used as local planners.

Hereafter, a collection of the main path planning schemes,

together with pointers to works that exploited such schemes

in the agricultural field for the autonomous generation of

trajectories of UGVs, is provided, split into global (see section

4.2.2.1) and local (see section 4.2.2.2).
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4.2.2.1. Global path planners. The first class of algorithms

used as global planners, i.e. the graph search-based schemes,

are based on a simple idea: to scan the different configura-

tions/states in the grid and to provide a solution to the path

planning problem, selected according to some criteria

defined by the specific algorithm. Within this class, the

classical Dijkstra algorithm (Madari, Adlinge, & Sharmila,

2019; Wang, Yu, & Yuan, 2011) and its well-known exten-

sion, i.e. the A-star algorithm (A*), enable fast node search

thanks to the implementation of heuristics logics and the

exploitation of a cost function to determine the weights of

each node. Within the agricultural framework, Santos et al.

(2019) proposed an A* algorithm for safe navigation in a

steep slope vineyard, which limits the robot's orientation

with respect to its centre of mass. Another scheme is rep-

resented by the so-called Dynamic A* search algorithm (or

simply D*), which was first proposed by Stentz (1994), and

provides optimal solutions for enforcing dynamics in the

search task, while avoiding the high computational costs of

backtracking. Abrah~ao, Megda, Guerrero, and Becker (2012)

were interested in developing an agricultural mobile robot

(i.e. AgriBOT) able to navigate autonomously in a crop,

without damaging the plants, and collect data and samples.

Hence, they proposed two D*-like algorithms for generating

the paths, given initial and goal positions, and compared

their performances in terms of the time required to generate

the trajectory. On the other hand, stands the family of

sampled-based path planners, which operate several stra-

tegies for creating samples in free space and for connecting

them with collision-free paths in order to provide a solution

for path-planning problems. As presented in Khaksar,

Sahari, and Hong (2016), three of the more popular

sampling-based approaches are:

a. probabilistic roadmaps (PRMs) (Kavraki, �Svestka, Latombe,

& Overmars, 1996): collision-free samples are found in the

environment and added to a roadmap graph. Then, the best

samples are selected in the graph by minimizing a given cost

function and a simple local path planner is used to connect

them together.

b. randomised potential fields (RPFs) (Barraquand & Latombe,

1991): a graph is built by connecting the localminimums of the

potential function defined in the environment. Then, the

planner searches this graph for different paths. In the work of

Yan et al. (2020), the authors used the RPF algorithm proposed

in Hwang and Ahuja (1992) as a global path planner for their

AgriRover. Whereas, Shimoda, Kuroda, and Iagnemma (2005)

proposed a potential field navigation of high speed un-

manned ground vehicles on uneven terrain.

c. rapidly exploring random trees (RRTs) (LaValle, 1998): spe-

cifically proposed to deal with non-holonomic constraints and

high degrees of freedom, this approach builds a tree by

randomly choosing a node in the free space and finding the

nearest node in the tree (Dong, Zhang, & Ai, 2017). Next, the

planner expands this nearest node in the direction of the

random node. The improved version of the RRT algorithm, i.e.

the so-called RRT* , first proposed in Karaman and Frazzoli

(2011), allows to overcome the limitations of RRT, whose so-

lutions are not asymptotically optimal. Messina, Faedda, Di

Pietra, and Lingua (2021) validated the RRT* algorithm as a
(global) path planner for an experimental UGV to be operated

on terrains characterised by complex morphology, e.g. in

vineyards.

4.2.2.2. Local path planners. The path generated by the global

planner cannot be directly fed to the control system because

of its lack of smoothness, which is vital to guarantee a good

control performance. Hence, to obtain a feasible trajectory,

the first guidance signal has to be overlapped to the one ob-

tained from a so called local planner, which is based on the

former and makes it possible to obtain a smoother and more

affordable path.

As anticipated earlier, interpolating curves and numerical

optimisation planners are suitable for local path planning,

since they provide path smoothing solutions for a given set of

waypoints (the former) or optimise a given cost function (the

latter) to enforce smoothness to pre-computed trajectories.

Within the first category, the most common interpolating

methods are based on line and circle curves (Hsieh &
€Ozguner, 2008), clothoid curves (Behringer & Müller, 1998),

polynomial curves (McNaughton, Urmson, Dolan, & Lee,

2011), or splines (Berglund, Brodnik, Jonsson, Staffanson, &

S€oderkvist, 2010). An example of an interpolating curve

planner in agriculture is provided in Hameed (2017) where

the so-called Dubin (polynomial) curves were used for the

coverage path planning of autonomous robotic lawn mowers

equipped with GPS. Another interesting possibility is repre-

sented by the dynamic-window approach (DWA), which is

based on a receding-horizon scheme as described in Fox,

Burgard, and Thrun (1997) and €Ogren and Leonard (2005).

This algorithm is able to generate a smooth and optimised

collision-free path for the robot, which is directly derived

from the dynamics of the vehicle itself (Zhang et al., 2019). In

the agricultural framework, the DWA approach was imple-

mented in Guan, Tean, Oh, and Lee (2019) on a caterpillar-

tracked vehicle, characterised by high traction and

mobility, to generate a smooth path for the robot, even in

rough terrains, satisfying the demand for outdoor agricul-

tural usages.

4.3. Tracking control algorithms for UVs

Once the reference trajectory has been defined, either offline

or online, it needs to be fed to the control block, which is in

charge of tracking the desired path while eventually fulfilling

operational, mechanical, and safety constraints. Analogously

to the path planning framework, several different control

schemes have been proposed, tested and experimentally

validated in the literature, also for agricultural machines. In

the following sections, an overview of the main control stra-

tegies for UAVs/UGVs trajectory tracking is reported and ex-

amples of agricultural applications are provided with the

appropriate references.

4.3.1. Control strategies for UAVs
The survey of Nguyen et al. (2020) provides a classification of

control algorithms for UAVs, which is based on being either

linear or nonlinearmethods.Within the first category, i.e. linear

controllers, one finds: i) the classical proportional-integral-
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derivative (PID) controller, in which the control action is

determined according to the deviation between the set value

and the real value, trying to reduce the PID errors to zero; ii)

the linear-quadratic-regulator (LQR) method, where the con-

trol input is selected to minimise a given quadratic cost

function; and iii) the well-known H∞ optimal control scheme,

which represents an effective method to deal with issues of

uncertain parameters and external disturbances encountered

in UAV flight processes.

Sufendi, Trilaksono, Nasution, and Purwanto (2013) used a

PID controller for FW-UAVs, tuned according to the Ziegler-

Nichols method and later implemented and validated on a

ArduPilot mega hardware. Also, a robust PID scheme was

proposed in Capello, Sartori, Guglieri, and Quagliotti (2012)

where the root locus method was combined with loop

shaping techniques to guarantee compliance with robustness

requirements. In Ulus and Ikbal (2019), an optimum PID

controller was designed for a fixed-wing aircraft used for

agricultural applications such as crop monitoring, spraying,

etc. For quadrotors, in the work of Bouabdallah, Murrieri, and

Siegwart (2004), the authors applied a classic PID to control the

vertical take-off and landing (VTOL) of an autonomous robot

for indoor flights. More recently, advanced PID schemes have

been proposed to improve robustness (Miranda-Colorado &

Aguilar, 2020) and adaptability to uncertainty and to specific

scenario demands for RW-UAVs (e.g., not only hovering but

also route tracking as in Noordin, Mohd Basri, Mohamed, and

Mat Lazim (2021) and Sunay, Altan, Belge, and Hacioglu

(2020)). An altitude PID-based control system for a quadrotor

is proposed in Zhao, Li, Hu, and Pei (2016) to achieve a high

degree of control and have it meet the accuracy requirements

in the autonomous agricultural plant protection flight. Some

examples of LQR control applied to FW-UAV were reported in

Anjali, Vivek, and Nandagopal (2016), where it is shown that

the LQR approach provides better results compared to a PID in

terms of disturbance rejection, and in Bagheri, Jafarov,

Freidovich, and Sepehri (2016), where the LQR algorithm is

combined with a PID to provide robust stability and step

reference tracking for the nonlinear dynamics of mini-UAVs.

An LQR controller was proposed in Shamshiri et al. (2018) to

control the velocity and the pitch rate of a fixed-wing drone for

remote sensing research applications in the precision agri-

culture of oil palm plantations. For quadrotors, Joelianto,

Christian, and Samsi (2020) exploited a combination of PIDs

and LQRs to control a swarm of six quadrotors as agents for

flocking while tracking a swarm trajectory. Remaining in the

linear controllers category, the H∞ optimal control represents

an effective method to deal with issues of uncertain param-

eters and external disturbances encountered in the UAVs

flight process. The effectiveness of this approach, applied to

the trajectory tracking of FW-UAVs and quadrotors, was

demonstrated, for example, in L�opez, Dormido, Dormido, and

G�omez (2015) and Chen and Huzmezan (2003). Despite the fact

that the H∞ features comply with the control requirements of

UAVs in agriculture, no example can be found in literature.

To overcome some of the shortcomings of linear control-

lers, a variety of nonlinear ones have been developed and

applied to UAVs. Among these, feedback linearisation, back-

stepping, sliding mode control (SMC), and adaptive control

have receivedmuch of the attention. Feedback linearisation is
a powerful control algorithm for the design of nonlinear sys-

tems. The main idea of this approach is to algebraically

transform the nonlinear system dynamics into a partially or

fully linearised system so that feedback control techniques

can be applied, as in Khamseh and Tôrres (2016) for FW-UAVs

and in Martins, Cardeira, and Oliveira (2021) for quadrotors.

Feedback linearisation is mentioned also in Kim, Kim, Ju, and

Son (2019) as one of the control schemes typically exploited for

UAVs in agriculture. To deal with nonlinearities, a back-

stepping controllers was applied to FW-UAVs (Sartori,

Quagliotti, Rutherford, & Valavanis, 2014) and quadrotors

(Glida, Abdou, Chelihi, Sentouh, & Hasseni, 2020), but within

the agricultural field, it is mainly exploited for ground vehi-

cles. When robustness against uncertainty and disturbance is

sought, SMC controllers could represent a valid alternative,

since they are characterized by low sensitivity to external

disturbances, good tracking ability, and rapid response. A

sampled-data second-order SMC scheme has been designed

for as FW-UAV (Raza, Ahmed, Khan, Mumtaz, & Mumtaz

Malik, 2017), proving robustness against external distur-

bances and capability of tackling with chattering issues.

Runcharoon and Srichatrapimuk (2013) addressed the posi-

tion and attitude tracking control for a small quadrotor UAV

via multiple SMC controllers.

Another category is given by so-called adaptive controllers,

which are able to automatically compensate for parameter

changes in system dynamics by means of the controller's
characteristics so that the overall system performance re-

mains the same, or rather is maintained at an optimal level.

An example is represented by the L1 adaptive scheme in

Capello, Guglieri, Marguerettaz, and Quagliotti (2012), which

was designed for a mini-UAV autopilot, showing inherent

robustness against external and internal parameter varia-

tions. For quadrotors, an example of adaptive control is rep-

resented by the approach described in Antonelli, Cataldi,

Giordano, Chiaverini, and Franchi (2013).

The aforementioned controllers do not represent the

complete range of control strategies that have been designed

and implemented for UAVs. Indeed, an additional category

can be identified,which includes ‘intelligent’ control schemes,

i.e. algorithms that are able to handle a wider range of un-

certainties than other control strategies. This category in-

cludes fuzzy logic (Zhang et al., 2020) and also neural-network

(NN) based control techniques (see e.g. Bhandari & Patel, 2017;

Dierks & Jagannathan, 2010).

Even if all the strategies discussed above could guarantee

robustness against bounded modelled disturbances when

properly designed, they are generally unable to explicitly take

into consideration mission and system constraints. For these

reasons,model predictive control (MPC) schemes (Kouvaritakis

& Cannon, 2015; Mayne & Rawlings, 2009) have become widely

used within the UAV path-following framework. The MPC

philosophy can be simply described as follows: to predict

future behaviour by using a system model, given the mea-

surements or estimates of the current state of the systemand a

hypothetical future input trajectory or feedback control policy.

In this way, the state and input constraints can be tackled

directly. A first example is provided by Oettershagen, Melzer,

Leutenegger, Alexis, and Siegwart (2014), where the authors

combined a linear MPC, as an attitude controller, with an L1
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navigation loop for the altitude control. In Abdolhosseini,

Zhang, and Rabbath (2013) an efficient MPC algorithm was

proposed which deployed fewer prediction points and less

computational requirements to control a small quadrotor UAV

for trajectory tracking. Other examples were presented in

Kamel, Burri, and Siegwart (2017), where different receding

horizonmethods for trajectory tracking were discussed, and in

Michel, Bertrand, Valmorbida, Olaru, and Dumur (2017), where

two different robust MPC schemes were proposed for the

control of the FW-UAV's translational dynamics. In Raffo,

Ortega, and Rubio (2008), the control structure envisioned a

linear MPC for trajectory tracking and a nonlinear H∞ for

rotational stabilisation. An explicit MPC was proposed in Liu,

Lu, and Chen (2015) again for tracking a reference trajectory

represented by using Bezier curves. Moreover, recent ap-

proaches to MPC have proved to be robust against system

uncertainties, as for instance the so called tube-basedMPC (see

e.g. Lim�on, Alvarado, Alamo, & Camacho, 2010). The effec-

tiveness, robustness and computational compatibility with

low-cost hardware of this approach were already been proved

in a simulation environment for an FW-UAV, as described in

Mammarella and Capello (2020) and Mammarella et al. (2019),

and experimentally for a space application as presented in

Mammarella, Capello, Park, Guglieri, and Romano (2018). More

advanced predictive control techniques were also been pro-

posed for the FW-UAVs trajectory tracking problem, such as

nonlinear MPC (Lindqvist, Mansouri, Agha-mohammadi, &

Nikolakopoulos, 2020) or stochastic MPC (Mammarella,

Capello, Dabbene, & Guglieri, 2018) but their computational

burden may not be compliant with the autopilot's capability.

Thus in conclusion, it is possible to observe that, despite

the multiplicity of control algorithms available in the litera-

ture describing UAV trajectory tracking, those that have been

investigated for agricultural applications are (almost) all

limited to classic schemes as PID and LQR. The main reason

behind this choice lies in the following two aspects: i) these

algorithms are typically provided with the autopilot of com-

mercial UAVs; and ii) they are simple to implement, easy to

tune and are characterized by a very limited computational

burden. On the other hand, looking for completely autono-

mous aerial vehicles (i.e. no remote control) exploitable for

innovative, unstructured and complex agricultural scenarios,

one has to consider the possibility of employing and tailoring

more complex control schemes that could provide better

performances, robustness against internal and external un-

certainty sources, and a higher level of safety. These aspects

become more relevant if/when swarm architectures are

envisioned within the Agriculture 4.0 framework.

4.3.2. Tracking controllers for UGVs
For UGVs, Mohamed, El-Gindy, and Ren (2018) provided a

literature survey on the control techniques that have been

proposed and validated for the autonomous navigation of

ground vehicles in various fields of application. In this survey,

the authors highlighted how the UGVs autonomy and intelli-

gence robustnessmainly relies on control systems algorithms,

which range from classic control to more advanced methods

such as adaptive control, robust control, and intelligent con-

trol. Hence, also for UGVs, these algorithms can be split into
three main categories: i) linear control; ii) nonlinear control;

and iii) “intelligent” control.

The classic approach envisions the exploitation of PID

controllers, which are easy to tune, reliable and light enough

to be implemented onboard UGVs. In Soe and Tun (2014), a

cascade of PID controllers is proposed for a UGV, which

allowed to improve robustness thanks to a double closed-loop

control system. In Haytham, Elhalwagy, Wassal, and Darwish

(2015), the authors proposed an optimally-tuned PID

controller as the steering controller for a 4WS UGV, by

exploiting an optimal genetic algorithm to tune the vehicle's
controller. In Gonzalez-de-Santos et al. (2017), a new PID

controller was designed to follow the speed set point received

from the trajectory controller of an electric UGV exploited for

effective weed and pest control. An auto-tuning method for

PID parameters was proposed in Koca, Aslan, and G€okçe

(2021), where the authors were looking for a speed control

PID-based configuration for the DC motor of an agricultural

UGV. In Hang and Chen (2021), a linear parameter-varying

(LPV) controller was used to obtain an adaptive path tracking

control while a feedforward control was combined with an

LQR to eliminate errors caused by disturbances. on the on-

board implementation of an optimal LQR tracking controller

is described in De Simone and Guida (2018), where an identi-

fication activity and a control application conducted on an

electric UGV by using low-cost components and open-source

software (i.e. Arduino) were presented. In Wu (2018), a path

tracking controller was proposed for a robot-trailer system in

which an LQR controller was designed to remove trailer po-

sition errors for both straight and curved reference paths and

where the control parameters were tuned by exploiting par-

ticle swarm optimisation (PSO) with varying inertia. Ni, Hu,

and Xiang (2019) proposed a robust path following

controller, based on the robust H∞ output-feedback approach,

which aimed at controlling an UGV to its handling and driving

limits.

The path tracking accuracy of agricultural UGVs is one of the

important factors that determine the results of the operation,

as also discussed in Li, Yu, Guo, and Sun (2020). Currently, the

commonly used path tracking methods for agricultural ma-

chines include the PID algorithm (Li, Sun, & Jin, 2016), pure

tracking schemes (Guo, Zhang, Zhao, & Chen, 2020; Liu, 2018),

and kinematic or dynamic model-based methods (see e.g.

Bevly, Gerdes, & Parkinson, 2002; Eaton, Pota, & Katupitiya,

2009). Considering that the changes in soil hardness and the

high-frequency dynamics of agricultural vehicle are difficult to

model, the entire path tracking process is highly nonlinear.

Hence, traditional linear control algorithms can provide unac-

ceptable performance. For this reason, nonlinear and “intelli-

gent” controllers are the best choice when the trajectory

tracking problem is considered. In Hao, Lenain, Thuilot, and

Martinet (2004), an SMC controller, robust not only against

sliding effects but also against input noise, was proposed for

farm vehicles and simulation results showed that this control

lawwas able to guarantee high path-following accuracy even in

the presence of sliding. The problem of sliding was also

considered in Fang, Fan, Thuilot, andMartinet (2006), where the

authors presented a trajectory tracking control based on a

backstepping method, which provided, both in simulation and
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experiments, high longitudinal-lateral control accuracy,

regardless of sliding. In Meng et al. (2015), an agricultural

implement guidance system based on machine vision and

fuzzy control was designed to achieve accurate mechanical

inter-rows weeding. A compound fuzzy control was also pro-

posed in Li et al. (2020) for unmanned agricultural vehicle path

tracking. In this case, the proportional-derivative (PD) fuzzy

controller was designed based on lateral and heading errors,

and an integral compensation was adopted to solve the prob-

lem of low steady-state accuracy of traditional PD-type fuzzy

controls, realizing high-precision path tracking of unmanned

agricultural vehicles. An MPC-based path tracking control was

proposed in Lin, Yin, Liang, and Wang (2018) for dealing with

the peculiarities of an orchard terrain and the big turning

radius characterising agricultural UGVs. A review of MPC ap-

plications in agriculture can be found in Ding, Wang, Li, and Li

(2018), where the authors identified three main branches

related to agricultural machinery that would benefit from the

exploitation of MPC: i) autonomous navigation, i.e. controlling

vehicle trajectory while maintaining it at a constant distance

from the adjacent travel line, or placing the strip side by side in

accordance with the agricultural conditions without overlaps

or gaps (Coen, Anthonis, & De Baerdemaeker, 2008); ii) path-

tracking operations, which could rely on distributed nonlinear

MPC (NMPC) strategies (Kayacan, Kayacan, Ramon, & Saeys,

2014) for improving transport efficiency when dealing with

multiple complex bodies, or on LTV-MPC to generate offline

reference trajectories for high-precision closed-loop tracking as

in Plessen and Bemporad (2017); and iii) steering operations,

where the automation of the manoeuvres in a headland could

reduce the burden on drivers and improve efficiency, e.g. see

Cariou, Lenain, Berducat, and Thuilot (2010).

Lastly, when dealing with a 4WS configuration, it is

necessary to address the control problem as a two-step pro-

cedure: first, a steering controller to define the desired steer-

ing angle and then, a velocity controller to assess the optimal

velocity (and consequently the applied torque) of each wheel.

Regarding steering controllers, several approaches have been

proposed, ranging from simple proportional control laws or

PID-like schemes (e.g. Marino, Scalzi, Orlando, & Netto, 2009)

to predictive schemes (e.g. Falcone, Borrelli, Asgari, Tseng, &

Hrovat, 2007) and neural networks (e.g. Deng, Xu, Yan,

Zhang, & Song, 2017). For the second phase related to the

definition of the velocity profile, one can rely on optimal

control theory as proposed in (Higuchi & Saitoh, 1993) where

the control feeds forward the steering wheel angle and feeds

back the yaw velocity and the sideslip angle to the front and

rear wheels.
5. Conclusions

Autonomous agricultural vehicles represent the next logical

step in the automation of crop production, if safety and lia-

bility can be guaranteed. In that case, the exploitation of both

aerial and ground vehicles for complex in-field operations

such as spraying and shredding could become a reality in the

near future.

In this paper, an overview of the agricultural scenarios that

can benefit from using collaborative machines and the
corresponding cooperative schemes typically adopted in this

framework are presented. Moreover, a new multi-phase

approach is proposed for long-cycle crops, in which hetero-

geneous agricultural aerial and ground vehicles operate.

Then, a collection of kinematic and dynamic models for

different categories of autonomous aerial and ground vehicles

is provided, which are crucial for studying the vehicle

behaviour. Lastly, a collection of state-of-the-art technologies

for the autonomous navigation of drones is provided, sum-

marising their peculiar characteristics, and highlighting their

advantages and shortcomings with a specific focus on the

Agriculture 4.0 framework.

Some of the aforementioned technologies were then

selected to provide effective improvements on mission plan-

ning, autonomous navigation, and in-field operations, and

later applied to a specific scenario, i.e. a Barolo vineyard on a

sloped terrain, whose preliminary results are described in the

companion paper, Mammarella et al. (2021).
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