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evolutionary games

Stefano Almi, Marco Morandotti and Francesco Solombrino

Abstract. Amulti-stepLagrangian scheme at discrete times is proposed for the approximation of a nonlinear
continuity equation arising as amean-field limit of spatially inhomogeneous evolutionary games, describing
the evolution of a system of spatially distributed agents with strategies, or labels, whose payoff depends
also on the current position of the agents. The scheme is Lagrangian, as it traces the evolution of position
and labels along characteristics, and is a multi-step scheme, as it develops on the following two stages:
First, the distribution of strategies or labels is updated according to a best performance criterion, and then,
this is used by the agents to evolve their position. A general convergence result is provided in the space of
probability measures. In the special cases of replicator-type systems and reversible Markov chains, variants
of the scheme, where the explicit step in the evolution of the labels is replaced by an implicit one, are also
considered and convergence results are provided.

1. Introduction

The capability of changing strategy as an adaptive response to the modification of
the surrounding environment in order to maximize a certain payoff is of paramount
importance in decision-making processes. Replicator-typemodels [21] are a particular
class of dynamical models that feature this adaptivity and are well suited for studying
the evolution of strategies according to their success: Given a pool of strategies, the
occurrence of each of them evolves according to their performance with respect to all
the others; in this way, if a strategy gives a payoff which is higher compared to the
average of all strategies, it is enhanced; otherwise, it is suppressed. This criterion, in the
basic replicator model, is the only one that determines the evolution of the occurrence
of the strategies, which in fact is independent from all other factors, in particular from
the position of the agents that play those strategies. This is a reasonable assumption,
not even a restrictive one, in many cases. For example, in a financial scenario, the
set of (pure) strategies U contains the financial products available to an investor.
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Any combination of them, that is a portfolio, is called a mixed strategy: In a discrete
setting such as this one, it corresponds to the fraction of the capital invested in each
of the different financial products. Adapting the strategy means to allocate resources
differently according to the evolution of the market, and the location the investor is
at when making this decision is likely to not affect the reward of the portfolio. On
the contrary, when the position influences the outcome, the system is more involved,
as more feedback is available, and the adaptive optimization process relies on the
mutual influence of position and strategy performance.We call such a system spatially
inhomogeneous and make them the focus of this paper.

1.1. Overview of the problem and state of the art

The basic, spatially homogeneous, replicator equation of [21] can be enriched to
include spatial dependence of the payoff function: The idea is that the same strategy
adopted in two different places might originate different rewards, precisely depending
on the environment. Therefore, in order to maximize the payoff players can not only
adapt their strategies, but also change their position seeking for the highest possible
payoff. Spatially inhomogeneous evolutionary games, introduced in [5], provide a
general mathematical framework for the evolution of a distribution of players with
their (distributions of) strategies: A space-dependent replicator equation governs the
evolution of the distribution λ ∈ P(U ) of the strategies u ∈ U while the evolution of
the spatial variable x ∈ R

d is determined by λ.
In the subsequent contribution [31], this approach has been suitably extended as an

abstract toolbox which is capable of rigorously describing the mean-field limit of a
larger class of models which share the following features:

– a multi-agent dynamics in which every agent is characterized by a label u ∈
U (accounting for different strategies or different populations to which each
individual belongs);

– exchange rates among the labels which are stochastic in nature and, therefore,
are described by the evolution of a probability measure λ ∈ P(U ).

Several other models, besides the replicator dynamics mentioned above, are included
in this class. The multi-label setting can be effectively used to describe situations in
which the action of every individual is weighted differently according to the species
it belongs to [3,4,16,17,19]. In the theory of mean-field games or in optimal control
theory, labelling is used to distinguish informed agents in the evacuations of unknown
environments, to highlight the influence of key investors in the stock market or of
strong leaders in opinion formation [11,13,18,39]. The addition of source and sink
terms in the spirit of [34] and of label switching [38] can be successfully dealt with
in this class of models. Relevant applications where label switching may occur come,
for instance, from chemical reaction networks, where a particle may change its type
as a result of the interaction with the others [27,32,33]; also in social dynamics, loss
or gain of opinion leadership over time is a natural postulate, as it happens in [18,
Section 3.b].
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The framework proposed in [31] couples a nonlinear transport dynamics for the
positions x ∈ R

d of the agents with a Markov-type jump process for the labels λ ∈
P(U ) (see Sect. 2). The mean-field limit of the model was proved to be a nonlinear
continuity equation of the form

∂tΨt + div(bΨtΨt ) = 0 (1)

in the space of probability measures over the pairs (x, λ) ∈ R
d × P(U ) driven by

a velocity field bΨ (x, λ) depending on the global state of the system Ψ ∈ P(Rd ×
P(U )). These equations are part of a general class which is of great interest in the
mathematical community [6, Chapter 8] and can be studied both with a Lagrangian or
a Eulerian approach. On the one hand, the nonlinear continuity equation expresses the
Eulerian point of view tracing the evolution of the global state Ψ . On the other hand,
a notion of solution can also be provided by the Lagrangian point of view tracing the
characteristics, which are, in our case, solutions to an ODE in a suitably constructed
Banach space.
Given an initial datum ̂Ψ , a solution t �→ Ψt of the initial value problem for the

nonlinear continuity equation is called a Eulerian solution, whereas a curve t �→ Ψt

obtained via the push-forward of ̂Ψ through the flow map associated with the ODE

(ẋ, λ̇) = bΨt (x, λ) (2)

is called a Lagrangian solution. Since Lagrangian solutions are also Eulerian solutions,
the equivalence of the two notions follows if one is able to prove that Eulerian solu-
tions are also Lagrangian. For the model studied in [31], and also for other relevant
ones [14], these two notions of solution are equivalent. This has been achieved by
means of the superposition principle (see [36], and also [6, Theorem 8.2.1], [8, Theo-
rem 7.1], and [5, Theorem 5.2]), which provides the uniqueness of Eulerian solutions
[5, Theorem 5.3]. Furthermore, the Lagrangian formulation has been used to propose
discretization schemes to solve the nonlinear PDE numerically [15,25,26,29,35].
Moreover, the Lagrangian point of view has been used in [5] to provide a heuristic

derivation of the nonlinear continuity equation arising as the mean-field limit of the
spatially inhomogeneous replicator dynamics. Let us briefly discuss this derivation.
Denoting by h = T/N the time step, if an agent at time t = ih, for i ∈ {0, . . . , N −1},
is in the position x with mixed strategy λ, first they optimize the strategy distribution
following a homogeneous replicator dynamics of the form

λ′ := λ + hTΨt (x, λ) . (3)

Here, TΨt (x, λ) is the payoff operator determining the enhancement or suppression
of the strategies; it depends on the random state (x, λ) and also on the current distri-
bution Ψt . In the setting of [5], the operator T is quadratic in λ. After updating the
strategy portfolio, the agent updates its position x to

x ′ := x + hv(x, u), (4)
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choosing u with probability λ′. The above two equations completely determine the
conditional probability of having an agent in a state (x ′, λ′) at time t + h given the
distribution Ψt . Equivalently, the new distribution Ψt+h can be defined via duality by
∫

Rd×P(U )

φ(x ′, λ′) dΨt+h(x
′, λ′)

=
∫

Rd×P(U )

(∫

U
φ(x + hv(x, u), λ + hTΨt (x, λ)) dλ′(u)

)

dΨt (x, λ)

where φ : Rd × P(U ) → R is of class C1. By a formal first-order Taylor expansion,
we have
∫

Rd×P(U )

φ(x ′, λ′) dΨt+h(x
′, λ′)

=
∫

Rd×P(U )

[

φ(x, λ) + h∇φ(x, λ) · bΨt (x, λ)
]

dΨt (x, λ) + o(h),

where

bΨt (x, λ) =
⎛

⎝

∫

U
v(x, u) dλ(u)

TΨ (x, λ)

⎞

⎠ .

In the formal limit for h → 0, we obtain the weak formulation of the nonlinear
continuity equation (1). A related heuristic derivation has been outlined also in [2,
Remark 4.1], in the context of a leader–follower dynamics which also fits in the
setting of [31]. In this case, the R

d -component of bΨ also depends on Ψ , whereas
the λ-component acts linearly on λ, modelling a Markov chain on U .

We point out that in this paper we neglect diffusive terms as a general existence the-
ory is still missing. Even in the literature of mean-field games, well-posedness results
have been shown only for the so-called potential games [24]. For these, numerical so-
lutions have been proposed, see, e.g., [1], which are based on the iterative solution of a
backward–forward system. In our setting, a first step towards including diffusion has
been made in [10], where an entropic regularization for the spatially inhomogeneous
replicator dynamics (see also Sect. 4) has been considered.

1.2. Results of this paper

Themain objective of this paper is to present a rigorous proof of the formal derivation
described above, bymeans of amulti-stepLagrangian scheme. The schemewepropose
is suitable for approximating all equations in the class considered in [31] (we refer to
Sect. 2 for the precise details). The method is a Lagrangian one as it is based on the
approximation of the ODE (2), and it is multi-step because the updates of x and λ do
not happen simultaneously, but follow the heuristics described above. Indeed, first we
make an incremental step in λ and then use the updated λ′ to make the incremental
step in x .
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Since the velocity field b depends explicitly on Ψ , at each incremental step the
updates of x , λ, and of the distributionΨ involve three substeps, which are the rigorous
formalization of the heuristics discussed above. To be precise,

– first we update λ to λ′ in the spirit of (3) (see (8));
– then we transport λ′ to the state of the system ˜Ψ (see (11)). This amounts to

assuming that all the agents know the optimal label distribution λ′ of the other
agents;

– then we update the positions x to x ′ in the spirit of (4) where the velocity field
depends on ˜Ψ (see (12)). Notice that, in our general framework, the velocity
field depends on Ψ and this makes the previous step necessary;

– finally,we update the global distribution toΨ ′ keeping both x ′ andλ′ into account
(see (15)).

Our firstmain result is Theorem1 inSect. 3 on the convergence of the schemepresented
above.

In Sects. 4 and 5, we turn our attention to the case of the inhomogeneous replicator
dynamics considered in [5] and to the leader–follower-type dynamics of [31, Sec-
tion 5.1], respectively. More in general, for the second case, we assume that TΨ (x, λ)

is a Markov chain on a finite space of an arbitrary number n of labels.

In the spatially homogeneous case, that is, when there is no x dependence in the
vector field b, in both situations the evolutions of the λ-components are gradient flows
of suitable energies with respect to certain metric structures, and the solution can
be approximated via a minimizing movement scheme [6,22]. The spatially homoge-
neous replicator equation is a gradient flow with respect to the spherical Hellinger
distance (36) of probability measures. (This could be obtained, for instance, for a
proper choice of f in [23, formula (1.8)].) The spatially homogeneous Markov-type
jump processes are the gradient flow of an entropy-like energy penalized by a distance
induced by the transition matrix [28,30].

We investigate the compliance of these structures with our algorithm. More pre-
cisely, we elaborate an implicit–explicit scheme where the explicit step (3) is replaced
by a minimizing movement step suggested by the aforementioned gradient flow struc-
ture (see (39) and (82), respectively). A relevant difficulty in the spatially inhomoge-
neous setting is that the energy and the dissipation distances that we consider may as
well depend on the state Ψ , which changes from step to step. This extension is far
from trivial and requires a careful analysis of the related Euler conditions, which is
partially inspired by [20, Section 4.2] for the case of the replicator dynamics. This is
done is Propositions 3 and 5, respectively, where we show that the deviation from the
explicit scheme is uniformly controlled by the vanishing time step.

The two main results of Sects. 4 and 5 are given by Theorems 2 and 3, proving
the convergence of our multi-step Lagrangian scheme to the unique solution to (1.
In particular, Theorem 2 is a global-in-time convergence result for the spatially inho-
mogeneous replicator dynamics, whereas Theorem 3 provides a short-time existence
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result for a well-prepared initial datum for spatially inhomogeneous Markov-type
jump processes.
The paper is structured as follows: InSect. 2,we introduce the structural assumptions

on the systems that we consider. In Sect. 3, we describe the multi-step Lagrangian
scheme, which we apply to the inhomogeneous replicator dynamics in Sect. 4 and to
the inhomogeneous Markov-type jump processes in Sect. 5.

2. The mathematical setting

2.1. Basic notation.

Given a metric space (X,dX ), we denote by M(X) the space of signed Borel
measures μ in X with finite total variation ‖μ‖TV, by M+(X) and P(X) the con-
vex subsets of nonnegative measures and probability measures, respectively. We say
that μ ∈ Pc(X) if μ ∈ P(X) and the support sptμ of μ is a compact subset of X .
Moreover, for K ⊆ X we will use the notation P(K ) to indicate the set of mea-
sures μ ∈ P(X) such that sptμ ⊆ K .
As usual, if (Z ,dZ ) is another metric space, for every μ ∈ M+(X) and every μ-

measurable function f : X → Z , we define the push-forwardmeasure f#μ ∈ M+(Z)

by ( f#μ)(B) := μ( f −1(B)) for any Borel set B ⊂ Z . The push-forward measures
has the same total mass as μ, namely μ(X) = ( f#)μ(Z).
For a Lipschitz function f : X → R we set

Lip( f ) := sup
x,y∈X
x 
=y

| f (x) − f (y)|
dX (x, y)

its Lipschitz constant. We denote by Lip(X) and Lipb(X) the spaces of Lipschitz
and bounded Lipschitz functions on X , respectively. Both are normed spaces with the
norm ‖ f ‖Lip := ‖ f ‖∞+Lip( f ), where ‖·‖∞ is the supremumnorm. Furthermore,we
use the notation Lip1(X) for the set of functions f ∈ Lipb(X) such that Lip( f ) ≤ 1.
In a complete and separable metric space (X,dX ), we shall use the Kantorovich–

Rubinstein distance W1 in the class P(X), defined as

W1(μ, ν) := sup

{∫

X
ϕ dμ −

∫

X
ϕ dν : ϕ ∈ Lip1(X)

}

.

Notice that W1(μ, ν) is finite if μ and ν belong to the space

P1(X) :=
{

μ ∈ P(X) :
∫

X
dX (x, x̄) dμ(x) < +∞ for some x̄ ∈ X

}

and that (P1(X),W1) is complete if (X,dX ) is complete.
If (E, ‖·‖E ) is a Banach space andμ ∈ M+(E), we define the first momentm1(μ)

as

m1(μ) :=
∫

E
‖x‖E dμ .
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Notice that, for a probability measure μ, finiteness of the above integral is equivalent
to μ ∈ P1(E), whenever E is endowed with the distance induced by the norm ‖·‖E .

For a Banach space E , the notation C1
b(E) will be used to denote the subspace

of Cb(E) of functions having bounded continuous Fréchet differential at each point.
The notation ∇φ(·) will be used to denote the Fréchet differential. In the case of a
functionφ : [0, T ]×E → R, the symbol ∂t will be used to denote partial differentiation
with respect to t . The symbol 〈·, ·〉 will be used to denote duality products, with no
further specification if the meaning is clear from the context.

2.2. Functional setting

We consider a set of pure strategies U , where U is a compact metric space, and
we denote by Y := R

d × P(U ) the state space of the system. Precisely, for every
y = (x, λ) ∈ Y , the component x ∈ R

d describes the location of an agent in space,
whereas the component λ ∈ P(U ) describes the distribution of labels of the agent.
The correct functional space for the dynamics (see also [5,31]) is the space Y :=

R
d × F(U ), where we have set (see, e.g., [7,9] and [40, Chapter 3])

F(U ) := span(P(U ))
‖·‖BL ⊆ (Lip(U ))′. (5)

The closure in (5) is taken with respect to the bounded Lipschitz norm ‖·‖BL, defined
as

‖μ‖BL := sup
{〈μ, ϕ〉 : ϕ ∈ Lip(U ), ‖ϕ‖Lip ≤ 1

}

for every μ ∈ (Lip(U ))′ .

We notice that, by definition of ‖ · ‖BL, we always have
‖μ‖BL ≤ ‖μ‖TV for every μ ∈ M(U ) .

In particular, ‖λ‖BL ≤ 1 for every λ ∈ P(U ).
We endow Y with the norm

‖y‖Y = ‖(x, λ)‖Y := |x | + ‖λ‖BL .

For every R > 0, we denote by BR the closed ball of radius R in R
d and by BY

R the
ball of radius R in Y , namely BY

R = {y ∈ Y : ‖y‖Y ≤ R}. We notice that BY
R is a

compact set, as Y is locally compact by our assumptions on U .
As in [31], we consider, for every Ψ ∈ P1(Y ), the velocity field vΨ : Y → R

d such
that

(v1) for every R > 0, vΨ ∈ Lip(BY
R;Rd) uniformly with respect to Ψ ∈ P(BY

R), i.e.,
there exists Lv,R > 0 such that

|vΨ (y1) − vΨ (y2)| ≤ Lv,R‖y1 − y2‖Y for every y1, y2 ∈ Y ;
(v2) for every R > 0 there exists Lv,R > 0 such that for every Ψ1, Ψ2 ∈ P(BY

R) and
every y ∈ BY

R

|vΨ1(y) − vΨ2(y)| ≤ Lv,RW1(Ψ1, Ψ2) ;
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(v3) there exists Mv > 0 such that for every y ∈ Y and every Ψ ∈ P1(Y )

|vΨ (y)| ≤ Mv

(

1 + ‖y‖Y + m1(Ψ )
)

.

As for T , for every Ψ ∈ P1(Y ) we assume that the operator TΨ : Y → F(U ) is
such that

(T0) for every (y, Ψ ) ∈ Y ×P1(Y ), the constants belong to the kernel of TΨ (y), i.e.,

〈TΨ (y), 1〉F(U ),Lip(U ) = 0;
(T1) there exists MT > 0 such that for every y ∈ Y and every Ψ ∈ P1(Y )

‖TΨ (y)‖BL ≤ MT
(

1 + ‖y‖Y + m1(Ψ )
);

(T2) for every R > 0, there exists LT ,R > 0 such that for every (y1, Ψ1), (y2, Ψ2) ∈
BY
R × P(BY

R)

‖TΨ1(y1) − TΨ2(y2)‖Y ≤ LT ,R
(‖y1 − y2‖BL + W1(Ψ1, Ψ2)

);
(T3) for every R > 0 there exists δR > 0 such that for every (y, Ψ ) ∈ BY

R × P1(Y )

we have

TΨ (y) + δRλ ≥ 0.

Finally, for every y ∈ Y and every Ψ ∈ P1(Y ) we set

bΨ (y) :=
(

vΨ (y)
TΨ (y)

)

, (6)

which is the velocity field driving the evolution (see (7)).

3. The multi-step Lagrangian scheme

Let ̂Ψ ∈ Pc(Y ) be a probability measure on Y with compact support in Y . Given
T > 0, for every k ∈ N \ {0} we set τk : −T/k and, for i ∈ {0, . . . , k}, tki := iτk .
We now show how to construct a curveΨ k : [0, T ] → P1(Y ), defined piecewise on

each time interval [tki , ti+1k], which approximates a solution Ψ ∈ C([0, 1];P1(Y ))

of the initial value problem for the nonlinear continuity equation

∂tΨt + div(bΨtΨt ) = 0, Ψ0 = ̂Ψ . (7)

Let Ψ k
0 := ̂Ψ . In each interval [tki , tki+1), assume the measure Ψ k

i ∈ P1(Y ) to be
known. With this knowledge, we update the state of the system with the following
procedure, consisting of two steps.
Step 1.Weupdate the labelλ

(x̂,λ̂)
(t) ∈ P(U ) of a player that at time tki sits in x̂ ∈ R

d

with label λ̂ ∈ P(U ) by setting

λ
(x̂,λ̂)

(tki+1) := λ
(x̂,λ̂)

+ τkTΨ k
i

(

x̂, λ
(x̂,λ̂)

(tki )
)

. (8)
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At this stage, we assume that λ
(x̂,λ̂)

(tki+1) ∈ P(U ) and we continue with the construc-

tion of the piecewise affine interpolant between λ
(x̂,λ̂)

(tki ) and λ
(x̂,λ̂)

(tki+1), defined as

the function λk
(x̂,λ̂),i+1

: [tki , tki+1] → P(U ) such that

λk
(x̂,λ̂),i+1

(t) := t − tki
τk

λ
(x̂,λ̂)

(tki+1) +
(

1 − t − tki
τk

)

λ
(x̂,λ̂)

(tki ) . (9)

In Lemma 1, we show that the assumption λ
(x̂,λ̂)

(tki+1) ∈ P(U ) is actually satisfied
for k large enough (and therefore τk small enough), independently of i = 0, . . . , k−1.
Giving Lemma 1 for granted for the time being, we define the map Λk

i+1 : [tki , tki+1]×
R
d × P(U ) → P(U ) as

Λk
i+1(t, x̂, λ̂) := λk

(x̂,λ̂),i+1
(t) for every (t, x̂, λ̂) ∈ [tki , tki+1] × R

d × P(U ),

(10)

and transport it to the state of the system by defining

˜Ψ k
i+1 := (id;Λk

i+1(t
k
i+1, ·, ·))#Ψ k

i ∈ P1(Y ) . (11)

Step 2. In the second step, we update the positions of the players. Precisely, a player
that at time tki sits in the position x̂ with label λ̂ will now move following the velocity
field given by v

˜Ψ k
i+1

(

x
(x̂,λ̂)

(tki ), λk
(x̂,λ̂),i+1

(tki+1)
)

, which is determined by the updated

label λk
(x̂,λ̂),i+1

(tki+1) just obtained in (8). Hence, we set

x
(x̂,λ̂)

(tki+1) := x
(x̂,λ̂)

(tki ) + τkv˜Ψ k
i+1

(

x
(x̂,λ̂)

(tki ), λk
(x̂,λ̂),i+1

(tki+1)
)

. (12)

Also in this case,wecandefine the affine interpolant between x
(x̂ ,λ̂)

(tki ) and x
(x̂,λ̂)

(tki+1),

as a function xk
(x̂,λ̂),i+1

: [tki , tki+1] → R
d , by

xk
(x̂,λ̂),i+1

(t) := t − tki
τk

x
(x̂,λ̂)

(tki+1) +
(

1 − t − tki
τk

)

x
(x̂,λ̂)

(tki ). (13)

We notice that (13), in contrast to (9), is always well defined, since R
d is a convex

space and the velocity field is an element of Rd .
Eventually, we define the map Xk

i+1 : [tki , tki+1] × R
d × P(U ) → R

d as

Xk
i+1(t, x̂, λ̂) := xk

(x̂,λ̂),i+1
(t) for every (t, x̂, λ̂) ∈ [tki , tki+1] × R

d × P(U ) (14)

and we set, for t ∈ [tki , tki+1],

Ψ k(t) :=
(

Xk
i+1(t, ·, ·);Λk

i+1(t, ·, ·)
)

#
Ψ k
i , Ψ k

i+1 := Ψ k(tki+1) . (15)

For later use, we also define

˜Ψ k(t) := ˜Ψ k
i+1 for every t ∈ (tki , tki+1] , (16)

Ψ k(t) := Ψ k
i for every t ∈ [tki , tki+1) . (17)
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By an application of Gronwall inequality, in the following lemma we give an esti-

mate of
∣

∣

∣xk
(x̂,λ̂),i+1

(t)
∣

∣

∣ and
∥

∥

∥λk
(x̂,λ̂),i+1

(t)
∥

∥

∥

BL
in terms of |x̂ | and ‖λ̂‖BL. As a conse-

quence, we deduce that the above construction is well defined for τk sufficiently small
and can be iterated over i = 0, . . . , k − 1, since the initial condition ̂Ψ has a compact
support in Y . This indeed implies that each Ψ k

i belongs to Pc(Y ) ⊆ P1(Y ).

Lemma 1. Let ̂Ψ ∈ Pc(Y ). Then, for k large enough the curves Ψ k(·), Ψ k(·),
and ˜Ψ k(·) are well defined from [0, T ] with values in P1(Y ). Furthermore, there
exists R > 0 independent of k and t such that Ψ k(t), Ψ k(t), ˜Ψ k(t) ∈ P(BY

R).

Proof. Along the proof of the lemma, we denote with λk(t, x0, λ0) and xk(t, x0, λ0),
for (x0, λ0) ∈ spt̂Ψ =: S, the curves obtained by iteratively solving the difference
equations (8) and (12) in each interval [tki , tki+1] starting from (x0, λ0) at time t0 = 0

and using, at each node tki , i = 1, . . . , k−1, λ̂ = λk(tki , x0, λ0) and x̂ = xk(tki , x0, λ0)
as new initial conditions.
As we have already noticed above, the curve xk(t, x0, λ0) is well defined as long

as λk(t, x0, λ0) and the measures ˜Ψ k
i are. Therefore, in order to prove the lemma it is

enough to show that, for τk small enough, for every (x0, λ0) ∈ spt ̂Ψ the piecewise
linear interpolant λk(t, x0, λ0) always belongs to P(U ). This can be done recursively
by arguing on each interval [tki , tki+1], i = 0, . . . , k − 1.

To simplify our estimates, we define the piecewise constant interpolation functions

xk(t, x0, λ0) := xk(tkj , x0, λ0) , λk(t, x0, λ0) := λk(tkj , x0, λ0) for t ∈ [tkj , tkj+1) ,

λ
k
(t, x0, λ0) := λk(tkj+1, x0, λ0) for t ∈ (tkj , t

k
j+1] .

(18)

For i = 0,wehave that the initial conditionλ0 ∈ P(U ); hence, there is nothing to show.
Assuming that λk(tkj , x0, λ0) ∈ P(U ) for every j = 0, . . . , i and every (x0, λ0) ∈
spt ̂Ψ , we show that λk(tki+1, x0, λ0) ∈ P(U ) for k large enough, independently of i
and of the initial condition (x0, λ0). Since, recalling (8) and (9), we define

λk(t, x0, λ0) := λk(t, x0, λ0) + (t − tki )TΨ k (t)(x
k(t, x0, λ0), λ

k(t, x0, λ0))

for t ∈ [tki , tki+1]; by assumptions (T0) and (T3), we are led to showing that the
piecewise constant interpolation functions xk(t, x0, λ0) and λk(t, x0, λ0) are bounded
inRd andF(U ), respectively, uniformlywith respect to (x0, λ0) ∈ S and t ∈ [0, tki+1],
and that the bound does not depend on i . Indeed, if this is the case, let R′ > 0 be such
that (xk(t, x0, λ0), λk(t, x0, λ0)) ∈ BY

R′ for every t ∈ [0, tki+1] and every (x0, λ0) ∈ S.
In particular, by construction (17) of Ψ k(t) it holds Ψ k(t) ∈ P(BY

R′). By (T3), there
exists δR′ > 0, independent of k, i , and (x0, λ0) ∈ S, such that for t ∈ [tki , tki+1]

λR′ := 1

δR′
TΨ k (t)

(

xk(t, x0, λ0), λ
k(t, x0, λ0)

)+ λk(t, x0, λ0) ≥ 0 .
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In particular, assumption (T1) implies that λR′ ∈ F(U ) and satisfies

∣

∣ 〈λR′, η〉F(U ),Lip(U )

∣

∣ ≤ ‖η‖∞‖λR′ ‖BL ,

so that λR′ can be extended in a unique way to a linear and continuous operator
on C(U ). The Riesz representation theorem yields that λR′ ∈ M+(U ). Moreover,
by (T0) we get

〈λR′, 1〉F(U ),Lip(U ) = 〈λk(t, x0, λ0), 1
〉

F(U ),Lip(U )
= 1,

which implies λR′ ∈ P(U ). By the convexity of P(U ) we deduce that whenever
τk ≤ 1/δR′

λk(t, x0, λ0) = λk(t, x0, λ0) + (t − tki )TΨ (tki )(x
k(t, x0, λ0), λ

k(t, x0, λ0)) ∈ P(U )

for every t ∈ [tki , tki+1]. Being the upper bound R′ independent of i and of (x0, λ0) ∈ S,
also δR′ is. Hence, the trajectories xk(·, x0, λ0) and λk(·, x0, λ0) are well defined
from [0, T ] with values in Rd and P(U ), respectively.
In order to conclude that the interpolation curves xk(t, x0, λ0) and λk(t, x0, λ0) are

well defined, we have to estimate |xk(t, x0, λ0)| and ‖λk(t, x0, λ0)‖BL for (x0, λ0) ∈
S. Since we are assuming that λk(tkj , x0, λ0) ∈ P(U ) for j ∈ 0, . . . , i , we have that

‖λk(tkj , x0, λ0)‖BL ≤ 1, and the same holds for ‖λk(t, x0, λ0)‖BL.As for xk(t, x0, λ0),
using (12) and (v3) we get

|xk(t, x0, λ0)| ≤ |x0| +
∫ tki

0

∣

∣v
˜Ψ k (τ )(x

k(τ, x0, λ0), λ
k
(τ, x0, λ0)

∣

∣ dτ (19)

≤ |x0| +
∫ t

0
Mv

(

3 + 2 sup
(x̂,λ̂)∈S

|xk(τ, x̂, λ̂)|
)

dτ .

Let us now fix r > 0 such that S ⊆ BY
r and let

fk(t) := sup
(x̂,λ̂)∈S

|xk(t, x̂, λ̂)| .

By taking the supremum over S in (19), we deduce that

fk(t) ≤ r +
∫ t

0
3Mv(1 + fk(τ )) dτ . (20)

Applying the Gronwall inequality to (20), we infer that

fk(t) ≤ (r + 3MvT )e3MvT . (21)

Setting R′ := 1 + (r + 3MvT )e3MvT , we have proved that the piecewise constant
interpolation function t �→ (xk(t, x0, λ0), λk(t, x0, λ0)) belongs to BY

R′ for every t ∈
[tki , tki+1) and every (x0, λ0) ∈ S. In particular, we notice that the above computations
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are independent of the choice of i , as long as we know that λk(tkj , x0, λ0) ∈ P(U ) for
every j = 0, . . . , i and every (x0, λ0) ∈ S. With this control at hand, we conclude, as
explained above, that (8) and (12) are well posed.

Finally, we estimate xk(t, x0, λ0). For (x0, λ0) ∈ spt̂Ψ and t ∈ [0, T ], by (v3) we
have

|xk(t, x0, λ0)| ≤ |x0| +
∫ t

0

∣

∣v
˜Ψ k (τ )

(

xk(τ, x0, λ0), λ
k
(τ, x0, λ0)

)∣

∣ dτ

≤ r + 2Mv(1 + R′)T .

(22)

Setting R := max{R′, r + 2Mv(1+ R′)T + 1}, we obtain that Ψ k(t), ˜Ψ k(t), Ψ k(t) ∈
P(BY

R) for every t ∈ [0, T ] and every k ∈ N large enough. �

In the next proposition, we show that the curveΨ k(·) solves the continuity equation
(7) up to an error of order τk .

Proposition 1. Let ̂Ψ ∈ Pc(Y ), let Ψ k : [0, T ] → P1(Y ) be the curve defined in (15)
starting from ̂Ψ , and let ˜Ψ k be as in (16). Then, the following holds: There exists a
positive constant C such that for every ϕ ∈ C1

b(R
d × F(U )), every k ∈ N, every

i ∈ {0, . . . , k − 1}, and every t ∈ (tki , tki+1),

d

dt

∫

Y
ϕ(x, λ) dΨ k(t)(x, λ) =

∫

Y
∇ϕ(x, λ) · bΨ k (t)(x, λ) dΨ k(t)(x, λ) + ϑk(ϕ),

(23)

where |ϑk(ϕ)| ≤ C‖ϕ‖C1
b
τk .

Proof. Let us fix ϕ ∈ C1
b(R

d × F(U )) and t ∈ (tki , tki+1). By definition of Ψ k(t), we
have that

d

dt

∫

Y
ϕ(x, λ) dΨ k(t)(x, λ) = d

dt

∫

Y
ϕ
(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
)

dΨ k
i (x, λ)

=
∫

Y
∇xϕ
(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
) · v
˜Ψ k (t)

(

x,Λk
i+1(t

k
i+1, x, λ)

)

dΨ k
i (x, λ)

+
∫

Y
∇λϕ
(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
) · TΨ k (t)(x, λ) dΨ k

i (x, λ), (24)

where ˜Ψ k(t) andΨ k(t) are defined in (16) and (17), respectively. In order to obtain (23)
from (24), we have to estimate the following quantities:

I1(x, λ) :=
∣

∣

∣v
˜Ψ k (t)

(

x,Λk
i+1(t

k
i+1, x, λ)

)− vΨ k (t)

(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
)

∣

∣

∣ ,

I2(x, λ) :=
∥

∥

∥TΨ k (t)(x, λ) − TΨ k (t)(X
k
i+1(t, x, λ),Λk

i+1(t, x, λ))

∥

∥

∥

BL

for (x, λ) ∈ sptΨ k
i ⊆ BY

R , where R has been determined in Lemma 1.
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Let us start with I1. By triangle inequality, we have

I1(x, λ) ≤
∣

∣

∣v
˜Ψ k (t)

(

x,Λk
i+1(t

k
i+1, x, λ)

)− v
˜Ψ k (t)

(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
)

∣

∣

∣

+
∣

∣

∣v
˜Ψ k (t)

(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
)− vΨ k (t)

(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
)

∣

∣

∣

=: I1,1(x, λ) + I1,2(x, λ) .

(25)

Since ˜Ψ k(t) ∈ P(BY
R), hypothesis (v1) implies that

I1,1(x, λ) ≤ Lv,R
(|Xk

i+1(t, x, λ) − x | + ‖Λk
i+1(t

k
i+1, x, λ) − Λk

i+1(t, x, λ)‖BL
)

≤ Lv,R

(∫ t

tki

∣

∣v
˜Ψ k (τ )

(

x,Λk
i+1(t

k
i+1, x, λ)

)∣

∣ dτ +
∫ tki+1

t

∥

∥TΨ k
i
(x, λ)
∥

∥

BL dτ

)

,

where, in the second inequality, we have used the systems (9) and (13). By (v3)

and (T3), we can continue with

I1,1(x, λ) ≤ Lv,R

(

Mv

∫ t

tki

(

1 + |x | + ‖Λk
i+1(t

k
i+1, x, λ)‖BL + m1(˜Ψ

k(τ ))
)

dτ

+ MT

∫ tki+1

t

(

1 + |x | + ‖λ‖BL + m1(Ψ
k
i )
)

dτ

)

≤ Lv,R(Mv + MT )(1 + 2R)τk .

(26)

As for I1,2, thanks to assumption (v2) and to Lemma 1 we get

I1,2(x, λ) ≤ Lv,RW1(˜Ψ
k(t), Ψ k(t))

= Lv,R sup
η∈Lip1(Y )

{∫

Y
η(x ′, λ′) d(˜Ψ k(t) − Ψ k(t))(x ′, λ′)

}

= Lv,R sup
η∈Lip1(Y )

{∫

Y

[

η(x,Λk
i+1(t

k
i+1, x

′, λ′))

− η(Xk
i+1(t, x

′, λ′),Λk
i+1(t, x

′, λ′))
]

dΨ k
i (x ′, λ′)

}

≤ Lv,R

∫

Y

[|x − Xk
i+1(t, x

′, λ′)|
+ ‖Λk

i+1(t
k
i+1, x

′, λ′)) − Λk
i+1(t, x

′, λ′)‖BL
]

dΨ k
i (x ′, λ′)

≤ Lv,R

∫

Y

(∫ t

tki

∣

∣v
˜Ψ k (τ )(x,Λ

k
i+1(t

k
i+1, x

′, λ′))
∣

∣ dτ

+
∫ tki+1

t

∥

∥TΨ k
i
(x ′, λ′)

∥

∥

BL dτ

)

dΨ k
i (x ′, λ′)

≤ Lv,R τk

∫

Y

(

∣

∣v
˜Ψ k (τ )(x,Λ

k
i+1(t

k
i+1, x

′, λ′))
∣

∣+ ∥∥TΨ k
i
(x ′, λ′)

∥

∥

BL

)

dΨ k
i (x ′, λ′) .
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Making use of (v3) and (T3) and recalling Lemma 1, we can continue with

I1,2(x, λ) ≤ Lv,R(Mv + MT ) τk

∫

Y

(

1 + |x ′| + ‖Λk
i+1(t

k
i+1, x

′, λ′)‖BL + ‖λ′‖BL
+m1(˜Ψ

k(t)) + m1(Ψ
k
i )
)

dΨ k
i (x ′, λ′)

≤ 3Lv,R(Mv + MT )(1 + R)τk . (27)

Combining (25)–(27), we get

I1(x, λ) ≤ C1τk (28)

for some positive constant C1 independent of k, t , ϕ, and (x, λ) ∈ sptΨ k
i .

Let us now estimate I2. By Lemma 1 and by assumption (T2), we get

I2(x, λ) ≤ LT ,R
(|x − Xk

i+1(t, x, λ)| + ‖λ − Λk
i+1(t, x, λ)‖BL

+ W1(Ψ
k(t), Ψ k(t))

)

.
(29)

Arguing as in (25)–(28), we deduce from (29) and from the hypotheses (v1), (v3),
and (T2) that

I2(x, λ) ≤ C2τk (30)

for some positive constant C2 independent of k, t , ϕ, and (x, λ) ∈ sptΨ k
i .

We are now in a position to conclude the proof of the proposition. We rewrite (24)
as

d

dt

∫

Y
ϕ(x, λ) dΨ k(t)(x, λ)

=
∫

Y
∇xϕ
(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
)·

· vΨ k (t)

(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
)

dΨ k
i (x, λ)

+
∫

Y
∇λϕ
(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
)

· TΨ k (t)(X
k
i+1(t, x, λ),Λk(t, x, λ)) dΨ k

i (x, λ)

+
∫

Y
∇xϕ
(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
) · (v
˜Ψ k (t)

(

x,Λk
i+1(t

k
i+1, x, λ)

)

− vΨ k (t)

(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
)

dΨ k
i (x, λ)

+
∫

Y
∇λϕ
(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
) · (TΨ k (t)(x, λ)

− TΨ k (t)(X
k
i+1(t, x, λ),Λk(t, x, λ))

)

dΨ k
i (x, λ)

=
∫

Y
∇ϕ(x, λ) · bΨ k (t)(x, λ) dΨ k(t)(x, λ)

+
∫

Y
∇xϕ
(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
) · (v
˜Ψ k (t)

(

x,Λk
i+1(t

k
i+1, x, λ)

)
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− vΨ k (t)

(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
)

dΨ k
i (x, λ)

+
∫

Y
∇λϕ
(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
) · (TΨ k (t)(x, λ)

− TΨ k (t)(X
k
i+1(t, x, λ),Λk(t, x, λ))

)

dΨ k
i (x, λ)

=:
∫

Y
∇ϕ(x, λ) · bΨ k (t)(x, λ) dΨ k(t)(x, λ) + ϑk(ϕ) .

We conclude by noticing that, thanks to (28) and (30), the term ϑk(ϕ) above can be
estimated by

|ϑk(ϕ)| ≤ ‖ϕ‖C1
b

∫

Y
(I1(x, λ) + I2(x, λ)) dΨ k

i (x, λ) ≤ C‖ϕ‖C1
b
τk ,

for a positive constant C independent of k, t , and ϕ. �
Theorem 1. Let ̂Ψ ∈ Pc(Y ) and let Ψ k(·) be defined as in (15). Then,

lim
k→∞ sup

t∈[0,T ]
W1(Ψ

k(t), Ψ (t)) = 0,

where the curve Ψ ∈ C([0, T ]; (P1(Y ),W1)) is the unique solution of (7) with initial
condition Ψ (0) = ̂Ψ .

Proof. The existence and uniqueness of the solution to equation (7) follow from [31,
Theorem 3.5], so that Ψ ∈ C([0, T ]; (P1(Y ),W1)) is well defined.
Letφ ∈ C1

b([0, T ]×Y ). In viewof Proposition 1, for every k ∈ N, i ∈ {0, . . . , k−1},
and every t ∈ (tki , tki+1), we have

d

dt

∫

Y
φ(t, x, λ) dΨ k(t)(x, λ) =

∫

Y
∂tφ(t, x, λ) dΨ k(t)(x, λ)

+
∫

Y
∇φ(t, x, λ) · bΨ k (t)(x, λ) dΨ k(t)(x, λ)

+ θk(φ(t, ·, ·)),
where |θk(φ(t, ·, ·))| ≤ Cτk‖φ‖C1

b ([0,T ]×Y ) uniformly in [0, T ]. By integrating the
previous equality over time, we deduce that

∫

Y
φ(t, x, λ) dΨ k(t)(x, λ) −

∫

Y
φ(0, x, λ) d̂Ψ (x, λ)

=
∫ t

0

∫

Y
∂tφ(τ, x, λ) dΨ k(τ )(x, λ) dτ

+
∫ t

0

∫

Y
∇φ(τ, x, λ) · bΨ k (τ )(x, λ) dΨ k(τ )(x, λ) dτ

+
∫ t

0
θk(φ(τ, ·, ·)) dτ .

(31)

In order to pass to the limit in (31), we have to determine a candidate limit forΨ k(t).
In Lemma 1, we have already shown that the supports of Ψ k(t) are contained in a
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compact subset of Y .We now show the equicontinuity of the sequenceΨ k with respect
toW1. Given s, t ∈ [0, T ], we show thatW1(Ψ

k(s), Ψ k(t)) ≤ L|s−t | for some L > 0
independent of k. By triangle inequality, it is enough to show it for s, t ∈ [tki , tki+1].
Arguing as in the proof of Proposition 1, we obtain

W1(Ψ
k(s), Ψ k(t)) ≤ 3(Mv + MT )(1 + R)|s − t | , (32)

where R has been defined in Lemma 1. Hence, Ascoli–Arzelà theorem yields that there
existsΨ ∈ C([0, T ]; (P1(Y ),W1)) such that, up to a subsequence,W1(Ψ

k(t), Ψ (t)) →
0 uniformly with respect to t ∈ [0, T ]. In particular, Ψ (0) = ̂Ψ and Ψ (t) ∈ P(BY

R),
since sptΨ k(t) ⊆ BY

R for every k and every t .

It remains to show that Ψ is a solution to (7), from which we would deduce that
Ψ = Ψ and that the whole sequence Ψ k converges to Ψ . The first line of (31) passes
to limit as k → ∞, since the test function φ belongs to C1

b([0, T ] × Y ) and the
convergence of Ψ k inW1 is uniform in time and implies the narrow convergence. The
last term on the right-hand side of (31) tends to 0, since it holds

∫ t

0
|θk(φ(τ, ·, ·))| dτ ≤ CT τk‖φ‖C1

b ([0,T ]×Y ) .

We conclude by estimating

∣

∣

∣

∣

∫ t

0

∫

Y
∇φ(τ, x, λ) · bΨ k (τ )(x, λ)dΨ k(τ )(x, λ)dτ

−
∫ t

0

∫

Y
∇φ(τ, x, λ) · bΨ (τ)(x, λ)dΨ (τ)(x, λ)dτ

∣

∣

∣

∣

≤ ‖φ‖C1
b

∫ t

0

∫

Y
‖bΨ k (τ )(x, λ) − bΨ (τ)(x, λ)‖Y dΨ k(τ )(x, λ) dτ

+
∫ t

0

∣

∣

∣

∣

∫

Y
∇φ(τ, x, λ) · bΨ (τ)(x, λ) d(Ψ k(τ ) − Ψ (τ))(x, λ)

∣

∣

∣

∣

dτ .

(33)

By [31, Proposition 3.2], Lemma 1, and Assumptions (v2) and (T2), the first term on
the right-hand side of (33) can be estimated by

‖φ‖C1
b
(LR,v + LR,T )

∫ t

0
W1(Ψ

k(τ ), Ψ (τ)) dτ → 0

as k → ∞ uniformly with respect to t ∈ [0, T ].
As for the second term, we first notice that, by [31, Proposition 3.2] and Lemma 1,

the function (x, λ) �→ bΨ (τ)(x, λ) is continuous from Y to Y and is bounded on BY
R .

Since Ψ k(τ ) converges narrowly to Ψ (τ), for τ ∈ [0, t] we have

lim
k→∞

∣

∣

∣

∣

∫

Y
∇φ(τ, x, λ) · bΨ (τ)(x, λ) d(Ψ k(τ ) − Ψ (τ))(x, λ)

∣

∣

∣

∣

= 0 .



A multi-step Lagrangian scheme for spatially

Furthermore, by (v3) and (T1) we have the uniform bound
∣

∣

∣

∣

∫

Y
∇φ(τ, x, λ) · bΨ (τ)(x, λ) d(Ψ k(τ ) − Ψ (τ))(x, λ)

∣

∣

∣

∣

≤ 4‖φ‖C1
b
(Mv + MT )(1 + R)‖Ψ k(τ ) − Ψ (τ)‖TV

≤ 3‖φ‖C1
b
(Mv + MT )(1 + R)

for τ ∈ [0, t]. Thus, by dominated convergence also the second term on the right-hand
side of (33) tends to zero as k → ∞.
Eventually, we infer that passing to the limit k → ∞ in (31) we get the equality

∫

Y
φ(t, x, λ) dΨ (t)(x, λ) −

∫

Y
φ(0, x, λ) d̂Ψ (x, λ)

=
∫ t

0

∫

Y
∂tφ(τ, x, λ) dΨ (τ)(x, λ)

+
∫ t

0

∫

Y
∇φ(τ, x, λ) · bΨ (τ)(x, λ) dΨ (τ)(x, λ)

for every φ ∈ C1
b([0, T ] × Y ) and every t ∈ [0, T ]. This concludes the proof of the

theorem. �

4. An implicit–explicit scheme for the inhomogeneous replicator dynamics

We discuss in this section a different discrete-time approximation of the continuity
equation (7) for the operatorTΨ : Y → F(U ) corresponding to the transition operators
considered in [5] (see also [31, Section 5]) for the replicator equation (first introduced
in [37]; see also [21,41]), namely

TΨ (x, λ) :=
(∫

Y

∫

U
J (x, u, x ′, u′) dλ′(u′) dΨ (x ′, λ′)

−
∫

U

∫

Y

∫

U
J (x, u, x ′, u′) dλ′(u′) dΨ (x ′, λ′) dλ(u)

)

λ

(34)

defined for every Ψ ∈ P1(Y ) and every y = (x, λ) ∈ Y . In (34) we consider a
function J : (Rd ×U )2 → R such that

(J1) J is locally Lipschitz continuous with respect to all of its variables;
(J2) there exists MJ > 0 such that for every (x, u, x ′, u′) ∈ (Rd ×U )2

|J (x, u, x ′, u′)| ≤ MJ (1 + |x | + |x ′|) .

For simplicity of notation, from now on we will write

(J ∗ Ψ )(x, u) :=
∫

Y

∫

U
J (x, u, x ′, u′) dλ′(u′) dΨ (x ′, λ′) ,

〈J ∗ Ψ, λ〉 (x) :=
∫

U
(J ∗ Ψ )(x, u) dλ(u) ,
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so that (34) can be written as

TΨ (x, λ) = ((J ∗ Ψ )(x, ·) − 〈J ∗ Ψ, λ〉 (x)
)

λ . (35)

The following proposition holds.

Proposition 2. [31, Proposition 5.8] Under the assumptions (J1)–(J2), the opera-
tor TΨ defined in (34) satisfies the conditions (T0)–(T3).

We now introduce the spherical Hellinger distance between probability measures

HS2(λ1, λ2) := inf

{

1

4

∫ 1

0

∫

U
|wt (u)|2 dρt (u) dt : ρ ∈ C([0, 1];P(U )),

w ∈ L2([0, 1] ×U ; dρ), ρ̇t =
(

wt −
∫

U
wt dρt

)

ρt ,

ρ0 = λ1, ρ1 = λ2

}

,

defined for every λ1, λ2 ∈ P(U ), where L2([0, 1] × U ; dρ) denotes the space of
functions which are square-integrable with respect to the measure ρ. For later use, we
also define theHellinger distance between nonnegative measures: For every μ1, μ2 ∈
M+(U ), we set

H2(μ1, μ2) := inf

{

1

4

∫ 1

0

∫

U
|wt (u)|2 dρt (u) dt : ρ ∈ C([0, 1];M+(U )),

w ∈ L2([0, 1] ×U ; dρ), ρ̇t = wt ρt , ρ0 = μ1, ρ1 = μ2

}

=
∫

U

[(

dμ1

dμ∗

) 1
2 −
(

dμ2

dμ∗

) 1
2
]2

dμ∗,

where μ∗ ∈ M+(U ) is such that μ1, μ2 � μ∗. We notice that HS2 can be expressed
in terms of H2 through

HS2(λ1, λ2) = arccos

(

1 − H2(λ1, λ2)
2

2

)

for every λ1, λ2 ∈ P(U ) , (36)

and that the following chain of inequalities holds:

‖λ1 − λ2‖BL ≤ ‖λ1 − λ2‖TV
≤ 2H(λ1, λ2) ≤ 2HS(λ1, λ2)

for every λ1, λ2 ∈ P(U ) . (37)

In the spatially homogeneous case, the replicator equation is a generalized mini-
mizing movement [6] for the functional

Jhom(λ) := −1

8

∫

U

∫

U
J (u, u′) dλ(u) dλ(u′)
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with respect to the sphericalHellinger distance. In the spatially inhomogeneous setting,
the payoff functional has a bilinear dependence on Ψ and λ: For every Ψ ∈ P1(Y )

and every (x, λ) ∈ Y , we set

JΨ (x, λ) := −1

4
〈(J ∗ Ψ ), λ〉 , (38)

(the factor 1
4 instead of 1

8 is due to the dependence on λ which is now linear). We
modify the scheme in Sect. 3 by replacing the finite difference (8) with a minimizing
movement. Namely, in the interval [tki , tki+1) let Ψ

k
i ∈ P(U ) be given and define, for

every (x̂, λ̂) ∈ Y ,

λ
(x̂,λ̂),i+1 := argmin

{

JΨ k
i
(x̂, λ) + 1

2τk
HS2(λ, λ̂) : λ ∈ P(U )

}

. (39)

Notice that the measure λ
(x̂,λ̂),i+1 ∈ P(U ) is well defined, as P(U ) is compact and

the functional in (39) is strictly convex. Therefore, we can define λk
(x̂,λ̂),i+1

, Λk
i+1,

and Ψ̃ k
i+1 exactly as in (9), (10), and (11), respectively. The second step (12) in the

space variable remains instead the same, so that xk
(x̂,λ̂),i+1

, Xk
i+1, Ψ

k
i+1 are as in (13),

(14), and (15), respectively. We further refer to (15), (16), and (17) for the definition
of the interpolation curves Ψ k , ˜Ψ k , and Ψ k .

The next lemma gives an estimate on the size of the support of Ψ k
i+1 and ˜Ψ k

i+1,
showing that they belong toPc(Y ) ⊆ P1(Y ) for every k ∈ N and every i ∈ {0, . . . , k−
1}.
Lemma 2. Let ̂Ψ ∈ Pc(Y ). Then, there exists R > 0 such that, for every k ∈ N and
every t ∈ [0, T ], Ψ k(t), Ψ k(t), ˜Ψ k(t) ∈ P(BY

R).

Proof. Let us define the piecewise constant interpolation functions λk , λ
k
, and xk as

in (18), and let xk and λk be the corresponding piecewise affine interpolations. Then,

by (39) we have that λk(t, x0, λ0), λ
k
(t, x0, λ0) ∈ P(U ) for every t ∈ [0, T ] and

every (x0, λ0) ∈ spt̂Ψ , so that

‖λk(t, x0, λ0)‖BL, ‖λk(t, x0, λ0)‖BL ≤ 1 .

Following step by step the proof of (19) and (22),we also deduce that there exists R > 0
such that

|xk(t, x0, λ0)| ≤ R
for every t ∈ [0, T ], every (x0, λ0) ∈ spt ̂Ψ ,

and every k ∈ N .
(40)

We notice that, being the step (39) defined through a minimization in P(U ) and not
through a finite difference, the estimate (40) holds for every k, and not only for k large.
Moreover, (40) yields that Ψ k(t), Ψ k(t), ˜Ψ k(t) ∈ P(BY

R). �
In order to write the equivalent of Proposition 1, we have to determine an approxi-

mate Euler–Lagrange equation for the minimization problem (39). This is the content
of the following proposition, written here for generic Ψ , x , and λ.
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Proposition 3. Let R > 0. Assume that Ψ ∈ P(BY
R), (x, λ) ∈ BY

R, and let λ̃ ∈ P(U )

be the solution to

min

{

JΨ (x, ρ) + 1

2τk
HS2(ρ, λ) : ρ ∈ P(U )

}

. (41)

Then, there exists a constant C = C(R) > 0 such that

HS(λ̃, λ) ≤ Cτk, (42)
∥

∥

∥

∥

λ̃ − λ

τk
− TΨ (x, λ̃)

∥

∥

∥

∥

BL
≤ Cτk(1 + τk) . (43)

Proof. Inequality (42) follows from the minimality of λ̃. Indeed, we have that

1

2τk
HS2(λ̃, λ) ≤ ∣∣JΨ (x, λ) − JΨ (x, λ̃)

∣

∣ . (44)

By definition (38) of JΨ , by (J1), by the assumptions Ψ ∈ P(BY
R), (x, λ) ∈ BY

R , and
by (37), we continue in (44) with

1

2τk
HS2(λ̃, λ) ≤ MJ

2
(1 + R)‖λ̃ − λ‖TV ≤ MJ (1 + R)HS(λ̃, λ) . (45)

From (45), we deduce (42).
In order to prove (43), we write explicitly the Euler–Lagrange equation of (41).

Here, we follow the lines of [20, Section 4]. For every ϕ ∈ Lip(U ) with ‖ϕ‖Lip ≤ 1,
we consider the auxiliary system

{

∂ελε = (ϕ − 〈ϕ, λε〉)λε ,

λ0 = λ̃ .
(46)

In view of [12, Section I.3, Theorem 1.4, Corollary 1.1], the ODE system (46) admits
a unique solution λ

ϕ
ε ∈ P(U ) for ε > 0. Moreover, if λ̃ � μ, it is easy to check that

λ
ϕ
ε � μ for ε > 0. In the sequel, we fix μ∗ ∈ P(U ) such that λ, λ̃ � μ∗.
Given λ

ϕ
ε , the Euler–Lagrange equation of (41) reads

d

dε

∣

∣

∣

∣

ε=0
JΨ (x, λϕ

ε ) + 1

2τk

d

dε

∣

∣

∣

∣

ε=0
HS2(λϕ

ε , λ) = 0 . (47)

We compute the two derivatives appearing in (47) separately. In view of (46), we have
that

d

dε

∣

∣

∣

∣

ε=0
JΨ (x, λϕ

ε ) = −1

4

d

dε

∣

∣

∣

∣

ε=0
〈(J ∗ Ψ ), λϕ

ε 〉 = −1

4

〈

(J ∗ Ψ ),
(

ϕ − 〈ϕ, λ̃
〉)

λ̃
〉

= −1

4

〈(

(J ∗ Ψ ) − 〈(J ∗ Ψ ), λ̃
〉)

λ̃, ϕ
〉 = −1

4

〈

TΨ (x, λ̃), ϕ
〉

,

(48)
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where, in the last equality, we have used (35).
To compute the second term on the left-hand side of (47), we first notice that, since

λ̃, λ, λ
ϕ
ε � μ∗, we can write

HS2(λϕ
ε , λ) = arccos

(

1 − H2(λ
ϕ
ε , λ)2

2

)

,

H2(λϕ
ε , λ) =

∫

U

[

(

dλϕ
ε

dμ∗

) 1
2 −
(

dλ

dμ∗

) 1
2
]2

dμ∗.

Defining δk(λ̃, λ) ∈ [0, 1] such that 1 − δk(λ̃, λ) = 1
√

1−H2(λ̃,λ)2
4

, we have that

d

dε

∣

∣

∣

∣

ε=0
HS2(λϕ

ε , λ) = (1 − δk(λ̃, λ)
) d

dε

∣

∣

∣

∣

ε=0
H2(λϕ

ε , λ)

= 2
(

1 − δk(λ̃, λ)
)

∫

U

[(

dλ̃

dμ∗

) 1
2 −
(

dλ

dμ∗

) 1
2
]

d

dε

∣

∣

∣

∣

ε=0

(

dλϕ
ε

dμ∗

) 1
2

dμ∗

= (1 − δk(λ̃, λ)
)

∫

U

[(

dλ̃

dμ∗

) 1
2 −
(

dλ

dμ∗

) 1
2
](

dλ̃

dμ∗

)− 1
2 (

ϕ − 〈ϕ, λ̃〉) dλ̃

= (1 − δk(λ̃, λ)
)

〈

(

ϕ − 〈ϕ, λ̃〉)μ∗,
[(

dλ̃

dμ∗

) 1
2 −
(

dλ

dμ∗

) 1
2
](

dλ̃

dμ∗

) 1
2
〉

.

(49)

Using the algebraic equality 2(a − b)a = a2 − b2 + (a − b)2, we continue in (49)
with

d

dε

∣

∣

∣

∣

ε=0
HS2(λϕ

ε , λ) =
(

1 − δk(λ̃, λ)
)

2

〈

(

ϕ − 〈ϕ, λ̃〉)μ∗,
(

dλ̃

dμ∗ − dλ

dμ∗

)〉

+
(

1 − δk(λ̃, λ)
)

2

〈

(

ϕ − 〈ϕ, λ̃〉)μ∗,
[(

dλ̃

dμ∗

) 1
2 −
(

dλ

dμ∗

) 1
2
]2〉

=
(

1 − δk(λ̃, λ)
)

2

〈

λ̃ − λ,
(

ϕ − 〈ϕ, λ̃〉)
〉

+
(

1 − δk(λ̃, λ)
)

2

〈

(

ϕ − 〈ϕ, λ̃〉)μ∗,
[(

dλ̃

dμ∗

) 1
2 −
(

dλ

dμ∗

) 1
2
]2〉

=
(

1 − δk(λ̃, λ)
)

2
〈λ̃ − λ, ϕ〉

+
(

1 − δk(λ̃, λ)
)

2

〈

(

ϕ − 〈ϕ, λ̃〉)μ∗,
[(

dλ̃

dμ∗

) 1
2 −
(

dλ

dμ∗

) 1
2
]2〉

,

(50)

where, in the last equality, we have used the fact that λ̃, λ ∈ P(U ).
In order to conclude with (43), we estimate δk(λ̃, λ) and the last term on the right-

hand side of (50). In view of (36), (37), and (42), it is easy to check that

δk(λ̃, λ) ≤ cτ 2k (51)
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for some positive constant c = c(R) > 0. Since ‖ϕ‖Lip ≤ 1 and (45) holds, we have
that

∣

∣

∣

∣

(1 − δk(λ̃, λ))

2

〈

(

ϕ − 〈ϕ, λ̃〉)μ∗,
[(

dλ̃

dμ∗

) 1
2−
(

dλ

dμ∗

) 1
2
]2〉∣
∣

∣

∣

≤ H2(λ̃, λ) ≤ 4M2
J (1 + R)2τ 2k .

(52)

Combining (37), (42), and (47)–(52), we deduce that
∥

∥

∥

∥

λ̃ − λ

τk
− TΨ (x, λ̃)

∥

∥

∥

∥

BL
≤ δk(λ̃, λ)

∥

∥

∥

∥

λ̃ − λ

τk

∥

∥

∥

∥

BL
+ 8M2

J (1 + R)2τk ≤ Cτk(1 + τk) ,

for some positive constant C = C(R). This concludes the proof of the proposition.
�

We are now in a position to state the equivalent of Proposition 1.

Proposition 4. There exists C > 0 such that for every ϕ ∈ C1
b(R

d ×F(U )), every k ∈
N, every i ∈ {0, . . . , k − 1}, and every t ∈ (tki , tki+1),

d

dt

∫

Y
ϕ(x, λ) dΨ k(t)(x, λ) =

∫

Y
∇ϕ(x, λ) · bΨ k (t)(x, λ) dΨ k(t)(x, λ) + ϑk(ϕ),

(53)

where |ϑk(ϕ)| ≤ C‖ϕ‖C1
b
τk .

Proof. Along the proof, we denote by C a generic positive constant independent
of i , k, t , and ϕ, that may vary from line to line.

We follow step by step the proof of Proposition 1. For every test function ϕ ∈
C1
b(R

d × F(U )) and every t ∈ (tki , tki+1), by definition of Ψ k(t) we have that

d

dt

∫

Y
ϕ(x, λ) dΨ k(t)(x, λ) = d

dt

∫

Y
ϕ
(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
)

dΨ k
i (x, λ)

=
∫

Y
∇xϕ
(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
) · v
˜Ψ k (t)

(

x,Λk
i+1(t

k
i+1, x, λ)

)

dΨ k
i (x, λ)

+
∫

Y
∇λϕ
(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
) · Λ̇k

i+1(t, x, λ) dΨ k
i (x, λ)

=
∫

Y
∇xϕ
(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
) · v
˜Ψ k (t)

(

x,Λk
i+1(t

k
i+1, x, λ)

)

dΨ k
i (x, λ)

+
∫

Y
∇λϕ
(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
) ·
(

Λk
i+1(t

k
i+1, x, λ) − λ

)

τk
dΨ k

i (x, λ) .

(54)

In order to deduce (53) from (54), we need to estimate

I1(x, λ) :=
∣

∣

∣v
˜Ψ k (t)

(

x,Λk
i+1(t

k
i+1, x, λ)

)− vΨ k (t)

(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
)

∣

∣

∣ ,

I2(x, λ) :=
∥

∥

∥

∥

(

Λk
i+1(t

k
i+1, x, λ) − λ

)

τk
− TΨ k (t)(X

k
i+1(t, x, λ),Λk

i+1(t, x, λ))

∥

∥

∥

∥

BL
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for (x, λ) ∈ sptΨ k
i ⊆ BY

R , where R has been determined in Lemma 2.
Let us start with I1. By triangle inequality we have

I1(x, λ) ≤
∣

∣

∣v
˜Ψ k (t)

(

x,Λk
i+1(t

k
i+1, x, λ)

)− v
˜Ψ k (t)

(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
)

∣

∣

∣

+
∣

∣

∣v
˜Ψ k (t)

(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
)

−vΨ k (t)

(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
)

∣

∣

∣

=: I1,1(x, λ) + I1,2(x, λ). (55)

Since ˜Ψ k(t) ∈ P(BY
R), hypothesis (v1) implies that

I1,1(x, λ) ≤ Lv,R
(|Xk

i+1(t, x, λ) − x | + ‖Λk
i+1(t

k
i+1, x, λ) − Λk

i+1(t, x, λ)‖BL
)

≤ Lv,R

(∫ t

tki

∣

∣v
˜Ψ k (τ )

(

x,Λk
i+1(t

k
i+1, x, λ)

)∣

∣ dτ

+
∫ tki+1

t

∥

∥

∥

∥

Λk
i+1(t

k
i+1, x, λ) − λ

τk

∥

∥

∥

∥

BL
dτ

)

.

By (v3), Lemma 2, and Proposition 3, we can continue with

I1,1(x, λ) ≤ Lv,R

(

Mv

∫ t

tki

(

1 + |x | + ‖Λk
i+1(t

k
i+1, x, λ)‖BL + m1(˜Ψ

k(τ ))
)

dτ

+ 2

τk

∫ tki+1

t
HS
(

Λk
i+1(t

k
i+1, x, λ), λ

)

dτ

)

≤ Cτk . (56)

As for I1,2, thanks to assumption (v2) and to Lemma 2 we get

I1,2(x, λ) ≤ Lv,RW1(˜Ψ
k(t), Ψ k(t))

= Lv,R sup
η∈Lip1(Y )

{∫

Y
η(x ′, λ′) d(˜Ψ k(t) − Ψ k(t))(x ′, λ′)

}

= Lv,R sup
η∈Lip1(Y )

{∫

Y

[

η(x,Λk
i+1(t

k
i+1, x

′, λ′))

− η(Xk
i+1(t, x

′, λ′),Λk
i+1(t, x

′, λ′))
]

dΨ k
i (x ′, λ′)

}

≤ Lv,R

∫

Y

(

|x − Xk
i+1(t, x

′, λ′)|

+ ‖Λk
i+1(t

k
i+1, x

′, λ′)) − Λk
i+1(t, x

′, λ′)‖BL
)

dΨ k
i (x ′, λ′)

≤ Lv,R

∫

Y

(∫ t

tki

∣

∣v
˜Ψ k (τ )(x,Λ

k
i+1(t

k
i+1, x

′, λ′))
∣

∣ dτ

+
∫ tki+1

t

∥

∥

∥

∥

Λk
i+1(t

k
i+1, x

′, λ′) − λ′

τk

∥

∥

∥

∥

BL
dτ

)

dΨ k
i (x ′, λ′)
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≤ Lv,R τk

∫

Y

(

∣

∣v
˜Ψ k (τ )(x,Λ

k
i+1(t

k
i+1, x

′, λ′))
∣

∣

+
∥

∥

∥

∥

Λk
i+1(t

k
i+1, x

′, λ′) − λ

τk

∥

∥

∥

∥

BL

)

dΨ k
i (x ′, λ′) .

Arguing as in (56), we infer that

I1,2(x, λ) ≤ C τk for every (x, λ) ∈ sptΨ k
i . (57)

Combining (55)–(57), we get

I1(x, λ) ≤ C τk for every (x, λ) ∈ sptΨ k
i . (58)

Let us now estimate I2. By triangle inequality, we have

I2(x, λ) ≤
∥

∥

∥

∥

(

Λk
i+1(t

k
i+1, x, λ) − λ

)

τk
− TΨ k

i
(x,Λk

i+1(t
k
i+1, x, λ))

∥

∥

∥

∥

BL

+ ∥∥TΨ k (t)

(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
)− TΨ k

i

(

x,Λk
i+1(t

k
i+1, x, λ)

)∥

∥

BL

=: I2,1(x, λ) + I2,2(x, λ) .

(59)

By Proposition 3, we have that

I2,1(x, λ) ≤ C τk for every (x, λ) ∈ sptΨ k
i . (60)

By (T2), (v3), Lemma 2, and Proposition 3, and repeating the arguments of (57), we
get

I2,2(x, λ) ≤ LT ,R

(∫ t

tki

∣

∣v
˜Ψ k (τ )

(

x,Λk
i+1(t

k
i+1, x, λ)

)∣

∣ dτ

+
∫ tki+1

t

∥

∥

∥

∥

Λk
i+1(t

k
i+1, x, λ) − λ

τk

∥

∥

∥

∥

BL
dτ + W1(Ψ

k(t), Ψ k
i )

)

≤ LT ,R

(∫ t

tki

∣

∣v
˜Ψ k (τ )

(

x,Λk
i+1(t

k
i+1, x, λ)

)∣

∣ dτ

+
∫ tki+1

t

∥

∥

∥

∥

Λk
i+1(t

k
i+1, x, λ) − λ

τk

∥

∥

∥

∥

BL
dτ

+
∫

Y

∫ t

tki

(

∣

∣v
˜Ψ k (τ )

(

x ′,Λk
i+1(t

k
i+1, x

′, λ′)
)∣

∣

+
∥

∥

∥

∥

Λk
i+1(t

k
i+1, x

′, λ′) − λ′

τk

∥

∥

∥

∥

BL

)

dτ dΨ k
i (x ′, λ′)

)

≤ 4LT ,R Mv(1 + R)τk + 4HS
(

Λk
i+1(t

k
i+1, x, λ), λ

) ≤ C τk .

(61)

Combining (59)–(61), we obtain that

I2(x, λ) ≤ C τk for every (x, λ) ∈ sptΨ k
i . (62)

Equality (53) follows from (58) and (62) as in the proof of Proposition 1. �
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Finally, we prove the convergence of the sequence Ψ k to the solution
Ψ ∈ C([0, T ];P1(Y )) of the continuity equation (7).

Theorem 2. Let ̂Ψ ∈ Pc(Y ). Then, the sequence of curves Ψ k : [0, T ] → P1(Y )

converges to the unique solution Ψ ∈ C([0, T ];P1(Y )) of (7) in W1, uniformly with
respect to t ∈ [0, T ].
Proof. Since the operator TΨ defined in (34) satisfies the property (T0)–(T3), we only
have to check that the sequence Ψ k is compact in C([0, T ];P1(Y )). The rest of the
proof works as for Theorem 1 using Proposition 4 instead of Proposition 1.
In view of Lemma 2, it is enough to show that Ψ k is equi-Lipschitz with respect

to W1. Let us fix k ∈ N, i ∈ {0, . . . , k − 1}, and s ≤ t ∈ [tki , tki+1]. Then,

W1(Ψ
k(t), Ψ k(s)) = sup

{∫

Y
η(x, λ) d(Ψ k(t) − Ψ k(s))(x, λ) : η ∈ Lip1(Y )

}

≤
∫

Y

(

∣

∣Xk
i+1(t, x, λ) − Xk

i+1(s, x, λ)
∣

∣

+ ∥∥Λk
i+1(t, x, λ) − Λk

i+1(s, x, λ)
∥

∥

BL

)

dΨ k
i (x, λ)

≤
∫

Y

(∫ t

s

∣

∣v
˜Ψ k (τ )

(

x,Λk
i+1(τ, x, λ)

)∣

∣ dτ

+
∫ t

s

∥

∥

∥

∥

Λk
i+1(t

k
i+1, x, λ) − λ

τk

∥

∥

∥

∥

BL
dτ

)

dΨ k
i (x, λ) .

Therefore, by (v2), Lemma 2, and Proposition 3 we get

W1(Ψ
k(t), Ψ k(s)) ≤ 2Mv(1 + R)|t − s|

+ 2|t − s|
∫

Y

HS
(

(Λk
i+1(t

k
i+1, x, λ), λ

)

τk
dΨ k

i (x, λ)

≤ C |t − s|
for some positive constant C independent of k and t . �

5. An implicit–explicit scheme for reversible Markov chains

In this section, we show how to adapt the scheme developed in Sect. 4 to a reversible
Markov chain on n states. In particular, we will prove the convergence of such scheme
for short time.
For fixed n ∈ N, we consider the set of strategies

Λn :=
{

λ = (λ1, . . . , λn) ∈ R
n : λh > 0,

n
∑

h=1

λh = 1

}

.

In the notation of Sects. 3 and 4, the closure Λn can be identified with the set of
probability measures P(U ) for U := {eh : h = 1, . . . , n}, eh being the elements
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of the canonical basis of Rn . Keeping the notation of the previous sections, we set
Y := R

d × Λn . Furthermore, we define

Λδ
n := {λ ∈ Λn : λh ≥ δ} for every δ > 0 , R

n
0 :=
{

ξ ∈ R
n :

n
∑

h=1

ξh = 0

}

,

BY
R,δ := BY

R ∩ (Rd × Λδ
n

)

for δ, R > 0 .

A Markov chain is characterized by a matrix Q ∈ M
n , whose element Qh� ≥ 0,

h 
= �, indicates the rate of moving from the state � to the state h. In our setting,
we consider a more general map Q : Rd × P1(Y ) → M

n satisfying the following
properties:

(Q0) for every (x, Ψ ) ∈ R
d × P1(Y ) and every h, � = 1, . . . , n, Qh�(x, Ψ ) ≥ 0

for h 
= �, and Qhh(x, Ψ ) = −∑� 
=h Q�h(x, Ψ );

(Q1) for every (x, Ψ ) ∈ R
d × P1(Y ), Q(x, Ψ ) is reversible, that is, there exists a

unique σ = σ(x, Ψ ) ∈ Λn such that

Qh�(x, Ψ )σ� = Q�h(x, Ψ )σh for every h, � = 1, . . . , n ;
(Q2) Q is locally Lipschitz, that is, for every R > 0 there exists LQ,R > 0 such that

for every x1, x2 ∈ BR and every Ψ1, Ψ2 ∈ P(BY
R)

|Q(x1, Ψ1) − Q(x2, Ψ2)| ≤ LQ,R
(|x1 − x2| + W1(Ψ1, Ψ2)

) ;
(Q3) there exists MQ > 0 such that for every x ∈ R

d and every Ψ ∈ P1(Y )

|Q(x, Ψ )| ≤ MQ
(

1 + |x | + m1(Ψ )
)

.

Remark 1. We remark that (Q1) is always satisfied, for instance, when Q(x, Ψ ) is a
tridiagonal matrix for every x ∈ R

d and Ψ ∈ P1(Y ), see, e.g., [30, Section 5.1].

Remark 2. We notice that if for every y = (x, λ) ∈ Y and every Ψ ∈ P1(Y ) we set
TΨ (y) := Q(x, Ψ )λ, then the operator T : Y×P1(Y ) → Λn satisfies properties (T0)–
(T3) of Sect. 2.

Following [28,30], for every y = (x, λ) ∈ R
d × Λn and every Ψ ∈ P1(Y ) we

consider the entropy E and the Onsager matrix K

E(x, λ, Ψ ) :=
n
∑

h=1

λh ln

(

λh

σh(x, Ψ )

)

, (63)

K (x, λ, Ψ ) :=
n
∑

�=2

�−1
∑

h=1

Qh�(x, Ψ )σ�(x, Ψ ) Φ

(

λh

σh(x, Ψ )
,

λ�

σ�(x, Ψ )

)

(eh − e�) ⊗ (eh − e�),

(64)

where Φ : [0,+∞) × [0,+∞) → [0,+∞) is defined as

Φ(a, b) := a − b

ln a − ln b
for a 
= b, Φ(a, a) = a ,
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so that Φ is analytic. Clearly, E(x, ·, Ψ ) and K (x, ·, Ψ ) can be extended to Λn by
continuity.Moreover, we notice that for every (x, λ) ∈ R

d×Λn and everyΨ ∈ P1(Y ),
thematrix K (x, λ, Ψ ) is symmetric and positive definitewhen acting onRn

0.Wedenote
by G(x, λ, Ψ ) its inverse on R

n
0. The matrix G is a Riemannian tensor on R

n
0. For

every x ∈ R
d and Ψ ∈ P1(Y ), we define the Riemannian metric d(x,Ψ ) : Λn ×Λn →

[0,+∞) as

d(x,Ψ )(λ1, λ2) := inf

{∫ 1

0

〈

G(x, ρ(s), Ψ )ρ′(s), ρ′(s)
〉 1
2 ds :

ρ ∈ C1([0, 1];Λn), ρ(0) = λ1, ρ(1) = λ2

}

, (65)

for every λ1, λ2 ∈ Λn . The metric d(x,Ψ ) can be extended to Λn ×Λn in a continuous
way.
In the next two lemmas, we collect some properties of E , K , G, and d(x,Ψ ).

Lemma 3. Let δ, R > 0. Then, the following facts hold:

(i) there exists a positive constant η = η(R) such that σh(x, Ψ ) ≥ η for every
x ∈ BR, every Ψ ∈ P(BY

R), and every h = 1, . . . , n;
(ii) there exist two positive constants c1 = c1(R) and c2 = c2(R) such that for every

x ∈ BR, every λ ∈ Λn, every Ψ ∈ P(BY
R), and every μ ∈ R

n
0 ,

c1|μ|2 ≤ 〈G(x, λ, Ψ )μ,μ〉 , (66)

〈K (x, λ, Ψ )μ,μ〉 ≤ c2|μ|2 ; (67)

(iii) there exist two positive constants c3 = c3(δ, R) and c4 = c4(δ, R) such that for
every (x, λ) ∈ BY

R,δ , every Ψ ∈ P(BY
R), and every μ ∈ R

n
0 ,

〈G(x, λ, Ψ )μ,μ〉 ≤ c3|μ|2 , (68)

c4|μ|2 ≤ 〈K (x, λ, Ψ )μ,μ〉 ; (69)

(iv) G(x, ·, Ψ ) is Lipschitz continuous in Λδ
n, uniformly with respect to x ∈ BR

andΨ ∈ P(BY
R), that is, there exists LG,δ,R > 0 such that for every λ1, λ2 ∈ Λδ

n

|G(x, λ1, Ψ ) − G(x, λ2, Ψ )| ≤ LG,δ,R |λ1 − λ2|; (70)

(v) E(x, ·, Ψ ) is Lipschitz continuous in Λδ
n, uniformly with respect to x ∈ BR

andΨ ∈ P(BY
R), namely there exists LE,δ,R > 0 such that for everyλ1, λ2 ∈ Λδ

n

|E(x, λ1, Ψ ) − E(x, λ2, Ψ )| ≤ LE,δ,R |λ1 − λ2|; (71)

(vi) for every α ∈ (0, 1) the energy E(x, ·, Ψ ) is α-Hölder continuous in Λn, uni-
formly with respect to x ∈ BR and Ψ ∈ P(BY

R), that is, for every α ∈ (0, 1)
there exists CE,α,R > 0 such that for every λ1, λ2 ∈ Λn

|E(x, λ1, Ψ ) − E(x, λ2, Ψ )| ≤ CE,α,R |λ1 − λ2|α . (72)
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Remark 3. The constants c1(R) and c4(δ, R) can be assumed to be decreasing with
respect to R, while c2(R), c3(δ, R), LG,δ,R , LE,δ,R , and CE,α,R can be assumed to be
increasing with respect to R.

Proof. (Proof of Lemma3) Inviewof (Q1) and (Q2),wehave that the function (x, Ψ ) �→
σ(x, Ψ ) is continuous from R

d × P1(Y ) → Λn . Hence, there exists η = η(R) > 0
such that for every x ∈ BR , everyΨ ∈ P1(BY

R), and every h ∈ {1, . . . , n}, σh(x, Ψ ) ≥
η > 0, so that (i) holds.
From (i), (64), the regularity of Φ, and (Q3), we further deduce that (67) holds for

a suitable constant c2 = c2(R).
For every (x, λ) ∈ R

d × Λn and every Ψ ∈ P1(Y ), we have that K (x, λ, Ψ )

is symmetric, positive semi-definite on R
n , and positive definite on R

n
0. Since K

is continuous with respect to (x, λ, Ψ ), we deduce that there exists a positive con-
stant c4 = c4(δ, R) ≤ c2 such that inequality (69) holds for every (x, λ) ∈ BY

R,δ and

everyΨ ∈ P(BY
R). SinceG is the inverse of K onRn

0, (67) and (69) imply (66) and (68)
with c1(R) := c2(R)−1 and c3(δ, R) := c4(δ, R)−1. This concludes the proof of (i i)
and (i i i).

The Lipschitz continuity (iv) of G(x, ·, Ψ ) in Λδ
n follows from the regularity

of K (x, ·, Ψ ), from (i)–(i i i), and from the identity, on R
n
0,

G(x, λ1, Ψ )−G(x, λ2, Ψ )=G(x, λ1, Ψ )
(

K (x, λ2, Ψ )−K (x, λ1, Ψ )
)

G(x, λ2, Ψ ).

As for (v), we notice that for x ∈ BR , Ψ ∈ P(BY
R), and λ ∈ Λδ

n , the ratio
λh/σh(x, Ψ ) is bounded from below and from above by δ and by 1/η, respectively.
Since the function a �→ a ln a is locally Lipschitz continuous in (0,+∞), we have
that there exists L = L(δ, R) > 0 such that (71) holds.

Finally, we note that the function a �→ a ln a belongs to W 1,p([0, A]) for every
p ∈ [1,+∞) and every A < +∞. In view of (i), for every x ∈ BR , every Ψ ∈
P(BY

R), and every λ ∈ Λn , the ratio λh/σh(x, Ψ ) is bounded above by 1/η. Hence, by
Sobolev embedding in dimension one we infer that for every α ∈ (0, 1) there exists
C = C(α, R) > 0 such that (72) holds. �

Before stating the main properties of the distance d(x,Ψ ), we define, for every x ∈
R
d , every Ψ ∈ P1(Y ), and every λ, λ1, λ2 ∈ Λn , the norm

‖λ1 − λ2‖G(x,λ,Ψ ) := 〈G(x, λ, Ψ )(λ1 − λ2), λ1 − λ2〉 1
2 ,

which is well defined in view of (66) and (68).

Lemma 4. Let δ, R > 0 and let c1, c3 > 0 be the constants determined in (66)
and (68). Then, the following facts hold:

(i) there exists a positive constant m1 = m1(R) such that for every x ∈ BR and
every Ψ ∈ P(BY

R)

m1|λ1 − λ2| ≤ d(x,Ψ )(λ1, λ2) for every λ1, λ2 ∈ Λn ; (73)
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(ii) there exist two positive constants m2 = m2(δ, R) and m3 = m3(δ, R) such that
for every x ∈ BR, every Ψ ∈ P(BY

R ), and every λ1, λ2 ∈ Λδ
n

d(x,Ψ )(λ1, λ2) ≤ m2|λ1 − λ2|, (74)

d(x,Ψ )(λ1, λ2) ≤ ‖λ1 − λ2‖G(x,λ1,Ψ ) + m3|λ1 − λ2| 32 ; (75)

(iii) there exists a positive constant m4 = m4(δ, R) such that for every x ∈ BR, every
Ψ ∈ P(BY

R ), and every λ1, λ2 ∈ Λδ
n satisfying

√

c3
c1

|λ1 − λ2| < min
{

dist(λ1, ∂Λδ
n), dist(λ2, ∂Λδ

n)
}

(76)

we have

‖λ1 − λ2‖G(x,λ1,Ψ ) ≤ d(x,Ψ )(λ1, λ2) + m4|λ1 − λ2| 32 . (77)

Remark 4. The constant m1(R) can be assumed to be decreasing with respect to R,
whilem2(δ, R),m3(δ, R), andm4(δ, R), can be assumed to be increasing with respect
to R.

Proof. (Proof of Lemma 4) Point (i) is a consequence of (66). We now prove (i i).
Given x ∈ BR , Ψ ∈ P(BY

R), and λ1, λ2 ∈ Λδ
n , we have that the curve

ρ(s) := (1 − s)λ1 + sλ2 s ∈ [0, 1]
is a competitor for the infimum in the definition of d(x,Ψ )(λ1, λ2) in (65). Moreover,
by convexity, ρ(s) ∈ Λδ

n for every s ∈ [0, 1]. Therefore, applying (i i i) of Lemma 3
we get

d(x,Ψ )(λ1, λ2) ≤
∫ 1

0
〈G(x, ρ(s), Ψ )(λ2 − λ1), λ2 − λ1〉 1

2 ds ≤ √
c3|λ1 − λ2|,

which is (74) with m2 = √
c3.

Combining, instead, (i i i) and (iv) of Lemma 3, we can further estimate

d(x,Ψ )(λ1, λ2) ≤
∫ 1

0
〈G(x, ρ(s), Ψ )(λ2 − λ1), λ2 − λ1〉 1

2 ds

≤ 〈G(x, λ1, Ψ )(λ2 − λ1), λ2 − λ1〉 1
2

+
∫ 1

0

∣

∣

〈(

G(x, ρ(s), Ψ ) − G(x, λ1, Ψ )
)

(λ2 − λ1), λ2 − λ1
〉∣

∣

1
2 ds

≤ ‖λ1 − λ2‖G(x,λ1,Ψ ) +
∫ 1

0

(

LG,δ,R |λ1 − ρ(s)|) 12 |λ1 − λ2| ds

≤ ‖λ1 − λ2‖G(x,λ1,Ψ ) +√LG,δ,R |λ1 − λ2| 32 , (78)

from which we conclude (75) with m3 = √LG,δ,R .
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Finally, let x , Ψ , λ1, and λ2 be as in point (iv). For every ε > 0 let ρε ∈
C1([0, 1];Λn) with ρε(0) = λ1 and ρε(1) = λ2 be such that

∫ 1

0

〈

G(x, ρε(s), Ψ )ρ′
ε(s), ρ

′
ε(s)
〉 1
2 ds ≤ d(x,Ψ )(λ1, λ2) + ε . (79)

In view of (74) and of (66), we deduce from (79) that

√
c1

∫ 1

0
|ρ′

ε(s)| ds ≤ m2|λ1 − λ2| + ε = √
c3|λ1 − λ2| + ε . (80)

Hence, (76) and (80) imply that
∫ 1

0
|ρ′

ε(s)| ds < min
{

dist(λ1, ∂Λδ
n), dist(λ2, ∂Λδ

n)
}+ ε√

c1
.

Therefore, for ε small enough we may assume that ρε(s) ∈ Λδ
n for every s ∈ [0, 1].

For such ε, we estimate

‖λ1 − λ2‖G(x,λ1,Ψ ) ≤
∫ 1

0

〈

G(x, λ1, Ψ )ρ′
ε(s), ρ

′
ε(s)
〉 1
2 ds

≤
∫ 1

0

〈

G(x, ρε(s), Ψ )ρ′
ε(s), ρ

′
ε(s)
〉 1
2 ds

+
∫ 1

0

∣

∣

〈(

G(x, λ1, Ψ ) − G(x, ρε(s), Ψ )
)

ρ′
ε(s), ρ

′
ε(s)
〉∣

∣

1
2 ds

≤ d(x,Ψ )(λ1, λ2) +
∫ 1

0

∣

∣

〈(

G(x, λ1, Ψ ) − G(x, ρε(s), Ψ )
)

ρ′
ε(s), ρ

′
ε(s)
〉∣

∣

1
2 ds + ε .

Since ρε(s) ∈ Λδ
n for every s ∈ [0, 1], by (iv) of Lemma 3 and by (80), we have that

‖λ1 − λ2‖G(x,λ1,Ψ )

≤ d(x,Ψ )(λ1, λ2) +√LG,δ,R

∫ 1

0
|λ1 − ρε(s)| 12 |ρ′

ε(s)| ds + ε

≤ d(x,Ψ )(λ1, λ2) +√LG,δ,R

(∫ 1

0
|ρ′

ε(s)| ds
) 3

2 + ε

≤ d(x,Ψ )(λ1, λ2) +√LG,δ,R

(

c3
c1

) 3
4 |λ1 − λ2| 32 + ε

(

1 +
√

LG,δ,R

c3/21

)

.

(81)

Thus, we conclude (77) by passing to the limit in (81) as ε → 0. In particular, m4 =
√

LG,δ,R
( c3
c1

) 3
4 . �

Wenow rewrite themulti-step schemepresented in Sect. 4 in the language ofMarkov
chains and show its short-time convergence to a solution of the continuity equation (7),
where for Ψ ∈ P1(Y ) the field bΨ : Y → Y is now defined as

bΨ (x, λ) :=
(

vΨ (x, λ)

Q(x, Ψ )λ

)
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for a velocity field vΨ : Y → R
d satisfying properties (v1)–(v3) of Sect. 2.

Let us fix a time step τk > 0, k ∈ N, such that τk → 0 as k → ∞, and let tki := iτk
for i ∈ N. For i = 0 we set Ψ k

0 := ̂Ψ ∈ P1(Y ). For i > 0, assume we are given
Ψ k
i ∈ P1(Y ). Then, similarly to (39), the label of an agent sitting in position x̂ ∈ R

d

with label λ̂ ∈ Λn is updated by solving the minimizing movement

min

{

E(x̂, λ, Ψ k
i ) + 1

2τk
d2

(x̂,Ψ k
i )

(λ, λ̂) : λ ∈ Λn

}

. (82)

Since Λn is compact, (82) admits at least one solution λ
(x̂,λ̂),i+1.

1 Therefore, we can

define λk
(x̂,λ̂),i+1

, Λk
i+1, and Ψ̃ k

i+1 exactly as in (9), (10), and (11), respectively. The

step (12) in the space variable remains the same, and xk
(x̂,λ̂),i+1

, Xk
i+1, Ψ k

i+1 are as

in (13), (14), and (15). Furthermore, we refer to (15), (16), and (17) for the definition
of the interpolation curves Ψ k , ˜Ψ k , and Ψ k .

Repeating step by step the proofs of Lemmas 1 and 2, we obtain the following
uniform estimate on Ψ k(t), ˜Ψ k(t), and Ψ k(t).

Lemma 5. Let ̂Ψ ∈ Pc(Y ). Then there exists an increasing continuous function
R : [0,+∞) → [0,+∞) such that for every T ∈ [0,+∞), every k ∈ N, and ev-
ery t ∈ [0, T ], Ψ k(t), Ψ k(t), ˜Ψ k(t) ∈ P(BY

R(T )).

Proof. The statement follows by the arguments of Lemmas 1 and 2 . In particular, we
gave there an explicit formula for R(T ) as a function of T ∈ [0,+∞), which turns
out to be continuous and increasing. �

Also in the current setting, we need to write an approximate Euler–Lagrange equa-
tion associated with (82). This is done in Proposition 5, for proving which we need
the following lemma.

Lemma 6. Let f : RN → R∪{+∞} be a convex function, let A ∈ M
N be a symmetric

and positive definite matrix, and let ‖·‖A : RN → [0,+∞) be the norm associated
with A, namely ‖ξ‖2A := 〈Aξ, ξ 〉, for all ξ ∈ R

N . For a fixed ζ ∈ R
N and c > 0,

assume that ξ0 solves

min
{

f (ξ) + c‖ξ − ζ‖2A
}

. (83)

Then ξ0 also solves

min
{

f (ξ) + c‖ξ − ζ‖2A − c‖ξ − ξ0‖2A
}

. (84)

Proof. It is enough to observe that the problem (84) can be equivalently rewritten as

min
{

f (ξ) + 2c〈ξ, A(ξ0 − ζ )〉};
hence, it is a convex minimization problem. Since ξ0 solves (83), we have −2cA(ξ0 −
ζ ) ∈ ∂ f (ξ0), which is exactly the Euler condition for the above problem.

�
1The arguments in [30, Section 2.3] can also be used to show that (82) admits indeed a unique solution
for τk sufficiently small. However, uniqueness is not needed in our framework.
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Proposition 5. Let δ, R > 0 and let m1(R), CE,α,R, and LE,δ,R be the constants
determined in Lemmas 3 and 4. Assume that Ψ ∈ P(BY

R) and (x, λ) ∈ BY
R,δ , and let λ̃

be a solution to

min

{

E(x, ρ, Ψ ) + 1

2τk
d2(x,Ψ )(ρ, λ) : ρ ∈ Λn

}

. (85)

Then, the following facts hold:

(i) for every α ∈ (0, 1)

|λ̃ − λ| ≤
(

2CE,α,R

m2
1

)1/(2−α)

τ
1/(2−α)
k ; (86)

(ii) if λ̃ ∈ Λδ
n, then

|λ̃ − λ| ≤ 2 LE,δ,R

m2
1

τk ; (87)

(iii) if λ, λ̃ ∈ Λδ
n and μ is the unique solution to

min

{

E(x, ρ, Ψ ) + 1

2τk
‖ρ − λ‖2

G(x,λ̃,Ψ )
: ρ ∈ Λn

}

, (88)

then, for every α ∈ (0, 1) we have

|μ − λ| ≤
(

2CE,α,R

m2
1

)1/(2−α)

τ
1/(2−α)
k . (89)

If, in addition, μ ∈ Λδ
n, then

|μ − λ| ≤ 2 LE,δ,R

m2
1

τk . (90)

Finally, if λ, λ̃ ∈ Λδ
n satisfy (76), there exists a positive constant C = C(δ, R)

such that
∣

∣

∣

∣

λ̃ − λ

τk
− Q(x, Ψ )λ̃

∣

∣

∣

∣

≤ Cτ
1/4
k . (91)

Proof. By the minimality of λ̃, by (vi) of Lemma 3, and by (i) of Lemma 4 we have
that for every α ∈ (0, 1)

m2
1

2τk
|λ̃ − λ|2 ≤ ∣∣E(x, λ, Ψ ) − E(x, λ̃, Ψ )

∣

∣ ≤ CE,α,R |λ̃ − λ|α, (92)

wherem1 = m1(R) andCE,α,R are defined inLemmas3and4, respectively. From(92),
we deduce (86). In a similar way, we deduce (89), recalling that m1 = √

c1, where c1
has been determined in (66).
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If we further assume that λ̃ ∈ Λδ
n , by minimality of λ̃, by (v) of Lemma 3, and

by (i) of Lemma 4, we have that

m2
1

2τk
|λ − λ̃|2 ≤ 1

2τk
d2(x,Ψ )(λ, λ̃) ≤ |E(x, λ, Ψ ) − E(x, λ̃, Ψ )| ≤ LE,δ,R |λ − λ̃| .

Hence, we deduce (87). Moreover, if μ ∈ Λδ
n , in the very same way we get (90).

In order to prove (91), we first estimate the Euclidean norm |μ− λ̃|. Denote by χΛn

the characteristic function of the convex set Λn in the sense of convex analysis. Since
E(x, ·, Ψ ) is convex in Λn , we can apply Lemma 6 with f (·) = E(x, ·, Ψ ) + χΛn

(·),
ξ0 = μ, c = 1

2τk
, ζ = λ, and A = G(x, λ̃, Ψ ) obtaining

E(x, μ, Ψ ) + 1

2τk
‖μ − λ‖2

G(x,λ̃,Ψ )
+ 1

2τk
‖μ − λ̃‖2

G(x,λ̃,Ψ )

≤ E(x, λ̃, Ψ ) + 1

2τk
‖λ̃ − λ‖2

G(x,λ̃,Ψ )
.

Reordering the terms in the previous inequality and adding and subtracting on the
right-hand side the terms 1

2τk
d2(x,Ψ )(λ̃, λ) and 1

2τk
d2(x,Ψ )(μ, λ), we obtain

1

2τk
‖μ − λ̃‖2

G(x,λ̃,Ψ )
≤ E(x, λ̃, Ψ ) + 1

2τk
d2(x,Ψ )(λ̃, λ)

− E(x, μ, Ψ ) − 1

2τk
d2(x,Ψ )(μ, λ)

− 1

2τk
‖μ − λ‖2

G(x,λ̃,Ψ )
+ 1

2τk
‖λ̃ − λ‖2

G(x,λ̃,Ψ )

+ 1

2τk
d2(x,Ψ )(μ, λ) − 1

2τk
d2(x,Ψ )(λ̃, λ) .

(93)

By the minimality of λ̃, inequality (93) simplifies to

‖μ − λ̃‖2
G(x,λ̃,Ψ )

≤ ‖λ̃ − λ‖2
G(x,λ̃,Ψ )

− ‖μ − λ‖2
G(x,λ̃,Ψ )

+ d2(x,Ψ )(μ, λ) − d2(x,Ψ )(λ̃, λ) .

(94)

Since x ∈ BR ,Ψ ∈ P(BY
R), λ, λ̃, μ ∈ Λδ

n , and λ, λ̃ satisfy (76), we deduce from (94),
from (i i) of Lemma 3, and from (i i)–(i i i) of Lemma 4 that

c21|μ − λ̃|2 ≤
(

d(x,Ψ )(λ̃, λ) + m4|λ̃ − λ| 32
)2

+
(

‖μ − λ‖G(x,λ̃,Ψ ) + m3|μ − λ| 32
)2

− ‖μ − λ‖2
G(x,λ̃,Ψ )

− d2(x,Ψ )(λ̃, λ) .

(95)

Developing the squares and using (i i i) of Lemma 3 and (i i) of Lemma 4, we continue
in (95) with

c21|μ − λ̃|2 ≤ m2
4|λ̃ − λ|3 + m2

3|μ − λ|3 + 2m2 m4|λ̃ − λ| 52 + 2
√
c3 m3|μ − λ| 52 .

(96)
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Combining (96) with (87) and (90), we deduce

|μ − λ̃| ≤ ˜Cτ
5/4
k . (97)

for some positive constant ˜C = ˜C(δ, R) independent of k.
We are now in a position to conclude (91). The minimality of μ, indeed, implies

that for every ξ ∈ R
n
0

〈DλE(x, μ, Ψ ), ξ 〉 + 1

τk

〈

G(x, λ̃, Ψ )(μ − λ), ξ
〉 = 0 .

By a simple algebraic manipulation, we rewrite the previous equality as

〈DλE(x, μ, Ψ ), ξ 〉 + 1

τk

〈

G(x, μ, Ψ )(λ̃ − λ), ξ
〉

= 1

τk

〈

G(x, λ̃, Ψ )(λ̃ − μ), ξ
〉

+ 1

τk

〈(

G(x, μ, Ψ ) − G(x, λ̃, Ψ )
)

(λ̃ − λ), ξ
〉

.

(98)

Taking ξ = K�(x, μ, Ψ )ω for ω ∈ R
n in (98), we get that

K (x, μ, Ψ ) DλE(x, μ, Ψ ) + 1

τk
(λ̃ − λ) = 1

τk
K (x, μ, Ψ )G(x, λ̃, Ψ )(λ̃ − μ)

+ 1

τk
K (x, μ, Ψ )

(

G(x, μ, Ψ ) − G(x, λ̃, Ψ )
)

(λ̃ − λ).

Since K (x, μ, Ψ )DλE(x, μ, Ψ ) = −Q(x, Ψ )μ (see [30, Theorem 3.1]), we actually
have

−Q(x, Ψ )λ̃+ 1

τk

(

λ̃ − λ
) = 1

τk
K (x, μ, Ψ )G(x, λ̃, Ψ )

(

λ̃ − μ
)

+ 1

τk
K (x, μ, Ψ )

(

G(x, μ, Ψ ) − G(x, λ̃, Ψ )
)

(λ̃ − λ)

+ Q(x, Ψ )(λ̃ − μ) .

(99)

Combining (i i)–(iv) of Lemma 3 with the inequalities (87), (90), (97), and (99), and
with the assumptions x ∈ BR ,Ψ ∈ P(BY

R), and λ̃, μ ∈ Λδ
n , we get (91), and therefore,

the proof is concluded. �

Lemma 7. Let r > 0, η > δ > 0, and ̂Ψ ∈ P(BY
r,η). Then, there exists T f > 0 such

that for every k ∈ N large enough and every t < T f the following hold:

(i) Ψ k(t), Ψ k(t), ˜Ψ k(t) ∈ P(BY
R(T f ),δ

), where R : [0,+∞) → [0,+∞) is the
function determined in Lemma 5;

(ii) if t ∈ [tki , tki+1) for some i ∈ N, for every (x, λ) ∈ sptΨ k(t)

√

c3(δ, R(T f ))

c1(R(T f ))
|Λk

i+1(t, x, λ)−λ|<min
{

dist(λ, ∂Λδ
n), dist(Λ

k
i+1(t, x, λ), ∂Λδ

n)
}

.
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Proof. Since ̂Ψ ∈ P(BY
r,η), we deduce from Lemma 5 that for every T > 0, every

k ∈ N, and every i such that iτk ≤ T we have Ψ k
i , ˜Ψ k

i ∈ P(BY
R(T )). Hence, in order

to conclude the lemma we have to study the behaviour of the labels λ ∈ Λn along the
multi-step scheme.
Along the proof of the lemma we denote by λk(t, x0, λ0) and xk(t, x0, λ0), for

(x0, λ0) ∈ spt ̂Ψ , the curves obtained by iteratively solving (82) and the difference
equation (12) in each interval [tki , tki+1] starting from (x0, λ0) at time t0 = 0 and using,

at each node tki , λ̂ = λk(tki , x0, λ0) and x̂ = xk(tki , x0, λ0) as new initial conditions.
As in (18), we define the piecewise constant interpolations xk(t, x0, λ0), xk(t, x0, λ0)

and λ
k
(t, x0, λ0), λk(t, x0, λ0).

The assumption ̂Ψ ∈ P(BY
r,η) means that for every (x0, λ0) ∈ spt̂Ψ we have

λ0 ∈ Λ
η
n . Since the measures Ψ k(t) and ˜Ψ k(t) are supported on pairs of the form

(xk(t, x0, λ0), λk(t, x0, λ0)) and (xk(t, x0, λ0), λ
k
(t, x0, λ0)), respectively, we are led

to estimate the number of steps needed by (82) to exit Λδ
n , knowing that the initial

label λ0 ∈ Λ
η
n .

Let us fix α ∈ (0, 1). For k ∈ N such that τk ≤ 1, we claim that the properties (i)
and (i i) hold with R = R(tki ) for every t ∈ [0, tki ] until the following conditions are
fulfilled:

i−1
∑

j=i

2 L( j − 1, k)

m2
1( j − 1, k)

τk +
(

2C(i − 1, k)

m2
1(i − 1, k)

)1/(2−α) √
τk < η − δ, (100)

i−1
∑

j=i

2 L( j − 1, k)

m2
1( j − 1, k)

τk + 2C(i − 1, k)

m2
1(i − 1, k)

(

c3(i − 1, k)

c1(i − 1, k)

)1/2

τk < η − δ , (101)

where we have set L( j, k) := LE,δ,R( jτk), C( j, k) := CE,α,R( jτk ), m1( j, k) :=
m1(R( jτk)), c1( j, k) := c1(R( jτk)), and c3( j, k) := c3(δ, R( jτk)).

Given the claim for granted, for every k ∈ N let us denote with ik ∈ N the first index
for which at least one of the two inequalities (100) or (101) is violated. For simplicity,
let us assume that it is always (100) to be violated in ik . Hence,

ik−1
∑

j=1

2 L( j − 1, k)

m2
1( j − 1, k)

τk ≥ η − δ −
(

2C(ik − 1, k)

m2
1(ik − 1, k)

)1/(2−α) √
τk .

Since LE,δ,R is increasing with respect to R, m1(R) is decreasing with respect to R,
and R(t) determined in Lemma 5 is increasing with respect to t , we also have that

2 L(ik − 1, k)

m2
1(ik − 1, k)

(ik − 1)τk ≥ η − δ −
(

2C(ik − 1, k)

m2
1(ik − 1, k)

)1/(2−α) √
τk ,

from which we deduce that ikτk is bounded away from 0. Therefore, there exists
T f > 0 such that T f < (ik − 1)τk for every k large enough. A similar estimate can be
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obtained if (101) is violated, and we conclude that there exists T f > 0 such that (i)
and (i i) hold.
Let us prove the claim. For fixed i ∈ N, assume that (100)–(101) hold and that

λk(tkj , x0, λ0) ∈ Λδ
n for 0 ≤ j < i . Then, by (i i) of Proposition 5 we have that for

every 1 ≤ j < i

|λk(tkj , x0, λ0) − λk(tkj−1, x0, λ0)| ≤ 2 L( j − 1, k)

m2
1( j − 1, k)

τk . (102)

By (i) of Proposition 5, we have, since τk ≤ 1,

|λk(tki , x0, λ0) − λk(tki−1, x0, λ0)| ≤
(

2C(i − 1, k)

m2
1(i − 1, k)

)1/(2−α) √
τk . (103)

Hence, by (100), (102), (103), and by triangle inequality, we deduce that

|λk(tki , x0, λ0) − λ0| ≤
i
∑

j=1

|λk(tkj , x0, λ0) − λk(tkj−1, x0, λ0)|

≤
i−1
∑

j=i

2 L( j − 1, k)

m2
1( j − 1, k)

τk +
(

2C(i − 1, k)

m2
1(i − 1, k)

)1/(2−α) √
τk < η − δ,

which implies that λk(tki , x0, λ0) ∈ Λδ
n as λ0 ∈ Λ

η
n . Since (100) is independent of

the particular choice of the initial condition (x0, λ0) ∈ spt ̂Ψ ⊆ BY
r,η, we infer that

Ψ k(t), Ψ k(t), ˜Ψ k(t) ∈ P(BY
R(tki ),δ

) for every t ∈ [0, tki ].
Let us now denote by μk

i ∈ Λn the solution to the minimum problem

min
ρ∈Λn

{

E
(

xk(tki−1, x0, λ0), ρ, Ψ k
i−1

)

+ 1

2τk
‖ρ − λk(tki−1, x0, λ0)‖2G(xk (tki−1,x0,λ0),λ

k (tki ,x0,λ0),Ψ k
i−1)

}

.

Then, by (i i i) of Proposition 5 we get that

|μk
i − λk(tki−1, x0, λ0)| ≤

(

2C(i − 1, k)

m2
1(i − 1, k)

)1/(2−α) √
τk .

Therefore, by triangle inequality and by (100) we obtain

|μk
i − λ0| ≤

i−1
∑

j=1

|λk(tkj , x0, λ0) − λk(tkj−1, x0, λ0)| + |μk
i − λk(tki−1, x0, λ0)|

≤
i−1
∑

j=i

2 L( j − 1, k)

m2
1( j − 1, k)

τk +
(

2C(i − 1, k)

m2
1(i − 1, k)

)1/(2−α) √
τk < η − δ,
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which yields μk
i ∈ Λδ

n .
Since λk(tkj , x0, λ0) ∈ Λδ

n for 0 ≤ j ≤ i , by (i i) of Proposition 5, by (101), and
by (102), we have that

i−1
∑

j=1

|λk(tkj , x0, λ0) − λk(tkj−1, x0, λ0)|

+
(

c3(i − 1, k)

c1(i − 1, k)

)1/2

|λk(tki , x0, λ0) − λk(tki−1, x0, λ0)|

≤
i−1
∑

j=i

2 L( j − 1, k)

m2
1( j − 1, k)

τk + 2C(i − 1, k)

m2
1(i − 1, k)

(

c3(i − 1, k)

c1(i − 1, k)

)1/2

τk < η − δ,

which in turn implies

(

c3(i − 1, k)

c1(i − 1, k)

)1/2

|λk(tki , x0, λ0) − λk(tki−1, x0, λ0)|

< min
{

dist
(

λk(tki , x0, λ0), ∂Λδ
n

)

, dist
(

λk(tki−1, x0, λ0), ∂Λδ
n

)

}

.

(104)

Since all the above estimates are independent of the particular choice of (x0, λ0) ∈
spt ̂Ψ and since, for t ∈ [tki−1, t

k
i ), the measure Ψ k(t) has support

sptΨ k(t) ⊆
{

(

xk(tki−1, x0, λ0), λ
k(tki−1, x0, λ0)

) : (x0, λ0) ∈ spt ̂Ψ
}

⊆ BY
R(tki−1),δ

,

we deduce that (i i) holds. �

We are now in a position to prove the short-time convergence of the multi-step
Lagrangian scheme for reversible Markov chains. We start by showing the equivalent
of Propositions 1 and 4 .

Proposition 6. Let r > 0, η > δ > 0, ̂Ψ ∈ P(BY
r,η), and let T f > 0 be as in Lemma 7.

Then, there exists C > 0 such that for every ϕ ∈ C1
b(R

d × Λn), every k ∈ N large
enough, every i ∈ N such that (i + 1)τk < T f , and every t ∈ (tki , tki+1),

d

dt

∫

Y
ϕ(x, λ) dΨ k(t)(x, λ) =

∫

Y
∇ϕ(x, λ) · bΨ k (t)(x, λ) dΨ k(t)(x, λ) + ϑk(ϕ),

(105)

where |ϑk(ϕ)| ≤ C‖ϕ‖C1
b
τ
1/4
k .

Proof. Along the proof, we denote by C a generic positive constant independent
of i , k, t , and ϕ, that may vary from line to line.

We follow step by step the proof of Propositions 1 and 4. Let i and k be as in
the statement of the proposition, and let us set R := R(T f ). For every test function
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ϕ ∈ C1
b(R

d × Λn) and every t ∈ (tki , tki+1), by definition of Ψ k(t) we have that

d

dt

∫

Y
ϕ(x, λ) dΨ k(t)(x, λ) = d

dt

∫

Y
ϕ
(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
)

dΨ k
i (x, λ)

=
∫

Y
∇xϕ
(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
) · v
˜Ψ k (t)

(

x,Λk
i+1(t

k
i+1, x, λ)

)

dΨ k
i (x, λ)

+
∫

Y
∇λϕ
(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
) ·
(

Λk
i+1(t

k
i+1, x, λ) − λ

)

τk
dΨ k

i (x, λ) .

(106)

In order to deduce (105) from (106), we estimate

I1(x, λ) :=
∣

∣

∣v
˜Ψ k (t)

(

x,Λk
i+1(t

k
i+1, x, λ)

)− vΨ k (t)

(

Xk
i+1(t, x, λ),Λk

i+1(t, x, λ)
)

∣

∣

∣ ,

I2(x, λ) :=
∣

∣

∣

∣

(

Λk
i+1(t

k
i+1, x, λ) − λ

)

τk
− Q
(

Xk
i+1(t, x, λ), Ψ k(t)

)

Λk
i+1(t, x, λ)

∣

∣

∣

∣

for (x, λ) ∈ sptΨ k
i ⊆ BY

R,δ , the last inclusion being a consequence of Lemma 7.

Arguing as in the proof of (55)–(57) and using (87), we get that

I1 ≤ Lv,R

∫ tki+1

tki

(

Mv

(

1 + |x | + |Λk
i+1(t

k
i+1, x, λ)| + m1(˜Ψ

k(τ ))
)

+
∣

∣

∣

∣

Λk
i+1(t

k
i+1, x, λ) − λ

τk

∣

∣

∣

∣

)

dτ

+ Lv,R τk

∫

Y

(

∣

∣v
˜Ψ k (τ )(x

′,Λk
i+1(t

k
i+1, x

′, λ′))
∣

∣

+
∣

∣

∣

∣

Λk
i+1(t

k
i+1, x

′, λ′) − λ′

τk

∣

∣

∣

∣

)

dΨ k
i (x ′, λ′)

≤ 4 Lv,R Mv(1 + R)τk + 4 LE,δ,R

m2
1

τk = C τk .

(107)

Let us now estimate I2. By triangle inequality, we have

I2 ≤
∣

∣

∣

∣

(

Λk
i+1(t

k
i+1, x, λ) − λ

)

τk
− Q
(

x, Ψ k
i

)

Λk
i+1(t

k
i+1, x, λ)

∣

∣

∣

∣

+∣∣Q(Xk
i+1(t, x, λ), Ψ k(t)

)

Λk
i+1(t

k
i+1, x, λ) − Q

(

x, Ψ k
i

)

Λk
i+1(t, x, λ)

∣

∣

=: I2,1 + I2,2 . (108)

By (i i i) of Proposition 5 and by Lemma 7, we have that

I2,1 ≤ C τ
1/4
k . (109)
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By (Q2), (v3), Lemmas 5 and 7 , and (i i) of Proposition 5, we get

I2,2 ≤ LQ,R

(∫ t

tki

∣

∣v
˜Ψ k (τ )

(

x,Λk
i+1(t

k
i+1, x, λ)

)∣

∣ dτ

+
∫ tki+1

t

∣

∣

∣

∣

Λk
i+1(t

k
i+1, x, λ) − λ

τk

∣

∣

∣

∣

dτ

)

≤ 2LQ,R Mv(1 + R) τk + 2 LE,δ,R

m2
1

τk = C τk .

(110)

Combining (109) and (110), we obtain that

I2 ≤ C τk . (111)

Finally, equality (105) follows from (107) and (111) as in the proof of Propositions 1
and 4. �
We finally conclude with the main result of this section.

Theorem 3. Let r > 0, η > δ > 0, and ̂Ψ ∈ P(BY
r,η). Then, there exists T f > 0

such that the sequence of curves Ψ k : [0, T f ] → P1(Y ) converges to the unique
solution Ψ ∈ C([0, T f ];P1(Y )) of (7) in W1, uniformly with respect to t ∈ [0, T f ]
Proof. Let T f > 0 be as in Lemma 7, so that the curves Ψ k, ˜Ψ k , and Ψ k are well de-
fined in the interval [0, T f ] and (105) holds. Since the operator TΨ (x, λ) := Q(x, Ψ )λ

satisfies the property (T0)–(T3), we only have to check that the sequence Ψ k is com-
pact in C([0, T f ];P1(Y )). The rest of the proof works as for Theorem 1, with the
obvious modifications due to the fact that the rest θk in Proposition 6 is now controlled
by τ

1/4
k and not by τk .

In view of Lemma 7, it is enough to show that Ψ k is equi-Lipschitz with respect
to W1. Let us fix k ∈ N, i ∈ N such that iτk ≤ T f , and s ≤ t ∈ [tki , tki+1], and let
R := R(T f ). Then,

W1(Ψ
k(t), Ψ k(s)) = sup

η∈Lip1(Y )

{∫

Y
η(x, λ) d(Ψ k(t) − Ψ k(s))(x, λ)

}

≤
∫

Y

(

∣

∣Xk
i+1(t, x, λ) − Xk

i+1(s, x, λ)
∣

∣

+ ∣∣Λk
i+1(t, x, λ) − Λk

i+1(s, x, λ)
∣

∣

)

dΨ k
i (x, λ)

≤
∫

Y

(∫ t

s

∣

∣v
˜Ψ k (τ )

(

x,Λk
i+1(τ, x, λ)

)∣

∣ dτ

+
∫ t

s

∣

∣

∣

∣

Λk
i+1(t

k
i+1, x, λ) − λ

τk

∣

∣

∣

∣

dτ

)

dΨ k
i (x, λ) .

Therefore, by (v2), Lemma 7, and Proposition 5 we get

W1(Ψ
k(t), Ψ k(s)) ≤ 2Mv(1 + R)|t − s| + 2 LE,δ,R

m2
1

|t − s|,
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where the constants LE,δ,R and m1 = m1(R) have been determined in Lemmas 3 and
4 , respectively, and are independent of k, i , and t . �

6. Concluding remarks

In this paper, we have proposed a multi-step Lagrangian scheme for spatially inho-
mogeneous evolutionary games. The scheme is fully explicit, traces the evolutions of
positions and labels along the characteristics, and consists of two approximation steps:
in the first step the agents update their beliefs on the strategy; in the second step, they
update their position accordingly. Theorem 1 in Sect. 3 provides a general convergence
result for the proposed scheme. Theorem 2 in Sect. 4 and Theorem 3 in Sect. 5 deal
with the special cases of inhomogeneous replicator dynamics and reversible Markov
chains, respectively. Differently from Theorem 1, they contain a variant in that the
explicit step for the update of the strategies is replaced by an implicit one, based on a
minimizing movement justified by the gradient flow structure of the problems at hand.
We notice that we presented the approximation steps in the natural order: Agents

tend to update their information on the environment before changing their position.
Undertaking the reverse order in the updates would bring to the same convergence
result. The partial update in (11) would have to be modified accordingly, namely by
placing the id map in the second component and using the updated lifted map Xk

i+1 in
the first component (where now x evolves with the “old” label/strategy distribution).

Using an adaptive time step, chosen on the basis of the rate of change of positions
and labels/strategies, deserves further analysis. We foresee that the same convergence
result given by Theorem 1 holds, provided that the choice of the time step is such that

lim
k→∞ max

i∈{0,...,k−1} (t
k
i+1 − tki ) = 0,

where we notice that tki+1 − tki = τk is constant in our work.
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