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Water Cycle Algorithm (WCA): A New Technique to
Harvest Maximum Power from PV

Muhammad Yaqoob Javeda, Ali Hasana, Syed Tahir Hussain Rizvib,
Annas Hafeeza, Sajid Sarwara, and Achraf Jabeur TelmoudicQ1
aDepartment of Electrical and Computer Engineering, COMSATS University Islamabad, Lahore
Campus, Lahore, Pakistan; bDipartimento Di Elettronica E Telecomunicazioni, Politecnico di
Torino, Torino, Italy; cLISIER Laboratory, The National Higher Engineering School of Tunis (ENSIT),
University of Tunis, Tunis, Tunisia

ABSTRACT
Renewable energy or alternative energy is extracted through
renewable resources. These are considered as an alternative
from conventional fossil fuel-based sources because conven-
tional energy sources are depleting rapidly and raised con-
cerns over increasing environmental impacts. Among many
renewable sources, solar energy has a substantial part to meet
the increased energy demand with reduced environmental
effects. Solar irradiance and temperature are key factors upon
which photovoltaic (PV) power generation depends but its
optimum operating point gets affected by variation in the
above-mentioned environmental factors. Finding the optimum
operating point is a challenge due to the nonlinear solar
behavior and varying nature of environmental conditions. To
overcome these challenges, maximum power point (MPP)
searching algorithms are exploited to get optimum power
from the PV energy system. Maximum power point tracking
(MPPT) behavior is different for various weather conditions, for
instance, partial shading (PS), and uniform irradiance (UI) con-
ditions. Numerous MPPT methods came to be used to find
the optimum power. This work deals with the development of
a novel technique for MPP finding of a PV system on the basis
of the Water Cycle Algorithm (WCA) under PS conditions. It
turns out to be good in terms of exploration and exploitation.
Thus, it has the capability to avoids getting stuck in local
minima (LM) and to find the global maxima (GM). The per-
formance of the CSA technique is examined on five different
types of P-V patterns for UI and PS conditions through
MATLAB simulation and experimental setup. The findings of
CVA are equated with the previous well-known soft comput-
ing methods such as PSO, ACS, DFO, and conventional
method P&O to evaluate performance. The outcomes reveal
that the WCA algorithm overtakes P&O from the perspective
of robustness, accuracy, efficiency, and stability, as well as PSO
in respect of converging speed and efficiency.

KEYWORDS
MPPT; partial shading
condition; Perturb and
Observe (P&O); photovoltaic
(PV); water cycle
algorithm (WCA)
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Introduction

Power generation from Solar is one of the most promising available renew-
able energy sources (RES). Which is clean, abundant, and inexhaustible of
all RES to date. The sun radiates energy at the rate of 3.8� 1020MW and
around 1.8� 1011MW is captured by the earth. Installed solar electricity
capacity is approximately 227GW by the end of 2015, equivalent to pro-
ducing 1.9% of the electricity used globally (Renewables 2018).
Photovoltaic cells are used to convert solar energy using the principles of

photovoltaic effect which is based on the interaction of light with photovol-
taic materials, with absorbed photon energy greater or equal to the materi-
al’s bandgap. PV energy systems have nonlinear behavior in nature and
distinctive algorithm are needed to find maximum obtainable power
through the PV arrays. The PV module’s nonlinear features have a single
MPP (Zhang et al. 2018). Solar irradiance and temperature are key factors
upon which PV power generation depends. Multiple techniques have been
developed to obtain optimum points and these techniques are known as
MPP searching techniques. Solar irradiance is dependent on sunlight direc-
tion, shade produced by birds, clouds, buildings, and trees, etc. These par-
tial shading conditions or fast-changing environments change MPP and
thus highly affect the output power of the solar system (Aouchiche
et al. 2018).
MPPT techniques may either be categorized as indirect and direct

Methods. Direct approaches include procedures that measure PV current
or voltage and also are independent of prior information on PV character-
istics. So operating point of PV is independent of irradiance and tempera-
ture or degradation level (Karami, Moubayed, and Outbib 2017). The
indirect methods are those methods that are based on parameters database
including power and voltages curves of photovoltaic systems for various
temperatures and irradiance, or the estimation of the MPP using mathem-
atical functions derived through experimental data. Indirect methods use
outside signals for estimation of the MPP and outside signals are typically
given by measuring the short-circuit current (SCC), temperature, irradi-
ance, and open-circuit voltage (OCV) from the PV array. MPP is derived
from the monitored signal given by a set of parameters (Mohapatra
et al. 2017).
MPPT methods may further be classified into classical or conventional

and intelligent algorithms. Incremental Conductance (InC) and Perturb
and Observe (P&O) are generally exploited conventional MPPT techniques.
These techniques are fast, simple, and accurate under uniform shading con-
ditions but their major disadvantage is that they failed to do so under PS
conditions and get stuck into local maxima. Another disadvantage of this
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technique is that they are not efficient because they keep oscillating around
MPP[4]. PV systems also employ offline techniques, for instance, fractional
open-circuit voltage (FOCV) and fractional short circuit current (FSCC),
which are low-cost and simple to deploy. The basic idea behind FOCV is
that MPP is mostly located among 0.70 to 0.82 of the OCV and for FSCC
this fraction is between 0.8 to 0.9 of the SCC (Karami, Moubayed, and
Outbib 2017). The key disadvantages of these methods are that it suffers a
periodic loss of power while measuring OCV or SCC and fail to perform
well under PS conditions. To enhance the above-mentioned procedures,
various adaptive and hybrid MPP searching approaches have been created.
Under uniform and quickly varying environmental conditions, these strat-
egies operate well, but not in PS scenarios. Furthermore, various hybrid
strategies were useful in locating the MPP. In order to increase PV energy
system performance, the hybrid mechanism combines traditional MPPT
methods with certain optimization approaches (Harrag and Messalti 2015).
Optimization and intelligent computational approaches based on

Artificial Intelligence (AI) are used to illustrate the shortcomings of trad-
itional MPPT approaches. These techniques include Artificial Neural
Networks (ANN) (Bouselham et al. 2017), Fuzzy Logic Controller (FLC)
(Yilmaz, Kircay, and Borekci 2018), and Evolutionary algorithms, for
instance, Particle Swarm Optimization technique (PSOT) (Babu, Rajasekar,
and Sangeetha 2015), Ant Colony Optimization method (ACOM) (Ram,
Babu, and Rajasekar 2017), and Genetic Algorithm (GA) (Daraban,
Petreus, and Morel 2013). They may be employed on their independently
or in combination with other traditional approaches. Such algorithms are
complex and slow but advancement in computers give good opportunities
to integrate these algorithms in real-time problems but they still have the
disadvantage of not implementing in the low-cost microcontroller. So far
no such method has been developed to address all these issues so we can-
not say about the best technique in MPPT.
The advantage of the MPPT based on PSO presented in (Ishaque et al.

2012) is to direct calculates the duty cycle and eliminate the necessity for
control loops PI. PSO method is built on an optimized search strategy that
removes the limitations of traditional approaches to locate global MPPT in
PS environments. But the method is complex and requires high processing
power to compute. For MPPT, a neural network-based InC technique is
developed (Punitha, Devaraj, and Sakthivel 2013). Artificial NN is trained
through a backpropagation method to estimate online reference voltage.
But required a long training time for deep networks, the complex architec-
ture required more processing power. P&O algorithm implanted in GA
and making a single algorithm result in reduced algorithm parameters and
required less iteration for MPPT (Daraban, Petreus, and Morel 2014).

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

CYBERNETICS AND SYSTEMS 3



 

This research work presents a new nature-inspired metaheuristic
algorithm used to find MPPT. Many studies have been conducted utilizing
WCA to solve various optimization challenges. WCA was exploited
by Navid Ghaffarzade in (Ghaffarzadeh 2015) to improve the variables of
power system stabilizers that are exploited to reduce the oscillations of
the power system. In (Haroon and Malik 2017), the authors applied
WCA to hydrothermal coordination problems to get their optimum
mutual operation.
The proposed solution is an indirect method of MPPT, a population-

based, nature-inspired met heuristic optimization algorithm for resolving
different optimization issues. The WCA is a technique motivated by nature
and based on a hydrologic cycle that how water flows in streams and then
streams flows into rivers and then finally downhill location into a sea (opti-
mum point) (Eskandar et al. 2012). The best raindrop is picked through
the sea, followed by some other fine raindrops in the form of rivers, and
finally all rest as streams. The performance of an MPPT technique is based
on accuracy, convergence speed and steady-state error, complexity, number
of sensors used, and robustness and the proposed WCA technique can find
the optimum point while fulfilling the above-mentioned criteria
(Ghaffarzadeh 2015). The main advantages of the WCA are summarized
as follow:

� It needs less Number of Function Evaluations (NFEs¼No. of
Iterations�Initial Population) to successfully track global MPP under
partial shading and dynamic environmental conditions.

� Once comes to steady-state it does not oscillate around the MPP so
power loss is prevented.

� It has a very low computational cost so, it could be executed in a low-
cost microcontroller.

� It needs relatively less time to track MPP than other intelligent techni-
ques i.e. its convergence speed is high.

Partial Shading Problem

PV arrays consist of series or parallel PV modules or a combination of
both. In the open atmosphere, some modules likely experience different
irradiance than other modules in the array, and this uneven irradiance on
different modules is referred to as Partial shading conditions (PSC). PS
happens because of the shade of the neighboring building, trees, or clouds.
Modules receiving high irradiance levels can be referred to as insolated
modules and modules receiving low irradiance levels can be referred to as
shaded modules. In series joined PV modules, shaded modules provide less
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current than insolated modules. So the insolated modules drive the current
in the array. A current larger than the PS module’s current travels via the
shaded module’s shunt resistance, resulting in a negative voltage around
the shaded modules and consume power rather than generate energy. This
situation adversely affects the performance and efficiency of the PV system
and damage PV models by creating hotspots and eventually damaging the
modules because the shaded PV module behaves like a power sink and
excess power dissipation in the module can irreparably damage the plastic
cell encapsulation. To evade this situation, bypass diodes are linked in ser-
ies with modules to provide an extra channel for current to flow, and thus
improving the efficiency (Ghasemi, Foroushani, and Parniani 2016). Figure
1 shows five series-connected PV modules below UI and PS scenarios.
Under UI all diodes operate in reverse biased so have no voltage drop but
under different irradiance levels diode connected with shaded modules
operates in forwarding bias causing the current to pass through the by-pass
diode and thus experiencing a voltage drop.
In this study, a PV model has been developed and proposed WCA-based

MPPT technique and one of the other well-known soft computing tech-
nique PSO was fed with identical models, and a comparative study was
conducted for UI and various PS schemes. The results suggest that WCA
outperforms than PSO algorithm for convergence speed.
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Figure 1. Series connected PV modules with by-pass diodes.
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Modeling of PV System

A complete PV model is shown in Figure 2. The load is being fed by a
boost converter and is being governed by a WCA-based MPP tracking con-
troller. Several models have been established to simulate the properties of
photovoltaic cells. A model of the single diode is employed for simulation.

Single Diode Model PV Module

A diode can be utilized to model the PV cell characteristics as demon-
strated in Figure 3. Ideally, a PV cell may be denoted by a diode and a
source of current. However, the practical model can also be realized by
incorporating two resistances RS and RSH into an ideal model, which
accounts for the leakage current inside the PV cell and on the borders.
Practically, the model is a fair tradeoff among simplicity and accuracy The
calculated equations of practical models are as given below:

I ¼ Iph�I0 exp
q V þ IRsð Þ

AKT

� �
� 1

� �
�V þ IRs

RSH
(1)

Iph ¼ ðIph, n þ KIDTÞ G
Gn

(2)

I0 ¼ I0, n
Tn

T

� �3

exp
qEg
ak

1
Tn

� 1
T

� �� �
(3)

where Iph is light generated current, I0 represents the saturation current of
the diode, q denotes the electronic charge and their value is taken
(1:6� 10�19 C), K describes the Boltzmann constant,T illustrates the tem-
perature, and the ideality factor of a diode represents by A that usually has
a value between 1 and 1.5 [19]. Iph, n depicts the light- originated current at
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Figure 2. PV Model.
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standard testing condition (STD) normally considered temperature at 25 �C
and G of 1000W/m2, and DT ¼ T�Tn (Tn and T presents the nominal
and actual temperatures [in Kelvin], correspondingly). Where Eg reveals
the semiconductor’s bandgap energy.

Boost Converter

Boost converter’s ‘D’ is the primary control method for regulating the volt-
age Vpv of the selected PV array. It is an important part of the PV system
to work Vpv at GM. An input or primary side inductor (Li), a switch
(IGBT/MOSFET), a diode, and output or secondary side (Co) capacitor are
represented in Figure 4. The mathematical relation for duty cycle is given
as:

Vbt

Vpv
¼ Ibt

Ipv
¼

ffiffiffiffiffiffi
Ro

Rin

r
¼ 1

1� D
(4)

Here, Vbt and Ibt represents the output voltage and current respectively
of the power boost converter. Ipv and Vpv denotes the current and voltage
of the PV module correspondingly.

Water Cycle Algorithm (WCA)

Basic Concept: For tackling optimization issues, a population-based opti-
mization method is used. The WCA is a technique motivated by nature
and based on a hydrologic cycle that how water flows in streams and then
streams flows into rivers and then finally downhill location into a sea (opti-
mum point). To understand it further, consider how water evaporates into
the atmosphere and condenses into a colder environment, and then comes
back to earth in rainfall. This water together with snowmelt starts its
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Figure 3. Diagram illustration of Single Diode PV model.
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journey up into the mountains through small streams which make up riv-
ers and then finally end up into the sea. The best raindrop is designated by
means of sea, while some further superb drops of rain are recognized by
way of rivers. and all others are chosen as streams. Water Cycle Algorithm
can find the maxima or minima of a function with good speed and accur-
acy (Sadollah et al. 2015).
Figures 5 and 6 show a real-world example of the Hydrological process

and schematic view of the process respectively.

WCA for MPPT

MPP tracking using WCA is started by generating randomly generating
voltage sample using the below equation:

Vi ¼ LBþ rand � ðUB�LBÞ i ¼ 1, 2, . . . ,Npop (5)

Vi ¼
V1

V2

..

.

VNpop

2
6664

3
7775 (6)

Then calculate the power against each voltage point.

Pi ¼
P1

P2

..

.

PNpop

2
6664

3
7775 (7)

The initial population of the voltage points is then referred to as streams,
river, and sea which are current position, local and global best voltage
points based on the power at corresponding voltage points measured from
PV array. A specific number of current-voltage points are directly com-
pared with local and global best points based on the following equation:
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Figure 4. Basic Boost converter diagram.
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NSn ¼ round
PnPNsr
i¼1 Pi

�����
������ Vstream

( )
(8)

Here, NSn presents the number of individual or streams voltage points
being compared with local as well as global best points, Nsr and Vstream are
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Figure 5. Hydrological Cycle.

Figure 6. Schematic View of WCA.
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the total no. of local and global best points and the total number of cur-
rent-voltage points.
The pseudo-code and flow chart of this technique are shown in Table 1

and Figure 7 respectively.
The step size of the voltage points is defined by

Viþ1
stream ¼ Vi

stream þ rand� C� ðVi
sea�Vi

streamÞ C>1 (9)

Viþ1
stream ¼ Vi

stream þ rand� C� ðVi
river�Vi

streamÞ C>1 (10)

Viþ1
river ¼ Vi

river þ rand� C � ðVi
sea�Vi

riverÞ C>1 (11)

Vriver and Vsea are the local and global best points and Vstream are the cur-
rent-voltage points. C is constant and if its value is more than one, then
streams might flow in separate directions toward the river and the sea.
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Table 1. Pseudo code of WCAfor MPPT.
1: Sense Vpv , Ipv
2: Initilaze Nvar,Npop , dist, maxiter ,Nsr

3: Randomly generate Npop voltage points and calculate power PðVi
NpopÞ

4: Create individual, local and globals best points marked as streams, river and sea respectively
5: Designate streams to rivers and sea by NSn ¼ roundfj PnPNsr

i¼1
Pi
j � Vstreamg

6: for i ¼ 1 : maxiter
7: %Moving streams to sea
8: for i ¼ NSsea
9: generate Viþ1

stream ¼ Vi
stream þ rand� C � ðVsea � Vi

streamÞ
10: calculate PðViþ1

streamÞ
11: if ðPðViþ1

streamÞ > PðVseaÞÞ
12: Vsea ¼ Viþ1

stream end end
13: %Moving streams to rivers
14: for m ¼ 1 : Nsr � 1
15: for k ¼ NSkriver
16: generate Vkþ1

stream ¼ Vk
stream þ rand � C � ðVm

river � Vk
streamÞ

17: calculate PðVkþ1
streamÞ

18: if ðPðVkþ1
streamÞ > PðVk

riverÞÞ
19: Vm

river ¼ Vkþ1
stream end

20: if ðPðVm
riverÞ > PðVi

seaÞÞ
21: Vsea ¼ Vk

river end
22: end end
23: %moving rivers to sea
24: for j ¼ 1 : Nsr � 1
25: generate Vjþ1

river ¼ Vj
river þ rand� C � ðVsea � Vj

riverÞ
26: calculate PðVjþ1

riverÞ
27: if ðPðVjþ1

riverÞ > PðVseaÞÞ
28: Vsea ¼ Vjþ1

river end end
29: %Evaporation condition and raining process
30: if ðjVsea � Vj

riverj < dmax j OR jVsea � Vi
streamj < dmaxÞ

31: generate new streams using Eq: ð5Þ end
32: newsea ¼ Vsea
33 : end
34 : Optimum Voltage point ¼ newsea

35 : Calculate duty cycle

10 M. Y. JAVED ET AL.



 

The maximum power giving global optimum voltage point is discovered
by comparing power. The position of the local best point is marked as river
and the global best point is assigned as the sea in favor of a particular iter-
ation. The individual or streams voltage points are impacted by global and
local best points in subsequent iterations, and its step size is computed
using Eqs. (21)–(23). The voltage at each point is located at a different
location due to the step size. All the points converging into the global or
sea best point with each repetition. The distance among the streams and
sea comes closer to zero when the streams converge toward the MPP. To
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Figure 7. Flowchart of WCA based MPP Tracking.
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avoid the algorithm getting stuck in the local best point a step size toler-
ance may be set as given below:

Vi
sea � Vi

river

�� ��<dist i ¼ 1, 2, 3, . . . ,Nsr�1 (12)

Vi
sea � Vi

stream

�� ��<dist i ¼ 1, 2, 3, . . . ,NSsea (13)

Whenever the distance within the sea and a river, or sea and a stream, is
below tolerance, the stream or river has entered the sea and has reached its
optimal point. Then as per evaporation and precipitation phenomena, new
voltage points (streams and rivers) are formed by using Eq. (19) and
replaced existing streams and rivers. A larger value dmax decreases the
search radius, whereas a small number pushes the search to be closer to
the optimal point. The value for dist adaptively decreases as:

distiþ1 ¼ dist� disti

max iter
(14)

dist is also used as the convergence or termination criteria.

Results

Simulation Setup

MATLAB/Simulink Simulation Setup is presented in Figure 8 describes the
most commonly used PV system in which the MPPT technique is imple-
mented (Villalva et al. 2009). The setup consists of 5 series-connected solar
modules and their specification is:
Pmpp ¼ 200W, Impp ¼ 7:6A, Vmpp ¼ 26V, Isc ¼ 8:21, Voc ¼ 32:9V: The

simulation setup is used to simulate and evaluate the performances of
WCA, PSO, and P&O based MPP searching techniques through various PS
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Figure 8. MATLAB/Simulink Simulation Setup.

12 M. Y. JAVED ET AL.



 

conditions. Among the battery load and PV array, the boost converter is
utilized to get the required voltage as per the duty cycle. MPPT technique
is implemented in the embedded block and it takes Vpv and Ipv as inputs
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Figure 9. Case 1: Duty cycle comparability of WCA.

Figure 10. Case 1: Power comparability of WCA.

Figure 11. Case 1: Voltage comparability of WCA.
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and D as output. Boost converter components values calculations are also
an important step that is worked out in (Miyatake et al. 2011). Component
values are as follows: Cin ¼ 10 uF, Cout ¼ 47 uF, L ¼ 200 uH, Fsw ¼ 20 kHz:
The proposed technique has been tested for UI and various PS techni-

ques to check the accuracy and robustness. Case 1 shows the study of the
CVA through UI conditions in which the irradiance level is 1000W/m2 for
all 5 series-connected PV modules. Figure 13 shows the searching behavior
of WCA under uniform shading conditions. The proposed algorithm
detects the global maximum in just 28 NFEs (Number of Functions
evaluations¼ Initial population � number of iterations) but due to the
raining process, it again initializes random voltage points to search for the
global maximum to avoid getting stuck in the local maximum until the
stopping criteria have been fulfilled. So the total time required to find and
achieve a steady state is 76ms for WCA and 232 for PSO in case 1. For
uniform irradiance, searching behavior and time required to detect for all
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Figure 12. Case 1: Current comparability of WCA.

Figure 13. Case 2. Duty cycle comparability of WCA.
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Table 2. Comparison of WCA with different partial shading algorithms.

Methods
Irradiance
scheme

Convergence
time (s)

Settling
time (s)

GM
existed

GM
power

Tracking
power

Obtained
energy

Efficiency
(%)

WCA Case1 0.17 0.20 Yes 1260 1259.3 1.66� 103 99.8
Case2 0.20 0.38 Yes 450 449.3 0.86� 103 99.7
Case3 0.20 0.25 Yes 796 794.7 1.56� 103 99.8
Case4 0.21 0.20 Yes 520 519.5 0.88� 103 99.8

DFO Case1 0.23 0.27 Yes 1260 1259.1 1.66� 103 99.8
Case2 0.26 0.43 Yes 450 449 0.85� 103 99.6
Case3 0.19 0.21 Yes 796 794.4 1.55� 103 99.7
Case4 0.22 0.21 Yes 520 519.2 0.87� 103 99.7

PSO Case1 0.47 0.70 Yes 1260 1257 1.64� 103 94.6
Case2 0.41 0.81 Yes 450 443 0.84� 103 97.6
Case3 0.68 0.71 Yes 796 791.4 1.48� 103 99.4
Case4 0.65 0.67 Yes 520 518.7 1.41� 103 99.7

P&O Case1 0.33 0.71 No 1260 1210 0.97� 103 96.1
Case2 0.22 0.35 Yes 450 440 1.23� 103 97.7
Case3 0.45 0.84 No 796 580 0.73� 103 72.9
Case4 0.45 0.91 Yes 520 511.3 1.39� 103 98.2

ACS Case1 0.47 0.64 Yes 1260 1239 1.07� 103 98.3
Case2 0.30 0.49 Yes 450 443 1.35� 103 98.4
Case3 0.39 0.81 Yes 796 790.6 1.49� 103 99.3
Case4 0.31 0.72 Yes 520 516.7 1.42� 103 99.4

Figure 14. Case 2: Power comparability of WCA.

Figure 15. Case 2: Voltage comparability of WCA.
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presented techniques are given in Figures 9 and 10. WCA is much more
suitable to find global maxima than PSO because once it gets close to max-
ima it generates some more voltage points to ensure that the algorithm
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Figure 16. Case 2: Current comparability of WCA.

Figure 17. Case 3: Duty cycle comparability of WCA.

Figure 18. Case 3: Power comparability of WCA.
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doesn’t get stuck in local maxima. So the probability of WCA getting stuck
in local maxima is much less than PSO which lacks exploration phenom-
enon and takes more time to get to global maxima. Power–time and
Voltage-Time curves are shown in Figures 11 and 12 shows the searching
behavior and time required to find the global maxima under partial shad-
ing techniques.
Figure 13 shows the searching behavior of WCA under shading conditions.

The proposed algorithm detects the global maximum in just 28 NFEs
(Number of function estimates¼ Initial population � number of iterations)
but due to the raining process (exploration), it again initializes random volt-
age points to search for the global maxima to avoid getting stuck in local
maxima until stopping criteria have been fulfilled, while it takes 127 NFEs for
PSO to reach MPP. So the total time required to find and achieve a steady
state is 76ms for WCA and 232 for PSO while P&O is quite fast and achieve
GM in only 19ms but it does not comes to a steady-state and keeps on oscil-
lating which results in lower efficiency in case 1. For uniform irradiance,
Power and Voltage Vs time (searching behavior) for all presented techniques
are shown in Figures 9 and 10. WCA is much more suitable to find global
maxima than PSO because once it gets close to maxima it generates some
more random voltage points to ensure that the algorithm doesn’t get stuck in
local maxima. Therefore, the probability of WCA being stuck in local maxima
is very less than PSO, which lack exploration phenomenon and take more
time to get to global maxima. Under partially shading conditions P&O does
not track GM but gets stuck in local minima. Power–time and Voltage-Time
curves are shown in Figures 11 and 12, which describe the searching behavior
and time, required to search the GM under PS techniques.
Table 2 shows the time taken to reach the global maxima and maximum

power obtained by WCA, PSO, and P&O under different irradiance condi-
tions studied in this research. The accuracy of the WCA and PSO is the
same. WCA takes 76–95ms, PSO takes 211–304ms to reach the GM. P&O
is very fast but cannot find GM. WCA presents better efficiency results as
compare to PSO and P&O, WCA shows an average of 9.81% efficiency
while PSO and P&O show an average of 99.67% and 62.84% efficiencies
respectively. Power-Time curves of WCA under different irradiance condi-
tions are shown in Figures 13–17. While the graphical presentation of con-
vergence time and efficiencies of the WCA, PSO, and P&O for all uniform
and partial shading cases demonstrated in Figures 18 and 19.

Case 1 (Fast Changing Irradiance)

In this situation, entire PV modules have the same irradiance with rapid
changing irradiance to time and their irradiance scheme is presented in Table
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2. During the first interval, the power achieved by WCA is 1259.3W as asso-
ciated with 1259.1W by DFO, 1257W by PSO, 1239W by ACS and 1210W
by P&O. WCA achieve 99.98% power-convergence efficacy in the first
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Figure 19. Case 3: Voltage comparability of WCA.

Figure 20. Case 3: Current comparability of WCA.

Figure 21. Case 4: Duty cycle comparability of WCA.
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interval. Case 1 has three different regions reliant upon the irradiance magni-
tude. The average powers attained by WCA, DFO, PSO, ACS, and P&O are
830.9W, 828.1W, 825.1W, 823.1W and 819.4W, respectively. It specifies
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Figure 22. Case 4: Power comparability of WCA.

Figure 23. Case 4: Voltage comparability of WCA.

Figure 24. Case 4: Current comparability of WCA.

CYBERNETICS AND SYSTEMS 19



 

that the maximum average is attained by WCA. The average efficiency
attained by the WCA, DFO, PSO, ACS, and P&O is 99.27%, 97.96%, 97.91%,
97.95%, and 98.79%. Consequently, the techniques can be hierarchical as
WCA>DFO>PSO>ACS>P&O. The calculated tracking time of WCA,
DFO, PSO, ACS, and P&O is 0.17 s, 0.18 s, 0.46 s, 0.47 s, and 0.33 s, similarly.
Settling time of WCA, DFO, PSO, ACS and P&O is 0.24 s, 0.25 s, 0.39 s,
0.64 s, 0.71 s, correspondingly. The control parameter is the duty-cycle which
is present in Figure 9 respectively. WCA successfully reduces the magnitude
of the oscillation to is less than or equal to 1W, achieving a 94.99% decrease
in the magnitude of fluctuations. Figure 10 indicates that PSO has the max-
imum fluctuations. ACS can harvest haphazard oscillations. The voltage and
current transient are present in Figures 11 and 12 correspondingly.

Case 2 PS (Scenario I)

In this scenario, the GMPP is at 450W. The D, P, V, and I comparability are
presented in Figures 13–16 respectively. ACS and PSO show the maximum
level of randomness. Settling times of ACS, PSO is large compare to
WCA.Proposed technique has less oscillation in the steady-state at GMPP.
The power obtained by WCA, DFO, PSO, ACS, and P&O 449.3W, 449W,
448W, 443W, and 449.5W respectively. WCA has 99.64% efficiency as com-
pared to DFO 99.43%, PSO 99.35%, ACS 97.93%, and P&O has 99.90%.
Robustness of MPP tracking revealed by fast searching of global maxima and
effective settling time at global maxima. Experimental simulations shows that
it takes WCA 0.17 s, D.FO 0.19 s, P.SO 0.68 s, ACS 0.30 s and P&O 0.22 s on
average and can settle after 0.55 s, 0.61 s, 0.45 s, 0.49 s and 0.35 s correspond-
ingly. The voltage comparison result is presented in Figure 15. Stable voltage
and current produced by WCA is shown in Figures 15 and 16.

Case 3 PS (Scenario II)

In this scenario the GMPP is at 796.0W. Results for power are displayed in
Figure 18 and controlled delivered by the D is presented in Figure 17.
Voltage and current are illustrated in Figures 19 and 20 respectively. Under
PS, the MP found by WCA, DFO, PSO, ACS, and P&O are 794.7W,
794.4W, 785W, 794.6W and 580W, respectively.
WCA achieved the highest efficiency which is 99.67%, DFO 99.54%,

while the lowest efficiency achieved by P&O which is close to about
49.40% which is LM1. The tracking time of WCA is 0.175 s, dragonfly
0.180 s, PSO 0.410 s, ACS 0.390 s and P&O 0.45 s, their settling time is
0.40 s, 0.46 s, 0.56 s, 0.81 s and 0.84 s. In harvesting global maxima, WCA
stands close to DFO by 12.0ms. WCA settle at global maxima inside
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455ms achieving 19.0% faster tracking. Faster tracking improves robustness
and eliminates unwanted fluctuations. WCA attains 1–4% improved effi-
ciency of power conversion with the ripple being <1W and decreases the
fluctuations to zero in the later phases of the iterative cycles. Under WCA,
the output is steady, and its voltage and current have almost no fluctua-
tions as present in Figures 19 and 20. In Figure 17, ‘D’ updating at every
iteration demonstrates that WCA can sense and converge to Global
Maxima in fewer iterations in appraisal to competing techniques.

Case 4 PS (Scenario III)

In this scenario, GMPP is at 520W. The comparability is present in Figure
21 for duty-cycle. The ACS and PSO have shown extreme randomness due
to random step size increments in the duty cycle. Results for power, volt-
age, and current are presented in Figures 22–24 respectively. Under the PS
the extreme power gained by the WCA, DFO, PSO, ACS, and P&O is
519.5W, 519.2W, 517.6W, 518.7W and 519.3W. Maximum efficiency
attained by WCA is 99.80%, DFO 99.75%, PSO 97.6%, ACS 98.7% and
P&O has 99.4% respectively. The tracking time to WCA, DFO, PSO, ACS,
and P&O is 0.19 s, 0.25 s, 0.41 s, 0.45 s, and 0.31 s. In tracking the global
maxima, WCA is closed to DFO by 10ms. WCA settle global maxima
within 453ms attaining 18% faster tracking which enriches its robustness
and also removed unwanted fluctuations. Case 4 shows the best perform-
ance among other MPPT techniques. It can perceive and converge GM in
fewer iterations.

Conclusion

In this research study, a novel technique has been designed for MPPT of
PV system under different irradiance conditions. Proposed MPPT tech-
nique is tested under five different irradiance conditions and under all
cases, it successfully find and track the global maxima to extract maximum
power from PV system. In different stages of advancement of the paper,
flow charts of all presented techniques, proposed technique pseudo code
and Simulink/MATLAB are also presented. Then the proposed technique is
compared with other well-known and widely used conventional technique
P&O and a soft computing technique PSO. After thoroughly studying the
results it has been proved that proposed WCA based technique shows bet-
ter results in terms of convergence speed and efficiency over P&O and
PSO while accuracy is found to be same as of PSO but better than P&O.
Other performance criteria like, steady state oscillations, cost and complex-
ity is same as of PSO. WCA based technique converges in significantly less
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time than PSO and after achieving steady state it retains zero oscillations.
The robustness of the WCA has been verified under uniform and various
partial shading conditions. WCA able to track the MPP accurately with
good efficiency under the partial shading conditions and shows no oscilla-
tion after reaching the steady state.
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