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3Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
4Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstrasse 2, DE-30167 Hannover, Germany

(Received 15 May 2015; revised manuscript received 29 June 2015; published 9 November 2015)

The absence of energy dissipation leads to an intriguing out-of-equilibrium dynamics for ultracold polar gases
in optical lattices, characterized by the formation of dynamically bound on-site and inter-site clusters of two or
more particles, and by an effective blockade repulsion. These effects combined with the controlled preparation
of initial states available in cold-gas experiments can be employed to create interesting out-of-equilibrium states.
These include quasiequilibrated effectively repulsive 1D gases for attractive dipolar interactions and dynamically
bound crystals. Furthermore, nonequilibrium polar lattice gases can offer a promising scenario for the study of
quasi-many-body localization in the absence of quenched disorder. This fascinating out-of-equilibrium dynamics
for ultracold polar gases in optical lattices may be accessible in on-going experiments.
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Out-of-equilibrium dynamics of isolated quantum systems
has recently attracted major interest [1,2], in particular in
the context of ultracold gases, where dissipation is basically
absent [3]. Nonequilibrium quantum dynamics constitutes
an exciting new field, notably in what concerns many-body
localization (MBL), i.e., localization in excited states of inter-
acting many-body systems [4]. Recent cold-gas experiments
are starting to unveil the nontrivial physics of MBL [5].

Although MBL is typically discussed in the presence
of disorder, localization may occur in the absence of it,
as first discussed for 3He diffusion in 4He crystals [6,7].
Beyond a critical concentration, immobile 3He clusters could
lead to percolation for the remaining 3He atoms. Quasi-
MBL and glassy dynamics without disorder are attracting
growing attention, and various mechanisms for localization
and eventual delocalization have been discussed [8–15].

Meanwhile, experiments on magnetic atoms [16–18] and
polar molecules [19–21] are starting to reveal the fasci-
nating physics of dipolar gases. These gases are markedly
different from their nondipolar counterparts due to the long-
range anisotropic character of the dipole-dipole interaction
(DDI) [22,23]. Polar gases in optical lattices (OLs) offer
exciting possibilities for the study of lattice models [23] and
quantum magnetism [24,25].

In this Rapid Communication, we study nonequilibrium
dynamics of 1D polar lattice gases. This dynamics is char-
acterized by dynamically bound on-site and inter-site clusters
(BCs) generalizing on-site repulsively bound pairs in nonpolar
gases [26–28], and by blockade repulsion (BR). We show how
these effects result in interesting out-of-equilibrium states,
including repulsive gases with attractive DDI and dynamically
bound crystals. Moreover, polar lattice gases allow for quasi-
MBL without disorder, as we illustrate for the setup of Fig. 1.
These scenarios can be realized in current experiments on polar
molecules in OLs.

a. Model. We consider polar bosons in a 1D OL. For a deep
lattice the system is described by the extended Bose-Hubbard
model (EBHM) [22,23]

H = −J
∑

〈ij〉
b̂
†
i b̂j + U

2

∑

i

n̂i(n̂i − 1) + V
∑

i,r>0

n̂i n̂i+r

r3
, (1)

where 〈· · · 〉 denotes nearest neighbor (NN), bi (b†i ) destroys
(creates) bosons at the ith site, ni = b

†
i bi , J is the hopping rate,

U characterizes the combined on-site short-range interactions
and DDI, and V/r3 is the strength of the DDI between
sites placed r � 1 sites apart. J , U , and V can be tuned
independently by changing the lattice depth, the transverse
confinement [29], and the orientation and strength of the
polarizing field (V < 0 for polarization along the lattice axis),
and by Feshbach resonances.

b. Bound pairs. We revisit first the concept of bound
pairs in nonpolar gases (V = 0). Doubly occupied sites are
characterized by an interaction energy U . If |U | � J , energy
conservation maintains on-site pairs irrespective of the sign
of U [30]. For U > 0 those pairs, also called repulsively
bound pairs [27], are hence dynamically bound. Conversely,
two separated particles cannot be brought to the same site;
i.e., singlons experience hard-core repulsion [31]. However,
singlons may resonantly move through on-site pairs since a
single-particle hopping swaps doublon and singlon positions
(21 → 12) [32,33].

The long-range DDI allows for dynamically bound inter-
site pairs [34]. Figure 2(a) depicts a typical two-particle
spectrum, for U = 0 and V = −100J . For each center-of-
mass quasimomentum K ∈ [−π,π ], the spectrum presents a
continuum of scattering states and a discrete set of isolated
inter-site bound states (BSs) [35,36], which as for on-site
bound pairs in nonpolar gases are maintained by energy
conservation, irrespective of the sign of V . Figures 2(b)–2(d)
show the probability of finding two particles r sites apart
for the BSs at K = 0. For binding energies close to the
continuum, the relative position of the pair delocalizes over
many sites [Fig. 2(b)]. These delocalized BSs are for any
practical purposes indistinguishable from the scattering states.
Instead, as shown in Figs. 2(c) and 2(d), deeper BSs present a
well defined relative distance r . Below we restrict the term
bound pair (BP) to deep BSs at fixed r � rc, where the
critical rc is defined as the largest r satisfying the condition
f (r) = 2(J/V )2/[r−3 − (r + 1)−3]2 � 1 [37]. Note that even
if U = 0, the inter-site DDI stabilizes an on-site BP that
is buried within the scattering states in Fig. 2(a), close to
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FIG. 1. (Color online) (a) A dimerized lattice can be used to
create a gas of singlons and dynamically bound NN dimers; (b) due to
the BR a NN dimer (singlon) forms a block D ≡ 0011 (S ≡ 001); (c)
effective lattice formed by the blocks D, S, and additional empty sites.
This effective lattice is employed in model (2) to show the realization
of quasi-MBL.

energies E = U = 0. On-site and NN BPs demand |V −
U | � J to avoid resonances between on-site and inter-site
interactions [38].

c. Bound clusters. On-site interactions may bind more than
two particles in on-site BCs. However, on-site BCs are unstable
against three-body losses and play a relevant role only at
relatively large lattice fillings [39]. Polar lattice gases allow
for inter-site BCs of more than two particles, each particle
being within a distance r � rc of at least another particle of the
cluster. Several important points must be noted. First, although
sites with more than one particle may be involved, inter-site
BCs are typically formed by singly occupied sites, and hence
these clusters are in general stable against three-body losses.
Second, whereas on-site BPs are obviously precluded for
polarized Fermi gases, inter-site BPs and BCs are possible
even in that case. Third, in contrast to on-site BCs, inter-site
BCs may present internal resonances; e.g., the cluster 1101
may remain bound, but resonates with 1011. BCs are a general

FIG. 2. (Color online) (a) Energy spectrum as a function of the
center-of-mass quasimomentum K for two particles in 40 sites for
U = 0 and V = −100J ; density of the bound states as a function
of the relative coordinate r for the three bound states at K = 0, as
marked by the blue circles in panel (a), at energies E/J ≈ −5 (b),
−13 (c), and −100 (d).

feature of nonequilibrium polar lattice gases in any dimension
even at low fillings, as long as the DDI is large enough. In
particular, massive BCs of a size comparable to the whole
system may be formed if the mean-interparticle distance R <

rc. An example of massive BC is provided by particles initially
placed at regular distances rin � rc. The absence of dissipation
maintains this dynamically bound crystal [Fig. 3(a)].

d. Blockade repulsion. The formation of inter-site BPs has
as a counterpart a vanishing probability of finding the particles
at a distance r � rc in loose inter-site BSs and scattering states
(rc = 2 for Fig. 2(b) [37]). This exclusion region leads to an
effective BR between particles initially at a distance rin > rc.
This BR becomes evident in the density-density correlation
g2(t,r) = 〈ni(t)ni+r (t)〉/[〈ni(t)〉〈ni+r (t)〉]. If rin > rc at t = 0,
the subsequent dynamics shows BR, i.e., g2(t > 0,0 < r �
rc) = 0, as discussed below.

e. Repulsive gas for attractive DDI. Combining BR with
a proper initial-state preparation allows for the creation of a
repulsive gas for attractive DDI. Such a gas may be realized
by placing particles at the minima of a superlattice with
period rin > rc and subsequently removing the superlattice;
atoms in sites with more than two particles may be eliminated
by using resonant light [40]. Under these conditions no
BP or BC is present, and the system forms a singlon gas
with effective BR at radius rc. We have performed time-
dependent density-matrix renormalization group (t-DMRG)
simulations [41] for V = −100J and U = 0 (rc = 2) and
4 particles initially rin = 5 sites apart. After a short time
∼J−1, the density 〈nj 〉 and g2(r = 0) converge to the values
expected for a homogeneous gas [inset of Fig. 3(b)] [42].
However, due to BR, g2(t,0 < r � rc) = 0 for all t , whereas
g2(t,r > rc) has a nontrivial dynamics reaching quasiequilib-
rium [Fig. 3(b)]. The time-averaged single-particle correlation
ḡ1(r) = 1

t2−t1

∫ t2
t1

dt〈b†i bi+r〉(t), shown for different times t1,2

in Fig. 3(c), also indicates quasiequilibrium. The equilibration
of ḡ1 and g2 relies on the absence of BPs or BCs, contrasting
with the quasi-MBL scenario below.

Although the effective repulsive 1D gas resembles a super-
Tonks gas [43], the physics behind is very different. In the
super-Tonks case, an initially repulsive gas is dynamically
brought into an attractive regime. Even if in that regime the
two-body ground state is a bound state, in the absence of dissi-
pation the system remains in an excited state characterized by
interparticle repulsion. In contrast, BR is crucially maintained
by both the absence of dissipation and by the lattice, which
provides a finite bandwidth and discrete particle motion.

f. Quasi-many-body localization. Polar lattice gases offer
interesting possibilities for the study of quasi-MBL without
disorder. BCs of M particles move as a whole with hopping
J (J/V )M−1, and hence BCs with M � 1 are for any practical
purposes immobile (although in-cluster quasiresonances may
be still possible). As for 3He [6,7], massive BCs and BR may
induce percolation for large-enough filling and |V |/J . Inter-
estingly, as shown below, 1D polar lattice gases may present
quasi-MBL even for low fillings (R � rc) and moderate DDI
achievable in experiments.

We illustrate the possibilities of 1D polar lattice gases
for quasi-MBL within a simplified scenario. Resembling the
recent experiment of Ref. [5] we consider a dimerized OL
such that only the lower sites are populated [Fig. 1(a)]. After
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FIG. 3. (Color online) (a) Dynamically bound crystal: density 〈ni〉 (obtained using t-DMRG) for U = 0 and V = −100J (rc = 2), for 4
particles in 24 sites initially placed rin = 3 sites apart. Note that since rin = rc + 1, there is still some residual dynamics. For smaller rin � rc the
crystal is perfectly preserved in this time scale. (b)–(c) Effective repulsive 1D gas: same parameters as in panel (a) but rin = 5: (b) g2(t,r > 0)
at different times (in the inset we show g2(t,r = 0) [42]) and (c) ḡ1(r), for J (t2 − t1) = 5 and different t2 values. For both ḡ1 and g2, r denotes
the distance from an initially occupied site. Note that not only the on-site density and density fluctuations converge to quasiequilibrium, but
also ḡ1 and g2 at longer distances. Note as well that g2(t,0 < r � rc) = 0 due to BR.

eliminating atoms in doubly occupied sites [40], neighboring
lower sites are hence either both occupied, or only one of them,
or none. Then the superlattice is removed. We consider |V |/J
such that rc = 2, and hence NN dimers form a BP, and a BR at
rc = 2 is established. As a result, blocks 0011 and 001 behave
as well-defined particles that we call D and S, respectively
[Fig. 1(b)]. We neglect DDI for r > rc neighbors, since it is
well within the bandwidth, and obtain the effective model [44]:

Ĥeff = −
∑

〈ij〉
(J Ŝ

†
i Ŝj + JDD̂

†
i D̂j + �D̂

†
i Ŝ

†
j ŜiD̂j ), (2)

where i, j denote the sites of the effective lattice formed by D’s,
S’s, and empty sites of the original lattice belonging neither to
a D nor an S [Fig. 1(c)]. In Ĥeff , D̂j (Ŝj ) destroys a D (S) at
the effective site j . Assuming for simplicity U � V,J , the D
hopping rate is JD = 8

7
J 2

V
. The third term in Ĥeff is the swap

DS ↔ SD, occurring at rate � = 4
3

J 2

V
. Note that a site of the

effective lattice is occupied by a D, an S, or empty. Due to
this hard-core constraint, in absence of swapping, D’s and S’s
would trivially localize each other, for any ratio JD/J .

Swapping allows for the motion of D’s and S’s. How-
ever, the fact that JD,� � J for J/|V | � 1 may result in
localization following arguments similar to those in Ref. [9].
For J/|V | → 0, the motion of S’s is blocked by D’s. For
finite J/|V | � 1, the motion of D’s changes the energy of
the S gas [45]. If this change �E � JD,�, the motion of
D’s is hindered. However, limited quasiresonant D mobility,
involving �E < JD,�, remains possible, leading to partial D
diffusion at times ∼1/�.

We have performed exact diagonalization calculations with
periodic boundary conditions (PBC) of the evolution of the
many-body state |�(t)〉 given by model (2) for small systems
(nD,nS,L) of nD D’s, ns S’s, and L lattice sites, corresponding
to Leff = L − 3nD − 2nS effective sites [44]. We average over
various initial random distributions of D’s and S’s at fixed
positions in the effective lattice. Figure 4 shows for �/J =
0.013 (V = −100J ) the dynamics of the inhomogeneity of
D’s, �N ≡ 1

Leff

∑Leff
j=1 |〈�(t)|N̂j − N̂j+1|�(t)〉|2 (with N̂j ≡

D̂
†
j D̂j ) [9]. Perfect homogeneity means �N = 0. In Fig. 4

we depict for comparison the results for �/J = 0.13 [46].

Whereas for �/J = 0.13, D’s diffuse within a time scale 1/�,
for �/J = 0.013 quasiresonances allow only a fraction of
D’s to delocalize in this time scale (shaded region in Fig. 4)
and a much slower dynamics follows. This slow dynamics is
characteristic of systems with PBC due the collective motion
of all D’s [10]. Consistent with this, the time scale of the slow D
dynamics for the (nD,nS,L) = (3,3,27) case is approximately
10 times longer than that for (2,2,20) [47]. We hence expect
an exponentially diverging time scale for the slow dynamics
for growing number of dimers.

We may expand |�(t)〉 = ∑nmax
ν=1 ψ(ν,t)|ν〉 over the nmax =(

Leff

nD+nS

)(
nD+nS

nS

)
many-body states |ν〉 accounting for all pos-

sible distributions of S’s and D’s in the effective lattice.
MBL may be visualized as localization in this many-body
space. The latter is best quantified by the inverse participation
ratio (IPR), η(t) ≡ 1

nmax
[
∑

ν |ψ(ν; t)|4]
−1

; a fully delocalized
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FIG. 4. (Color online) Inhomogeneity �N (t) as a function of
�t for �/J = 0.013, for (nD,nS,L) = (2,2,20) (dashed blue) and
(3,3,27) (solid red). The results are obtained by exact diagonalization
averaging over 50 and 25 random initial conditions, respectively. The
shaded region indicates approximately the region of fast decay due
to quasiresonances. We depict for comparison the results for (3,3,27)
for �/J = 0.13 (dotted pink). The inset shows the IPR for (3,3,27)
for �/J = 0.013 (solid red) and �/J = 0.13 (dotted pink).
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(localized) state presents η ∼ 1 (∼1/nmax). Whereas for
�/J = 0.13, η(t) ∼ 1 at �t < 10, for �/J = 0.013, η(t)
remains very small even for �t � 1 (inset of Fig. 4), showing
the appearance of quasilocalization in the many-body space.

g. Experimental feasibility. The previous scenarios can be
realized with polar molecules in OLs, as we illustrate for the
case of NaK, which possesses an electric dipole of 2.72 debyes
in its lowest rovibrational level [48]. We consider the realistic
case of partially polarized molecules with 1 debye. For a
lattice spacing of 532 nm, V/h � 1 kHz. Assuming a lattice
depth of 18Erec, with Erec/h � 2.75 kHz the recoil energy,
J/h � 10 Hz = |V |/100, and hence 1/� ∼ 1 s. As shown in
Fig. 4 the slow dimer dynamics can be much larger, stretching
well beyond a minute, which is the typical maximal lifetime in
experiments. Localization can be explored either in expansion
experiments, or by site-resolved measurements. Moreover, the
formation of a repulsive gas with attractive DDI can be readily
monitored. Tightening an overall harmonic trap should result
in the formation of an incompressible crystalline core that
can be revealed by measuring the saturation of the mean
radius of the sample and/or by site-resolved measurements.
Furthermore, BR hinders two or more molecules to gather

at the same site, preventing chemical recombination losses
despite attractive DDI.

h. Summary. The absence of dissipation leads to rich out-
of-equilibrium dynamics in polar lattice gases characterized
by the formation of inter-site bound clusters and blockade
repulsion even for attractive DDI. The combination of these
effects with the control possibilities of ultracold gases may
allow the realization of effective repulsive 1D gases with
attractive DDI, the creation of dynamically bound crystals,
and most interestingly, quasi-MBL in absence of disorder. The
latter opens interesting perspectives for observing a dynamical
phase transition in polar lattice gases from a delocalized to a
quasi-MBL regime as a function of the V/J ratio.
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