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We study a quasi-one-dimensional attractive Bose gas confined in an optical lattice with a superimposed
harmonic potential by analyzing the one-dimensional Bose-Hubbard Hamiltonian of the system. Starting from
the three-dimensional many-body quantum Hamiltonian, we derive strong inequalities involving the transverse
degrees of freedom under which the one-dimensional Bose-Hubbard Hamiltonian can be safely used. To have
a reliable description of the one-dimensional ground state, which we call a quantum bright soliton, we use the
density-matrix-renormalization-group (DMRG) technique. By comparing DMRG results with mean-field (MF)
ones, we find that beyond-mean-field effects become relevant by increasing the attraction between bosons or by
decreasing the frequency of the harmonic confinement. In particular, we find that, contrary to the MF predictions
based on the discrete nonlinear Schrödinger equation, average density profiles of quantum bright solitons are not
shape-invariant. We also use the time-evolving-block-decimation method to investigate the dynamical properties
of bright solitons when the frequency of the harmonic potential is suddenly increased. This quantum quench
induces a breathing mode whose period crucially depends on the final strength of the superimposed harmonic
confinement.
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I. INTRODUCTION

Ultracold bosonic gases in reduced dimensionality are an
ideal platform for probing many-body phenomena where quan-
tum fluctuations play a fundamental role [1,2]. In particular,
the use of optical lattices has allowed the experimental real-
ization [3] of the well-known Bose-Hubbard Hamiltonian [4]
with dilute and ultracold alkali-metal atoms. This achievement
has had a tremendous impact on several communities [5]
since it is one of the first experimental realizations of a
model presenting a pure quantum phase transition, namely
the metal-Mott insulator transition. At the same time, new
experimental techniques, such as in situ imaging [6], are
now available to detect many-body correlations and density
profiles. Furthermore, these techniques offer the possibility
to observe intriguing many-body effects in regimes that are
far from equilibrium. In this context, the relaxation dynamics
regimes [7] and light-cone-like effects [8] in a one-dimensional
(1D) Bose gas loaded on an optical lattice have been recently
observed.

The 1D Bose-Hubbard Hamiltonian, which accurately de-
scribes dilute and ultracold atoms in a strictly 1D optical lattice,
is usually analyzed in the case of repulsive interaction strength,
which corresponds to a positive interatomic s-wave scattering
length [9]. Indeed, a negative s-wave scattering length implies
an attractive interaction strength, which may bring about a
collapse [10,11] due to the shrinking of the transverse width
of a realistic quasi-1D bosonic cloud. Moreover, in certain
regimes of interaction, the quasi-1D mean-field (MF) theory
predicts the existence of metastable configurations [12], which
are usually called discrete bright solitons. We remark that
continuous bright solitons have been observed in various
experiments [13–16] involving attractive bosons of 7Li and
85Rb vapors. Instead, discrete (gap) bright solitons in quasi-1D
optical lattices have been observed [17] only with repulsive
bosons made of 87Rb atoms.

In this paper, we first derive an effective 1D Bose-Hubbard
Hamiltonian that takes into account the transverse width of the
3D atomic cloud. In this way, we determine a strong inequality
under which the effective 1D Bose-Hubbard Hamiltonian
reduces to the familiar one and the collapse of discrete
bright solitons is fully avoided. We then work in this strictly
1D regime analyzing the 1D Bose-Hubbard Hamiltonian
by using the density-matrix-renormalization-group (DMRG)
technique [18]. We evaluate density profiles and quantum
fluctuations, finding that, for a fixed number of atoms,
there are regimes where the MF results (obtained with a
discrete nonlinear Schrödinger equation) strongly differ from
the DMRG ones. Finally, we impose a quantum quench
to the discrete bright solitons by suddenly increasing the
frequency of the harmonic potential. By using the time-
evolving-block-decimation (TEBD) method [19], we find that
this quantum quench induces a breathing oscillation in the
bosonic cloud. Also in this dynamical case, we find that the MF
predictions are not reliable when the on-site attractive energy is
large.

II. THE MODEL

We consider a dilute and ultracold gas of bosonic atoms
confined in the plane (x,y) by the transverse harmonic
potential

U (x,y) = m

2
ω2

⊥(x2 + y2). (1)

In addition, we suppose that the axial potential is a combination
of periodic and harmonic potentials, i.e.,

V (z) = V0 cos2 (2k0z) + 1
2ω2

zz
2. (2)

This potential models the quasi-1D optical lattice pro-
duced in experiments with Bose-Einstein condensates by
using counterpropagating laser beams [20]. We choose
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λ = ωz/ω⊥ � 1, which implies a weak axial harmonic con-
finement. The characteristic harmonic length of transverse
confinement is given by a⊥ = √

�/(mω⊥), and, for sim-
plicity, we choose a⊥ and �ω⊥ as length unit and energy
unit, respectively. In the rest of the paper, we use scaled
variables.

We assume that the system is well described by the
quantum-field-theory Hamiltonian (in scaled units)

H =
∫

d3r ψ+(r)

[
−1

2
∇2 + U (x,y) + V (z)

+πg ψ+(r)ψ(r)

]
ψ(r), (3)

where ψ(r) is the bosonic field operator and g = 2as/a⊥,
with as the s-wave scattering length of the interatomic
potential [21].

A. Discretization

We perform a discretization of the 3D Hamiltonian along
the z axis due to the presence on the periodic potential. In
particular, we use the decomposition [5]

ψ(r) =
∑

i

φi(x,y)wi(z), (4)

where wi(z) is the Wannier function maximally localized at
the ith minimum of the axial periodic potential. In this paper,
we consider the case of an even number L of sites zi = (2i −
L − 1)π/(4k0) with i = 1,2, . . . ,L.

This tight-binding ansatz is reliable in the case of a deep
optical lattice [22,23]. To further simplify the problem, we set
(field-theory extension of the mean-field approach developed
in [11])

φi(x,y)|GS〉 = 1

π1/2σi

exp

[
−

(
x2 + y2

2σ 2
i

)]
bi |GS〉, (5)

where |GS〉 is the many-body ground state, while σi and bi

account, respectively, for the adimensional on-site transverse
width (in units of a⊥) and the bosonic field operator. We insert
this ansatz into Eq. (3) and we easily obtain the effective 1D
Bose-Hubbard Hamiltonian

H =
∑

i

{[
1

2

(
1

σ 2
i

+ σ 2
i

)
+ εi

]
ni

− J b+
i (bi+1 + bi−1) + 1

2

U

σ 2
i

ni(ni − 1)

}
, (6)

where ni = b+
i bi is the on-site number operator,

εi =
∫

w∗
i (z)

[
−1

2

∂2

∂z2
+ V (z)

]
wi(z)dz (7)

is the on-site axial energy, which can be written as εi =
VS + VT (2i − L − 1)2 with VS the on-site energy due to the
periodic potential and VT the strength (harmonic constant)
of the superimposed harmonic potential, while J and U are
the familiar adimensional hopping (tunneling) energy and
adimensional on-site energy, which are experimentally tunable

via V0 and as [9]. J and U are given by

J = −
∫

w∗
i+1(z)

[
−1

2

∂2

∂z2
+ V (z)

]
wi(z) dz, (8)

U = g

∫
|wi(z)|4dz. (9)

Remember that now V (z) is in units of �ω⊥ and z is in units
of a⊥. Even if J and U actually depend on the site index i, the
choice of considering low VT allows us to keep them constant.

B. Dimensional reduction

Our Eq. (6) takes into account deviations with respect to
the strictly 1D case due to the transverse width σi of the
bosonic field. We call the Hamiltonian (6) quasi-1D because
it depends explicitly on a transverse width σi , which is not
equal to the characteristic length a⊥ of the transverse harmonic
confinement.

This on-site transverse width σi can be determined by
averaging the Hamiltonian (6) over a many-body quantum
state |GS〉 and minimizing the resulting energy function,

〈GS|H |GS〉 =
∑

i

{[
1

2

(
1

σ 2
i

+ σ 2
i

)
+ εi

]
〈ni〉

+ 1

2

U

σ 2
i

(〈
n2

i

〉 − 〈ni〉
)

− J (〈b+
i bi+1〉 + 〈b+

i bi−1〉)
}

(10)

with respect to σi . Notice that the hopping term is independent
of σi . In this way, by using the Hellmann-Feynman theorem,
one immediately gets

σ 4
i = 1 + U

〈
n2

i

〉 − 〈ni〉
〈ni〉 . (11)

Equations (6) and (11) must be solved self-consistently to
obtain the ground state of the system. Clearly, if U < 0,
the transverse width σi is smaller than 1 (i.e., σi < a⊥ in
dimensional units) and the collapse happens when σi goes
to zero [11]. At the critical strength Uc of the collapse, all
particles are accumulated in the two central sites (i = L/2 and
i = L/2 + 1) around the minimum of the harmonic potential,
and consequently Uc 	 −2/N [i.e., Uc/(�ω⊥) 	 −2/N in
dimensional units].

We stress that, from Eq. (11), the system is strictly 1D only
if the strong inequality

U

〈
n2

i

〉 − 〈ni〉
〈ni〉 � 1 (12)

is satisfied for any i, such that σi = 1 (i.e., σi = a⊥ in
dimensional units). Under the condition (12), the problem of
collapse is fully avoided.

III. NUMERICAL RESULTS

In the remaining part of the paper, we shall work in this
strictly 1D regime where the effective Hamiltonian of Eq. (6)
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becomes (neglecting the irrelevant constant transverse energy)

H = −J
∑

i

b
†
i (bi + 1 + bi−1) + U

2

∑
i

ni(ni − 1) +
∑

i

εini,

(13)

which is the familiar 1D Bose-Hubbard model [4]. We call the
Hamiltonian (13) strictly 1D because the transverse width σi

is equal to the characteristic length a⊥ of transverse harmonic
confinement.

A. Glauber coherent state and DNLSE

As already mentioned, in a 1D configuration, quantum
fluctuations, which are actually neglected in mean-field ap-
proaches, can play a relevant role. Thus, in our 1D problem,
it is relevant to compare MF predictions with DMRG ones in
order to observe in which regimes MF can give accurate and
reliable results. In particular, we use a MF approach based on
a Glauber coherent state,

|GCS〉 = |β1〉 ⊗ · · · ⊗ |βL〉, (14)

where |βi〉 is, by definition, such that bi |βi〉 = βi |βj 〉 [24].
By minimizing the energy 〈GCS|H |GCS〉 with respect to βi ,
one finds that the complex numbers βi satisfy the 1D discrete
nonlinear Schrödinger equation (DNLSE)

μβi = εiβi − J (βi+1 + βi−1) + U |βi |2βi, (15)

where μ is the chemical potential of the system fixed by the
total number of atoms: N = ∑

i |βi |2 = ∑
i〈GCS|ni |GCS〉.

By solving Eq. (15) with the Crank-Nicolson predictor-
corrector algorithm with imaginary time [25], it is possible
to show that in the attractive case (U < 0), discrete bright
solitons exist [11].

On general physical grounds, one expects that the MF
results obtained from the DNLSE of Eq. (15) are fully
reliable only when U → 0 and N → ∞, with UN taken
constant. Indeed, the Glauber coherent state |GCS〉 is the
exact ground state of the Bose-Hubbard Hamiltonian only
if U = 0 and N → ∞. Notice that the exact ground state
of the Bose-Hubbard Hamiltonian with U = 0 and a finite
number N of bosons is the atomic coherent state |ACS〉,
which reduces to the Glauber coherent state |GCS〉 only for
N → ∞ (see, for instance, [26]). In practice, one expects that
MF results are meaningful in the superfluid regime where
there is a quasicondensate, i.e., algebraic decay of phase
correlations [1,5,21]. Nevertheless, in general it is quite hard
to determine this superfluid regime. For this reason, working
with a small number N of bosons, it is important to compare
the Glauber MF theory with a quasiexact method.

B. DMRG approach

DMRG is able to take into account the full quantum
behavior of the system, and it has already given strong evidence
of solitonic waves in spin chains [27] and in bosonic models
with nearest-neighbor interaction [28]. A crucial point in order
to have accurate results by using DMRG involves the size
of the Hilbert space we set in our simulations. Clearly, for
system sizes and densities comparable with the experimental
ones, we cannot investigate the collapse phase where all the

bosons “collapse” in one site. Indeed, it requires a size of the
Hilbert space that is not approachable with our method. In
any case, as shown in Eq. (11), this phase does not happen
for sufficiently low density and on-site interaction U . For this
reason, and in order to fulfill Eq. (11), we consider regimes
that are sufficiently far from this scenario. More precisely, we
use a number N = 20 of bosons in L = 80 lattice sites and
interactions U � −0.1. Nevertheless, if we allow a too small
number of bosons per site, i.e., if we consider a too small
Hilbert space, even if we are far from the collapse, our results
might not be reliable since the shape of the density profile is
modified by this cutoff and not by physical reasons. To treat this
problem, we consider a maximum number of bosons in each
site, nmax = 8, and we checked that increasing this quantity
does not significantly affect our results. Moreover, we keep up
to 512 DMRG states and six fine size sweeps [18] to have a
truncation error lower than 10−10.

C. Comparing DMRG with DNLSE

In Fig. 1, we compare the density profiles given by DMRG
with the ones obtained by using the mean-field DNLSE for
different strengths of the harmonic potential and interaction.
For weak interactions U , the particles are substantially free and
the shape of the cloud is given only by the harmonic strength
VT . Of course when the particles are strongly confined in the
center of the system, as in panel (a) of Fig. 1, the interaction
U begins to play a role due to the relevant number of bosons
lying in the two central sites. More precisely, U tries to drop
quantum fluctuations induced by J , and it explains the small
but significant discrepancies we find.

When the interaction U is sufficiently strong [Figs. 1(g)–
1(i)], the MF results become insensitive to the superimposed
harmonic potential of strength VT since the shape of the cloud
remains practically unchanged giving rise to self-localized
profiles. Instead, DMRG results do not show this self-
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FIG. 1. (Color online) MF (squares) and DMRG (circles) density
profiles 〈ni〉 of the bright soliton with J = 0.5, L = 80, and N = 20.
On the horizontal axis there is the scaled axial coordinate z/z0, with
z0 = π/(4k0). The results of each panel are obtained with different
values of harmonic strength VT (columns) and interaction strength U

(rows).
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FIG. 2. (Color online) MF (squares) and DMRG (circles) quan-
tum fluctuations �ni =

√
〈n2

i 〉 − 〈ni〉2 of the bright soliton with
J = 0.5, L = 80, and N = 20. On the horizontal axis there is the
scaled axial coordinate z/z0, with z0 = π/(4k0). The results of each
panel are obtained with different values of harmonic strength VT

(columns) and interaction strength U (rows).

localization. In fact, quantum fluctuations try, in opposition
to U , to maximally delocalize the bosonic cloud.

To check if our interpretation is valid, we plot in Fig. 2 the
expectation value of quantum fluctuations,

�ni =
√〈

n2
i

〉 − 〈ni〉2. (16)

For the Glauber coherent state |GCS〉, one has �ni = √
ni . We

expect that �ni of the DMRG ground state |GS〉 can be quite
different from the MF prediction. More precisely, quantum
fluctuations are enhanced by the kinetic term J , which tries
to maximally spread the shape of the cloud. On the other
hand, the value of �ni is minimized both by the strong on-site
interaction (because the system gains energy having many
particles in the same site) and by the strong trapping potential
(which confines the bosons in the two central sites of the lattice
where VT is weaker). This behavior is clear in Fig. 2, where,
for large U and small VT , �ni presents strong deviations from
MF behavior, whereas mean-field DNLSE and DMRG are in
substantial agreement in the opposite regime.

D. Dynamical properties

Another relevant aspect of bright solitons is given by
its dynamical properties. In particular, it is predicted by
time-dependent DNLSE [12] that a discrete bright soliton can
give rise to a breathing mode. To study the time evolution of the
system, we use the time-evolving-block-decimation (TEBD)
algorithm [19], which is still a quasiexact method recently
used to study the appearance of a dark soliton [29] and its
entanglement properties [30,31]. We compare TEBD results
with time-dependent DNLSE ones, which are immediately
obtained from Eq. (15) with the position μ → id/dt . We
determine the ground state of the Bose system for a chosen
value V in

T of transverse confinement, and then we perform
the time evolution with a larger value V fin

T . In this way, we
mimic a sudden change in the strength VT of the superimposed
harmonic confinement [see panel (a) of Fig. 3].
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02010
2

3

4

5

0 10 20 30 40 50
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3

0 10 20 30 40 50tJ1

2

3

(a)

(b)

(c)

(d)

(e)

VT
in

VT
fin

FIG. 3. (Color online) (a) Illustration of the quench procedure. In
the other panels: MF (dotted lines) and TEBD (dashed lines) central
density 〈nL/2〉 vs time t with J = 0.5, L = 40, and N = 10. Panels
(b) and (c): quench from V in

T = 0.01 to V fin
T = 0.05 for, respectively,

U = −0.1,−0.01. Panels (d) and (e): quench from V in
T = 0.001 to

V fin
T = 0.005 for, respectively, U = −0.1,−0.01.

In Figs. 3(a)–3(d), we report the density of atoms in the two
central sites (where it takes the highest value since the effect
of VT is weaker) as a function of time t . The panels show
a periodic oscillation where the period τ of this breathing
mode strongly grows by reducing the harmonic strength VT .
Moreover, τ is slightly enhanced by a smaller |U |. Remarkably,
as in the static case, beyond-mean-field effects become relevant
for a strong |U | and they are instead less evident for high values
of VT . Indeed, in Fig. 3 the relative difference between TEBD
and MF in the period τ is below 1% in panels (c) and (e), while
it is around 8% in panel (b) and around 37% in panel (d).

IV. CONCLUSIONS

In this paper, we have obtained a strong inequality, Eq. (12),
under which the 3D system is reduced to a strictly-1D one and
the collapse is fully avoided. Moreover, we have compared
MF theory with the DMRG looking for beyond-mean-field
effects in the effective 1D system of bosons in a lattice.
From our results, we conclude that the self-localized discrete
bright solitons obtained by the MF nonlinear Schrödinger
equation are not found with the DMRG results (quantum
bright solitons). In other words, we have found that with
a small number N of bosons, the average of the quantum
density profile, which is experimentally obtained with repeated
measures of the atomic cloud, is not shape-invariant [32].
This remarkable effect can be explained by considering a
quantum bright soliton as a MF bright soliton with a center
of mass [33,34] that is randomly distributed due to quantum
fluctuations, which are suppressed only for large values of
N [35]. This is the same kind of reasoning adopted some years
ago to explain the distributed vorticity of superfluid liquid
4He [36], and, more recently, the Anderson localization of
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particles in a one-dimensional system [37] and the filling of a
dark soliton [29]. For the sake of completeness, we have also
analyzed the breathing mode of discrete bright solitons after
a sudden quench, finding that also in the dynamics beyond
mean-field effects become relevant for a strong interaction
strength U and for a small harmonic constant VT [38]. Our
paper presents strong evidence of the limits of MF theory in the
study of bright solitons, suggesting that DMRG calculations
must be used to simulate and analyze them.
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