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Abstract 

Large-Volume Metrology (LVM) instruments – such as laser trackers, photogrammetric 

systems, rotary-laser automatic theodolites, etc. – generally include several sensors, which 

measure the distances and/or angles subtended by some targets. This measurements, combined 

with the spatial position/orientation of sensors (i.e., the so-called extrinsic parameters), can be 

used to locate targets in the measurement volume. Extrinsic parameters of sensors are generally 

determined through dedicated sensor calibration methods, which are based on repeated 

measurements of specific artefacts. 

The combined use of multiple LVM instruments enables exploitation of available equipment 

but may require multiple instrument-dedicated sensor calibrations, which inevitably increase 

set-up time/cost.  

This document presents a novel calibration method – called global calibration – which allows 

the extrinsic parameters of all sensors to be determined in a single process. The proposed 

method uses a special artefact – i.e., a hand-held probe with assorted types of targets and 

inertial sensors – and includes a data-acquisition stage, in which the probe is repositioned in 

different areas of the measurement volume, followed by a data-processing stage, in which an 

ad hoc mathematical/statistical model is used to determine the extrinsic parameters of sensors. 

Additionally, the proposed method includes the formulation of a system of linearized 

equations, which are weighed considering the uncertainty of input variables. 

Keywords: Large-volume metrology, Distributed-sensor network, Extrinsic parameters, Multi-
target probe, Artefact, Generalized Least Squares. 
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1. Introduction and literature review 

Industrial applications in the field of Large-Volume Metrology (LVM) are typically 

concerned with the dimensional verification and assembly of large-sized mechanical 

components (e.g., aircraft/aerospace modules, automotive/commercial  vehicles, large 

ships, wind turbines etc.). These applications generally require sub-millimetric levels 

of uncertainty and involve technologically advanced and expensive measuring 

instruments, which may require time consuming set-up operations [1-6]. 

Among the most common LVM instruments, laser trackers, laser radars, 

photogrammetric systems, and rotary-laser automatic theodolites (R-LATs) allow to 

accurately locate several targets. These instruments are usually equipped with sensors 

performing measurements of the distances and/or angles subtended by some targets 

within the measurement volume. LVM instruments can be classified into: (i) 

centralized, if sensors are grouped into a single (stand-alone) unit (e.g., a laser tracker 

or a photogrammetric bar that includes two/three rigidly connected cameras), or (ii) 

distributed, if sensors are freely positioned around the measurement volume (e.g., a set 

of R-LATs). Even though these instruments may differ in technology and metrological 

characteristics, they generally include a hand-held probe, which is equipped with some 

targets. An operator places the probe stylus in direct contact with the points of interest, 

i.e., on the surface of the measured object. 

Several studies show that the combined use of LVM instruments of different nature 

can lead to a better exploitation of the available equipment and a systematic reduction 

in measurement uncertainty [7-9]. The underlying rationale is simple: in case several 

types of expensive LVM instruments were available in the same metrology laboratory 

or industrial workshop, it would be a waste to use them independently of each other 

(e.g., using a laser tracker for certain tasks only, a photogrammetric system for others, 

and so on). Instead, multiple LVM instruments could be used in conjunction, forming 

a LVM “macro-instrument” that includes a network of various sensors. The volume 

coverage and metrological performance of this macro-instrument are likely to be 

superior to those of the individual instruments [8]. 
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Following this idea, a recently proposed mathematical/statistical approach, called 

“cooperative data fusion”, combines the measurement data (i.e., distances and/or 

angles) from a network of LVM instruments/sensors in order to locate a target [10]. In 

this approach, measurement data by sensors of different types are fused and weighed 

according to the corresponding uncertainties, which means that more weight is given 

to the measurement data from more accurate sensors and vice-versa. Of course, the 

uncertainty in the resulting target location may vary depending on the amount of 

“more accurate” and “less accurate” sensors contributing to the measurement. It is 

interesting to observe that, in some practical cases, the more accurate sensors alone 

could not be sufficient to perform the target localization, making the contribution of 

the less accurate sensors indispensable.  

Contribution [8] gives an emblematic example about a network of two sensors, i.e., (i) 

an accurate interferometric laser and (ii) a not-very-accurate photogrammetric camera, 

which separately would not be able to localize a target, but together would be able to 

do so. The same contribution contains another example concerning a network of (i) a 

scale-bar with three rigidly-connected photogrammetric cameras and (ii) a laser 

tracker, showing that the cooperative-data-fusion approach produces better results than 

using the individual instruments separately (i.e., competitive approach). 

Moreover, a patent application of a modular and multi-target six-degrees-of-freedom 

(6DoF) probe for measurements with combinations of LVM instruments was filed 

[10-12]. Depending on the LVM instruments in use – the probe can be equipped with 

targets of different nature and integrated inertial sensors, which may contribute to the 

probe-location problem. 

This document takes a step back from the probe-location problem, focusing on the 

(chronologically earlier) operation of sensor-network calibration. This operation is 

aimed at estimating a set of characteristic parameters, which can be distinguished into: 

(i) extrinsic parameters, i.e., parameters concerned with the spatial position and 

orientation of sensors (i.e., 3D coordinates and orientation angles), and (ii) intrinsic 

parameters, i.e., parameters concerned with other specific technical characteristics of 

sensors (e.g., the focal distance or lens distortion of photogrammetric sensors, 
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wavelength or air refractive index of interferometric sensors, etc.). Estimating these 

parameters accurately is critical to ensure a just as accurate probe location.  

While the determination of intrinsic parameters can be performed from time to time, 

as long as the conditions of the environment and measurement instruments are 

relatively stable, the determination of extrinsic parameters should be performed 

whenever the sensor-network layout is changed. For example, considering that the 

focal distance (i.e., one of the intrinsic parameters) of a photogrammetric camera is 

relatively stable, it is not required to re-estimate this parameter very frequently [13]. 

In general, specific LVM instruments include dedicated sensor-calibration processes, 

which are based on repeated acquisitions, using specific artefacts [14-16].  

Most often, data acquired are fitted by a mathematical model, based on the 

minimization of an error function. A range of general-purpose minimization 

algorithms can be used, such as those of Gauss-Newton and Levenberg-Marquardt 

[17]. 

When using combinations of different LVM instruments, it is needed to perform 

various instrument-dedicated calibration processes, which are based on the use of 

specific artefacts, acquisition procedures and optimization algorithms [1, 2, 6]. Since 

the sensors of a LVM instrument are generally located referring to a local Cartesian 

coordinate system, it is then imperative to align multiple local coordinate systems on a 

unique absolute coordinate system. Such alignment usually requires further 

measurements, using additional artefacts. Of particular interest is a recent novel 

technique that allows the alignment of multiple coordinate systems, without the use of 

calibrated artefacts [18]. 

Although calibration and alignment operations can be managed by relatively diffused 

commercial software packages, such as Spatial Analyzer®, Verisurf®, etc., the fact 

remains that they inevitably make set-up time/cost increase [19]. 

This document aims at developing a unique calibration method of a network of 

different types of sensors, which allows to determine their extrinsic parameters, in a 

single process and without the need for additional alignments. This calibration method 

will hereafter be referred to as “global” as it simultaneously involves all sensors of all 
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LVM measuring instruments. The same multi-target probe, which is used in the 

measurement phase to locate points of interest, can also be used in the network 

calibration phase, for data acquisition and to provide metrological traceability to the 

measurement unit of length. 

Summarising, the proposed approach is based on five steps: 

1. Introduction of suitable transformations to refer local Cartesian coordinate systems 

(e.g., those related to network sensors, probe, etc.) to a unique absolute coordinate 

system.  

2. Construction of a system of equations relating to the measurements performed and 

the geometric characteristics of the artefacts in use; 

3. Linearization of the above equations with respect to the unknown variables of the 

problem; 

4. Weighing of the equations, based on the uncertainty contributions of the variables 

contained therein, through the Multivariate Law of Propagation of Uncertainty 

(MLPU) [20]. 

5. Solution of the system of equations through the Generalized Least Squares (GLS) 

method and determination of the unknown variables (with relevant uncertainties) 

[21]. 

The rest of the paper is divided into three sections. Sect. 2 describes the proposed 

methodology, formalizing the global-calibration problem from the 

mathematical/statistical point of view and illustrating the proposed solution. Sect. 3 

contains a realistic example of data acquisition. Sect. 4 summarizes the main 

advantages of the proposed method, its limitations, and possible hints for future 

research. The Appendix section contains insights into a variety of issues, including 

hardware components adopted, transformations between coordinate systems, 

construction of matrices with sensor parameters, and mathematical formulation of 

equations. 
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2. Methodology 

This section presents a global calibration procedure. Technical and mathematical 

details are discussed in the Appendix. 

2.1 Hardware components 

Let now consider a typical configuration consisting of: (i) a generic combination of 

LVM instruments with assorted network sensors, (ii) a hand-held probe with multiple 

targets and integrated inertial sensors (i.e., two-axis inclinometer and compass), and 

(iii) a number of acquisitions, in which the probe is repositioned several times within 

the measurement volume, collecting distance/angular measurements by the network 

sensors (with respect to probe targets) and angular measurement by the integrated 

inertial sensors. 

As shown in the scheme in Fig. 1, LVM instruments are indicated with Si (being i = 1, 

2, …). The respective sensors of each i-th instrument are indicated with si.j (being 

j = 1, 2, …). Each i.j-th sensor is able to measure the distances and/or angles 

subtended by some of the targets1, i.e., those that are compatible with it and within the 

relevant communication range. Targets (Tk, being k = 1, 2, …) are rigidly mounted on 

a probe – which is described in detail in Sect. A.1.2 (in the Appendix). Several 

distance/angular measurements are performed during different acquisitions (a = 1, 2, 

...), in which the probe is repositioned in different parts of the measurement volume. 

The above configuration may include the use of additional artefacts such as bars or 

plates with different reference positions, on which to reposition the probe stylus 

during acquisitions [15]. 

Sect. A.1 (in the Appendix) provides an in-depth study of the main hardware 

components used for the global calibration procedure, illustrating their characteristic 

variables/parameters and the relevant scientific notation. 

 

 
1 A common assumption when dealing with LVM instruments is to consider targets and sensors 
as punctiform elements [2]. 
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Fig. 1. Example of combination of three LVM instruments: S1 is a distributed instrument with two 
sensors (s1.1 and s1.2), while S2 and S3 are two centralized instruments with one sensor (s2.1) and two 
sensors (s3.1 and s3.2) respectively. The multi-target probe is equipped with three targets (T1, T2 and 
T3), which can be seen only by those sensors compatible with them (e.g., T1 can be seen by s1.1 and 
s1.2, not by s2.1, s3.1 and s3.2). 

Fig. 2 summarizes the variables/parameters of the global-calibration procedure and the 

coordinate systems in use. The total number of variables may depend on several 

features, such as: 

 number of (centralized or distributed) LVM instruments and relevant sensors; 

 characteristics of the probe in use (number and typology of targets); 

 communication range of the sensors/targets in use; 

 number of acquisitions. 

We remark that all the (known or unknown) variables of the problem are dispersed 

and therefore associated with specific uncertainties. Since some of these variables can 

be correlated with each other, their variability can be expressed through variances and 

covariances. This aspect is developed in Sect. 2.3. 
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  (KNOWN) INPUT DATA

1. Probe geometry 

 Relative position of the k-th probe 
target with respect to the stylus tip. 
(xP,k, yP,k, zP,k) 

 
2. (Centralized) sensor geometry 

 Relative position and orientation of the 
i.j-th sensor of a centralized instrument 
with known geometry, with respect to a 
local coordinate system oi.•xi.•yi.•zi.•.  jijijijijiji

zyx ...000 ,,,,,
...

  

 
3. Geometry of additional artefact(s) 

 Distance between pairs of reference 
points on the artefact. 
(dA,B, dA,C, …) 
 
 

4. Sensor distance/angular measurements 

 Distance/angular measurements by 
distributed sensors, in each a-th 
acquisition. 
(di.j,k(a), i.j,k(a) and i.j,k(a)) 

 Angular measurements by the probe 
(inertial) sensors, in each a-th 
acquisition. 

( P(a)P(a)P(a) ΚΦΩ ˆ,ˆ,ˆ ) 

SYSTEM OF EQUATIONS

 One equation related to each 
combination of i.j-th distance sensor 
and k-th probe target, for each a-th 
acquisition; 

 Two equations related to each 
combination of i.j-th angular sensor and 
k-th probe target, for each a-th 
acquisition; 

 Three equations related to the probe 
(inertial) sensors, for each a-th 
acquisition. 

 Equation related to the rigid-body 
constraint, due to the use of additional 
artefacts on which to position the probe 
stylus. 

SOLUTION

1. Coordinate-system transformation 

 Equations are referred to an absolute 
ground-referenced Coordinate system 
(OXYZ). 

2. Linearization  

 Equations are linearized with respect to 
the unknown variables of the problem 
(see output data). 

3. Weighing 

 Equations are weighed depending on their 
uncertainty contribution, using the 
Multivariate Law of Propagation of 
Uncertainty (MLPU). 

4. Solution 

 The system of equations is solved through 
the Generalized Least Squares (GLS) 
method. 

(UNKNOWN) OUTPUT DATA 

1. Extrinsic parameters of network sensors 

 Absolute position/orientation of the 
individual sensors of distributed or 
centralized LVM instruments with 
unknown geometry. 
 jijijijijiji ΚΦΩZYX ...... ,,,,,  

 Absolute position/orientation of the 
centralized LVM instruments. 
  ...... ,,,,, iiiiii ΚΦΩZYX  

 
2. Position/orientation parameters of the probe 

in each a-th acquisition. 

 )()()()()()( ,,,,, aPaPaPaPaPaP ΚΦΩZYX  
 

Fig. 2. Scheme of the global-calibration procedure. 

For practical reasons, the LVM instruments will be hereafter classified into two 

families: 

Type-A instruments, which include distributed LVM instruments or centralized ones 

with unknown geometry (i.e., with unknown relative positions among sensors); 

Type-B instruments, which includes centralized LVM instruments with known 

geometry (i.e., in terms of relative positions of the sensors that are rigidly 

connected to each other). 

Additionally, the scheme in Fig. 1 represents an absolute ground-referenced 

coordinate system (OXYZ), with origin in a conventional point (for example, 

corresponding to one of the network sensors), Z axis vertical to ground plane, X axis 

pointing towards magnetic north, Y axis perpendicular to the two previous axes and 

oriented right-handedly. This choice was made to simplify the formulation of the 

equations related to the probe integrated (inertial) sensors. 
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For all hardware components used in the global calibration procedure, it is possible to 

define local Cartesian reference systems, which – thanks to appropriate roto-

translation transformations – can be related to OXYZ. Sect. A.2 (in the Appendix) 

describes these transformations in detail. 

2.2 Formulation of equations 

Depending on the configuration of the LVM metrology instruments in use (e.g., sensor 

types, layout, etc.) and the acquisition procedure (e.g., number of acquisitions, use of 

artefacts, etc.), it is possible to formulate a system of equations including: (i) equations 

related to the distance measurements by network sensors, (ii) equations related to the 

angular measurements by network sensors, (iii) equations related to the probe’s 

integrated sensors, and (iv) equations related to the additional artefact (if applicable). 

Using the transformations between local and global coordinate systems (in Sect. A.2, 

in the Appendix), it is possible to formulate the equations, as functions of the 

(unknown) variables of the problem, which are contained in the following column 

vector: 

 

 

 





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
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X

X

X

X

X

X

X . (1) 

The variables contained in X are referenced to the absolute Cartesian coordinate 

system OXYZ; for details, please see Sect. A.1 (in the Appendix). 

Next, equations can be linearised through a first order Taylor expansion with respect 

to the parameters contained in X. This linearization can be automated, e.g., using the 

Matlab's function "functionalDerivative" or other symbolic-calculation tools. 

For a generic combination of LVM instruments with (i) various network sensors, (ii) a 
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probe with multiple targets and integrated sensors, and (iii) an additional calibrated 

artefact, the global-calibration problem can be formulated in compact form as: 

0

B

B

B

B

X

A

A

A

A

BXA

art

int

ang

dist

art

int

ang

dist













































 , (2) 

where blocks Adist, Aang, Aint, Aart, Bdist, Bang, Bint and Bart are defined as: 





















distdist AA )(,. akji , 





















angang AA )(,. akji , 





















intint AA )(a ,  





















artart AA

caa '',' , (3) 





















distdist BB )(,. akji , 





















angang BB )(,. akji , 





















intint BB )(a ,  





















artart BB

caa '',' . 

 

All equations of the system in Eq. 2 are linear(ized) and referenced to the absolute 

system OXYZ. The total number of unknown variables in the column vector X will 

depend on: 

1. the configuration of the sensor network. In fact, there are six unknowns 

( jijijijijiji ΚΦΩZYX ...... ,,,,, ) for each sensor of a type-A instrument and six 

unknowns (  ...... ,,,,, iiiiii ΚΦΩZYX ) for each type-B instrument, which is 

modelled as a single rigid-body with known geometry2; 

2. the number of acquisitions provided in the global-calibration procedure. For each 

a-th acquisition, the position and orientation of the probe 

( )()()()()()( ,,,,, aPaPaPaPaPaP ZYX  ) are unknown. 

 
2 As explained in Sect. A.3.1 (in the Appendix), the unknowns related to distance sensors are 
only three, as the three orientation angles are arbitrary and can be omitted or replaced with 
arbitrary numerical values. 
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2.3 Weighting and solution 

The equations may differently contribute to the uncertainty in the localization of 

network sensors and probe during acquisitions. The main uncertainty sources are: 

 Uncertainty in the local measurements by network sensors ( )(,.
ˆ

akjid , )(,.
ˆ

akji  and 

)(,.ˆ akji ), which depends on their metrological characteristics; 

 Uncertainty in the local measurements by the probe’s integrated sensors 

( P(a)P(a)P(a) KΦΩ ˆ,ˆ,ˆ ), which depends on their metrological characteristics; 

 Uncertainty in the relative position of the probe tip (P) with respect to probe 

targets ( kx̂ , kŷ  and kẑ ), which depends on the ad hoc geometric-calibration 

process of the probe; 

 Uncertainty in the relative position/orientation of the sensors of type-B instruments 

( jijijijijiji
zyx ...000 ˆ,ˆ,ˆ,ˆ,ˆ,ˆ

...
 ), which generally depends on the ad hoc calibration 

process of the (centralized) instrument; 

 Uncertainty in the mutual distances between pairs of reference points on the 

additional artefact (  caad '','
ˆ ), which generally depends on the ad hoc geometric 

calibration of the additional artefact(s). 

Since the system in Eq. 2 is over-defined (more equations than unknown parameters), 

there are several possible solution approaches [22, 23]. This system can be solved by 

applying the Generalized Least Squares (GLS) method, which gives greater weight to 

the contributions from equations that produce less uncertainty and vice versa [21]. 

This weighing allows the combination of data from measuring instruments/sensors 

with heterogeneous levels of uncertainty (e.g., less accurate sensors, such as low-cost 

photogrammetric cameras, and more accurate sensors, such as the interferometric 

distance sensor of a laser tracker). 

The first step is to define a weight matrix (W) by applying the Multivariate Law of 

Propagation of Uncertainty (MLPU) to the system in Eq. 2, with reference to the 

parameters affected by uncertainty [24], which can be aggregated into a column vector 
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.  can then be split into sub-vectors *, which group the akin input variables (“*” is a 

“wild-card” character that can be replaced with “probe”, “type-B instr.”, “add. artef.”, 

“network sens.”, “integr. Sens.”): 

 
 

  
 
  



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
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
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










T
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T

akjiakjiakji
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jijiji
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d
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jijiji
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



)()()(

)(,.)(,.)(,.

'','

...000

ˆ,ˆ,ˆ

ˆ,ˆ,ˆ

ˆ

ˆ,ˆ,ˆ,ˆ,ˆ,ˆ

ˆ,ˆ,ˆ

...







sens.integr.

sens.network

add.artef.

instr.Btype

probe

ξ

ξ

ξ

ξ

ξ

ξ . (4) 

Since the parameters into the sub-vectors probe, type-B instr., and add. artef. describe the 

geometric characteristics of the relevant hardware components, they require a 

preliminary estimation through ad hoc geometric calibration processes, for example 

using a coordinate-measuring machine (CMM). Consequently, these variables will 

contribute to metrological traceability with respect to the measurement unit of length. 

Propagating the uncertainty of the equations in Eq. 2 with respect to the elements in , 

W can be determined as: 

  1
 TJJW ξ , (5) 

being 

J the Jacobian (block-diagonal) matrix with the partial derivatives of the elements in 

first members of Eq. 2 with respect to the elements in ; 

 the covariance matrix of . 

An in-depth description of J and  is given in Sect. A.4 (in the Appendix). 

The system of equations in Eq. 2 can then be solved through the GLS method [20, 21], 

obtaining a final estimate of X as: 

  BWAAWAX 
 TT 1ˆ .  (6) 

An initial estimate of X is required to define some elements of the matrices A, B and 

W (demonstration omitted). This problem can be overcome applying Eq. 6 
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recursively: (i) setting (no-matter-what) initial values in X
ˆ̂

, in order to determine the 

elements of matrices A, B and W, (ii) determining the unknown parameters in X, and 

(iii) iterating the solution using the result of the previous one as a new X
ˆ̂

.  

In general, the solution tends to converge after about five-ten iterations. When 

applying Eq. 6, it is generally  recommended to replace the product between matrices 

  WAAWA 
 TT 1

 with the Moore-Penrose pseudoinverse of AWA T , in order 

to avoid matrix conditioning problems [21]. 

2.4 Measurement uncertainty estimation 

The mathematical/statistical model presented in Sects. 2.2 and 2.3 can also be used to 

determine the uncertainty in the estimate of X. Precisely, the covariance matrix X can 

be determined through the application of the Multivariate Law of Propagation of 

Uncertainty (MLPU) to the system of equations in Eq. 2, referring to the parameters 

affected by uncertainty in X [20, 24]: 

  1
 AWAX

T . (7) 

The X matrix will depend on the characteristics of the sensor network (in terms of 

layout and metrological characteristics) and the geometric/metrological characteristics 

of the probe or additional artefact(s). 

Sect. A.5 (in the Appendix) describes in detail X, showing the way to estimate the so-

called expanded uncertainties related to the positions of the network sensors and the 

multi-target probe, during acquisitions. 

3. Example of data acquisition 

This section exemplifies the data acquisition stage, which includes three phases, 

described in the following sub-sections. 

Phase 1: Spatial arrangement of network sensors  

In the absence of design constraints, it is recommended that network sensors are 

spread around the measurement volume as homogeneously/uniformly as possible, i.e. 
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(i) avoiding concentrating them in certain areas, to the detriment of others, and (ii) 

trying to mix sensors of a different nature. These measures allow to cover the 

measurement volume in a relatively uniform way, avoiding that some areas are more 

"favoured" than others (e.g., maybe because they are covered by a greater amount of 

relatively accurate network sensors). A practical way to meet the above requirement is 

to position the sensors on the ceiling, according to a regular 2D grid, as described in 

[9]. 

For example, let consider a network of sensors, related to the three following LVM 

instruments (see Fig. 3): 

(S1) A photogrammetric system including three (distributed) photogrammetric cameras 

(s1.1, s1.2 and s1.3); 

(S2) A laser tracker equipped with (i) an ADM (absolute distance meter) sensor (s2.1), 

which provides distance measurements, and (ii) an angular sensor (s2.2), which 

provides angular measurements (s2.1≡ s2.2). 

(S3) An iSpace/iGPS system consisting of a single R-LAT sensor (s3.1) [14-16]. 

 Photogrammetric cameras of S1  
 Sensors of the laser tracker (S2) 
 R-LAT sensor of the iSpace/iGPS (S3) 
 Additional artefact 

Key: 

c3 

s1.1 

s2.1≡s2.2 

≈ 6 m 

≈ 6m

(h ≈ 3.5 m) 

s1.2 

(h ≈ 3.5 m) 

s1.3 

(h ≈ 3.5 m) (h ≈ 1 m) 

s3.1 

(h ≈ 2 m) 

(h ≈ 1 m) 

c1 

(h ≈ 0.7 m) 

c2 

(h ≈ 0.3 m) 

 
Fig. 3. Approximate layout of the sensor network and the additional artefact, during acquisitions 
(plant view). In brackets the approximate height of each device with respect to the floor level. 

Phase 2: Multi-target probe set-up 
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The probe should have a relatively high number of targets, which are spaced as far 

apart as possible, but at the same time it should not be so bulky as to hinder its 

portability and handling [10, 12]. 

Returning to the previous example, we use a probe with the following characteristics 

(see Fig. 4):  

 

150 mm 

T3 

T1 

T2 

oP xP 

yP 
zP 

stylus tip 

T4 

250 mm90 mm 

140 mm

150 mm 120 mm 

power-supply cable 

sint 

 

Fig. 4. Scheme of the probe adopted for data acquisition, including two reflective spherical markers 
(T1 and T2), a SMR (T3), a R-LAT target (T4), and two integrated inertial sensors (sint). 

 

 two reflective spherical markers (T1 and T2), which are visible from the three 

photogrammetric cameras (s1.1, s1.2 and s1.3);  

 a spherically mounted retroreflector (T3), which is visible from the two laser-

tracker sensors (s2.1 and s2.2); 

 a R-LAT target (T4), which is visible from the R-LAT sensor (s3.1); 

 a tip (P), which will be repositioned during acquisitions; 

 two integrated (inertial) sensors (sint, i.e., compass and two-axis inclinometer). 

The probe geometry, in terms of relative positions between the targets and the tip, is 

determined in advance through an appropriate calibration process.  

Phase 3: Data acquisition 

During acquisitions, all network sensors should perform a certain number of (angular 

or distance) measurements with respect to relevant probe targets. To achieve this, the 

number of probe “repositionings” should be sufficient and they should be uniformly 
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distributed over the measuring volume. In general, for the global calibration 

procedure to provide relatively accurate results, the number of acquisitions must be 

redundant with respect to the strictly minimum number [20-22]. Acquisitions may also 

involve the use of additional artefact(s) on which to place the probe during the 

acquisitions. Knowledge of the geometry of the additional artefact(s) may help 

improve the accuracy of the solution provided, contributing to the metrological 

traceability with respect to the length unit of measurement [10, 12, 24]. 

Returning to the example, acquisitions are performed using a four-position (A, B, C 

and D) plate with known geometry. This artefact will be located in three different 

areas of the measurement volume (c1, c2 and c3, as shown in Fig. 3) and the probe will 

be repositioned on the four reference positions, during acquisitions. The total number 

of acquisitions will therefore be twelve. 

Fig. 5 shows a qualitative representation of the artefact. 

 

≈ 400 mm

≈ 800 mm

A 

B C 

D 

dA,B dC,D 

dA,D 

dB,C 

dA,C dB,D 

 

Fig. 5. Qualitative representation of the artefact exemplified. A, B, C and D are four reference 
positions where to put the probe tip during acquisitions. 

3.1 Step-by-step acquisition 

For a certain configuration of network sensors and probe targets, the number of 

acquisitions required for the global calibration procedure cannot be determined a 

priori, for (at least) three reasons: 
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 Since sensors have different coverage ranges, it is not easy to predict which probe 

target(s) will be covered in any acquisition. The possible presence of obstacles 

interposed between sensors and probe targets (e.g., operator, probe itself, measured 

object) may affect the sensor-target communication. 

 It may happen that acquisitions are polarized on some sensors, “overlooking” 

others. 

Therefore, there is a need for a real-time indication to assist the user during 

acquisitions. To fill this gap, an ad hoc software interface can be used. Precisely, each 

network sensor can be associated with a counter that records the number of 

measurements taken so far. For example, if a sensor performs two angular 

measurements and a single distance measurement with respect to some probe targets, 

the corresponding counter will be increased by three units. Each sensor can be 

associated with a parameter (m), which represents the number of measurements taken 

by the sensor of interest, with respect to one or more probe targets, up to that time. In 

general, the acquisition procedure continues as long as the following condition is met 

for each sensor: 

doftm  , (8) 

where: 

dof (which stands for “degrees of freedom”) is the number of unknown parameters for 

the sensor of interest, i.e., dof = 6 for angular or hybrid sensors (since they have 

three position and three orientation parameters) and dof = 3 for pure distance 

sensors (orientation is not influential); 

t is a conventional threshold which should hopefully be greater than the unit, so that 

each sensor should take more measurements than the strictly necessary amount 

(dof) to determine the unknown parameters. In a later example, t will be set to 2. 

For each network sensor, the quantity 
dof

m
 can be shown to depict the acquisition-by-

acquisition progress in data collection.  
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In practice, the operator is free to make acquisitions in the measurement volume, with 

some uniformity. Once he/she realizes that each network sensor has reached the 

quantity of required measurements (i.e., the target value of t is fulfilled), the 

acquisition procedure can be stopped and the mathematical/statistical procedure of 

global calibration launched (solving a linearized system of equations in Sects. 2.2 and 

2.3). 

Tab. 1 exemplifies a step-by-step evolution of acquisitions, placing the artefact in 

three positions (c1 to c3) within the measurement volume and – for each of them – 

repositioning the probe tip at points A, B, C and then D of the artefact (see Fig. 3 and 

Fig. 5). It can be noticed that network sensors gradually accumulate distance/angular 

measurements with respect to the probe targets, as the probe is repositioned during 

acquisitions. The threshold t has been conventionally set to 2. During acquisitions, not 

all network sensors are able to communicate with all probe targets compatible with 

them; see symbols “” in the columns “Angular/distance measurements”. 

The quantity of distance/angular measurements collected by each sensor by the end of 

the seventh acquisition (a7) allows the condition in Eq. 8 to be met for any sensor. 

Indeed, at the end of the twelve acquisitions, a number of sensors have accumulated 

more than four times as many measurements as strictly needed (m/dof ≥ 4). The 

gradual acquisition-by-acquisition results are also summarised in Fig. 6.  

Acquisition Ref. 
position 

Network 
sensor 

Typology Target Angular/distance measurements Acquis. progress 

   )(,.
ˆ

akjid  
)(,.

ˆ
akji  )(,.ˆ akji (m/dof) 

a1 c1(A) s1.1 angular T1 N/A   2/6 = 0.33 
  idem idem T2 N/A   4/6 = 0.67 
  s1.2 angular T1 N/A   2/6 = 0.33 
  idem idem T2 N/A   4/6 = 0.67 
  s1.3 angular T1 N/A   0/6 = 0.00 
  idem idem T2 N/A   0/6 = 0.00 
  s2.1 distance T3  N/A N/A 1/3 = 0.33 
  s2.2 angular T3 N/A   2/6 = 0.33 
  s3.1 angular T4 N/A   2/6 = 0.33 
a2 c1(B) s1.1 angular T1 N/A   6/6 = 1.00 
  idem idem T2 N/A   6/6 = 1.00 
  s1.2 angular T1 N/A   6/6 = 1.00 
  idem idem T2 N/A   8/6 = 1.33 
  s1.3 angular T1 N/A   2/6 = 0.33 
  idem idem T2 N/A   4/6 = 0.67 
  s2.1 distance T3  N/A N/A 2/3 = 0.67 
  s2.2 angular T3 N/A   4/6 = 0.67 
  s3.1 angular T4 N/A   4/6 = 0.67 
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Acquisition Ref. 
position 

Network 
sensor 

Typology Target Angular/distance measurements Acquis. progress 

   )(,.
ˆ

akjid  
)(,.

ˆ
akji  )(,.ˆ akji (m/dof) 

a3 c1(C) s1.1 angular T1 N/A   6/6 = 1.00 
  idem idem T2 N/A   8/6 = 1.33 
  s1.2 angular T1 N/A   8/6 = 1.33 
  idem idem T2 N/A   10/6 = 1.67 
  s1.3 angular T1 N/A   4/6 = 0.67 
  idem idem T2 N/A   6/6 = 1.00 
  s2.1 distance T3  N/A N/A 3/3 = 1.00 
  s2.2 angular T3 N/A   6/6 = 1.00 
  s3.1 angular T4 N/A   6/6 = 1.00 
a4 c1(D) s1.1 angular T1 N/A   10/6 = 1.67 
  idem idem T2 N/A   12/6 = 2.00 
  s1.2 angular T1 N/A   12/6 = 2.00 
  idem idem T2 N/A   14/6 = 2.33 
  s1.3 angular T1 N/A   8/6 = 1.33 
  idem idem T2 N/A   10/6 = 1.67 
  s2.1 distance T3  N/A N/A 3/3 = 1.00 
  s2.2 angular T3 N/A   6/6 = 1.00 
  s3.1 angular T4 N/A   8/6 = 1.33 
a5 c2(A) s1.1 angular T1 N/A   14/6 = 2.33 
  idem idem T2 N/A   16/6 = 2.67 
  s1.2 angular T1 N/A   16/6 = 2.67 
  idem idem T2 N/A   18/6 = 3.00 
  s1.3 angular T1 N/A   12/6 = 2.00 
  idem idem T2 N/A   14/6 = 2.33 
  s2.1 distance T3  N/A N/A 4/3 = 1.33 
  s2.2 angular T3 N/A   8/6 = 1.33 
  s3.1 angular T4 N/A   8/6 = 1.33 
a6 c2(B) s1.1 angular T1 N/A   16/6 = 2.67 
  idem idem T2 N/A   16/6 = 2.67 
  s1.2 angular T1 N/A   18/6 = 3.00 
  idem idem T2 N/A   18/6 = 3.00 
  s1.3 angular T1 N/A   14/6 = 2.33 
  idem idem T2 N/A   14/6 = 2.33 
  s2.1 distance T3  N/A N/A 5/3 = 1.67 
  s2.2 angular T3 N/A   10/6 = 1.67 
  s3.1 angular T4 N/A   10/6 = 1.67 
a7 c2(C) s1.1 angular T1 N/A   18/6 = 3.00 
  idem idem T2 N/A   18/6 = 3.00 
  s1.2 angular T1 N/A   20/6 = 3.33 
  idem idem T2 N/A   20/6 = 3.33 
  s1.3 angular T1 N/A   16/6 = 2.67 
  idem idem T2 N/A   18/6 = 3.00 
  s2.1 distance T3  N/A N/A 6/3 = 2.00 
  s2.2 angular T3 N/A   12/6 = 2.00 
  s3.1 angular T4 N/A   12/6 = 2.00 
a8 c2(D) s1.1 angular T1 N/A   20/6 = 3.33 
  idem idem T2 N/A   22/6 = 3.67 
  s1.2 angular T1 N/A   22/6 = 3.67 
  idem idem T2 N/A   24/6 = 4.00 
  s1.3 angular T1 N/A   18/6 = 3.00 
  idem idem T2 N/A   18/6 = 3.00 
  s2.1 distance T3  N/A N/A 7/3 = 2.33 
  s2.2 angular T3 N/A   14/6 = 2.33 
  s3.1 angular T4 N/A   14/6 = 2.33 
a9 c3(A) s1.1 angular T1 N/A   24/6 = 4.00 
  idem idem T2 N/A   26/6 = 4.33 
  s1.2 angular T1 N/A   26/6 = 4.33 
  idem idem T2 N/A   28/6 = 4.67 



20 
 

Acquisition Ref. 
position 

Network 
sensor 

Typology Target Angular/distance measurements Acquis. progress 

   )(,.
ˆ

akjid  
)(,.

ˆ
akji  )(,.ˆ akji (m/dof) 

  s1.3 angular T1 N/A   20/6 = 3.33 
  idem idem T2 N/A   22/6 = 3.67 
  s2.1 distance T3  N/A N/A 8/3 = 2.67 
  s2.2 angular T3 N/A   16/6 = 2.67 
  s3.1 angular T4 N/A   14/6 = 2.33 
a10 c3(B) s1.1 angular T1 N/A   28/6 = 4.67 
  idem idem T2 N/A   30/6 = 5.00 
  s1.2 angular T1 N/A   30/6 = 5.00 
  idem idem T2 N/A   32/6 = 5.33 
  s1.3 angular T1 N/A   24/6 = 4.00 
  idem idem T2 N/A   26/6 = 4.33 
  s2.1 distance T3  N/A N/A 8/3 = 2.67 
  s2.2 angular T3 N/A   16/6 = 2.67 
  s3.1 angular T4 N/A   16/6 = 2.67 
a11 c3(C) s1.1 angular T1 N/A   32/6 = 5.33 
  idem idem T2 N/A   34/6 = 5.67 
  s1.2 angular T1 N/A   32/6 = 5.33 
  idem idem T2 N/A   32/6 = 5.33 
  s1.3 angular T1 N/A   26/6 = 4.33 
  idem idem T2 N/A   26/6 = 4.33 
  s2.1 distance T3  N/A N/A 9/3 = 3.00 
  s2.2 angular T3 N/A   18/6 = 3.00 
  s3.1 angular T4 N/A   18/6 = 3.00 
a12 c3(D) s1.1 angular T1 N/A   36/6 = 6.00 
  idem idem T2 N/A   38/6 = 6.33 
  s1.2 angular T1 N/A   34/6 = 5.67 
  idem idem T2 N/A   34/6 = 5.67 
  s1.3 angular T1 N/A   28/6 = 4.67 
  idem idem T2 N/A   28/6 = 4.67 
  s2.1 distance T3  N/A N/A 10/3 = 3.33 
  s2.2 angular T3 N/A   20/6 = 3.33 
  s3.1 angular T4 N/A   20/6 = 3.33 

Tab. 1. Gradual data acquisition related to the sensors exemplified in Fig. 3. The symbols "" and 
"" indicate respectively the measurements taken and not taken in a certain acquisition. The last 
column (m/dof) indicates the degree of progress of acquisitions, from the point of view of any single 
sensor; cells highlighted in green indicate that the condition in Eq. 8 is met, having set t=2. 
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Fig. 6. Graph summarising the gradual acquisition data in Tab. 1. The vertical axis shows the 
degree of progress (m/dof) of acquisitions (a1 to a12) from the point of view of any single sensor. 

4. Conclusions 

This section discusses (i) the implications, (ii) limitations and (iii) future development 

of this research. 

4.1 Implications 

The global calibration is versatile, since it can be adapted to a variety of LVM 

instruments with sensors performing distance/angular measurements with respect to 

targets. It is relatively quick, since it allows to locate the network sensors through a 

single acquisition process, using a special artefact (i.e., multi-target hand-held probe) 

and avoiding multiple instrument-dedicated calibration processes or alignment of local 

coordinate systems. It is computationally light, as it is based on a system of linearized 

equations, and statistically rigorous, as the equations are weighted with respect to the 

uncertainty contributions of the input variables. It also makes it possible to determine 

the uncertainty related to the position/orientation of network sensors. 

This method can be categorized as bundle adjustment as it allows to “adjust” the 

location of network sensors and probe, through several acquisitions in which the probe 

is repositioned in the measurement volume [17, 25]. 
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The proposed global calibration can encourage the combined use of LVM instruments 

of different nature, assuming they are already available in a metrology laboratory or 

industrial workshop. This combined use is nowadays relatively limited, due to the lack 

of suitable (hardware and software) tools and support methods. Apart from the use of a 

multi-target probe [12], the proposed method may include additional artefacts where 

to reposition the probe during acquisitions; the use of these artefacts may help 

improve the metrological traceability with respect to the length and the accuracy in the 

sensor network location. At the time of writing, an ad hoc software application to 

guide the user through the various global-calibration stages (i.e., input of probe/sensor 

geometric data, sensor measurement acquisition, formulation and solution of the 

system of equations) is under development.   

Due to the originality/innovativeness content and the industrial applicability, the 

global calibration procedure was patented [26]. 

4.2 Limitations 

The proposed method allows to estimate the extrinsic parameters of the network 

sensors, assuming that the intrinsic ones are already known. Intrinsic parameters can 

be determined from time to time, as long as the conditions of the measurement 

environment are relatively stable. 

In addition, appropriate ad hoc calibration processes need to be performed in advance, 

so as to determine the information concerned with the geometry of the probe, the 

additional artefact, and the type-B instruments in use. At the time of writing, these 

processes are carried out through a series of dimensional measurements using a DEA 

Global Image coordinate measuring machine (CMM), with a Maximum Permissible 

Error (MPE) of 3 m. These measurements are partly automated thanks to a dedicated 

routine in the CMM’s software application (PC-DMIS). 

The proposed solution technique requires initial estimates of the X unknown variables, 

i.e., a rough estimate of the sensor network layout and the position/orientation of the 

probe during acquisitions. However, it was experimentally verified that the 
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mathematical/statistical model converges relatively quickly to the correct solution, 

even with relatively rough initial estimates [7, 8]. 

Finally, the fact that the greater effectiveness of cooperative versus competitive 

localization methods was quantitatively assessed [9] represents partial evidence of the 

greater effectiveness of the proposed global calibration (cooperative approach) 

compared to the combination of traditional instrument-dedicated calibration processes 

(competitive approach). Nevertheless, the present study did not provide direct 

evidence of this, which will be the object of future research. 

4.3 Future development 

We plan to perform an experimental factorial plan to study the link between the 

effectiveness of the sensor-network calibration and some potentially influential 

factors, such as: 

 number of acquisitions; 

 use of additional artefact(s) besides the multi-target probe; 

 accuracy in the geometric calibration of the probe and artefacts. 

This study, apart from allowing a quantitative assessment of the effectiveness of 

global calibration may also support the design of appropriate acquisitions, according 

to the desired accuracy in establishing the extrinsic parameters of the network sensors. 

[16]. 

In addition, we plan to make a structured comparison of the results obtained by 

applying the global calibration procedure and those obtained through multiple 

instrument-dedicated calibration processes, from different viewpoints (e.g., accuracy 

in the location of the sensor network, time and simplicity of execution, etc.). 
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Appendix 

A.1 In-depth study of hardware components 

This section goes deeper into the description of the hardware components used in the 

global-calibration procedure – i.e., network sensors, multi-target probe, and artefacts –

illustrating their characteristic variables/parameters. 

A.1.1 Network sensors 

The distances and angles, which are measured by the i.j-th sensor with respect to the k-

th target during the a-th acquisition, are respectively di.j,k(a), i.j,k(a) and i.j,k(a); Fig. A.1 

represents them, referring to a local coordinate system (oi.jxi.jyi.jzi.j) that is centred into 

the i.j-th sensor itself. 

Network sensors are positioned freely around the measurement volume and therefore 

have unknown position/orientation and relevant uncertainties. Considering a ground-

referenced absolute Cartesian coordinate system – OXYZ, with vertical Z axis and X 

axis along the direction of the north-magnetic pole, and origin (O) in a conventional 

point within the measurement volume – we can define the origin of the local reference 

system of each sensor as oi.j = (
jijiji

ZYX
... 000 ,, ) and the corresponding axis rotation 

parameters as i.ji.ji.j ΚΦΩ ,, . 

jiy .

jiz .

(a)kji ,.

(a)kji ,.

Tk (xi.j,k(a), yi.j,k(a), zi.j,k(a)) 

jio .

jix .

sensor si.j 
Tk’ 

(a)kjid ,.

 
Fig. A.1. For a generic i.j-th sensor (si.j) and a generic a-th acquisition, a line joining the k-th probe 
target (Tk) and the origin (oi.j) of the local coordinate system oi.jxi.jyi.jzi.j subtends a distance (di.j,k(a)) 
and two angles – i.e., i.j,k(a) (azimuth) and i.j,k(a) (elevation).  
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For centralized LVM instruments, sensors are rigidly constrained between each other. 

In other words, each of these instruments can be seen as a rigid body (with six degrees 

of freedom in the three-dimensional space), with another local coordinate system 

oi.•xi.•yi.•zi.•, which is centred at a conventional point and a conventional axis 

orientation. The position (xi.j, yi.j, zi.j) and orientation (i.j, i.j, i.j) of a generic sensor, 

and the relevant uncertainties in this other local coordinate system may be determined 

through an initial calibration process of the centralized-instrument’s geometry, e.g., 

performing a direct measurement using a Coordinate Measuring Machine (CMM) or 

other indirect measurement methods. 

The (unknown) coordinates of oi.• in OXYZ are 
 ... 000 ,,

iii
ZYX , while the (unknown) 

rotation parameters of the xi.•, yi.• and zi.• axes, with respect to OXYZ, are respectively 

 i.i.i. ΚΦΩ ,, . 

A.1.2 Multi-target probe 

The probe that is used for acquisitions can be interpreted as a rigid body, whose target 

positions (Tk) are known with a corresponding uncertainty. We conventionally define a 

local coordinate system, oPxPyPzP, which is centred in the stylus tip and has a 

conventional orientation. The probe can be located in three-dimensional space, 

determining the parameters P(a)P(a)P(a)P(a)P(a)P(a) ΚΦΩZYX ,,, , , , which correspond to the 

stylus position and the spatial orientation of the probe itself. Subscript “P” stands for 

“probe” or “point” (P), while subscript “a” indicates that the position/orientation of 

the probe may change from acquisition to acquisition. 

The probe is equipped with integrated inertial sensors, which can (roughly) measure 

the probe orientation angles: P(a)P(a)P(a) ΚΦΩ ˆ,ˆ,ˆ . We note that these angular 

measurements are direct estimates of the unknown angles P(a)P(a)P(a) ΚΦΩ ,, , and do not 

depend on the combinations of i.j-th network sensors and k-th targets involved in the 

acquisitions; for this reason, they will be denoted by the subscript “a” only. For 

simplicity, it is also assumed that P(a)P(a)P(a) ΚΦΩ ˆ,ˆ,ˆ  are directly referred to the absolute 

coordinate system OXYZ. 
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Focusing on the probe targets, their configuration can be varied depending on the 

LVM instruments/sensors used. Once this configuration has been defined, it is 

possible to determine the relative positions of each k-th target with respect to a local 

reference system. As already said, it can be assumed that the origin (oP) of the probe’s 

local reference system (oPxPyPzP) is in the stylus tip; the relative coordinates of each k-

th target (xP,k, yP,k, zP,k) and the relevant uncertainty may be determined through an 

initial ad hoc geometric calibration of the probe parts, e.g., using a CMM. 

Fig. A.2 shows some pictures of a prototype probe developed at Politecnico di Torino 

– DIGEP. The structural “endoskeleton” and the target modules are in carbon fibre, 

since this material is relatively rigid, lightweight and with a small thermal-expansion 

coefficient. A special coupling system guarantees a relatively quick, precise, and 

repeatable insertion of the target modules into a primary module [27]. 

 

- Structural elements in carbon fibre 

- Target 

oP 

xP 

yP 

zP 

SECONDARY MODULE 
(with a target and a stylus) 

OTHER SECONDARY MODULES 
(with photogr. targets)  

- Cover shell of primary module 

PRIMARY MODULE 

- Plane perpendicular to zP axis 

- Calibrated holes and shafts 

- Plane perpendicular to yP axis 

(a) exploded view 

(b) assembly views 

- Stylus 

- Triggers/command buttons 

T1 

T2 T3 

T4 

T5 oP 
xP 

yP 

zP 

 
Fig. A.2. Prototype probe developed at Politecnico di Torino – DIGEP. In this case, the probe 
mounts five active photogrammetric targets (T1 to T5) [27, 28]. 
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A.1.3 Additional artefacts 

The proposed procedure may also include additional artefacts, such as bars or plates 

with different reference positions, on which to reposition the probe stylus during 

acquisitions. For example, Fig. 5 illustrates a plate with four mounts (A, B, C and D) 

with mutual distances dA,B, dA,C, etc., which can be measured through an ad hoc 

geometric calibration process (e.g., using a CMM). 

Sect. A.3.4 will show that this information can be used in the global calibration 

problem, contributing to the metrological traceability to the unit of measurement of 

length [10, 12, 24]. 

A.2 Transformations between Cartesian coordinate systems 

This section is divided into three subsections, dedicated respectively to (i) network 

sensors, (ii) multi-target probe and (iii) probe’s integrated sensors. 

A.2.1 Local coordinate system related to network sensors 

The single LVM instruments can be centralized or distributed: in the former case, 

sensors are rigidly connected to each other, while in the latter, they are not. 

Focusing the attention on the generic sensor (si.j) of an i-th type-A LVM instrument, it 

will be positioned freely around the measurement volume and will have a local 

coordinate system (oi.jxi.jyi.jzi.j), which is roto-translated with respect to the absolute 

one (OXYZ). The position/orientation of oi.jxi.jyi.jzi.j with respect to OXYZ (i.e., 

jijiji
ZYX

... 000 ,, , i.j, i.j,i.j) is defined by the so-called extrinsic parameter, which 

represent (part of) the unknowns of the problem. 

A general transformation between a local and the absolute coordinate system is: 



















































ji

ji

ji

Z

Y

X

z

y

x

Z

Y

X

ji

ji

ji

.

.

.

0

0

0

.

.

.

. jiR . (9) 

Ri.j is a 3x3 matrix, whose elements are functions of three rotation angles i.j, i.j,i.j: 
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





















jijijijijijijijijijijiji

jijijijijijijijijijijiji

jijijijiji

ΦΩΚΦΩΚΩΚΦΩΚΩ

ΦΩΚΦΩΚΩΚΦΩΚΩ

ΦΚΦΚΦ

............

............

.....

.

coscossinsincoscossincossincossinsin

cossinsinsinsincoscoscossinsinsincos

sinsincoscoscos

jiR
, (10) 

where i.j represents a counterclockwise rotation around the xi.j axis; i.j represents a 

counterclockwise rotation around the new yi.j axis, which was rotated by i.j; i.j 

represents a counterclockwise rotation around the new zi.j axis, which was rotated by 

i.j and then i.j; for details, see [23].  T
jijiji

ZYX
... 000 ,,  are the coordinates of the origin 

of oi.jxi.jyi.jzi.j in the absolute coordinate system OXYZ. 

The coordinates of a generic point (xi.j, yi.j, zi.j), referring to the local Cartesian 

reference system (oi.jxi.jyi.jzi.j), can be expressed as a function of the coordinates (X, Y, 

Z) in the absolute coordinate reference system. Reversing Eq. 9 and considering that 

T
jiji RR .

1
.   (Ri.j is orthonormal), we obtain: 
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jiji RR . (11) 

Assuming that (i) the point (xi.j, yi.j, zi.j) corresponds to the position of the k-th probe 

target in the a-th acquisition (xi.j,k(a), yi.j,k(a), zi.j,k(a)) and (ii) the absolute position of that 

point in the absolute system OXYZ (Xk(a), Yk(a), Zk(a)), the equation notation will be 

slightly modified into: 
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jiR . (12) 

For each type-B LVM instrument, we can define another local Cartesian coordinate 

system (oi.• xi.• yi.• zi.•) with origin (oi.•) in a conventional point that is integral with the 

instrument itself and conventional coordinate axes; for example, oi.• xi.• yi.• zi.• may 

coincide with the coordinate system of one of the sensors. The subscript “i.•” indicates 

that the coordinate system is related to the whole i-th (centralized) LVM instrument, 
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irrespective of the single i.j-th sensor that is rigidly connected to it. Similarly to Eq. 9, 

a general transformation between this local system and the absolute one is: 
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iR . (13) 

where Ri.• is a 3x3 rotation matrix depicting the orientation of the i-th centralized 

instrument with respect to the absolute system (OXYZ). The elements of this matrix 

are expressed as functions of three (unknown) rotation angles i.•, i.•,i.•, which are 

analogous to i.j, i.j,i.j (in Eq. 10) but are related to the axes xi.•, yi.•, zi.•, instead of 

xi.j, yi.j, zi.j.  T
iii

ZYX
 ... 000 ,,  are the (unknown) coordinates of the origin of oi.• xi.• yi.• zi.•, 

in OXYZ. 

Each i.j-th sensor of the centralized instrument has a local reference system oi.jxi.jyi.jzi.j. 

A general transformation between the coordinates of a generic point referred to this 

system and those referred to oi.• xi.• yi.• zi.• is: 
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i.jr . (14) 

where  

ri.j is a 3x3 rotation matrix depicting the orientation of the i.j-th sensor with respect to 

oi.• xi.• yi.• zi.•. The elements of this matrix are functions of three (unknown) rotation 

parameters i.j, i,j,i.j related to the axes xi.j, yi.j and zi.j.  T
iii

zyx
 ... 000 ,,  are the 

(unknown) coordinates of the origin of oi.jxi.jyi.jzi.j, in the other local coordinate system 

oi.•xi.•yi.•zi.•. If the geometry of the centralized LVM instrument is known, the 

parameters 
jijiji

zyx
... 000 ,, , i.j, i,j,i.j can be determined; e.g., they can be deduced 

from the technical specifications of the centralized instrument or can be determined 

experimentally by a geometric calibration of the instrument itself.  

A generic point with coordinates [xi.j, yi.j, zi.j]T can be referred to OXYZ, by combining 

Eqs. 13 and 14: 
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Reversing Eq. 15 and considering that Ri.• and ri.j are orthonormal (therefore T
ii 


  .
1

. RR  

and T
i.ji.j rr 1 ) we obtain: 
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Assuming that (i) the point (xi.j, yi.j, zi.j) corresponds to the position of the k-th probe 

target in the a-th acquisition (xi.j,k(a), yi.j,k(a), zi.j,k(a)) and (ii) we should determine the 

position of that point in OXYZ, the notation of Eq. 16 can be slightly modified into: 
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Regarding the centralized LVM instruments with unknown geometry (i.e., type-A 

instruments), the relevant sensors can be treated as if they were positioned 

independently of each other, i.e., in the same manner of the sensors of distributed 

LVM instruments (see Eqs. 11 and 12). Of course, this simplification will lead to lose 

part of the information that can be used for solving the problem. 

A.2.2 Local coordinate system related to the probe tip 

Focusing on a probe that is equipped with various targets (T1, T2, …, Tk, …), the 

absolute position of the k-th target in the a-th acquisition is Tk(a) = [Xk(a), Yk(a), Zk(a)]T. 

The probe has a local coordinate system oPxPyPzP, which is centred with respect to the 

probe tip (oP = P, see Fig. A.3). Regarding a generic k-th target in the a-th acquisition, 

a general transformation between the coordinates referring to oPxPyPzP  (i.e., [xP,k, yP,k, 

zP,k]T) and those referring to OXYZ  (i.e., [Xk(a), Yk(a), Zk(a)]T) is: 
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P(a)R , (18) 

where 

RP(a) is a rotation matrix, which depicts the probe orientation with respect to OXYZ, in 

the a-th acquisition. The elements of this matrix are functions of three (unknown) 

rotation angles (P(a), P(a), andP(a)) that are related to the axes xP, yP, zP; 

[XP(a), YP(a), ZP(a)]T are the coordinates of P in OXYZ. 

T3 ≡ (xP,3, yP,3, zP,3) ≡ (X3(a), Y3(a), Z3(a)) 

T2 ≡ (xP,2, yP,2, zP,2) ≡ (X2(a), Y2(a), Z2(a)) 

T1 ≡ (xP,1, yP,1, zP,1) ≡ (X1(a), Y1(a), Z1(a)) 

Y 

Z 

X 

O 

absolute coordinate
system 

tip 
multi-target probe 

local coordinate 
system 

xP oP ≡ P ≡ (0, 0, 0) ≡ (XP(a), YP(a), ZP(a)) 

yP 

zP 

 
Fig. A.3. Local coordinate system of the multi-target probe (oPxPyPzP) and the absolute coordinate 
system (OXYZ). The points corresponding to the probe tip and targets are expressed with respect to 
both systems. 

Since the probe geometry is known (with some uncertainty), for each k-th target, we 

can define a position vector (xP,k, yP,k, zP,k) referring to the local coordinate system 

oPxPyPzP. The coordinates xP,k, yP,k, zP,k can be treated as random variables, whose 

dispersion depends on the precision with which the probe geometry was calibrated. 

Obviously, these coordinates are independent from the specific position/orientation of 

the probe (and therefore on the a-th acquisition) but they depend exclusively on the 

probe geometry. On the other hand, Eq. 18 includes six (unknown) parameters 

describing the specific position and orientation of the probe during the a-th 

acquisition: XP(a), YP(a), ZP(a), P(a), P(a), P(a). 

Combining the transformations in Eqs. 12 and 18, we obtain the following equation 

for the sensors of type-A instruments: 



A9 
 






















































































ji

ji

ji

Z

Y

X

Z

Y

X

z

y

x

z

y

x

aP

aP

aP

kP

kP

kP
T

akji

akji

akji

.

.

.

0

0

0

)(

)(

)(

,

,

,

.

)(,.

)(,.

)(,.

P(a)ji RR . (19) 

Combining the transformations in Eqs. 17 and 18, the following equation can be 

obtained for the sensors of type-B instruments: 
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The relationships in Eqs. 19 and 20 will be used to express the coordinates of a target 

(xi.j,k(a), yi.j,k(a), zi.j,k(a)), referring to the relevant sensor’s local coordinate system, as 

functions of the unknowns of the problem. It can be noted that Eq. 19 can be 

interpreted as a specific case of (the more general) Eq. 20, in which the local 

coordinate systems oi.•xi.•yi.•zi.• and oi.jxi.jyi.jzi.j coincide, matrices Ri.• and Ri.j coincide, 

and ri.j is an identity matrix. 

A.2.3 Local coordinate system related to the probe integrated sensors 

The integrated (inertial) sensors of the probe perform angular measurements referring 

to an absolute ground-referenced coordinate system with (i) arbitrary origin, (ii) Z axis 

coinciding with the normal vector to the ground plane, and (iii) X axis pointing toward 

the magnetic north. The orientation of the absolute coordinate system (OXYZ) is 

conventionally coincident with that of this one. 

During each a-th acquisition, the integrated sensors provide an estimate of the 

unknown rotation angles of the probe ( P(a)P(a)P(a) KΦΩ ˆ,ˆ,ˆ ), with respect to OXYZ. 

A.3 Details on equation formulation 

This section describes in detail the formulation of equations for the global calibration 

problem, distinguishing between equations for distance, angular sensors, integrated 

probe sensors and additional artefacts. 
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A.3.1 Distance sensors 

Considering the local perspective of a generic i.j-th distance sensor and for a generic 

a-th acquisition, the distance between the k-th target and the origin of the local 

coordinate system oi.jxi.jyi.jzi.j – can be calculated as (see Fig. A.1): 

2
)(,.

2
)(,.

2
)(,.)(,. akjiakjiakjiakji zyxd  . (21) 

Eq. 21 can be reformulated as a function of the unknown variables of the problem, 

which are contained in the column vector X (in Eq. 1), applying the transformations in 

Eqs. 19 (for type-A instruments) or 20 (for type-B instruments). Of course, the 

resulting equation will not be linear with respect to X. 

Among the unknowns in X, it can be demonstrated that only those relating to the 

absolute position (not the orientation) of distance sensors appear in Eqs. 19 and 20. In 

fact, distance sensors can be seen as special punctiform sensors, whose orientation is 

arbitrary; the unknown orientation angles could therefore be omitted from the 

unknowns of the problem (or replaced with arbitrary numerical values). 

A linearization of the above equation can be obtained through a Taylor expansion with 

respect to the parameters in X. 

The resulting linearized equation – which is related to the i.j-th distance sensor and k-

th target, in the a-th acquisition – can be expressed in matrix form as: 

0)(,.)(,.  distdist BXA akjiakji , (22) 

where X is the (unknown) vector (see Eq. 1) and matrices distA )(,. akji  and distB )(,. akji  contain 

(demonstration omitted): 

 the distance di.j,k(a); 

 information on the geometry of the probe and that of the relevant instrument (for 

type-B instruments only); 
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 some initial values ( X
ˆ̂ (1)) related to the unknown variables. 

A.3.2 Angular sensors 

Considering the local perspective of a generic i.j-th angular sensor, the line passing 

through the k-th target (Tk) and oi.j (see Fig. A.1) subtends two angles – i.e., i.j,k(a) 

(azimuth) and i.j,k(a)  (elevation). Precisely, i.j,k(a) describes the inclination of segment 

oi.jTk with respect to the plane xi.jyi.j (with a positive sign when zi.j > 0), while i.j,k(a) 

describes the counterclockwise rotation of the projection (oi.jTk’) of oi.jTk on the xi.jyi.j 

plane, with respect to the xi.j axis. Subscript “(a)” indicates that the above angles may 

change from acquisition to acquisition. The following relationships can be expressed 

considering to the local coordinate system of the i.j-th sensor: 



 


















22
sin

2

3

2
then0if

22
then0if

tan

)(,.
.

)(,.1
)(,.

)(,.)(,.

)(,.)(,.

)(,.

)(,.1
)(,.









akji
kji

akji
akji

akjiakji

akjiakji

akji

akji
akji

To

z

x

x

x

y

. (23) 

Given that: 

)(,.

)(,.
)(,.
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sin
tan

akji

akji
akji 


   (24) 

and 

)(,.)(,.

)(,.

)(,.

)(,.)(,.

)(,.

.
. coscoscos

cos

cos

'

akjiakji

akji

akji

akjiakji

akji

kji
kji

xxTo
To




 
 , (25) 

Eq. 23 can be reformulated as: 

 
1 The “double-hat” symbol “ˆ̂ ” indicates that a vector “close” to X can be obtained through a 
rough estimate of X̂ , i.e., the (final) estimate of X itself. We will illustrate how to determine 

X
ˆ̂

 later. 
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The system in Eq. 26 can be reformulated as a function of the unknowns of the 

problem, applying the transformation in Eq. 19, for network sensors of type-A 

instruments with unknown geometry, or Eq. 20 for network sensors of type-B 

instruments. Of course, the resulting equations will not be linear with respect to the 

unknown variables in X. However, a linearization can be obtained through a Taylor 

expansion with respect to the parameters contained in X, considering some X
ˆ̂

 values 

reasonably close to them. This operation can be automated through the Matlab's 

function "functionalDerivative" or other symbolic-calculation tools. 

The resulting linearized equations can be expressed in matrix form as: 

0)(,.)(,.  angang BXA akjiakji , (27) 

where X is the (unknown) vector (see Eq. 1) and matrices angA )(,. akji  and angB )(,. akji  contain 

(demonstration omitted): 

 the angles i.j,k(a) and i.j,k(a); 

 information on the geometry of the probe and that of the sensor’s instrument (for 

type-B instruments only); 

 some initial values ( X
ˆ̂ ) related to the unknown variables in X. 

A.3.3 Integrated sensors of the probe 

The integrated (inertial) probe sensors may contribute to estimate the probe orientation 

angles, for a generic a-th acquisition. The fact that angular measurements are related 

to a ground-referenced coordinate system oriented according to OXYZ entails that they 

can be directly used as estimates of the probe orientation angles )()()(
ˆ,ˆ,ˆ

aPaPaP ΚΦΩ . 

For a generic a-th acquisition, three (relatively trivial) equations are therefore 

available: 
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aPaP

aPaP

ΚΚ

ΦΦ

ΩΩ







. (28) 

These (linear) equations can be expressed in matrix form as: 

0)()(  intint BXA aa . (29) 

We remark that the uncertainty in the angular measurements of the integrated sensors 

depends on their technological characteristics, although it is likely to be higher than 

those in the local measurements by network sensors. These aspects will be taken into 

account in the weighing phase of the equations (see Sects. 2.3 and A.4). 

A.3.4 Additional artefact 

The use of additional artefact(s) where to position the probe tip during acquisitions 

allows to formulate other equations for the problem of interest. Precisely, an additional 

artefact may have a number of reference points (e.g., four, A, B, C and D, as 

exemplified in Sect. 3). The probe acquisitions can be subdivided into "clusters" (c = 

1, 2, ...), in which the artefact has a fixed position, and the probe is positioned in the 

various reference points, acquisition by acquisition. For example, when using an 

artefact with four reference points, each cluster will include four acquisitions, in which 

the artefact has a fixed position, and the probe is repositioned in each of the four 

reference points respectively. 

Since the geometry of the additional artefact is known in terms of mutual distances 

between the reference points (e.g., they can be determined through an ad hoc 

geometric calibration, e.g., using a CMM), it is possible to formulate additional 

equations. Specifically, an Euclidean distance equation can be formulated for each of 

the pairs (a’ e a’’) of acquisitions of a certain c-th cluster, resulting from the (non-

reflective and symmetric) Cartesian product Ac x Ac, being Ac the set of acquisitions in 

the c-th cluster: 

                2'''
2

'''
2

''''',' ccccccc aPaPaPaPaPaPaa ZZYYXXd  , (30) 
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where  caad '','  corresponds to a known distance – since it can be estimated in a 

previous geometric-calibration process of the additional artefact. Obviously, this 

equation is not linear with respect to the output variables (i.e.,  caPX ' ,  caPY ' ,  caPZ ' , 

 caPX '' ,  caPY '' ,  caPZ '' ). A linearization can be obtained through a first order Taylor 

expansion with respect to these variables. The resulting linearized equations can be 

expressed in matrix form as: 

    0'',''','  t
aaaa cc

arart BXA , (31) 

where matrices  
artA

caa '','  and  
t
aa c

arB '','  contain initial values of the unknown coordinates 

of the probe tip and the known (albeit with some uncertainty) distance  caad '','  

(demonstration omitted). Since this equation contains previously estimated distance 

parameters, it contributes to metrological traceability with respect to the measurement 

unit of length. 

A.4 Note on matrices J and  

This section goes deeper into what is described in Sect. 2.3, regarding the weighing of 

the system in Eq. 2. 

Focusing on the second member of Eq. 5, J is the Jacobian matrix with the partial 

derivatives of the elements in the first members of Eq. 2 with respect to the elements 

in  (Eq. 4) 
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where, 
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In general, J* is a Jacobian (block-diagonal) matrix containing the partial derivatives 

related to the elements in the sub-vector *. The calculation of such derivatives can be 

automated through the Matlab's symbolic-calculation function "functionalDerivative" 

or other symbolic-calculation tools. 

Returning to the second member of Eq. 5,  is the covariance matrix of : 
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where 
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 can be split into sub-block matrices 

*, which can be interpreted as the covariance 

matrices of the * sub-vectors. 
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While the (co)variances concerned with (i) type-B LVM instruments (in 
type-B instr.), 

(ii) probe targets (in 
probe) and (iii) additional artefact (in 

add.artefact) can be obtained 

from preliminary ad hoc geometric calibration process(es), those concerned with (iv) 

the angular/distance measurements by network sensors (in 
network sens.) and (v) probe’s 

inertial sensors (
integr.sens.) can be determined from manuals and technical documents 

relating to the sensors in use, or estimated through ad hoc experimental tests.  

The off-diagonal entries in the (sub-)blocks are zeros, assuming no correlation 

between these parameters [10]. 

A.5 Further study on uncertainty estimation 

This section provides additional information on the construction of the covariance 

matrix X (see Eq. 7), which is used for estimating the uncertainty in the location of 

network sensors. 

The most interesting parts of the above matrix are the 6x6 blocks depicting the 

variability in the estimates of the position/orientation of each  type-B instrument or 

network sensor of a type-A instruments (i.e., the sub-blocks related to instr.AtypeX 
ji. and 

instr.BtypeX 
.i , as shown in Eq. 35. 




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instr.Atype

X
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, (35) 



A17 
 

For a generic i.j-th type-A sensor, we can use the diagonal elements of the top-left 3x3 

sub-block of instr.AtypeX 
ji .

, to calculate the expanded uncertainties associated with the 

position Cartesian coordinates: 

jiji

jiji

jiji

ZZ

YY

XX

kU

kU

kU

..0

..0

..0

ˆ

ˆ

ˆ













, (36) 

where k = 2 is the so-called coverage factor, which means that – for normally 

distributed estimates of 
ji

X
.0 , 

ji
Y

.0 , 
ji

Z
.0  – the corresponding coverage probability is 

95% (JCGM 100:2008, 2008). 

An estimate of the expanded uncertainty related to the sensor position can be obtained 

through the sum of squared uncertainties in Eq. 36: 

222222
0 ....0.0.0.

ˆˆˆ
jijijijijijiji ZYXXYX kUUUU   , (37) 

Similarly, for a generic i.•-th type-B instrument, we obtain: 

222222
0 ....0.0.0.

ˆˆˆ



iiiiiii ZYXXYX kUUUU  . (38) 

An estimate of the expanded uncertainty associated with the probe position in a 

generic a-th acquisition can be obtained following an analogous reasoning, resulting 

in: 

222222
)( )()()()()()(

ˆˆˆ
aPaPaPaPaPaP ZYXXYXaP kUUUU   . (39) 
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