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Fiber Nonlinearity and Optical System Performance
Alberto Bononi, Ronen Dar, Marco Secondini, Paolo Serena and Pierluigi Poggiolini

Abstract—This chapter aims at providing a comprehensive
picture of the impact of fiber non-linear effects on modern
coherent WDM systems performance. First, the main non-
linearity models currently available are introduced and discussed
in depth. Then, various specific aspects are addressed, such as
the interplay of PMD/PDL and non-linearity, or the dependence
of non-linear effects on modulation format. The important topic
of non-linear effects mitigation is then dealt with. Finally, system
performance metrics and capacity are discussed extensively, as
to they are fundamentally influenced and limited by fiber non-
linearity.

Index Terms—coherent systems, uncompensated transmission,
fiber non-linearity, perturbation models, GN-model, EGN-model,
time-domain model, spatially-resolved model, LP-model, non-
linearity mitigation, performance metrics, optical system ca-
pacity, non-linear Shannon limit, LOGON strategy, achievable
information rate.

OPTICAL propagation within an optical fiber involves
complex linear and nonlinear interactions among travel-

ing optical signals which manifest themselves as intersymbol
as well as inter-channel interference among the digital data.
To shed light on such effects, a large amount of analytical,
numerical and experimental investigations have been carried
out. Scientific modeling is an essential tool for any investiga-
tion as a way to make it easier to understand and reproduce
experimentally observed results. Models help system designers
in predicting the behavior of an optical network, and show
their greatest effectiveness in their ability to isolate subsets of
test conditions not easily obtainable otherwise.

The main aim of this chapter is to review the most important
models for performance prediction in optical fibers, to point
out their strength and weaknesses and provide both theoretical
background and practical indications on their use.

I. M ODELING THE OPTICAL FIBER

Any model captures part of reality at a given abstraction
level, hence each model can always be generalized into a
more complete model able to explain the previous one, at the
cost of an increased complexity. Usually in science the most
complete models are local models, i.e., general descriptions
of what happens at each space coordinate. Such models are
usually written in terms of differential equations. In many
cases such equations cannot be solved exactly, nevertheless
they contain all the information about the evolution of the
signal of interest. In optical fiber propagation the reference
model is the nonlinear Schrödinger equation (NLSE), which
is a partial differential equation that describes the local be-
havior of a propagating electromagnetic wave [1]. In optical
communications, an electromagnetic wave is typically written
asA (z, t) ∙ exp(j(ωt− βz)). Such notation describes a wave
of amplitude |A|, phasearg [A], propagating at frequency
f = ω/(2π) at phase velocityω/β in the z direction.

A (z, t) is assumed to be ‘slowly-varying’, in both timet and
distancez, with respect to the faster-oscillating exponential
factor. Henceforth, for compactness, we will omit to explicitly
indicate thet andz dependence ofA.

In its simplest form the NLSE can be written as [1]:

∂A

∂z
= −

αp

2
A + j

β2

2
∂2A

∂t2
− jγ |A|2 A . (1)

The first term on the right side in (1) causes the wave to
experience apower lossat a rate set byαp. The small value
of αP in silica compared to copper cable has been one of the
greatest achievements of optical communications, celebrated
by the Nobel prize to the pioneering studies made by sir
Charles Kao.

The second term in (1) expresses dispersion in the time
domain t. To understand the implications of dispersion we
should first generalize the basic idea of plane wave. The reader
familiar with the Fourier transform should not be surprised that
the true electromagnetic field propagating within an optical
fiber can be described by a superposition of waves. However,
such waves travel at different speeds with a group velocity
dispersion (GVD) proportional toβ2. This is the implication of
the second term on the right side of (1), which is usually best
understood in the frequency domain as a term in quadrature
with the signal and proportional to the square of the frequency.
As a result, GVD alone on a global scale manifests as a pure
phase shift in frequency domain. GVD makes the different
waves making up the signal reach the receiver at different
times, so that their sum is different than what it was at the
transmitter. The result is signal distortion, generally referred to
as inter-symbol interference at the receiver. This problem was
eventually solved by means of optical or electronic dispersion
compensation.

The third term in (1) is a nonlinear term, i.e., a contribution
for which the superposition principle does not hold anymore.
It is called the nonlinear Kerr effect [1], [2]. As a conse-
quence, because of nonlinearity the traveling waves interact.
We observe that nonlinearity is weighed by a factor|A|2, hence
proportional to thepower of the propagating signal. We thus
expect the nonlinear effect to be relevant only at high power.
This observation is reminiscent of the idea of Taylor series in
mathematics, where any well-behaved function is linear in a
small neighborhood of a given value. In this case, we could say
that the fiber is linear close to the zero value of the amplitude
A. It is worth noting, though, that from a naive similarity
with Taylor series, one would expect a nonlinear quadratic
term, whereas the nonlinear Kerr term in (1) iscubic in A.
The reason of the cubic behavior is strictly related to the odd
symmetry of the silica molecule [1].

The nonlinear Kerr term in (1) is a memoryless effect
since it impacts the propagating signal at the present-time
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only. This is clearly unrealistic, since any physical effect has
some memory. However, this assumption is justified by the
extremely small time-lag over which nonlinearity occurs, on
the order of femtoseconds.

There is a very interesting duality between nonlinear Kerr
effect in time domain and dispersion in frequency domain.
For instance, GVD alone does not make different frequencies
interact, as for any linear time invariant effect, while it creates
inter-symbol interference in the time domain; the opposite
occurs for nonlinearity: different times do not interact, while
different frequencies do. Moreover, while GVD acts in quadra-
ture with the signal in the frequency domain, the same occurs
for the nonlinear Kerr effect, but in the time domain. Hence,
for similar arguments, both effects manifest as phase rotations:
GVD in the frequency domain, the nonlinear Kerr effect
in time domain. The latter is generally called self phase
modulation (SPM).

Modeling nonlinearity has been one of the greatest chal-
lenges of the last decades because of the complexity of
the problem. Thanks to the similarity between optical waves
propagation in optical fibers and water waves propagation in
the sea, it is helpful to visualize nonlinearity by the waves
interaction in a heavy sea. The chaotic behavior of such
interaction is self-explaining of the difficulty of undoing it
at the receiver as well of the difficulty of a full statistical
description.

Linear and nonlinear effects are experienced both by the
information signal but also by the unavoidably propagating
noise, generally introduced by optical amplifiers in the form
of amplified spontaneous emission (ASE).

To understand the implications of ASE let us ignore non-
linear effects for a moment. At the receiver we know how to
compensate for dispersion, thus we are left with the problem of
noise cumulated along the link. The solution appears simple:
increase power to make noise be negligible with respect to the
information signal. Figure 1 sketches this idea by showing the
typical behavior of the receiver signal to noise ratio (SNR)
versus signal power, at the output of a fiber transmission link.
The SNR is a typical quality-of-transmission parameter, as
we will discuss more in detail later in this chapter. In the
absence of nonlinear effects, the SNR would grow indefinitely
for increasing power, see the dashed line “linear asymptote”
in Fig. 1. However, this ceases to hold when nonlinearity
enters the game. The typical behavior of SNR versus power is
depicted in Fig 1 by a solid line. From the figure we observe
that an ‘optimal power’ exists, corresponding to the maximum
achievable SNR. Beyond the optimal power the SNR drops,
with a slope which is actually steeper than the slope of increase
at small power [43], [119].

We thus recognize two asymptotic behaviors at small/high
powers, which in agreement with the previous discussion de-
fine what we call the ASE-limited region and the nonlinearity-
limited region, respectively.

The optimal power of Fig. 1 refers to a link of a given
length. We may ask what happens by increasing the link
length. In this scenario both the linear and the nonlinear
asymptotes run lower, because of more accumulated ASE and
nonlinearity along transmission. If we fix a reference SNR,
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Fig. 1. Example of behavior SNR vs. Power after a fiber-optic link.
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Fig. 2. Example of contour levels at fixed SNR. The lower part is set by
accumulation of ASE; the higher part is set by accumulation of nonlinearity.
The reach is the maximum distance for the given SNR.

which may be the threshold of the forward error correcting
code under use, we can identify two power values, one in the
ASE dominated regime and one in the nonlinearity dominated
regime. Such values are sketched in Fig. 1 at a fixed distance,
and in Fig. 2 at all distances up to the maximum distance,
or maximum reach(MR), at which they merge into a single
power value.

In this chapter we discuss some models that are able to
describe with good approximation such important features as
the optimal power and the reach. Of course their knowledge
is of great importance in the study, design and even real-time
management of optical networks, a topic that will be covered
in Section X-C.

The NLSE can be further generalized. So far we have
described the electromagnetic wave in terms of its amplitude,
frequency and propagation constant. However, if this wave
collides with an electron along propagation, such an electron
starts oscillating around a preferred direction. The information
about this direction has not been accounted for, so far. We
thus need to accept that our signal wave is described by
a vector. When such a direction matters for investigating
propagation, we say that the optical fiber showsbirefringence.
Such vectors can be fully described by two components.
The scalar impairments such as loss and dispersion become
matrices in the presence of birefringence.
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The implications of the vector nature of of the waves will
be described more in detail in Section IX-C. In essence, the
nonlinear term of the NLSE becomes more complex [2], [15],
[16]. However, it is possible to simplify it with reasonable
approximations, based on the following argument.

The two components of the wave, from now on referred to as
polarizations, experience different propagation constants. Such
a difference is the main manifestation of fiber birefringence.
Because of it, the two polarizations periodically phase-shift
and return in phase after the so calledbeat length[93]. For
typical telecom fibers, the beat length is on the order of meters,
a length scale usually much smaller than the length scale over
which nonlinearity induces significant changes in the wave.
We are thus justified to average out such fast phase variations.

The result yields an isotropic nonlinear effect, that turns the
scalar nonlinear termγ |A|2 A into γ 8

9 ||
~A||2 ~A, where ~A =

[Ax, Ay] is the vector containing the amplitudes of the two
polarizations in the fiber, while|| ~A||2 is the overall power of
the wave. The factor8/9 is the net result of the averaging. The
corresponding equation is referred to as theManakov equation
[19], [99].

The Manakov equation is currently the most widely used
signal-propagation equation, the starting point for the deriva-
tion of most analytical models quantifying the system impact
of nonlinearity. This chapter will mostly focus on such an-
alytical models. However, another approach is also possible
towards system study and design.

It is based on the brute-force numerical integration of the
signal propagation equation, be it the NLSE, the Manakov
equation or more complex ones. While analytical modeling has
recently gained widespread adoption, numerical integration
is and will likely be a mainstay of system studies. One of
the main reasons is that, as mentioned, all analytical models
are based on assumptions and approximations, and must be
validated. System simulation, by means of direct numerical
integration of the propagation equations and Monte-Carlo
system performance estimation, provides the indispensable
tool for model validation. In addition, non-conventional system
set-ups may fall outside the scope of models and necessarily
need numerical integration. Because of the key role of system
simulations, the next section is devoted to this topic.

II. FIBER PROPAGATION: NUMERICAL METHODS

The NLSE (1) introduced in Section I has no general closed-
form solution. While some approximated analytical solutions
(discussed in Section III-A) are available and widely used for
modeling purposes, the accurate simulation of optical fiber
systems largely relies on numerical methods.

Over the years, several different numerical methods have
been developed to solve the NLSE and its generalizations,
based on different approaches for the discretization of the
time and space variables, such as classical explicit and implicit
finite-difference methods and pseudospectral methods (see, for
instance, [176], [1] and references therein). Among them, the
split-step Fourier method (SSFM) [174], [175] has largely
prevailed thanks to its simplicity, flexibility (it can be easily
extended to include other propagation effects and systems
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Fig. 3. Basic implementation of the SSFM algorithm.

elements), numerical stability, and computational efficiency
[176], becoming the reference method in the optical fiber
community [1].

The key idea behind the SSFM is that of dividing the
propagation along a link of lengthL into M steps of length
h = L/M , over which the effects of the linear and nonlinear
parts of the equation are split (hence, the attributesplit step).
Equation (1) is rewritten in the simple general form

∂A

∂z
= (L + N )A (2)

where the operatorsL = j(β2/2)(∂2/∂t2) andN = −αp/2−
jγ |A|2 represent the linear and nonlinear part of the equation,
respectively [180]. (Though fiber attenuation is a linear effect
and should naturally be included in the linear operatorL,
moving it into the nonlinear operatorN makes the resulting
SSFM more accurate [180].)

The propagation over a step of lengthh can be formally
approximated as

A(z + h, t) ' exp

[∫ z+h

z

N (ζ)dζ

]

exp(hL)A(z, t) (3)

The approximation (3) is particularly convenient, as the sepa-
rate effects of the linear and nonlinear operators can be easily
expressed in closed form, the former in the frequency domain
(hence the attributeFourier), and the latter in the time domain.

The algorithm operates on a discrete-time representation
of the propagating waveformA(z, t). Assuming a sampling
time Ts and a total durationT = NTs, the signal at distance
z = kh (i.e., after afterk propagation steps) is represented by
the vectorAk = (Ak,1, . . . , Ak,N ), with Ak,i = A(kh, iTs).
Transformations from time to frequency domain and back are
based on the direct and inverse discrete Fourier transforms,
which are efficiently computed by the fast Fourier transform
(FFT) algorithm. This entails assuming periodic boundary
conditions both in time and frequency, with periodsT and
B = 1/Ts, respectively. Therefore, when selectingT and
B, special care must be taken to ensure that they are suffi-
ciently wider than the actual continuous-time signal duration
and (two-sided) bandwidth, respectively, to avoid time and
frequency aliasing [179]. In the basic implementation of the
algorithm, the input vectorA0 is propagated through theM
fiber sections according to the scheme in Fig. 3. In particular,
the propagation through thek-th section of the fiber consists
of the following four operations:
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1) Computation of the FFT ofAk−1 to obtain the
frequency-domain vector̃Ak = (Ãk,1, . . . , Ãk,N );

2) linear step to compute the vectorÃ′
k =

(Ã′
k,1, . . . , Ã

′
k,N ) according to

Ã′
k,i = Ãk,ie

−j2π2β2f2
i h, i = 1, . . . , N (4)

wherefi is the frequency of thei-th component;
3) computation of the inverse FFT (IFFT) of̃A′

k to obtain
the time-domain vectorA′

k = (A′
k,1, . . . , A

′
k,N );

4) nonlinear step to compute the vectorAk =
(Ak,1, . . . , Ak,N ) according to

Ak,i = A′
k,ie

−αph/2e−jγheff |A
′
k,i|

2

, i = 1, . . . , N
(5)

where heff = (1 − e−αph)/αp is the effective length
of the step, which accounts for the dependence of the
nonlinear operator on the propagation variable due to
the attenuation.

The algorithm complexity isO(N log N) for the FFTs, and
O(N) for (4) and (5). The actual number of operations
depends on the specific implementation of the algorithm and
will be shortly discussed in Section XI-A. The algorithm can
be extended to the Manakov equation for dual-polarization
signals by replacing signal samples with two-element vector
samples (each element representing a polarization component).
All the described operations should then be applied to both
polarizations, interpreting the squared modulus|A′

k,i|
2 in (5)

as the squared norm‖A′
k,i‖

2 of the vector sample.
Since the linear and nonlinear operators in (2) do not

commute, (3) is only an approximation. However, an argument
based on the Baker–Campbell–Hausdorff formula ensures that
the local error induced by (3) is of the order ofh2, such that
the global error accumulated at the output of the link is of the
order ofh, i.e., it decreases linearly with the number of steps
M . A more accurate approximation can be obtained by using
(3) for half the step, and applying the operators in reverse
order for the other half, such that error terms of the order
of h2 cancel out. This results in a symmetric version of the
algorithm that is based on the approximation

A(z + h) ' exp(
h

2
L) exp

[∫ z+h

z

N (ζ)dζ

]

exp(
h

2
L)A(z)

(6)
and has local and global errors of the order ofh3 and h2,
respectively. The adjacent linear steps of two consecutive
sections can be merged into a single linear step of lengthh.
Therefore, the symmetric algorithm is almost equal to the basic
one depicted in Fig. 3—but for halving the length of the first
linear step and for adding one more linear step of lengthh/2
after the last section—and achieves a higher accuracy with a
negligible increase of complexity.

The accuracy and complexity of the algorithm can be traded
off by selecting the step sizeh, which can also be adaptively
changed along the link to increase the accuracy for a fixed
complexity. Some possible criteria for the selection of the step
size, as well as a strategy for its adaptation based on the local
error, are discussed and compared in [177]. A simple strategy

for the adaptation of the step size based on the global error is
presented in [178].

When processing a very long sequence of samples, the
overlap-and-save technique is typically employed to minimize
the complexity of the algorithm and keep its latency within
reasonable limits [179]. The input sequence of samples is thus
divided into several overlapping blocks of lengthN , which are
separately processed according to the algorithm in Fig. 3. The
output sequence is eventually reconstructed by concatenating
the output blocks and discarding the overlapping samples.

The number of overlapping samples should be at least equal
to the overall memoryNm of the fiber-optic channel, which
depends on the maximum dispersion experienced during prop-
agation. In a dispersion-uncompensated link of total length
L, assuming a constant dispersion parameterβ2, the channel
memory can be approximated asNm ' 2π|β2|B2L [78].

III. F IBER PROPAGATION: ANALYTICAL PERTURBATION

MODELING

A. Perturbation methods

The absence of closed-form solutions of the NLSE, except
for peculiar cases, stimulated the search for approximated
analytical solutions. Among the plethora of methods that
mathematics can provide, perturbation theory [115], [116] has
been the most widely used in approximating the NLSE.

The basic idea of perturbation theory is to identify a term
in a differential equation that is expected to be a small
disturbance to the exact solution of the equation, i.e., it is
a perturbation. Most of the times the small perturbative term
is weighed by a parameter, which represents a key variable for
perturbation theory. If such a parameter is not clearly visible,
one can always multiply the perturbative term by a coefficient
ε, apply the perturbation theory, and finally setε = 1.

Once the small perturbation and its related parameterε,
which is based on physical intuition, are identified, one can
use math to properly approximate the solution for smallε. The
idea is to write the unknown exact solution of the differential
equation as a Taylor series inε. In the NLSE case, we identify
the nonlinear Kerr effect as the small perturbation, andγ as
the corresponding small parameter [23], [117], [24]. We thus
search the solution of the NLSE as a Taylor series with respect
to γ:

A(z, t) ' A0(z, t) + A1(z, t)γ + . . .

We do not knowA(z, t), but thanks to perturbation theory
we can evaluateAn(z, t) for all integersn ≥ 1. They can
be evaluated recursively by solving the following differential
equations [115]:

∂An

∂z
= LAn + N (An−1) (7)

By a closer look we note that such differential equations are
linear, with a forcing termN (An−1). Each of them can be
thus solved exactly once we know the solution at the previous
order.

Although we can truncate the Taylor series up to any order,
all An with n ≥ 2 are extremely complex and, with very
few exceptions, the NLSE has typically been approximated
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to first order inγ. Incidentally, the NLSE is a well behaved
differential equation and settingγ = 0 does not cause
divergence problems, so that we say that we have a regular
perturbation (RP) solution [115]. We are then mainly interested
in RP1, i.e., in RP up toγ1.

The first order perturbative term in frequency domain takes
the following general expression [116], [23], [22], [34]:

Ã1(z, f) =
∫∫ ∞

−∞
η(f1, f2, f)

× Ã(0, f + f1)Ã(0, f + f2)Ã
∗(0, f + f1 + f2)df1df2

(8)

whereη(ω1, ω2, ω) is the fiber kernel and contains all the main
properties of the link. From a numerical point of view the RP
solution (8) does not yield significant speed up with respect
to the numerical solution provided by SSFM. However, its
main interest is in providing an end-to-end analytical solution
that can be statistically manipulated, as we will see in the
following sections. Alternatively, the RP1 solution can be
expressed as a propagating perturbative term along distance,
whose implications will be discussed in Section VI.

For the NLSE, the RP has been showed to coincide with the
Volterra series expansion [22]. Nevertheless, the physical intu-
ition behind RP is of great help in suggesting ways to improve
the solution. First, it has been shown that even in the presence
of dispersion part of the perturbation is in quadrature with
the unperturbed signal. Therefore, besides observing amplitude
distortion at the receiver, we do have phase distortion that
we generally categorize as SPM and XPM. Even if SPM and
XPM are small phase distortions, they may induce a significant
low-frequency contribution that is usually removed by the
carrier phase estimator (CPE) in coherent detection, or by the
photodiode in direct detection. The basic RP solution (8) is
‘unaware’ of such observations, and thus its basic expression
(8) often fails to be satisfactorily accurate. Special tricks to
remove such problems are thus necessary to improve the range
of validity of the RP1 approximation.

A first improvement is to search the perturbation in the
reference system of theaverage nonlinear phase rotation,
yielding the enhanced RP (eRP) method [22]. For first order
eRP the approximated solution of the NLSE is:

A(z, t) ' (A0 + γA1) e−jΦNL

where ΦNL is the average nonlinear phase cumulated along
the link. For instance, for a single span of effective length
Leff and nonlinear lengthLNL it is ΦNL = γLNL/Leff. This
approach corresponds to perturbing a modified NLSE with
average powerP removed in the nonlinear term, i.e., with
N (A) = −jγ(|A|2 − P )A [91]. In Sections IV,V,VI we will
calculate and discuss the variance of the perturbation in the
eRP reference system.

Another improvement to RP is the logarithmic perturbation
(LP), where the perturbation is searched in a logarithmic
domain [38]. At first order forA0 6= 0 we have:

A(z, t) ' A0e
γ

A1
A0 .

LP coincides with the exact solution of NLSE in the limit
of zero dispersive effect, where the nonlinear Kerr effect is

a pure phase rotation. With GVD the exponent in LP is a
complex number, hence it does not manifest itself just as
a phase rotation. This class of models will be discussed in
Sect. VII.

IV. FROM FWM TO THE GN AND EGN MODELS

In this section, two of the most well-known and widely used
nonlinearity models, the GN and EGN-model, will be intro-
duced by deriving them from the basic Kerr-related nonlinear
fiber effect called Four-Wave Mixing (FWM). Historically, this
is one of the ways in which these models have been derived,
and perhaps it is one of the most intuitive. Interestingly, this
FWM-based derivation can be shown to be equivalent to the
RP1 method described in the previous section.

In the end, although some of the details will have to be
skipped, the reader should gain a rather detailed appreciation
of the derivation procedure, of the inner structure of these
models and a general understanding of how fiber nonlinear
effects can be described in terms of the interaction of many
discrete signal spectral components with one-another.

The GN-model was actually derived several times, in
slightly different versions, over the years. The earliest instance
dates back to 1993 [30], where a FWM-based derivation was
used. Though limited to single-polarization, ideal-lossless fiber
and a rectangular overall WDM spectrum, the equations in [30]
essentially coincide with those of the incoherent GN-model,
or iGN-model (see Sect. IV-G).

Later, in 2003, it was shown in [35] that results similar
to [30] could also be derived using a different perturbation
approach, earlier proposed in [25]. Similar equations were also
independently derived in [34] using truncated Volterra-series
in frequency domain, as introduced in [23].

Subsequently (2008-2010), a derivation approach based
again on FWM was used in [40], [42] to derive a GN-
model version limited to optical OFDM. A similar approach
was independently exploited in 2010-2011 to address not just
OFDM, but all WDM systems [44], [48], [49]. The derivation
yielded the frequency-continuous, dual-polarization integral
GN-model formula which is currently considered the reference
formula for the model (called GNRF, or GN-model reference
formula). The name ‘GN-model’ was first introduced in [48].

Detailed re-derivations of the GN-model were published
in [52], [58] based on different methods. Both independently
confirmed the GN-model equations and provided substantial
extensions and insightful generalizations. Various follow-up
papers have been published since, providing further extensions
as well as closed-form approximate solutions of the integral
GN-model formula, for instance [50], [53], [56], [60], [62].

More recently, based on a better understanding of the
features and limitations of the GN-model, an improved model
called the enhancedGN-model (or EGN-model) has been
proposed. For references and a detailed discussion of the EGN-
model, see Sect. IV-H.

A. Kerr nonlinearity and spectral-line signals

We consider a signalE(f) which is made up ofQ spectral
‘lines’, ideally Dirac’s deltas, written as:
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Fig. 4. Generation of a FWM spectral line at frequencyf
(i)
FWM = (fm −

fn + fk) due to Kerr nonlinearity acting upon the signal spectral lines at
frequenciesfm, fn andfk, called ‘pumps’.

E(f) =
Q∑

q=1

ζqδ (f − fq) (9)

where theζq ’s are the complex amplitudes of each one of
the lines. On such spectrally delta-like signal, fiber Kerr
nonlinearity (see Sect. I) acts mainly through the FWM effect.

The literature on FWM is vast. A comprehensive treatment
can be found in [1]. In the next few paragraphs, we are going
to recall only what is strictly needed for our purposes.

When E(f) is propagated along a stretch of optical fiber,
theneachset of threeout of theQ signal lines in Eq. (9), say
those located at frequenciesfk, fm andfn, generates a FWM
contribution in the form of afourth spectral line at frequency:

f
(i)
FWM = fk + fm − fn (10)

as shown in Fig. 4. Note thatk,m, n run each indepen-
dently over {1 . . . Q} and therefore there areQ3 possible
triples (k,m, n). We use the indexi to identify each one
of these triples, through the notation(k,m, n)i, where i
runs over1 . . . Q3. A given triple (k,m, n)i may actually
generate a FWM line at the same frequency as the FWM
line generated by another triple(k′,m′, n′)i′ . That is, it can
be that: f (i)

FWM = f
(i′)
FWM. The reason is that it is possible

that (fk + fm − fn) = (fk′ + fm′ − fn′), even though
(k,m, n)i 6= (k′,m′, n′)i′ .

We now write the FWM generation formulas for a single
stretch of fiber. A FWM spectral line generated by the triple
(k,m, n)i at a specific frequencyf (i)

FWM can be written as:

Ei (z, f) = ηi (z) δ
(
f − f

(i)
FWM

)
(11)

Its complex amplitudeηi grows along the fiber, depending
on several parameters, including the power of the signal
spectral lines, their relative spectral position, fiber dispersion,
loss and the strength of the Kerr nonlinearity of that fiber.

Significantly, such growth law takes on a relatively simple
form, provided that the so-called ‘undepleted pump assump-
tion’ (UPA) can be made. Such terminology stems from the
fact that the signal lines in Eq. (9) are called ‘pumps’ accord-
ing to jargon inherited from Physics. The UPA consists of this:
due to energy conservation, the FWM-generated spectral lines
draw their growing power from the ‘pumps’, whose power
is therefore ‘depleted’. However, if the overall power of the
generated FWM lines is small vs. the pumps’ power, then the

pumps can be assumed unperturbed, orundepleted. It can be
shown that the UPA is equivalent to what is called a ‘first-order
regular perturbation’ (RP1) approach to finding the solution of
the NLSE (see Sect. III-A).

We assume that the FWM amplitude value at the start of
the fiber,z=0, be equal zero, so thatηi (0) = 0. Then, using
the single-polarization NLSE, under the UPA, the FWM line
amplitudeηi can be shown to be:

ηi (z) = −jζmζ∗nζk ∙ e

z∫

0
κ
(

f
(i)
FWM,z′

)
dz′

∙

z∫

0

γ (z′) e

z′∫

0

[
−κ
(

f
(i)
FWM,z′′

)
+κ(fm,z′′)+κ∗(fn,z′′)+κ(fk,z′′)

]
dz′′

dz′

(12)
where:

κ (f, z) = −jβ (f, z) − α (f, z) + g (f, z) (13)

Note that this equation can handle all-order dispersion through
β(f, z), as well as frequency-dependent distributed-gain or
loss along the fiber throughg(f, z) andα(f, z), respectively,
g andα being both positive numbers by definition.

The overall FWM created by the signal of Eq. (9) at the
locationz along the fiber is actually given by the superposition
of all the individually generated FWM contributions, that is:

EFWM (z, f) =
∑

i

ηi (z) δ
(
f − f

(i)
FWM

)
(14)

Focusing onto the quite typical case of ahomogenousstretch
of fiber, wherebyγ is a constant vs. the spatial coordinatez,
this allows one to re-write Eq. (12) in the compact form:

ηi (z) = −jγζkζmζ∗n H
(
f

(i)
FWM, z

)
Leff

(
z, f̄i

)
μ
(
z, f̄i

)

(15)
where f̄i = (fk, fm, fn) is a shorthand for thei-th triple of
frequencies from Eq. (4) generating a FWM line atf

(i)
FWM as

per Eq. (10), and:

H(f, z) = e

z∫

0
κ(f,z′)dz′

(16)

is the linear fiber transfer functionat a generic frequencyf ,
from the fiber start till the lengthz. In addition:

Leff

(
z, f̄i

)
=

z∫

0

e

z′∫

0
Re
{
−κ
(

f
(i)
FWM,z′′

)
+κ(fm,z′′)+κ∗(fn,z′′)+κ(fk,z′′)

}
dz′′

dz′

(17)

μ
(
z, f̄i

)
= L−1

eff

(
z, f̄i

)
∙

z∫

0

e

z′∫

0

[
−κ
(

f
(i)
FWM,z′′

)
+κ(fm,z′′)+κ∗(fn,z′′)+κ(fk,z′′)

]
dz′′

dz′

(18)
whereRe{∙} means ‘real part’.

Eq. (15) shows that the amplitude of thei-th generated
FWM line, ηi, is proportional to the factorsLeff and μ. The
former is called the ‘effective length’ of the fiber. It is areal
and positivenumber, with units of length. It can be thought
of as the length of the fiber as ‘felt’ by FWM generation. In
a perfectly lossless fiber it coincides with the actual physical
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length of the fiber, that is:Leff = z. In a lossy fiber, such
‘FWM length’ is shorter thanz. Note that whenboth loss and
distributed gain are present, the result of Eq. (17) can be either
shorter or longer thanz, depending on their balance.

The quantityμ is the so-called ‘FWM efficiency’ and it
accounts for the critically important effect of dispersion on
FWM generation. If there is no dispersion, i.e., ifβ(f) is a
constant vs.f , then it can be immediately seen from Eq. (18)
thatμ = 1. If anyamount of dispersion is instead present, then
|μ| < 1. This shows that dispersion is a mitigator of FWM
and, in general, of nonlinearity, an important concept that we
will return to, later in the chapter.

Eqs. (15)-(18) constitute an analytical solution to the NLSE
in the FWM framework, potentially providing a powerful tool
for the derivation of nonlinearity models. In practice, for this
to be the case, two conditions must be met: (i) that the
propagation problem is within the validity range of RP1, and
(ii) that the signal of interest, which is sent into the fiber, can
be described as a set of spectral lines like Eq. (9), so that the
FWM formalism can be applied.

As for (i), this condition is typically well verified in modern
fiber telecom systems. We will later actually transition from
RP1 to eRP1 (see Sect. III-A for definition of eRP), which
further extends the range of validity of the solution. Regarding
(ii), the question is whether actual data signals just can be put
in the form Eq. (9). In the following, we briefly address this
latter aspect.

Actual physical transmitted signals (henceforth ‘data sig-
nals’), which we will denote byES (t), have these features:
they are finite-energy, limited-peak-power signals of finite
bandwidth[fl, fh] and finite duration[tl, th]. This is of course
true also for WDM signals consisting of multiple channels.
In the WDM case,[fl, fh] would represent the overall WDM
comb optical bandwidth. Signals with these features can al-
ways be Fourier-transformed. Formally:ES (f) = F {ES (t)},
where F{∙} is the Fourier transform. In general, though,
ES (f) would not bein the form of Eq. (9): it could contain
some spectral lines but it would typically consist mainly of
a continuous spectrum. However, givenany signal with the
above features asES (t), then theperiodic signal built by
simply repeating it at regular intervalsT0:

Eper
S (t) =

∞∑

q=−∞

ES (t − qT0) (19)

acquires apure line spectrumwhose expression is:

Eper
S (f) =

qh∑

q=ql

ζq δ (f − qf0) (20)

wheref0 = 1/T0 andζq =f0ES (qf0). The summation index
q would ideally run over[−∞,∞] but ES (f) is band-limited
by assumption to[fl, fh]. This curtailsq within ql = min{q :
qf0 > fl} and qh = max{q : qf0 < fh}. In conclusion, the
signal of Eq. (20) is of the form Eq. (9) and therefore the
FWM formalism can be applied to it.

Concerns may arise whether the periodicization performed
in Eq. (19) may lead to undesired consequences or loss of
generality. There are subtleties to be heeded, such as signal

continuity issues at the edges of each period, but the answer
is that no loss of generality is incurred.

Note that Eq. (20) is actually more constrained than Eq. (9),
because the spectral lines in Eq. (20) are not arbitrarily
located in frequency, but rather lie on agrid of fixed pitch
f0. Thanks to this, without any loss of generality, we can
from now on identify the frequenciesfk, fm, fn in Eq. (10) as
kf0,mf0, nf0, respectively. When this writing is inserted into
Eq. (10), it can be seen that all generated FWM contributions
f

(i)
FWM forcedly lie on the same frequency gridqf0 where the

periodicized signal spectral lines lie too, withq:

q = (k + m − n) (21)

For notational compactness, we then define{i}q as the set
of all the indicesi that identify triples(k,m, n)i that produce
a FWM lineat the same frequencyqf0, according to Eq. (10).
In formulas:

{i}q =
{

i : f
(i)
FWM = qf0

}
(22)

This could be rephrased by saying that the indexq identifies
the class of equivalence{i}q of all possible triples(k,m, n)i

that produce a FWM spectral line at thesame frequencyqf0.
Assuming to be looking at a single span of fiber of lengthLs,
then the total signal, including both data signal and FWM, at
the end of the span is given by:

Etot (f, Ls) = ES (f, Ls) + EFWM (f, Ls) (23)

where:

ES (f, Ls) =
qh∑

q=ql

ζq(Ls) δ (f − qf0) (24)

EFWM (f, Ls) =
∑

q

∑

{i}q

ηi(Ls) δ (f − qf0) (25)

The factorsζq(Ls) are the data signal spectral line ampli-
tudes from Eq. (20), linearly propagated to the end of the span
according to:

ζq (Ls) = ζq ∙ H(fq, Ls) (26)

andH is the fiber linear transfer function defined in Eq. (16).

B. Multispan Links

Extending the previous equations tomultiple spansrequires
that the UPA be augmented by two related assumptions.

One is that the total FWM at the end of a multi-span link
can be expressed as the sum of the FWM generated in each
genericn-th span. The other is that the signal that generates
FWM in then-th span consists of just the data signal spectral
lines injected at the input of the overall link, then linearly
propagated to the input of then-th span.

These assumptions neglect the fact that, at the input of
each successive span, besides the data signal, there is also
the FWM produced in the previous spans, as well as ASE
noise. This approximation is viable provided that, at any point
along the link, the data signal power can be assumed to be
much larger than the accumulated FWM and ASE power.
In practice, this is typically the case because otherwise, if
the data signal power was comparable to either the ASE
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or FWM power, the data signal would be too degraded for
successful reception to take place. This argument fails only for
systems that can operate at quite low optical signal-to-noise
ratio (OSNR) values. Indicatively, no significant effect of co-
propagating ASE or FWM are observed down to about 10 dB
OSNR [28], [145]. A clear impact can be observed at about
5 dB OSNR where, indicatively, about 10% maximum reach
decrease is found between considering co-propagating ASE
and FWM vs. not considering them. In this section we neglect
this aspect, which is discussed in more detail in Sect. IX-A.

Analytically, Eq. (15) can then be modified as follows, to
provideηi at the end of the link (i.e., atLend), which we call
ηe

i :

ηe
i = −jζkζmζ∗n

Ns∑

ns=1
H
(
f̄i; 1, ns − 1

)

γ (ns) Leff

(
f̄i; ns

)
μ
(
f̄i; ns

)
H
(
f

(i)
FWM; ns, Ns

) (27)

where the fiber transfer functionH
(
f

(i)
FWM; ns, Ns

)
linearly

propagates thei-th FWM line from where it is generated,
i.e., thens-th span, to the last spanNs. H can be found by
cascading its single-span version Eq. (16) along the link. The
factor H

(
f̄i; 1, ns − 1

)
is a shorthand for the product of the

three transfer functions that propagate linearly the three pumps
from the first span to the end of the(ns − 1)-th span, that is:

H
(
f̄i; 1, ns − 1

)
=

H(fk; 1, ns − 1)H (fm; 1, ns − 1)H∗ (fn; 1, ns − 1)
(28)

The notationLeff(f̄i; ns) indicates the effective length cal-
culated for thens-th span alone, relative to thei-th triple
(k,m, n)i. It is found by using Eq. (17) in the local span
length coordinate which runs from 0 to the span lengthL

(ns)
s ,

and settingz = L
(ns)
s . Similarly for μ(f̄i; ns) with Eq. (18).

Finally, the summation in Eq. (27) sums the overall FWM
produced in each span, then linearly propagated to the end of
the link.

We could then use Eq. (22)–Eq. (25) to express the overall
data and FWM signals at the end of the multi-span link. We
will do it in Sect. IV-D after dealing with dual-polarization
propagation.

C. Dual Polarization

Actual fibers carry two polarizations. Non-linear propaga-
tion in dual-polarization (DP) obeys a set of two stochastically-
coupled nonlinear differential equations, called the dual-
polarization NLSE (DP-NLSE) [1]. The stochastic nature of
the coupling is due to the random birefringence of the fiber.
However, as pointed out in Sect. I, in typical telecom fibers, it
is possible to average the DP-NLSE over the spatial evolution
of random birefringence, obtaining the so-called Manakov
Equation (ME) [18], [19], [20]. The ME provides a very
effective means of modeling DP nonlinear propagation and
is very widely used in analytical modeling and simulations.

To address DP-FWM, we first redefine the ‘pump’ ampli-
tudesζq in Eq. (9) as DP quantities:

ζq = ζx̂,q x̂ + ζŷ,q ŷ (29)

where ζx̂,q, ζŷ,q are thex̂ and ŷ pump components, respec-
tively. Then, according to the ME, quite remarkably all of
the previously shown formulas remainunchanged,with the
exception of the substitution of the scalar quantityζkζmζ∗n, in
Eq. (27), with the Jones vector (in thêx andŷ basis) appearing
in square brackets below:

ηe
i = −j 8

9





(
ζ x̂
k ζ x̂

mζ x̂
n
∗

+ ζ x̂
k ζ ŷ

mζ ŷ
n
∗
)

(
ζ ŷ
kζ ŷ

mζ ŷ
n
∗

+ ζ ŷ
kζ x̂

mζ x̂
n
∗
)




Ns∑

ns=1
Leff

(
f̄i; ns

)

γ (ns) μ
(
f̄i; ns

)
H
(
f̄i; 1, ns − 1

)
H
(
f

(i)
FWM; ns, Ns

)

(30)
Note, in particular, thatLeff , μ, H andH arescalar quantities
and are unaffected by DP. Of course, as a result of the above
substitution, the FWM amplitudesηe

i acquire a DP nature too,
that isηe

i = ηe
x̂,i x̂ + ηe

ŷ,i ŷ.

D. The statistical modeling approach

The shown analytical FWM formalism lends itself to the
derivation of statistical models, which are potentially more
powerful design/analysis tools than brute-force numerical
NLSE or ME integration and Monte-Carlo performance es-
timation.

We focus on theend of the link, identified asLend. In
agreement with system-related literature, we call the Kerr-
induced nonlinear disturbance at this location ‘Non-Linear
Interference’, or NLI, replacing the ‘FWM’ acronym, that is:

ENLI(f) = EFWM (f, Lend) (31)

The formula forENLI at Lend is then, similar to Eq. (25):

ENLI(f) =
∑

q

∑

{i}q

ηe
i δ (f − qf0) (32)

In essence, thestatistical approach(SA) consists of viewing
the ηe

i as random variables (RV’s), so that the overall NLI
disturbance field Eq. (32) becomes a random process (RPR),
whose statistical features can be studied to assess its impact
on data signal detection. Note that theηe

i are not RV’s if
transmission of a specific fully-defined data signal takes place.
They become RV’s if transmission of random data signals is
assumed. Then, by statistical manipulation, one can extract the
average features of NLI overall possibledata signals, which is
the great advantage of the SA over any Monte-Carlo strategy.

In this section, we focus on the GN/EGN class of models.
These models aim at finding thepower spectral density(PSD)
of ENLI(f), which we will call GNLI(f) (typically in W/Hz).
The reason for the focus on this quantity is that the impact
of NLI noise on system performance, typically expressed in
terms of a degraded estimated OSNR, can be found based
on GNLI(f). Other indicators can then be estimated based on
such OSNR, such as BER, MI, GMI, to different accuracy.

We first define for convenience a new RV which is the sum
of all the FWM amplitudescontributing to the same NLI line
at frequency(q f0):

νe
q =

∑

{i}q

ηe
i (33)



9

Given Eqs. (32) and (33),GNLI(f) is then directly found as:

GNLI(f) =
∑

q

E
{
| νe

q |2
}

δ (f − q f0) (34)

To carry out the calculation ofE
{
| νe

q |2
}

, with reference to
Eq. (30) and (33), we define thedata signal factor:

Si =





(
ζ x̂
k ζ x̂

mζ x̂
n
∗

+ ζ x̂
k ζ ŷ

mζ ŷ
n
∗
)

(
ζ ŷ
kζ ŷ

mζ ŷ
n
∗

+ ζ ŷ
kζ x̂

mζ x̂
n
∗
)



 (35)

and thelink factor:

LKi = −j 8
9

Ns∑

ns=1
γ (ns) Leff

(
f̄i; ns

)
μ
(
f̄i; ns

)

H
(
f̄i; 1, ns − 1

)
H
(
f

(i)
FWM; ns, Ns

) (36)

This way, we can compactly write:νe
q =

∑

{i}q

Si LKi. We then

have:

E
{∣
∣νe

q

∣
∣2
}

= E






(
∑

{i}q

Si LKi

)T∗
∑

{i′}q

Si′LKi′






=
∑

{i}q

∑

{i′}q

E
{
ST∗

i Si′
}

LK∗
i LKi′

(37)

where the superscript ‘T’ means ‘transpose’. Note that the
link factor, apart from normalizations, is the same quantity
appearing asη in Eq. (8), which provides a clue that the FWM
formalism with the UPA is equivalent to the RP1 approach (see
Sect. III-A).

Eq. (37) is at the core of both the GN and EGN models. It
shows that the SA reduces to the evaluation of the expectation
E {SiS∗

i′}, sinceLKiLK∗
i′ is completely deterministic and it is

even available in closed-form in various relevant cases. Note
also from Eq. (35) thatSi depends only on the data signal at
the input of the fiber, and not on the link features, which are
instead confined withinLKi.

Despite its apparent compactness, Eq. (37) does not typi-
cally generate simple results. The reason is that the RV’sζq ’s,
which are the amplitudes of the overall WDM data signal
spectral lines in Eq. (20), interact nonlinearly in Eq. (37)
giving rise to complex sixth-order moments, which generate
a large number of terms. Only under drastic simplifying
assumptions or special circumstances Eq. (37) and, as a result,
the NLI spectrum Eq. (34), take on simple forms. This is the
case of the GN-model, which we introduce next.

E. The GN-model

The complexity hidden within Eq. (37) drastically simplifies
provided that certain approximations are made. Such approx-
imations give rise to the so-called GN-model. They are as
follows.

It is assumed that theζq ’s in Eq. (9) are statistically
independent (SI) zero-mean complex circular jointly-Gaussian
RVs. As for their variancesσ2

ζq
, they directly relate to the

Fig. 5. Solid red line: an example of the PSDGS(f) of a 5-channel
aperiodic WDM transmission signal. Black arrows: Dirac’s deltas making up
the PSDGper

S (f) of the periodicized transmission signal Eq. (38), according
to Eq. (39).

average PSD of the periodicized data signal of Eq. (20), which
is given by:

Gper
S (f) =

qh∑

q=ql

σ2
ζq

δ (f − qf0) (38)

Then, a logical choice is to assume that theσ2
ζq

are such
thatGper

S (f) tends to follow the average PSD of theaperiodic
data signal,GS(f). This is obtained by imposing:

σ2
ζq

= f0 ∙ GS (q f0) (39)

where the multiplying constantf0 adjusts dimensions and
also ensures signal power consistency. This way,Gper

S (f) and
GS(f) relate as in the pictorial example of Fig. 5.

A key point is whether the main assumptions made so
far are reasonable and accurate. As already stated, the signal
periodicization of Eq. (19) is of no concern. In addition, in
Sect. IV-E1 we will actually show that it can be removed.
The PSD matching of Eq. (39), depicted in Fig. 5, is non-
problematic either. The zero-mean complex circular Gaussian
distribution assumption for each one of theζq ’s, individually,
is actually quite accurate, too. What, in general, isnotaccurate,
is the assumption that theζq ’s are SI. In fact, assuming con-
ventional memoryless modulation, with independent symbols,
and standard PM-QAM constellations, then theζq ’s are not
independentwithin each single WDM channel. Also, their
dependence is not straightforward since, even though they are
individually Gaussian, they are not jointly-Gaussian.

The GN-modelneglectsthe statistical dependence of the
ζq ’s within each WDM channel and this approximation can
be expected to generate some error, which we will discuss
later on. On the other hand, it allows for extremely simple
handling of the averageE {SiS∗

i′}. The very compact result,
which can be obtained through Isserlis’s theorem, is:

E
{
ST∗

i Si′
}

= 3
4σ2

ζk
σ2

ζm
σ2

ζn
δii′

= 3
4f3

0 GS (kf0) GS (mf0) GS (nf0) δii′

(40)

It should be mentioned that the above formula is valid when
the three indicesk,m,n of the i-th triple are all different.
Using it when this is not the case introduces an approximation,
which is however of vanishing impact for decreasingf0. We
consequently assume that a small-enoughf0 is chosen. Inter-
estingly, it can be shown that introducing such approximation
and assuming a small-enoughf0 also makes the result tend
to the more accurate eRP perturbation approach than the RP
which would be found otherwise (see Sect. III-A).
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Once Eq. (40) is plugged into Eq. (37), the Kronecker’s
deltaδii′ reduces the double summation to a single one. As a
result, the power carried by the NLI spectral line at frequency
(qf0) is given by:

E
{∣
∣νe

q

∣
∣2
}

=
16
27

f3
0

∑

{i}q

GS (kf0) GS (mf0) GS (nf0) |LKi|
2

(41)
We must now make explicit the implicit indexing system

used in Eq. (41), defined in Eq. (22), and write equivalently
but explicitly:

E
{∣
∣νe

q

∣
∣2
}

= 16
27f3

0

qh∑

k=ql

qh∑

m=ql

∣
∣LKkm(k+m−q)

∣
∣2

GS (kf0) GS (mf0) GS ([k + m − q] f0)
(42)

where the relationn = (k + m − q), derived from Eq. (21),
was used. The link factorLKkmn is now written as:

LKkmn = −j
Ns∑

ns=1
γ (ns) Leff (kf0,mf0, nf0; ns)

μ (kf0,mf0, nf0; ns)H (qf0; ns, Ns)

H (kf0,mf0, nf0; 1, ns − 1)

(43)

The above Eqs. (42) and (43), together with Eq. (34),
provide a general frequency-discrete GN-model equation set.
These formulas could be directly used to calculate the PSD
of NLI by executing the indicated summations numerically.
However, a frequency-continuousset of formulas can be
derived from them.

1) Continuous frequency:It is possible to re-cast the GN-
model in integral form by going from discrete to continuous-
frequency. This is useful also because in certain cases it allows
analytical closed-form solutions to be obtained.

The procedure consists of lengthening the periodicityT0 of
the data signal in Eq. (20). In the limit ofT0 → ∞, that is
of the data signal effectively becoming aperiodic and infinitely
extended in time, then alsof0 → 0 and through rather straight-
forward mathematical manipulation, thefrequency continuous
GN-modelis found. The PSD of NLI is given by:

GNLI (f) = 16
27

fh∫

fl

fh∫

fl

GS (f1) GS (f2) GS (f1 + f2 − f)

|LK (f1, f2, f1 + f2 − f)|2df1df2

(44)

LK (f1, f2, f3) = −j
Ns∑

ns=1
γ (ns) Leff ((f1, f2, f3) ; ns)

μ ((f1, f2, f3) ; ns)H (f1 + f2 − f3; ns, Ns)

H ((f1, f2, f3) ; 1, ns − 1)
(45)

For the readers’ convenience, below we replace the short-
hands appearing in Eq. (45) with their definitions, and in-
clude certain elements, such as lumped gain/loss and possible

dispersion-compensating units (DCUs), that have not been
explicitly introduced so far. The result is:

LK (f1, f2, f3) = −j
Ns∑

ns=1
γns

L(ns)
s∫

0

e

z′∫

0
[κns (f1,z′′)+κ∗

ns(f3,z′′)+κns(f2,z′′)−κns (f1+f2−f3,z′′)]dz′′

dz′

Ns∏

p=ns

Γ1/2
p (f1 + f2 − f3) e

L
(p)
s∫

0
κp(f1+f2−f3,z)dz

e−jβ
(p)
DCU(f1+f2−f3)

ns−1∏

p=1
[Γp (f1) Γp (f2) Γp (f3)]

1
2 e

L
(p)
s∫

0
[κp(f1,z)+κp(f2,z)+κ∗

p(f3,z)]dz

e
−j
[
β

(p)
DCU(f1)+β

(p)
DCU(f2)−β

(p)
DCU(f3)

]

(46)
whereΓp is lumped power gain/loss andβ(p)

DCU(f) is the effect
of a DCU element, both located at the end of thep-th span.
The quantityκp is the complex propagation constant, defined
in Eq. (13), for thep-th span. Eq. (46) is quite general as it can
handle both distributed and lumped loss/gain, also frequency
dependent, as well as the possible presence of DCUs. Note
that if Γp had a phase-shift associated with it, that is its field
transfer function wasΓ1/2

p ejΦ
(p)
Γ (f) such phase-shift could be

introduced in the formula by formally replacing the DCU
phase-shiftβ(p)

DCU(f) with:
[
β

(p)
DCU(f) − Φ(p)

Γ (f)
]
.

F. Noteworthy Link Factors

In this section we focus on closed-forms or simplified forms
for the LK factor, which can be found for various cases of
interest. LK is a function of the frequencies of the three
‘pumps’ generating a FWM contribution. This dependence can
be cast in the discrete framework of Eqs. (42)-(43) through the
indicesk,m, n or in the continuous framework of Eqs. (44)-
(45) using frequenciesf1, f2, f3. We use the latter, but it is
possible to convert from one to the other through the direct
substitutions:f1 = kf0, f2 = mf0, f3 = nf0.

1) The transparent and uniform link with lumped amplifi-
cation: A transparent spanis such that its optical gain equals
its loss exactly, from the input of that span to the input of
the next span. Atransparent linkis one where every span is
transparent. A link isuniform if all spans are identical.

Under the assumptions of a transparent and uniform link,
Eq. (45) takes on the closed-form:

LK (f1, f2, f3) = −jNsγLeff (f1, f2, f3) μ (f1, f2, f3)

e−jNsLsβ(f1+f2−f3)ej
β123

2 (Ns−1)LsD(Lsβ123/2, Ns)
(47)

where the dependence ofLeff andμ on ns was removed since
they are identical for all spans, and we use the shorthand:

β123 = β (f1 + f2 − f3) − β (f1) − β (f2) + β (f3) (48)

D(x,N) = sin(Nx/2)
N sin(x/2) is the periodic-sinc Dirichlet function

of orderN [258].
If we further assume that the fiber loss coefficientα

is frequency-independent and that lumped (non-distributed)
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frequency-independent amplification is used, with the ampli-
fier placed at the end of each span, thenLeff andμ simplify
to:

Leff =
(
1 − e−2αLs

)/
2α (49)

μ (f1, f2, f3) =
1

Leff
∙
1 − e−2αLsejβ123Ls

2α − jβ123
(50)

Note that quite oftenβ is accounted for through the so-
calledβ2 andβ3 coefficients, as follows:

β(f) = 2π2β2f
2 +

4
3
π3β3f

3 (51)

If so, Eq. (48) is re-written as:

β123 = 4π2 (f1 − f3) (f2 − f3) [β2 + πβ3 (f1 + f2)] (52)

2) The uniform lossless link:Lossless links are often used
in research papers as a limiting case of ideal distributed
amplification. A uniform lossless link with no DCUs can
actually be viewed as a single span, whose length is that of
the whole link. Using Eqs. (17)-(18), withα = 0, g = 0
and integration lengthz = Ltot, whereLtot is the whole link
length, then we have thatLeff = Ltot and:

μ (f1, f2, f3) = ejβ123Ltot/2 Sinc (β123Ltot/2) (53)

whereSinc(x) = sin(x)/x. Using these results, the link factor
becomes:

LK (f1, f2, f3) = −jγLtotμ (f1, f2, f3) e−jβ(f1+f2−f3)Ltot

(54)
If β is expressed as Eq. (51), then Eq. (52) allows to modify

Eqs. (53)-(54) accordingly.
Note that there are substantial differences between the

link factor of a uniform and transparent lossy multispan link
Eq. (47) and a lossless one Eq. (54). Indeed, nonlinearity
presents strongly different features in the two set-ups, so a
lossless link should never be used as an approximation of a
lossy one in practical systems studies.

3) The uniform transparent link with undepleted backward-
pumped Raman amplification:Raman amplification has be-
come a key staple of modern coherent terrestrial links, where
it can provide equivalent noise-figuregains on the order of
4-6 dB. Eq. (45) is capable of handling any distributed gain
profile, and therefore Raman amplification too, but it would
typically require numerical integration of Eqs. (17) and (18)
and in general the evaluation ofLK would be quite involved.

A closed-form expression forLK is available provided that
the following simplifying assumptions and approximations
are made: the link is uniform and transparent; gain is due
to a single counter-propagating Raman pump; the Raman
pump isundepleted; Raman gain and fiber loss are frequency-
independent. Note that the Raman gain need not balance
exactly fiber loss: we assume however transparency so either
lumped loss or lumped gain are assumed to be present at the
end of each span to bring the total span gain/loss to balance,
from which | H(f ; ns, Ns) |= 1, for anyns.

The distributed (field) gain due to a single undepleted
backward-propagating Raman pump at a locationz within a
span whose local spatial coordinate isz ∈ [0, Ls], is:

g (z) = CrPr0e
2αrz

/
2 (55)

whereCr is the Raman gain coefficient 1/(W km),αr (1/km)
is the (field) attenuation of the fiber at the Raman pump
frequency andPr0 is the power of the pump atz = 0, i.e.,
at the start of the span. Note that, since the pump is injected
at the end of the span and propagates backwards, its power-
profile actually grows exponentially in the forward direction,
as shown by Eq. (55). The calculations are fully reported in
[50] and the relevant results are:

Leff = e
−

CrPr0
2αr

2αr
∙
(
−CrPr0

2αr

) α
αr

[
Γ
(
− α

αr
,−CrPr0

2αr

)
− Γ

(
− α

αp
,−CrPr

2αr

)] (56)

μ (f1, f2, f3) = e
−

CrPr0
2αr

2αrLeff

(
−CrPr0

2αr

) 2α−jβ123
2αr

[
Γ
(
− 2α−jβ123

2αr
,−CrPr0

2αr

)
− Γ

(
− 2α−jβ123

2αr
,−CrPr

2αr

)]

(57)
where Pr = Pr0e

2αrLs is the power of the pump as it is
injected at the end of the span, and:

Γ (x, y) =

∞∫

y

wx−1e−wdw

is the upper incompleteGamma function. Here too, ifβ is
expressed as Eq. (51), then Eq. (52) allows to modify Eq. (57)
accordingly. The overall expression ofLK is still Eq. (47).

G. The incoherent GN-model

Among the assumptions leading to the GN-model, there is
the premise that the NLI, generated by FWM in each span,
adds up at thefield level at the end of the link, that is:

Eend
NLI (f) =

Ns∑

ns=1

E
(ns)
NLI (f) (58)

Eqs. (44)-(45) were derived accordingly. A possible alternative
assumption is that NLI adds up inpowerat the end of the link,
that is:

Gend
NLI (f) =

Ns∑

ns=1

G
(ns)
NLI (f) (59)

This assumption, is called theincoherent accumulation ap-
proximation, or IAA. The GN-model version that uses it
is the incoherent GN-model, or iGN-model. The iGN-model
equations are Eq. (44) and the following (replacing Eq. (45))

|LK (f1, f2, f3)|
2 =

Ns∑

ns=1
|γ (ns) Leff ((f1, f2, f3) ; ns) μ ((f1, f2, f3) ; ns)|

2

|H(f1 + f2 − f3; ns, Ns)H ((f1, f2, f3) ; 1, ns − 1)|2

(60)
The IAA is a rather drastic approximation. On the other

hand, Eq. (59) brings about substantial simplification which
is greatly advantageous in the practical use of the GN-model.
There are three main aspects in which it helps.

First, if the GN-model is evaluated by numerical integration
of Eqs. (44)-(45), the|LK|2 factor typically turns out to be
very rapidly oscillating vs. the integration variables, requiring
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a fine integration grid or sophisticated integration strategies
[50]. This can be appreciated by looking for instance at a
closed-formLK, such as for the transparent and uniform link,
where the Dirichlet function in Eq. (47) has a rapidly oscilla-
tory behavior. Such behavior is due to the phase interference
of the NLI contributions from different spans, occurring at the
end of the link (see Fig. 21 in [50]). If the IAA is made,
then this interference does not occur and, in the example in
question, the Dirichlet function factor disappears altogether.

Secondly, the simplified analytical form of theLK factor
makes it easier to find fully closed-form solutions for the
overall NLI PSDGNLI(f), see Sect. IV-J.

Thirdly, Eq. (59) makes it easy to assess NLI within
complex reconfigurable networks, because the computation of
NLI within each span, as well as the optimization of certain
aspects such as launch power, become dependent only on span-
local features. NLI is then easily propagated from that span on,
by accounting only for loss and gain along the path. This was
recognized early on and has developed, among others, into the
LOGO network optimization and control strategy [88], [89],
[90], which is currently in use in physical-layer-aware optical
networking products of some vendors.

Of course the above advantages would be moot if the
IAA induced too large errors. However, despite the drastic
nature of the IAA, the results of the iGN vs. the GN-model
are typically quite close. In fact, in many cases the iGN-
model appears more accurate than the GN-model, due to the
fortuitous circumstance that the error due to the Gaussian data
signal assumption made by the GN-model partially cancels out
the error induced by the IAA. This aspect was studied in detail
in [62] (Sects. III-D and V-D) and in [260]. It is dealt with in
the next section (Sect. IV-G1) too.

1) GN-model accuracy and validity range:For theoretical
reasons whose discussion can be found in the rich literature
on the topic, such as [54], [55], [57], [61], [91], [92], the GN-
model approximations tend to work well and produce accurate
results when:

(1) the symbol rate is large
(2) fiber dispersion is large
(3) loss per span is not too small
(4) amplification is prevalently lumped
(5) the number of traversed spans is sufficiently large.
In agreement with the above, the GN-model has shown ex-

cellent predictive capability in ultra-long-haul (ULH) subma-
rine transmission over PSCF at large symbol rate. Various level
of inaccuracy have instead been found for instance over very
low dispersion fibers, at low symbol rates, with short reach
(1-3 spans). Note, though, that the model is rather robust in
the sense that, typically, several of the above conditions must
be simultaneously or severely violated in order to see large
errors in NLI prediction by the model. Also, the GN-model
error isalwaystowards underestimating system performance,
i.e., it is always conservative. Such underestimation error is
typically in the range -5% to -20% of maximum reach.

Several dedicated GN-model test and validation studies
have been carried out over the years, both simulative and
experimental. Examples of the experimental ones are [69],
[71] [72], [73], [74], [75], [76], [90], where the GN-model

consistently proved quite accurate. Two of these experiments
were specifically designed to test the model over different fiber
types [69], [74]. In particular, the latter addressed seven quite
different fiber types. A massive ULH experiment [71] showed
a very good accuracy of GN-model predictions for a 106-
channel system at 30 GBaud channel rate, with PM-16QAM
transmission, over 10290 km, with and without ideal DBP.

Regarding simulative tests, a great many papers have been
published. A recent broad study [260] addressed a very wide
range of scenarios, including five QAM formats (from PM-
QPSK to PM-64QAM) at 32 GBaud, three fibers (NZ-DSF,
SMF, PSCF), three channel spacings (33.6, 27.5 and 50 GHz)
and two span lengths (60 and 100 km). Mixed Raman/EDFA
amplification was also addressed. The range of maximum
reach (MR) probed spanned from 200 to 10,000 km. Criteria
(1)-(5) above were confirmed and a gradual error increase
was found when such criteria were departed from. Along
similar lines, two newer studies [261], [262], have explored the
realm of high symbol rates (from 64 to 512 GBaud), showing
quite compellingly that, as symbol rates go up, the GN-model
becomes more accurate. We will come back to this aspect after
introducing the EGN model, in the next section.

Here, in Fig. 6a, we provide an original set of results
where we focused on 15-channel systems operating at the
next-generation industry-standard symbol-rate of 64 GBaud.
The test was run on either single-mode-fiber (SMF) or a
challenging non-zero dispersion-shifted-fiber (NZDSF) with
high nonlinearity coefficient and very low dispersion. Six
QAM formats were tested, from PM-8QAM to PM-256QAM,
with three different spacings. The detailed system data are
reported in the figure caption. MR at optimum launch power is
shown, found based on reaching a target minimum generalized
mutual information (GMI) equal to 87% of each format
entropy, corresponding to about 15% FEC coding overhead.
For instance, the entropy of PM-32QAM is 10 bit/symbol and
the target GMI was set to0.87 ∙ 10 = 8.7 bit/symbol. The
abscissa is the net system spectral efficiency in bit/(s Hz),
calculated as shown in the caption.

Fig. 6a confirms that the GN-model always underestimates
MR, in the SMF case by 7% for PM-8QAM, up to to 17%
for PM-256QAM. This larger error is due to the very short
reach of PM-256QAM (1 span), severely violating condition
(5). Errors are somewhat larger in the case of the NZDSF
(which violates condition (2)), again especially at short reach
(violating (2) and (5) together). The incoherent GN model
is better overall, for the reasons explained at the bottom of
Sect. IV-G.

In summary, the GN-model and its incoherent version
provide a low-complexity, conservative tool for the estimation
of system performance across a very wide range of system
scenarios. As we will later show, it also lends itself to the
derivation of fully-closed form approximate solutions. These
aspects justify its success and widespread use. Later, we
will also show that the possible adoption of Gaussian-shaped
constellation for optical transmission may actually provide a
renewed boost to the use of the GN-model.
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H. The EGN-model

As mentioned above, the GN-model loses accuracy when
criteria (1)-(5) are violated. Also, because of the Gaussian
data signal assumption, it does not account for certain non-
linearity features, such as the dependence of NLI generation
on modulation format. These problems were recognized early
on [54], [55], [57], and in [57] a procedure was proposed by
which the GN-model could be modified to avoid them. In [63]
the so-calledEGN-modelwas fully derived following up on
the procedure introduced in [57]. Extended calculation details
are reported in [64].

Both the GN and the EGN model descend from Eq. (37).
They differ as to theresult of the expectationE {SiS∗

i′}, where
Si is given by Eq. (35). This is because the RV’sζn, which
make upSi, are assumed SI for the GN-model, whereas in the
EGN-model their statistical dependence is taken into account.
As a consequence, the sixth-order moments of theζn’s, which
appear withinE {SiS∗

i′}, yield a much more complex result
than Eq. (40). When such result is put into Eq. (37), and the
transition from discrete frequency to continuous frequency is
made (see Sect. IV-E1), not just one, as in the GN-model case,
but a total oftwelve integral terms are generated, each with
different integrand functions and different integration domains.

Interestingly, one of these integral termscorresponds to the
GN-model itself, so that it is possible to write the EGN-model
as:

GEGN
NLI (f) = GGN

NLI (f) − Gcorr
NLI (f) (61)

whereGGN
NLI (f) is the GN-model term andGcorr

NLI (f) collects
the other eleven integral terms. It can be thought of as a ‘cor-
rection’ which originates from the statistical dependence of
theζn’s, not taken into account inGGN

NLI (f). Incidentally, such
statistical dependence changes depending on the modulation
format, so whileGGN

NLI (f) is format-independent,Gcorr
NLI (f) is.

Note also thatGcorr
NLI (f) is intentionally presented with a minus

sign in Eq. (61), to stress the fact that the EGN correction
typically decreasesNLI. In fact, it always decreases NLI if
PM-QAM signals are assumed and this explains the observed
feature ofGGN

NLI (f) always overestimating NLI.
A complete version of the quite complex EGN-model for-

mulas is reported in [63], [259]. We will not reproduce them
here for lack of space. We will focus instead on an approximate
reducedEGN-model in Sect. IV-H2.

1) EGN model accuracy:The EGN-model accuracy has
been extensively investigated simulatively (see for instance
[260], [261], [262]). The results have consistently shown that
the accuracy of the EGN-model is excellent, even when one or
more of the conditions (1)-(5), which are critical for the GN-
model (see top of Sect. IV-G1), are not met. As we did for the
GN-model, we show in Fig. 6a a collection of tests on QAM
systems operating at 64 GBaud, over SMF and NZDSF, with
100 km spans (see Sect. IV-G1 and the caption of Fig. 6a for
setup details). The very remarkable feature of the plot is the
flawless coincidence of the EGN model MR prediction with
the simulation results, across all system configurations, MR
values, channel spacings and fibers.

Note that the star markers in Fig. 6a are simulations that use
a receiver that is optimum in AWGN andmakes no attempt

at mitigating the component of NLI which can be classified
asnonlinear phase-noise(NLPN). Such NLI component turns
out to be correlated over time, to an extent that roughly grows
as the accumulated dispersion along the link and as the symbol
rate squared. If enough time-correlation is present, NLPN can
be removed by means of relatively simple carrier-phase esti-
mation (CPE) algorithms and a somewhat better performance
than predicted by the EGN model can be achieved. This aspect
is discussed extensively in [260], [261], [262] and is dealt with
in Sect. V-2 of this chapter.

2) The reduced EGN model:The EGN model is very accu-
rate, but quite complex. On the other hand, in virtually all cases
of practical interest, very good accuracy is still achieved by
using the so-called EGN-SCI-X1 [259] approximation, which
we call herereduced EGN-model. It consists of neglecting
those EGN-model terms whose contribution is typically the
smallest. The remaining terms are still substantially more
complex, as a whole, than the GN-model, but about only
1/3 as complex as the complete EGN-model. With reference
to Fig. 6a, the curves of the reduced EGN-model would be
completely superimposed to those of the EGN-model (less
than 1% MR difference), in all cases presented there.

To deal with the EGN-model, we have to introduce a
different notation from that used for the GN-model in Eq. (44).
The reason is that the termGcorr

NLI (f), cannot be expressed in
terms of the WDM signal PSD. Rather, the Fourier transforms
of the individual WDM channelpulsesare called into play.
Please refer to Appendix B for a detailed list of symbol
definitions.

The overall WDM data signal is written in time-domain as:

sWDM(t) =
Nch∑

nch=1

∑

r

(
ar

x,nch
x̂ + ar

y,nch
ŷ
)

snch (t − rTnch) ej2πfnch t

(62)

The ar
x,nch

and ar
y,nch

are the symbols sent on thêx and ŷ
polarizations in ther signaling time-slot, on thench the WDM
channel. We then assume that all quantities are normalized so
that the power carried by each WDM channel is given by:

Pnch = E
{∣
∣ar

x,nch

∣
∣2 +

∣
∣ar

y,nch

∣
∣2
}

(63)

We also define the following quantities related to the fourth
and sixth moments of the channel symbols:

Φ = 2−
E
{
|a|4
}

E2
{
|a|2
} , Ψ = −

E
{
|a|6
}

E3
{
|a|2
}+9

E
{
|a|4
}

E2
{
|a|2
}−12

(64)
where a is any of thear

x,nch
or of the ar

y,nch
, which are

assumed to be all identically distributed. The exact values
of Φ and Ψ for the most commonly used constellations
are shown in Table I. They vary substantially among low-
cardinality constellations, whereas they change little among
high-cardinality ones. We also report the limit values for a
QAM constellation made up of infinitely many signal points,
uniformly distributed within a square region whose center is
the origin (the PM-∞-QAM entry in Table I). Note that the
values for PM-64QAM are already very close to such limit.
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format Φ Ψ

PM-BPSK 1 -4

PM-QPSK 1 -4

PM-8QAM 2/3 -2

PM-16QAM 17/25 -52/25

PM-QPSK 69/100 -211/100

PM-64QAM 13/21 -5548/3087

PM-128 1105/1681 -135044/68921

PM-256 257/425 -12532/7225

PM-∞-QAM 3/5 -12/7

PM-Gaussian 0 0
TABLE I

EXACT VALUES OF THE Φ AND Ψ PARAMETERS.

To compute the GN-model contributionGGN
NLI (f) according

to the signal notation introduced above, Eq. (44) can still be
used, with the substitution:

GS(f) =
Nch∑

nch=1

PnchRnch |s̃nch (f)|2 (65)

where s̃nch(f) = F
{
snch (t) ej2πfnch t

}
. Regarding the cor-

rection termGcorr
NLI (f), its overall expression, for thereduced

EGN model, is:

Gcorr
NLI(f) = P 3

mc
[Φmc ρmc

SCI(f) + Ψmc τmc
SCI(f)]

+Pmc

Nch∑

nch=1
nch 6=mc

P 2
nch

Φnchρnch
X1 (f) (66)

where we have assumed that the channel under test (CUT) is
the mc-th channel,not necessarilythe center channel in the
WDM comb.

The terms in Eq. (66) bearing the subscript ‘SCI’ (Self-
Channel Interference) are EGN correction terms to the NLI
produced by the CUT onto itself. Their expression is:

ρmc
SCI(f) = 80

81R2
m

fmc+Bmc/2∫

fmc−Bmc/2

df1

fmc+Bmc/2∫

fmc−Bmc/2

df2

fmc+Bmc/2∫

fmc−Bmc/2

df
′

2∙

|s̃mc(f1)|
2
s̃mc(f2)s̃∗mc

(f
′

2)s̃
∗
mc

(f1 + f2 − f)s̃mc(f1 + f
′

2 − f)∙

LK (f1, f2, f1 + f2 − f) LK∗
(
f1, f

′

2, f1 + f
′

2 − f
)

+ 16
81R2

mc

fmc+Bmc/2∫

fmc−Bmc/2

df1

fmc+Bmc/2∫

fmc−Bmc/2

df2

fmc+Bmc/2∫

fmc−Bmc/2

df
′

2∙

|s̃mc(f1 + f2 − f)|2s̃mc(f1)s̃mc(f2)s̃∗mc
(f1 + f2 − f

′

2)s̃
∗
mc

(f
′

2)∙

LK (f1, f2, f1 + f2 − f) LK∗
(
f1 + f2 − f

′

2, f
′

2, f1 + f2 − f
)

(67)

τmc
SCI(f) = 16

81Rmc

fmc+Bmc/2∫

fmc−Bmc/2

df1

fmc+Bmc/2∫

fmc−Bmc/2

df2

fmc+Bmc/2∫

fmc−Bmc/2

df
′

1

fmc+Bmc/2∫

fmc−Bmc/2

df
′

2∙

s̃mc(f1)s̃mc(f2)s̃∗mc
(f1 + f2 − f)s̃∗mc

(f
′

1)s̃
∗
mc

(f
′

2)s̃mc(f
′

1 + f
′

2 − f)∙

LK (f1, f2, f1 + f2 − f) LK∗
(
f

′

1, f
′

2, f
′

1 + f
′

2 − f
)

(68)

where the integration limits were made explicit and correspond
to the frequency interval occupied by the CUT, i.e.:

f ∈ [fmc − Bmc/2, fmc + Bmc/2] (69)

The terms in Eq. (66) bearing the subscript ‘X1’ are EGN
correction terms to the NLI produced by ‘XPM’ (Cross-Phase
Modulation) or, according to a different taxonomy [50], due
to ‘XCI’ (Cross-Channel Interference). Their expression is:

ρnch
X1

(f) = 80
81RmcRnch

fmc+Bmc/2∫

fmc−Bmc/2

df1

fnch+Bnch/2∫

fnch−Bnch/2

df2

fnch+Bnch/2∫

fnch−Bnch/2

df
′

2∙

|s̃mc(f1)|
2
s̃nch(f2)s̃∗nch

(f
′

2)s̃
∗
nch

(f1 + f2 − f)s̃nch(f1 + f
′

2 − f)∙

LK (f1, f2, f1 + f2 − f) LK∗
(
f1, f

′

2, f1 + f
′

2 − f
)

(70)
where the integration limits were made explicit and correspond
to either the frequency interval occupied by the CUT as written
in Eq. (69), or by the genericnch-th WDM channel:

f ∈ [fnch − Bnch/2, fnch + Bnch/2] (71)

I. Gaussian-shaped constellations

If a ‘PM-Gaussian’ constellation is used, then all the factors
Φ andΨ in Eq. (66) are zero, according to Table I. This implies
Gcorr

NLI (f) = 0 or, equivalently,GEGN
NLI (f) = GGN

NLI (f).
Given the current rapidly growing interest in Gaussian-

shaped constellations (GSCs), this is an important result.
To check it, we ran the sample test-set of Fig. 6a using
an ideal GCS, taking as target MIs the values of GMI of
the six QAM systems in Fig. 6a. The results are shown in
Fig. 6b. Simulations agree very well with the GN/EGN curve.
Therefore, if systems using GSCs earned widespread adoption,
NLI modeling complexity would reduce to that of the GN-
model, but EGN-model accuracy would be expected. This
circumstance might help in the design and real-time handling
of future physical-layer-aware networks based on GCSs. A
specifically devoted paper was recently published on this topic,
combining it with future ultra-high symbol rates [262]. As a
caveat, GSCs are known to generate more NLPN than QAM
constellations. For a discussion of the possible impact of
this aspect on modeling, and for more information on how
simulations involving GSCs can be performed, see [262].

J. GN-model closed-form approximate solutions

In some cases, approximate closed-form solutions (ACFSs)
can be found not just for the link factor, as shown in Sect. IV-F,
but for the overall NLI PSDGNLI(f), for either the GN or
the EGN-model. Several ACFSs have been proposed, among
which [50], [53], [56], [58], [60], [62], [65], [259]. Being
approximate solutions, each one has specific limitations that
must be taken into account.

For the EGN model, however, only one ACFS is currently
available, consisting of an asymptotic form (in the number of
spans) of the correction termGcorr

NLI (f). It was proposed in
[65] and then upgraded in [66], [259]. Though effective, it
only works well for relatively long links.
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Fig. 6. System maximum reach (MR) in number of spans, vs. net spectral
efficiency. Asterisks are simulation results, lines are analytical predictions
using the GN-model, incoherent GN-model and EGN model (see legends).
Results are in blue for NZDSF and in black for SMF.System data:The span
length is 100km, EDFA noise figure 6 dB, symbol rateRs = 64 GBaud,
15 channels, the tested channel is the center one. For each format the target
GMI (for PM-QAM) or MI (for PM-Gaussian) is shown. The abscissa was
calculated as:GMI ∙ Rs/Δf , MI replacing GMI for PM-Gaussian. Three
channel spacingsΔf were used for each format: 76.2, 87.5 and 100 GHz. The
error bars indicate±10% error interval. Fibers were: SMF,D=16.7 ps/(nm
km), α=0.21 dB/km,γ =1.3 1/(W km); NZDSF,D=2.0 ps/(nm km),α=0.22
dB/km, γ =1.77 1/(W km).

Instead, several ACFSs have been found for the GN-model.
A very accurate GN-model ACFS is available for transparent
and uniform systems using an ideal Nyquist-WDM comb (zero
roll-off and channel spacing equal to the symbol rate). It was
originally derived in [50], and consists of Eqs. (7), (13) and
(23) in that paper, combined.

An extension to non-Nyquist systems, for identical channels
with uniform channel spacing, was also proposed in [50]
(Eqs. (7),(15) and unnumbered formula after Eq. (23)). Its
accuracy is quite good for narrow channel spacing but may
degrade for large channel spacing.

An ACFS not requiring either transparency, uniformity or
identical, equally-spaced channels, and therefore of great po-
tential usefulness, was reported in [62]. Such formula is quite
general, but it approximates the iGN-model, rather than GN,
i.e., it assumesincoherent NLI accumulation(see Sect. IV-G).

On the other hand, the results from the literature (see for
instance [260], [261], [262]) as well as Fig. 6, show the iGN-
model to be close to the GN-model in most practical situations,
including that of GSC-based systems (Fig. 6b). Two more
assumptions are made, which were needed in the derivation:
the channels have approximately rectangular PSD (that is, very
small roll-off) and span loss is at least 7 dB, with greater than
10 dB being the optimal condition. Also, this ACFS provides
an estimate ofGNLI(f) at thecenterof any one of the WDM
channels. To the purpose of system performance assessment,
it is then necessary to assume thatGNLI(f) be flat over the
channel of interest. This ‘local white noise’ assumption was
studied in [50] and [62] and was shown to typically induce a
small error. The formula is:

GNLI(fich) = 16
27

Ns∑

ns=1
γ2

ns
L2

eff,ns
∙

ns−1∏

p=1
Γ3

pe
−6αpL(p)

s ∙
Ns∏

p=ns

Γpe
−2αpL(p)

s ∙

Nch∑

nch=1
G2

S (fnch) GS (fich) ∙ (2 − δnchich) ∙ Θnchichns

(72)

where:GNLI(fich) is the NLI PSD at the center frequencyfich

of the ich-th channel of the comb;GS (fnch) and GS (fich)
are the PSD’s of the WDM data signal at the center frequency
of the nch-th and ich-th channels, respectively;δnchich is a
Kronecker’s delta, i.e., it is one ifnch=ich and zero otherwise;
finally, Θ is:

Θnchichns ≈
asinh(π2[2αns ]−1|β2,ns |[fnch−fich+Bnch/2]Bich)

4π(2αns )−1|β2,ns |
−

−
asinh(π2[2αns ]−1|β2,ns |[fnch−fich−Bnch/2]Bich)

4π(2αns )−1|β2,ns |
, nch 6= ich

(73)

Θichichns ≈
asinh

(
π2

2 |β2,ns | [2αns ]
−1

B2
ich

)

2π |β2,ns | [2αns ]
−1 , nch = ich

(74)
whereBnch andBich are the bandwidth of thench-th andich-
th channels, respectively. Note that the formula can be easily
upgraded to support lumped frequency-dependent gain or loss,
as well as allow to account for the drop-off and join-in of
channels at any of the span starts.

Regarding accuracy, the typical absolute error between the
predictions of Eqs. (72)–(74) vs. numerical integration of the
iGN-model is typically 2%-3% of MR, making it a valuable
tool for real-time system appraisal.

While this chapter was being finalized, two GN/iGN model
ACFS have been proposed, which upgrade Eqs. (72)–(74) to
also support dispersion slope throughβ3, frequency-dependent
loss and inter-channel stimulated Raman scattering [263],
[264]. They represent substantial progress since they make it
possible to analyze ultra-broadband systems, such as (C+L)-
band ones. Due to their closed-form, they could potentially
become effective tools for real-time physical-layer-aware man-
agement of fully-loaded reconfigurable optical networks.

1) Closed-form NLI modeling and Raman amplification:
In previous sections, the GN and EGN general expressions
Eqs. (44)-(46), were provided in such a form that they can
support arbitrary distributed amplification, also frequency-
dependent.
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One overall ACFS is currently available for the GN-model
assumingideal distributedamplification, i.e., withα(z) =
g(z) at each point along the link, and ideal Nyquist-WDM
transmission. It is Eq. (24) in [50] but of course this represents
a completely ideal reference scenario.

An exact closed-form was provided for theLK factor in
Sect. IV-F, under simplifying assumptions (undepleted back-
ward-propagating pump, frequency-flat gain). By means of
various simplifications and approximations of theLK term
and of the integration procedure, an ACFS for frequency-
independent Raman amplification was proposed in [265] and
extensively tested with good results. In [266], [267] theLK
factor was approximated in suitable ways such that subsequent
simplified numerical integration was possible, even in the
most general case of depleted-pump and frequency-dependent
Raman amplification.

It should also be pointed out that, as shown extensively
in [260], provided that Raman amplification is backward-
pumped and provides gain which is at least 6 dB lower
than fiber loss, then its effect on NLI generation is small. In
practice, it is possible to neglect it incurring only about 2%-
3% MR estimation error. This result is significant, since in
many practical cases Raman amplification complies with the
above condition, as part of the span loss is compensated for by
Raman amplification and part by an EDFA placed at the end of
the span. This is calledhybrid Raman-EDFA amplificationand
currently represents the typical solution employed in terrestrial
(new or refurbished) links. In such cases, the effect of Raman
on NLI generation can essentially be ignored.

V. TIME-DOMAIN PERTURBATIVE MODEL

In this section we explore a perturbation-basedtime-domain
model [26], describing the way in which data symbols trans-
mitted into the optical fiber are perturbed by the nonlinearity of
the fiber. This approach is alternative to the frequency-domain
FWM approach described in the previous section. While it
leads to similar results as the EGN model, it also permits
to predict statistical correlations between different temporal
NLI symbols and to discern among different types of NLI. In
particular, it allows to single-out and characterize its so-called
PPRN components (Phase and Polarization Rotation Noise).

In what follows we ignore nonlinear perturbations generated
by the presence of co-propagating ASE noise, and focus on
SPM perturbations caused by the symbols transmitted over the
channel of interest as well as on XPM and FWM perturbations
caused by the data symbols transmitted over neighboring
interfering WDM channels.

In the framework of first-order perturbation analysis, the
received received symbols after ideal dispersion compensation
can be written as

rn = an + Δan, (75)

where the two-element column vectorsan andrn represent the
transmitted and received polarization multiplexed data symbols
of the channel of interest in then-th time slot. The two-element
data-vectorΔan corresponds to the first-order nonlinear per-
turbation. The various signal-induced contributions toΔan can

be categorized as resulting from SPM, XPM and FWM. Their
time-domain representation is given by [26], [57]

ΔaSPM
n =

∑

l,k,m

an+la
†
n+kan+mSl,k,m , (76)

ΔaXPM
n =

∑

l,k,m,j

(
b†n+k,jbn+m,jI + bn+m,jb

†
n+k,j

)

×an+lXl,k,m(Ωj), (77)

ΔaFWM
n =
∑

l,k,m
j1,j2,j3

bn+l,j1
b†n+k,j2

bn+m,j1
Fl,k,m(Ωj1 , Ωj2 , Ωj3) , (78)

wherebn,j represents the two-element data-vector transmitted
in the n-th time-slot over thej-th interfering WDM channel,
having a frequency separation ofΩj from the channel of
interest. The FWM kernelsFl,k,m(Ωj1 , Ωj2 , Ωj3) satisfy

Fl,k,m(Ωj1 , Ωj2 , Ωj3) = iγ
8
9

∫ ∫ L

0

f(z)s∗0 (z, t)

×sΩj1
(z, t−lT )s∗Ωj2

(z, t−kT )sΩj3
(z, t−mT )dzdt, (79)

whereγ is the nonlinear coefficient of the fiber,L and f(z)
are the length and power profile of the link,T is the symbol
time duration, and wheresΩ(z, t) represents the dispersed
waveform of the pulse transmitted over a WDM channel
spaced byΩ from the channel of interest, when reaching point
z along the fiber. The SPM and XPM kernels are given by
Sl,k,m = Fl,k,m(0, 0, 0) and Xl,k,m(Ω) = Fl,k,m(0, Ω, Ω),
respectively. We note that in cases where the channel spacing
is sufficiently low there are additional XPM contributions
that do not appear in Eq. (77) and that involve interactions
between three data-vectors from the closest interfering channel
or interactions between two data-vectors from the channel of
interest and a single data-vector from the closest interfering
channels.

1) XPM time-varying ISI representation:The effect of
XPM on the received data symbols of the channel of interest
can be described as time-varying ISI [51], [3]. This can be
viewed by rewriting Eq. 77 as

ΔaXPM
n =

∑

h

H(n)
l an+l, (80)

where the2 × 2 ISI matrices are given by

H(n)
l =

∑

k,m,j

(
b†k+n,jbm+n,jI + bm+n,jb

†
k+n,j

)
Xl,k,m(Ωj).(81)

Assuming that the data symbols transmitted over the inter-
fering channels are unknown at the transmitter and receiver
implies that the ISI matricesH(n)

l are unknown as well. The
summation overk and m in Eq. (81) implies that the set of
data vectorsbn,j contributing toH(n)

l changes withn and
hence the ISI matrices vary with time, as indicated by the
superscript(n). In highly dispersive systems a large number of
data vectorsbn,j may participate in the summation of Eq. (81),

implying that the ISI matricesH(n)
l change slowly withn. The

temporal correlation of these ISI matrices is further discussed
in Sec. V-4.
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2) Nonlinear phase and polarization rotation:The zeroth-
order XPM contributionH(n)

0 an possesses some interesting
and unique properties that have important implications on the
statistical properties of NLIN and on its mitigation [26], [57],
[92]. As shown in Ref. [92] and in the Appendix of Ref. [4],
its effect can be written as

an + H(n)
0 an =




eiθ(x)

n ihn

ih∗
n eiθ(y)

n








a
(x)
n

a
(y)
n



 , (82)

wherea
(x)
n and a

(y)
n are the two elements of the data vector

an and whereθ(x)
n , θ

(y)
n andhn are given by

θ(x)
n = γ

8
9

∑

k,m,j

(
2b

(x)∗

n+k,jb
(x)
n+m,j+ b

(y)∗

n+k,jb
(y)
n+m,j

)
X0,k,m(Ωj),(83)

θ(y)
n = γ

8
9

∑

k,m,j

(
2b

(y)∗

n+k,jb
(y)
n+m,j+ b

(x)∗

n+k,jb
(x)
n+m,j

)
X0,k,m(Ωj),(84)

hn = γ
8
9

∑

k,m,j

b
(y)∗

n+k,jb
(x)
n+m,jX0,k,m(Ωj), (85)

with b
(x)
n,j andb

(y)
n,j representing the two elements ofbn,j .

The zeroth-order XPM contribution can therefore be viewed
as inducing independent phase-noise in each polarization as
well as polarization crosstalk, which is known also as cross
polarization modulation (XpolM). Another important observa-
tion that arises from Eqs. (82)-(84) is that nonlinear phase-
noise has strong dependence on the modulation format [26],
[57]. This dependence results from the fact that the terms with
k = m in Eqs. (83) and (84) are proportional to|b(x)

n+m,j |
2 and

|b(y)
n+m,j |

2. For constant-modulus formats these terms are fixed
for anyn, implying that they induce a constant phase-shift for
all received data-symbols (i.e., only rotating the entire received
constellation). On the other hand, when amplitude modulation
is introduced to the data-symbols,|b(x)

n+m,j |
2 and |b(y)

n+m,j |
2

change withn, and θ
(x)
n and θ

(y)
n vary with time. This is

why nonlinear phase-noise is relatively small in systems using
QPSK but significantly larger in systems employing higher-
order QAM formats [57]. Note however, that even for constant-
modulus formats, polarization crosstalk (throughihn) can be
very important.

The effect of the zeroth-order XPM contribution on the
dual-polarization signal can be also described as phase and
polarization rotation noise. Using the power series expansion
of matrix exponentials [5], [6], Eqs. (82)-(85) can be written
as [92]

an + H(n)
0 an = eiϕneiΦnan, (86)

where the termexp(iϕn) induces phase-noise and is given by

ϕn = γ
4
3

∑

k,m,j

b†n+k,jbn+m,jX0,k,m(Ωj), (87)

and where the matrix exponentialexp(iΦn) induces polariza-
tion rotation noise and is given by

Φn= γ
8
9

∑

k,m,j

(

bn+m,jb
†
n+k,j−

1
2
b†n+k,jbn+m,jI

)

X0,k,m(Ωj).

(88)
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Phase and polarization-rotation noise (PPRN)
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Fig. 7. Illustration of phase and polarization-rotation noise (PPRN) in QPSK
transmission.

Figure 7 visualizes the two contributions of the zeroth-
order XPM effect. The phase-noise parteiϕn rotates the
two polarizations together by a common angleϕn equal to
the average ofθ(x)

n and θ
(y)
n , whereas the polarization-state

rotationexp(iΦn) causes the Stokes vector representingan on
the Poincaŕe sphere [6] to rotate about~Φn, the Stokes vector
of Φn, at an angle equal to its length|~Φn|. This motivates
the termPhase and Polarization-Rotation Noise(PPRN) to
denote the zeroth-order XPM contribution. Furthermore, the
PPRN description captures the unitarity of the zeroth-order
XPM effect which does not impair the norm of the transmitted
dual-polarization data-vectora†

nan.
3) Variance of PPRN and higher-order XPM terms:In what

follows we examine the relative importance of the various
XPM contributions by examining their individual contribution
to the overall XPM variance. The predictions are based on
the calculations of Ref. [7] (also shown in the Appendix of
Ref. [4]) which were shown to be in excellent agreement with
split-step simulations. The calculations assume polarization-
multiplexed transmission of statistically independent data sym-
bols, isotropically symmetric in their phase space and are given
here, for simplicity of notation, for perfect Nyquist pulses with
zero roll-off. The dependence of XPM on the roll-off factor is
typically small but may become significant for roll-off factors
larger than∼0.2. We refer the interested reader to Appendix
B of Ref. [7] for further information on how to modify the
formulas below to account for non-zero roll-off factors.

The variance of XPM contributions can be written as
P0P2

intχXPM whereP0 andPint are the average launch power
of the channel of interest and the interfering channel. Fol-
lowing the assumptions above, the various XPM terms are
uncorrelated and the XPM nonlinear coefficient,χXPM , can
be written as [7]

χXPM =
∑

l

χ(l)
XPM

=
∑

l

χ(l)
XPM,1

+
(

〈|b|4〉
〈|b|2〉2 − 2

)
χ(l)

XPM,2
(89)

where b represents a single data symbol transmitted over
one of the polarizations of the interfering channel and where
the angled brackets denote statistical averaging. The term
〈|b|4〉/〈|b|2〉2 accounts for the dependence of XPM on the
fourth-order moment of the interfering data symbols.

The contribution of thel-th XPM term H(n)
l an+l to the

overall XPM variance is therefore given byP0P
2
INT

χ(l)
XPM
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Fig. 8. Auto-correlation of the diagonal (solid) and off-diagonal (dashed) elements ofH
(n)
l for l = 0, 1, 2 in 16-QAM fully loaded systems with 115

channels. The diagonal and off-diagonal elements ofH
(n)
0 induce nonlinear phase-noise and polarization crosstalk.

where the coefficientsχ(l)
XPM,1

andχ(l)
XPM,2

are given by [7]

χ(l)
XPM,1

=
32
27

γ2

T 2

∑

j

∫
ρj(ω1, ω2, ω3)ρ

∗
j(ω4, ω2, ω3)e

i(ω1−ω4)lT
d4ω

(2π)4
,

χ(l)
XPM,2

=
80
81

γ2

T

∑

j

∫
ρj(ω1, ω2, ω3)ρ

∗
j(ω4, ω5, ω6)e

i(ω1−ω4)lT
d5ω

(2π)5
,

(90)

with ω6 = ω5−ω2 +ω3. The kernelsρj(ω1, ω2, ω3) are given
by

ρj(ω1, ω2, ω3) = s̃∗0(ω1 − ω2 + ω3)s̃0(ω1)s̃
∗
j (ω2)s̃j(ω3)

×
∫ L

0

f(z)ei(ω1−ω2−Ωj)(ω2−ω3)β
′′zdz, (91)

whereβ′′ is the dispersion coefficient of the fiber and where
s̃0(ω) and s̃j(ω) represent the baseband spectral shape of the
transmitted pulses from the channel of interest and thej-th
interfering channel.

In Fig. 9 we examine the significance of the various XPM
contributions in standard 16-QAM WDM systems with 100-
km spans, 115 32-Gbaud channels and 37.5-GHz channel
spacing. We plot the variance of the various XPM contribu-
tionsH(n)

l an+l normalized by the variance of the zeroth-order
XPM contributionH(n)

0 an. Evidently, the PPRN contribution
has the most pronounced effect whereas the significance of the
XPM termsH(n)

l an+l with |l| > 0 decreases monotonically
with |l|.

4) Temporal correlations:An important observation re-
garding the ISI form of XPM is the fact that the ISI matrices
H(n)

l change slowly withn, as the matrix elements are the
result of a summation over a significant number of interfering
symbols, see Eq. 81. Following the assumptions of Sec. V-3,
the temporal auto-correlation function of the diagonal elements
of H(n)

l is given by [7]

R(l)
diag(s) = R

(l)
diag,1(s) +

(
〈|b|4〉
〈|b|2〉2 − 2

)
R

(l)
diag,2(s), (92)
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Fig. 9. Variance of the various XPM terms normalized by the variance of
the zeroth-order XPM term (PPRN) for fully loaded 115-channel transmission
using 16-QAM.

where

R
(l)
diag,1(s) =

80
81

γ2

T 2

∑

j

∫
ρj(ω1, ω2, ω3)ρ

∗
j(ω4, ω2, ω3)

×ei(ω1−ω4)lT ei(ω2−ω3)sT d4ω

(2π)4
,

R
(l)
diag,2(s) =

80
81

γ2

T

∑

j

∫
ρj(ω1, ω2, ω3)ρ

∗
j(ω4, ω5, ω6)

×ei(ω1−ω4)lT ei(ω2−ω3)sT d5ω

(2π)5
, (93)

with ω6 = ω5−ω2+ω3. The temporal auto-correlation function
of the off-diagonal elements ofH(n)

l is given by [7]

R(l)
off−diag(s) =

1
5
R

(l)
diag,1(s). (94)

In Fig. 8 we show the auto-correlation function of the
diagonal and off-diagonal elements ofH(n)

l for l = 0, 1, 2,
considering 16-QAM transmission, 100-km spans, and stan-
dard fully loaded systems with 115 32-Gbaud channels and
37.5-GHz channel spacing. The correlations of the higher-
order XPM terms quickly drop to zero, even in systems
operating over a 3,000-km link. The correlations of nonlinear
PPRN (l = 0), however, are relatively long, on the order
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of tens of symbols. These results are aligned with numerical
simulations [67], [8], [9], [10] and experimental measurements
[11], [12] verifying the long temporal correlations of the
phase-noise contribution of PPRN (diagonal elements with
l = 0), as well as with the numerical [8], [9] and experimental
[13], [14] verification of the long temporal correlations of
the polarization crosstalk contribution of PPRN (off-diagonal
elements withl = 0).

Regarding the specific system impact of PPRN and NLPN,
see Sect. IX-B.

5) Pulse collision theory:The time-domain model further
provides insights into how the various NLI contributions are
formed. By examining the optical field of the transmitted
signal as a collection of temporal pulses transmitted from
multiple WDM channels, one can characterize and analyze the
different nonlinear interactions between the transmitted pulses
as they propagate through the optical fiber.

In particular, in the limits of first order perturbation analysis,
the interactions can be classified as collisions between two
pulses, three pulses, and four pulses; these collisions can be
either complete, or incomplete. A rigorous and comprehensive
analysis of the various types of collisions is provided in
[92]. Each type of collision is shown to have its unique
signature and the overall nature of NLI is determined by
the relative significance of the various collisions in a given
WDM transmission. The most important contributions to NLI
are shown to follow from two-pulse and four-pulse collisions.
Two-pulse collisions generate NLI in the form of PPRN
whereas four-pulse collisions generate complex circular ISI
noise. In addition, two-pulse collisions are shown to have
strong dependence on the modulation format of the interfering
WDM channels and to be most pronounced when the collision
is complete, whereas four-pulse collisions are shown to be
modulation format independent and to be strongest when
the collision is incomplete. The theory further shows that in
short optical links with lumped amplification, and links with
perfect distributed amplification, NLI tends to be dominated by
PPRN contributions generated by two-pulse collisions; in long
links with lumped amplification, the importance of four-pulse
collisions increases and NLI becomes more complex circular
with reduced dependence on modulation format.

VI. SPATIALLY -RESOLVED PERTURBATIVE MODELS AND

THEIR APPLICATIONS

The perturbative method discussed in Section III-A and IV
shows the perturbation as a double integral in the frequency
domain, weighted by the kernel function. Strictly speaking,
each frequency of the signal is perturbed by all possible FWM
combinations, and the kernel represents their efficiency.

This picture is a global input/output description of the whole
optical link and it is of great interest for the system perspective
as shown in several sections of this chapter. Nevertheless, it
is of interest to relate such a global scale description to a
local scale at a given coordinate. Such a relation highlights
several physical connections that may help to understand the
perturbative models and to search for novel applications of
perturbation theory in nonlinear optical communications.

Fig. 10. Comparison between SSFM and first order perturbative solution of
NLSE.

The local description of the perturbation is the dynamical
model expressed by the differential equation (7). We find
particularly interesting solving it by following the numerical
split-step idea, as much as we did for the NLSE with the
SSFM. The corresponding block diagram is shown in Fig. 10
[133], [22], [91]. For the sake of comparison, we also show
the SSFM method in the same figure.

The RP1 solution is the sum of the unperturbed and the
first-order perturbation. The unperturbed term, by definition,
has been discretized by the concatenation of linear blocks
only, here indicated by the letter L. Each linear block thus
summarizes linear effects such as attenuation, GVD, etc, into
an infinitesimal steph.

The perturbation is indeed the result of many contribu-
tions, each represented by a branch in the block diagram.
In such paths we find nonlinear blocks which implement the
input/output relation N(A) = −jγ |A|2 Ah. We note that,
since the received perturbation is linear inγ, the electric field,
according to RP1, while traveling along the link can cross
only one nonlinear block from input to output. However, such
a nonlinearity can appear anywhere, hence the reason for the
final sum creating the perturbative term as a sort of multi-path
interference.

The idea can be iterated, creating higher order RP schemes
[134]. For instance, RP2 can be emulated by considering
all possible combinations of two nonlinear blocks within
the discretized distance grid. The SSFM algorithm can be
viewed as an RP∞ method implemented in a clever way
where the nonlinear block is substituted by the SPM operator
N(A) = e−jγ|A|2h.

In the figure, we referred to RP1 as parallel RP1 because
of its parallel nature, which is not the case of SSFM whose
serial structure is unavoidable. Besides the physical intuition,
such a parallel structure might find some advantages in nu-
merical implementation when a high degree of parallelization
is available [132].

We can exploit the RP1 diagram to derive a spatially-
resolved GN model [58], [91]. Our target is the variance of
the output perturbationγA1, and more generally its auto-
correlation function. Since the output perturbation is the sum
of many contributions, see Fig. 10, to get our target we need
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the cross-correlation among any two generic paths forming
the perturbation [154], [58]. Let us focus on two such paths,
the ones where the nonlinearity appears afters and z km,
respectively. See Fig. 10 for reference and for the main
definitions of variables.

The common input to such paths is a linear digital modu-
lated signalA(z = 0, t), with t time. In case of interest, such a
signal is actually a cyclo-stationary stochastic process, i.e., its
statistical properties vary cyclically in time with a period equal
to the symbol time. However, we believe that the signal can
be safely treated as stationary. This claim finds its ground in
the observation that we are planning to work with dispersion
uncompensated links where the strong interference induced by
dispersion likely removes higher order cyclo-stationary effects
and because we mainly focus on sinc-like pulses such that the
signal is almost stationary already at the fiber input.

In this framework, if we know the cross-correlation func-
tion of the fields outgoing the nonlinear blocks, here called
R

(out)
zs (τ), with τ the time lag, the cross-correlation of the

received fields on such paths can be found by using basic linear
system theory [135]. In detail, the cross-correlation between
Az and As at the output coordinateL is related toR

(out)
zs (τ)

by:

E [Az(t + τ)A∗
s(t)] = hzL(τ) ⊗ h∗

sL(−τ) ⊗ R(out)
zs (τ)

with ⊗ denoting convolution andhzL(τ) the impulse response
of the filter accounting for all linear effects from coordinate
z to output coordinateL. Such expression can be efficiently
evaluated in frequency domain by working with power spectral
densities.

With similar arguments, we can relate the auto-correlation
function of the transmitted fieldA(0, t) to the fields ingoing
the nonlinear blocks at coordinatesz ands , respectively:

R(in)
zs , E [A(z, t + τ)A∗(s, t)] = h0z(τ)⊗h∗

0s(−τ)⊗R00(τ)
(95)

with R00(τ) = E [A(0, t + τ)A∗(0, t)]. If we are able to relate
R

(out)
zs (τ) to R

(in)
zs (τ) we have therefore a relation between the

system input/output auto-correlation functions and thus our
target can be definitely solved by summing, i.e., integrating,
all such contributions.

Such a relation is possible in the special, yet relevant, case
of A(z, t) with Gaussian statistics at any coordinate [116]. If
we get rid of the constant phase shift term as in the eRP (see
Section III-A), the relation takes a simple and elegant form
[58]:

R(out)
zs (τ) = 2

∣
∣
∣R(in)

zs (τ)
∣
∣
∣
2

R(in)
zs (τ) . (96)

Such assumptions are exactly those of the GN model, whose
spatially-resolved reference formula is thus the following:

S̃GN(f) =
∫ L

0

∫ L

0

h̃zL(f)h̃∗
sL(f) ×F

{
R(out)

zs (τ)
}

dzds

(97)
where S̃GN(f) is the PSD of the received perturbation, i.e.,
the Fourier transform of the auto-correlation function. The
variance of the nonlinear interference given by the GN model
is simply the integral of this PSD.

Such a solution has several similarities with the basic
RP idea adopted for the electric field. Strictly speaking, we
are propagating the signal correlation function from input to
output by performing first a linear operation according to
(95), then the same first-order nonlinear perturbation identical
to the one experienced by the electric field except for a
factor 2, then again linear effects up to the output. The main
difference is that while the field perturbation is the sum of
many perturbative infinitesimal contributions, here we have
to account for all possible pairs of cross-correlations, thus
increasing the complexity into a double integration. However,
it has been shown that the double integral can be reduced to
a single integration by exploiting the exponential behavior of
attenuation along distance [58].

What about in the general case of non-Gaussian statistics
for the propagating signal? The previous idea can still be used
by properly modifying (96). Now the cross-correlation of the
signals outgoing the nonlinear blocks cannot be related just to
the same cross-correlation between the inputs, but we have to
account for higher order statistics because of the nonlinear
transformation [26]. Since nonlinearity is cubic, the cross-
correlation involves products of six random variables. Such
random variables are the digital symbols of the modulation
format under use. Among all possible combinations, many of
them have zero average for classical modulation formats with
uniform distribution and rotationally symmetric constellations.
If we let ak be the information symbol at timek, we are left
with just three kinds of non-zero contributions to the cross-
correlation: one involving

{
|ak|

2 |an|
2 |al|

2
}

with k 6= n 6= l,

one with
{
|ak|

4 |an|
2
}

with k 6= n, and one for
{
|ak|

6
}

.
The first partition is the biggest one and generates terms
like the one in (96) since indexes are different and symbols
independent. Hence, such a partition is the one accounted by
the GN model. The other two partitions generate the higher
order contributions of the EGN model [63].

In summary, the cross-correlationR(out)
zs (τ) can be related

to the shape of the supporting pulse distorted by linear effects
up to coordinatez, p(z, t) , h0z(t) ⊗ p(0, t), by [91]:

R(out)
zs (τ) =

μ3
2

T 3
2 |Q(z, s, τ )|2 Q(z, s, τ )

︸ ︷︷ ︸
GN model

+

μ2κ2;2

T 2

{
4F4(z, s, τ )+Q4(z, s, τ )

}
Q(z, s, τ )+

κ3;3

T
Q6(z, s, τ )

(98)

with κi;i the i-th cumulant of transmission symbol [91, Ap-

pendix B], μ2 , E
[
|ak|

2
]
, and:

Q(z, s, τ ) , p(z, τ ) ⊗ p∗(s,−τ)

Q4(z, s, τ ) , p2(z, τ ) ⊗ (p∗(s,−τ))2

F4(z, s, τ ) , |p(z, τ )|2 ⊗ |p(s,−τ)|2

Q6(z, s, τ ) ,
{
|p(z, τ )|2 p(z, τ )

}
⊗
{
|p(s,−τ)|2 p∗(s,−τ)

}
.

(99)
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Fig. 11. Contributions to nonlinear interference variance (normalized to the
cube of signal powerP ) versus number of spansNs. 133 PDM-QPSK
channels (R = 32 Gbaud,Δf = 37.5 GHz) transmitted into aNs×100 km
SMF dispersion uncompensated link.F4 and Q4 contributions are plotted
in absolute value, since they are actually negative. The impact of a pre-
compensation of 8500 ps/nm on some terms is shown by a dashed line. Note
that GN model overestimates the EGN prediction. Originally from [91].

In particular, squareM -QAM modulation with i.i.d. symbols
has:

κ2;2 = −
3
5

M + 1
M − 1

μ2
2, κ3;3 =

36
21

M3 − 1
(M − 1)3

μ2
2

The expression forR(out)
zs (τ) can be finally inserted in (97)

and the PSD of the nonlinear interference can be evaluated
by numerical integration. Please note that with Gaussian
distributed symbolsκi;i = 0, i > 1, so that (98) coincides
with (96) sinceR(in)

zs (τ) = μ2
T Q(z, s, τ ) for a digital signal

with supporting pulsep(0, t).
The EGN model can be read as an additive correction to the

GN model. Although the EGN is more accurate, it is worth
noting that, except for very peculiar modulation formats [55],
the GN model gives a conservative overestimation. The pre-
vious derivation was for single channel in single polarization.
Extensions to PDM and WDM are available [91].

The relative importance of each term forming the EGN
model is shown in Fig. 11 for a specific example detailed in the
figure caption. We observe the mentioned GN overestimation
compared to the EGN model. The most important EGN
correction is the one provided by the fourth order correction
F4 [26]. Such a term is partially mitigated at short lengths by
pre-distorting the signal with a pre-compensation fiber.

VII. M ULTIPLICATIVE MODELS AND THEIR APPLICATIONS

We might wonder, at this point, if the models introduced in
the previous sections definitively solve the problem of model-
ing the optical fiber channel. For instance, the representation
of NLI as AWGN provides a good accuracy in terms of
performance evaluation (the EGN model, in particular) with
a reasonably low complexity (the GN model, in particular).
However, it also entails that NLI cannot be mitigated, which
is not entirely correct. For instance, deterministic intrachannel
nonlinear effects can be exactly compensated for by digital
backpropagation (DBP) (see Section XI-A). Moreover, as

shown in Section V, some NLI terms due to XPM are not inde-
pendent of the signal and should be more properly interpreted
as time-varying ISI, rather than noise. In general, this means
that the accuracy of AWGN-like models in terms of perfor-
mance evaluation does not necessarily correspond to an accu-
rate and detailed characterization of the statistical properties of
NLI (e.g., non-Gaussian statistics, temporal correlation, and so
on). These properties are not particularly relevant to determine
the performance of systems employing conventional symbol-
by-symbol detection, but might be the key to devise improved
detection and nonlinearity mitigation strategies—e.g., able
to mitigate also inter-channel nonlinearity and signal-noise
interaction, or to perform DBP with a lower complexity.
Research of alternative models for the optical fiber channel is,
hence, still in progress. Strictly connected with this topic, is the
computation of channel capacity (discussed in Section XII),
which entails an accurate knowledge of the channel and the
use of the best possible modulation and detection strategy.

A possible approach is provided by the LP model, briefly
introduced in Section III-A, which falls within the broader
class ofmultiplicative models. As opposed toadditive models,
which describe nonlinear effects by means of a noise-like
additive term, multiplicative models describe nonlinear effects
through a fading-like multiplicative term—a change of the
channel characteristics that causes a distortion of the prop-
agating signal. The latter approach is usually more complex
than the former, but also closer to the underlying physics—the
Kerr effect being a change of the refractive index induced by
the propagating optical signal that causes a phase rotation of
the signal itself.

The LP model was originally introduced in [38] (and gener-
alized to all orders in [134]) to provide an analytical approx-
imation of the signal at the output of a nonlinear dispersive
fiber given the input signal. It has been later combined with
the RP model to investigate signal-noise interaction, providing
a joint description of both parametric gain and nonlinear
phase noise effects [27]. It has been eventually applied to
study interchannel nonlinearity in WDM systems, originating
the frequency-resolved LP (FRLP) model [51], [59]. This
last model and its applications will be briefly described in
the sequel. The model has been developed for the single-
polarization case, but the concept can be extended to dual
polarization signals.

To investigate the impact of inter-channel nonlinearity in
WDM systems, it is convenient to divide the overall WDM sig-
nal into the channel-of-interest (COI) component, still referred
to as A(z, t), and the interfering channels (IC) component
Aw(z, t)—resulting from the combination of all the other
WDM channels. Expanding the nonlinear term of the NLSE
(1) into its SPM, XPM, and FWM components (according
to the role played by the COI and IC components) [1], and
retaining only the XPM one, the equation can be rewritten as

∂A

∂z
= j

β2

2
∂2A

∂t2
− 2jγ|Aw|

2A (100)

Equation (100) does not account for SPM, which can be
compensated for by DBP (see Section XI-A), and for FWM
and signal-noise interaction, whose impact in WDM systems
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Fig. 12. Continuous-time FRLP model.

is usually negligible compared to XPM (This might not be
the case when considering WDM channels with a low symbol
rate). The evolution ofAw is, in turn, subject to nonlinear
interference fromA, such that we should also write an
analogous equation forAw, coupled to (100). However, in
terms of the impact ofAw onA, the nonlinear evolution ofAw

is a second-order effect. Thus, we will neglect it and assume
thatAw evolves linearly and independently ofA. In this case,
(100) is a linear Schrödinger equation with a space- and time-
variant potential, whose solution can be formally expressed
as

A(L, t) =
∫ ∞

−∞
Hw(f, t)Ã(0, f)ej2πftdf (101)

where Hw(f, t) is a time-variant transfer function [257].
(In mathematics, the solution for this kind of equations is
typically given in terms of theGreen’s function(or propagator
in quantum mechanics), to which the time-variant transfer
function is simply related by a Fourier transform.)

The transfer function can be obtained from the FRLP model
and expressed as [51], [59]

Hw(f, t) = e−jθ(f,t) (102)

where the XPM termθ(f, t) depends on the input IC signal
Aw(0, t) and on the link characteristics. Some general expres-
sions forθ(f, t) and its statistics are provided in [51], [59].

Eventually, including the effect of amplifier noise, the
overall system (from the COI standpoint) can be schematically
modeled as in Fig. 12 , in whichx(t) = A(0, t) is the
transmitted signal;y(t) the received signal;Hw(f, t) the time-
varying transfer function of the channel, which depends on
the overall signal transmitted by the other channel users (the
interfering channels)w(t) = Aw(0, t); andn(t) is an AWGN
term that accounts for the accumulated optical amplifier noise.

A key observation here is that all the neglected effects
(e.g., FWM and signal-noise interaction) can be eventually
reintroduced by properly increasing the power spectral density
of the AWGN term—for instance based on the calculations
from the GN or EGN models or extracting the parameters from
a numerical simulation. However, when modeling an effect
as AWGN, we basically give up the possibility of mitigating
it and make a worst-case assumption in terms of system
performance. On the other hand, a more accurate modeling of
the dominant XPM term may allow for its partial mitigation.

From the COI viewpoint, the model in Fig. 12 describes the
nonlinear time-invariant optical fiber channel as a linear time-
variant one. This seeming paradox is explained by the fact
that channel nonlinearity is accounted for by the dependence

(a) (b)

Fig. 13. XPM coherence: (a) IDA link; (b) 10x100km LA link.

of Hw(f, t) on w(t) [59]. However, assuming thatw(t)
is unknown to both the transmitter and the receiver, such
nonlinearity remains hidden, and the effect ofHw(f, t) is
simply perceived as a linear distortion. Moreover, sincew(t)
depends on time, also the channel transfer functionHw(f, t)
depends on time.

The model in Fig. 12 is substantially that of a doubly
dispersive fading channel, often used in wireless commu-
nications, whose key features are the coherence time and
bandwidth over which the channel remains strongly correlated
[256]. This analogy may help to better understand the channel
characteristics and behavior, as well as to devise improved
transmission and detection strategies.

The coherence properties of the channel have been stud-
ied in [255] and are illustrated by the contour plots in
Fig. 13, showing the correlation between the valuesθ(0, t)
andθ(Δf, t + τ) of the XPM term at two different times and
frequencies inside the COI bandwidth, as a function of the
delayτ and frequency separationΔf . (The channel is assumed
to be stationary in time but not in frequency, as the impact
of the XPM term depends on the frequency distance from the
interfering channels and varies inside the COI bandwidth. The
correlation is analyzed by holding one frequency fixed in the
middle of the COI bandwidth (conventionally set tof = 0),
and letting the other vary inside the COI bandwidth.) The
considered scenarios refer to a Nyquist-WDM system with
50 GHz channel spacing and bandwidth, Gaussian symbols
(a worst-case assumption in terms of XPM impact) and a
1000 km link of standard single-mode fiber with either ideal
distributed amplification (IDA) (a) or 10x100 km lumped
amplification (LA) (b). Only the XPM term generated by
the couple of closest interfering channels (i.e., those located
at f = ±[50]GHz) is considered. The coherence is quite
substantial in the IDA link, but significantly reduced in the
LA link.

The FRLP model has been used to derive some closed-form
expressions for the AIR with different modulation formats
and a mismatched decoder optimized for the AWGN channel
[59]. In this case, similar results could be obtained also with
some additive models such as the RP or EGN models. But
the FRLP model can be used also to devise more efficient
detection strategies that exploit the coherence properties of the
channel, and to derive some improved capacity bounds [67].
These issues will be discussed in greater detail in Section XII.

Equation (100) is also the starting point to derive other
models and descriptions of interchannel nonlinearity. In [32],
[253], Feynman path integrals and diagrammatic techniques
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are used to derive the Green’s function (propagator) of (100),
from which the input-output channel statistics are obtained
by assuming that the stochastic potential|Aw|2 is a Gaussian
process with short-ranged correlations in space and time—a
more drastic approximation than the assumption of linear
propagation ofAw done in deriving (102). The resulting model
has been used to compute some capacity lower bounds for the
optical fiber channel [32], [253].

Another approach to solve (100) is theMagnus expansion,
a general method to derive approximate exponential repre-
sentations of the solution of linear differential equations with
varying coefficients [250]. The Magnus expansion provides a
power series expansion for the corresponding exponent and,
for this reason, is sometimes referred to as time-dependent
exponential perturbation theory. In optical fiber communi-
cations, the Magnus expansion has been already employed
to model linear effects such as polarization-mode dispersion
and polarization-dependent loss [251], while its application to
fiber nonlinearity has been only slightly touched [252]. When
applied to (100), the Magnus expansion is quite accurate even
at first order—in many cases more than the corresponding
first-order RP, eRP, and LP expansions [252]—and has the
desirable additional property of preserving at any order some
important features of the original equation, such as its unitarity.
These characteristics make it an interesting subject for future
research.

VIII. M ODEL-SPECIFICFEATURES

In this section we try to provide a list of features of the
various fiber non-linearity models introduced so far, which
make them attractive for certain applications. Carrying out a
more comprehensive and comparative analysis of the models
would be a difficult task and we refrain from doing it. Some
of the aspects mentioned here are dealt with in later sections,
which the reader should refer to.

GN-model: reasonable compromise between accuracy and
complexity, very compact formula.iGN-model: for most
systems, very good compromise between accuracy and com-
plexity. GN/iGN-models: lend themselves to closed form
solutions, some of which are extremely simple yet rather
accurate, such as for ideal Nyquist WDM with completely
identical spans, helping establish fundamental limits; others
are quite flexible (any comb, any link) but still fully closed
form, very good for management of physical-layer aware
optical networks.EGN-model: complete and accurate model
in frequency domain; computationally very complex, reduced
version exists which is quite accurate and 1/3 as complex,
but complexity is still high. Does not allow to accurately
factor out PPRN, though it does allow to approximately factor
out NLPN by assuming constant-envelope transmission (i.e.
assuming PM-QPSK-like parameters).Time-domain model:
Very similar to the EGN model in terms of accuracy and
complexity when predicting interference variance; also pre-
dicts nonlinear phase and polarization rotation noises (PPRN);
predicts temporal correlations; describes nonlinear interference
as an inter-symbol interference (ISI) which can be used to ex-
amine and evaluate the performance of various ISI cancellation

techniques; predicts the contribution of the various ISI terms.
Spatially-resolved model: Alternative description of the EGN
model; predicts temporal correlations of the optical nonlinear
interference; focus on nonlinear spatial interactions along the
link, such as nonlinear signal-noise interaction; complexity
grows with system length.FRLP model: represents NLI as
a multiplicative distortion rather than as an additive noise;
describes the channel through a time-varying transfer function;
allows to identify the NLPN component and calculate its
correlation in time and frequency. These characteristics help
devising improved detection and nonlinearity mitigation strate-
gies. Closed-form solutions are available for simple system
configurations (e.g., ideal Nyquist WDM).

IX. I MPACT OF SPECIFIC EFFECTS ONNL MODELING

A. Nonlinear signal ASE interaction

Amplified spontaneous emission (ASE) noise interacts with
the nonlinear Kerr effect along propagation. The result is gen-
erally referred to as nonlinear signal-noise interaction (NSNI).
NSNI can be classified as a FWM process. However, it finds
its own space in the literature because of the distinctive nature
of some of the photons joining the FWM interaction, which
come from a wide-band Gaussian distributed signal such as
ASE.

Initial studies on NSNI date back to investigations about the
nonlinear interaction between a strong constant-wave (CW)
signal and wide-band noise [17], [136]. In such a case only
degenerate FWM yields significant NSNI, which motivated
the use of small-signal analysis to analyze the effect. Results
highlighted that an optical fiber can induce modulation insta-
bility (MI) depending on the dispersion sign. In particular, the
white spectrum of noise may experience a gain (hence the
name modulation instability) which is maximum at frequency√

2γP/ |β2|, with P the power of the strong CW [17].
Modulation instability has been exploited to build optical

parametric amplifiers (OPA) [137]. OPA shows distinguished
new features compared to existing optical amplifiers such as
adjustable gain spectra and center frequency, possibility to
work in phase sensitive mode with ideally zero noise figure,
possibility to perform phase conjugation and wavelength con-
version [138]. However, OPA shows non trivial problems such
as gain shape fluctuations and polarization dependence that
limited their applications in practice [138].

Besides the positive implications of NSNI in building opti-
cal amplifications, NSNI originating along the transmission
fiber is generally a problem for the system performance.
Initial studies showed that NSNI can induce strong phase
noise, usually referred to as Gordon and Mollenauer effect
[29], whose impact has been shown to severely affect phase
modulated signals such as differential phase shift keying
(DPSK) transmissions [139]. A closed formula of the NSNI-
induced phase noise variance and its main scaling properties
was proposed in [29].

The phase noise induced by NSNI is a random variable
whose exact probability density function was derived by K.-P.
Ho in [37] in the absence of dispersive effects and before
detection filters. The impact of dispersion is much more
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complex, such that the exact PDF is unknown but closed
formulas exist for the NSNI variance due to intra-channel pulse
XPM [39]. Small-signal analyses of NSNI in dispersive links
were carried out in [31], [140] and in [141], [142] where they
were referred to as parametric gain (PG).

ASE noise can be included in the GN- and EGN-model.
Since ASE is inserted in the link along propagation, the
spatially-resolved model of Fig. 10 is well suited to search
for modifications to GN-based formulas [145].

Since ASE is Gaussian distributed, its dominant contribution
appears as an enhancement of the GN part of the EGN formula
(98). However, ASE impacts even the fourth order nonlinear
interference contribution proportional toκ2;2.

One of the main implications of NSNI to GN-model vari-
ance is that the NSNI nonlinear interference variance does not
scale with the cube of the signal power, but with the square.
This is not surprising since the most dominant contribution
to NSNI comes from FWM processes involving the beating
of signal×signal×ASE [81], [149], [147], [145]. As a rule of
thumb, numerical results showed that NSNI starts to impact
the nonlinear interference variance at SNR smaller than 10 dB
[28], [145].

Some formulas have been proposed in the literature to
modify the GN-model formula and account for NSNI. Pog-
giolini et al. proposed to use the incoherent-GN formula by
substituting the channel power at the input of fiberk with
P + PASEk, P being the transmitted power [28]. Serena [145,
eq. (10)] proposed to correct the cross-correlation between the
nonlinear interference brought by two different spans by an
ASE dependent term. Lavery et al. [146] proposed to weight
the NSNI accumulation coherence factor in a different way
than the signal such that each ASE term contributes from its
injection point in the link. Ghazisaeidi extended the theory of
[26] by providing an efficient algorithm for NSNI variance
computation [148].

NSNI is the fundamental limit to the performance in pres-
ence of nonlinear equalization [147], [146], [145], [148], a
feature that motivated the search of effective models of NSNI
with the aim of finding the capacity of optical communication
links. If we perturb the entire link including digital back-
propagation, we get the spatially resolved model of Fig. 14
[145]. We note that, without ASE, for any input/output branch
there is a branch with opposite parameters, such that the
overall nonlinear interference is zero. However, with ASE
this symmetry is broken, such that a residual NSNI cannot
be compensated for by a nonlinear equalizer. Lavery et al.
[146] showed that the optimum is to equally split the nonlinear
equalizer between transmitter and receiver side.

B. System impact of nonlinear phase and polarization noise

Sect. V-2 provides the tools for accurate modeling of non-
linear phase and polarization noise (PPRN). These tools can
then be used to assess the actual system impact of PPRN.
As a relevant example, Fig. 15 shows the SNR gain that
can be obtained by ideal removal of all inter-channel PPRN.
The plot is significant, since it addresses a realistic C-band
fully populated 115-channel system, over SMF, with 100 km

Fig. 14. first-order representation of an optical link including digital back
propagation (DBP). Originally from [145]. The paths label withs and z do
not cancel out in presence of the ASE source indicated in the figure.

span length, at 32 GBaud. The shown SNR gain assumes that
launch power is optimized to take the maximum advantage out
of inter-channel PPRN removal. Hence, the term ‘peak-SNR
gain’ is used (see [4] for more details). Note that peak-SNR
gain can also be interpreted, conversely, as theimpact that
PPRN has on the system. In other words, QPSK crossing the
0.5 dB line at 5 spans in Fig. 15 can be read as either a
0.5 dB potential gain if PPRN is removed, or a 0.5 dB SNR
degradation due specifically to PPRN.

Standard CPE (Carrier Phase Estimation) algorithms in
the receiver DSP can mitigate the effect of PPRN, and in
particular of its phase-noise component (NLPN). However,
these algorithms typically leverage the time-correlation that
such disturbances exhibit, quantified in Fig. 8. Unfortunately,
where mitigation would be most needed, such as in short links
according to Fig. 15, PPRN has short correlation time (Fig. 8),
so that mitigation by standard CPE algorithms is only partially
effective. PPRN can be almost completely removed in long
links, where it exhibits long correlation time. There, though,
its impact is relatively small and the obtainable mitigation gain
is limited.

This topic is however complex and Fig. 15 only looks at one
scenario. Many system features, such as fiber dispersion, dis-
tributed amplification, modulation format, etc., affect PPRN.
For a comprehensive analysis and extensive references, see
[4]. Symbol rate too affects PPRN. Recently, the scaling of
the impact of NLPN vs.symbol ratewas studied for instance
in [261], [262], using an approximate technique based on the
EGN model. The indication is that, when the symbol rate is
increased, the variance of NLPN decreases and its correlation-
time increases. As a result, overall, its impact appears to
decrease at higher symbol rates.

C. Joint nonlinear and polarization effects, PMD / PDL

Although single mode fibers support only one propagating
mode, the resulting field is the superposition of two polariza-
tions [93]. Each polarization can be independently modulated
and the resulting signal is generally referred to as polarization
division multiplexing (PDM), also known as dual polarization
(DP) or polarization multiplexing (PM). PDM is a simple
technique to double the spectral efficiency and represents the
starting point of more advanced techniques of spatial division
multiplexing [94].
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Fig. 15. Peak-SNR gain resulting from perfect inter-channel PPRN removal
in fully loaded systems with 115 WDM channels at 32-GBaud. The detailed
parameters used in this figure are given by Table 2 in [4]. The Peak-SNR
gain is difference between the maximum SNR, with and without inter-channel
PPRN. For more information on Peak-SNR gain, see [4] Sect. 4.

However, the two polarizations usually interact along prop-
agation, thus generating polarization crosstalk at the receiver.
The reason of such cross-coupling is related to perturbations
to the ideal fiber structure, such as changes in the refractive
index, non-circularity of the fiber, thermal stresses, variations
in the core radius, irregularity at the core-cladding boundary,
etc. Perturbations may be even deliberately introduced during
fiber fabrication as a way to improve performance, as we will
discuss later. All such stresses make the fiber anisotropic, i.e.,
they introduce birefringence.

As a result of birefringence, the polarizations may travel at
different speed thus manifesting polarization mode dispersion
(PMD) [110]. A main implication of PMD is the end-to-end
group delay spread between polarizations, called differential
group delay (DGD). The problem is of particular concern in
presence of polarization coupling along transmission, because
to undo the coupling at the receiver we must account for the
memory introduced by DGD.

The accumulation of PMD along distance depends on the
correlation length over which mode coupling occurs, typi-
cally of about 100 m for SMF [93]. This way, a long haul
link operates in the strong coupling regime, whose random
properties along distance eventually make the DGD a random
variable, with Maxwellian statistics in the limit of correlation
length approaching zero [97], [98]. Most importantly, the
average DGD and the DGD standard deviation accumulate
proportionally to the square root of distance [96], [99]. This
circumstance eases equalization of PMD. On the contrary,
GVD has a much smaller randomness such that it accumulates
with a rate proportional to the distance.

For such reasons, short fiber correlation length is inten-
tionally induced during fabrication by properly spinning the
fiber [101]. Data sheets usually reports the PMD coefficient
ηPMD. Typical values are 0.32 ps/

√
km for pre-1991 fibers,

0.13 ps/
√

km for fibers installed in the period from 1992
to 1998, and 0.05 ps/

√
km for post-1999 fibers [100]. For a

fiber of lengthL The averageDGD τ is related to the PMD
coefficientby τ = ηPMD

√
L, while the r.m.s. value of DGD is

τrms =
√

3π
8 τ [98].

PMD is generally a problem in high symbol rate systems

and must be properly equalized at the receiver side. Adaptive
equalization is mandatory since PMD varies in time on scales
of the order of milliseconds. The problem is best solved with
coherent detection where classical algorithms first developed
for wireless communications have been successfully used.
Some examples are the blind constant-modulus algorithm
(CMA), the least mean square (LMS) algorithm and the data-
aided least squares method [95].

Both birefringence and PMD play a role in the nonlinear
regime. As mentioned in the introduction, the fast variations
of birefringence with distance are usually averaged out as
in the Manakov equation [99], [20]. In this scenario, the
two polarization tributaries still nonlinearly interact along
propagation through XPM, but they also interact through cross
polarization modulation (XPolM) [19], [99], [109], [106],
[107]. XPolM is a generalization of the XPM phase rotation
in the complex plane into a rotation in the three-dimensional
space described by the Poincaré sphere. Now it is the total
power that is preserved: however, power can be exchanged
between the polarization tributaries thus creating nonlinear
crosstalk. Contrary to PMD temporal variations, XPolM is
rapidly varying in time, with temporal scales of the order of
the walk-off between interacting channels. As a consequence,
XPolM scattering manifests as a Brownian motion over the
Poincaŕe sphere [106], [107] and its equalization is extremely
challenging. XPolM has been shown to be one of the dominant
nonlinear impairments in dispersion-managed PDM systems
[104], [105].

PMD joins the polarization and nonlinear Kerr effect in-
teractions [108]. The analysis is simplified in the strong
coupling regime where the reference model is the Manakov-
PMD equation [20]. Numerical simulations and experiments
[102], [103] showed that PMD helps improving the average
performance of an optical link, provided that linear PMD is
fully equalized at the receiver. The reason is that PMD is a
dispersive effect, hence it decorrelates channels farther away
than the PMD correlation bandwidth [82], thus mitigating the
nonlinear interference accumulation along distance.

The numerical investigation of PMD in the nonlinear regime
is particularly burdensome. To correctly emulate the slow bire-
fringence temporal variations it is mandatory to independently
test many fiber realizations to find rare events that set the
outage probability induced by PMD, i.e., the probability that
the Q-factor is below a given threshold. Attempts to extend
the GN model to include PMD are reported in [82].

Birefringence may also induce polarization dependent loss
(PDL), i.e., an energy loss preferential to one polarization.
PDL is mainly present in optical devices such as reconfig-
urable add drop multiplexers (ROADM) or EDFA. PDL is
expressed in international standards by [93]:

ρdB , 10 log10

(
Tmax

Tmin

)

whereTmax andTmin are the maximum/minimum transmission
power after a PDL element. Typical values ofρdB are fractions
of dB (e.g., 0.4 dB for a ROADM). The overall PDL cumulated
along a link is a random variable, whose statistics can be
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Fig. 16. Outage Probability vs PDL. An outage event occurs when Q-factor
is smaller than 6.25 dB. Dashed lines: equivalent linear (LIN) model with the
same average Q-factor as the in nonlinear (NL) propagation. PMD = 0.13 ps/√

km. Originally from [118].

evaluated by following similar methods as for DGD [112],
[111].

PDL induces a penalty which is enhanced in nonlinear
regime by interaction with the nonlinear Kerr effect, thus
increasing outage probability [114], [21], [113].

Fig. 16 shows an example of outage probability estimated
by numerical simulation in a 15 channel 32 Gbaud QPSK
system, traveling in a35× 100 km, D = 4 ps/nm/km, link at
a power of 0.5 dBm and OSNR=16.1 dB/0.1 nm [118]. PMD
was either 0 or 0.13 ps/

√
km. Dashed lines show the result by

an equivalent linear model where the EDFA noise figure has
been changed to get the same average Q-factor as in nonlinear
regime. The difference between the solid and the dashed line
is an indication that PMD/PDL interacted with nonlinearity
along transmission.

X. A PPLICATIONS

A. Which performance metric?

The main outcome of the GN model is the received SNR. In
the special, yet relevant, case of the additive white Gaussian
noise (AWGN) channel with matched filter detection, the SNR
can be converted into bit error rate (BER) by simple formulas,
as shown in Appendix A.

Usually, BER follows a complementary error function
(erfc)-like behavior versus SNR, which does not suit a system
designer that usually works in dB scales. For this reason,
the Q-factor has been introduced. The Q-factor is a one-to-
one relation with the BER in a reference system tracking the
erfc transformation (see Appendix A). This way, the Q-factor
coincides with the SNR in the relevant case of QPSK, and
with 2∙SNR for BPSK. For several other modulation formats
the relation is luckily almost linear with slope 1 in a dB/dB
scale. Conversions graphs are available in Appendix A.

Whatever the choice, BER or Q-factor, they are normally
estimated before FEC decoding. The rationale is to associate
a threshold to the FEC code and claim the post-FEC BER to
be 0 if the pre-FEC BER is smaller than the threshold. For
instance, the second generation hard-decision FEC (HD-FEC)

standardized by ITU-T G.975.1 had a Q-factor threshold of
8.5 dB with a FEC overhead of 6.7%.

Nowadays the trend is toward soft-decision FEC (SD-FEC)
that can provide gains of about 1.5 dB with respect to hard-
decision [120], or even more with iterative decoding. SD-
FEC so far operate at overheads of∼20% by exploiting soft
decoding with advanced techniques such as low-density parity
check codes (LDPC) or turbo product codes (TPC). However,
it is worth noting that the higher complexity of SD-FEC may
be an issue for some systems, thus HD-FEC with overhead
. 15% may be preferred for those applications where low
power consumption is mandatory [120].

The idea of a FEC threshold works fine with binary HD-
FEC and bit-interleaving, and thus BER works great in this
scenario. However, it is has been shown that it may fail with
SD-FEC [121].

An alternative performance metric, more suited to SD-FEC,
is the mutual information (MI). MI is a concept introduced in
information theory to provide a measure of the “amount of
information” obtained about one random variable through the
knowledge of another random variable [122]. The concept of
MI is strictly related to the concept of entropy, which provides
a measure of unpredictability on average. For the continuous
random variableY with probability density functionpY (y) the
entropy (More correctly, differential entropy.) is defined as:

h(Y ) , −E [log(pY (y))]

with E [.] expectation. MI between two random variablesX
andY is thus defined as:

MI(X,Y ) , h(Y ) − h(Y |X) (103)

whereh(Y |X) is the conditional entropy, i.e., the entropy of
Y conditioned toX averaged over all possible values ofX.
Hence, the computation of (103) requires knowledge of the
conditional probabilitypY |X(y|x).

MI is a relationship between two random variables. For
channels with memory we need to generalize the idea
to stochastic processes, hence we should substitute MI
with the information rate (IR) [122], [124]. LetXN =
(X1, X2, . . . , Xn) and YN = (Y1, Y2, . . . , Yn) temporal se-
quences of the stochastic processX(t) andY (t), respectively,
from discrete timet = 1 to time t = n. The IR is defined as:

I(XN ,YN ) , lim
n→∞

1
n

(h(YN ) − h(YN |XN ))

We are motivated to associateYk to the input of soft-decoder
and Xk to the transmitted symbol. The GN model tells us
that the AWGN channel is a good approximation of the true
channel, thus MI can be evaluated from the memoryless model
Yk = Xk + nk with nk a complex Gaussian random variable.
However, the true optical channel is different, not just in
terms of different statistics but also because the optical channel
exhibits memory, hence such straightforward approach cannot
exploit all the useful information [143], [144]. Nevertheless,
the theory of mismatched decoding [123] shows that such MI
is a lower bound to the maximum IR [124] constrained to the
modulation format under use. An example of MI for QPSK
modulation in AWGN [130] is reported in Fig. 17.
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In summary, if the soft-decoder has just the information
provided by the GN model, i.e., it believes that noise is
additive and Gaussian and knows its variance, we say that
the corresponding MI described above is achievable, i.e., there
exists a code for which error-free transmission is possible at
MI bits/symbol. The redundancy of such best-code is reported,
for example, in Fig. 17 for the reference case of SNR=10 dB.
Practical codes, able to exploit the information provided by
the auxiliary channel, will need higher redundancies even if
nowadays with LDPC and TPC the loss is very small.

We say that the AWGN channel approximation is an in-
stance of an auxiliary channel of the true channel [124]. Other
auxiliary channels are possible: the closer the auxiliary channel
is to the true channel, the tighter is the lower bound to the max-
imum constrained IR. The capacity is the supremum among
all possible modulation formats and symbols distributions.

MI is the relevant metric for symbol-wise receivers. How-
ever, optical communication systems often use bit-interleaved
coded modulation (BICM) [125] whose non-iterative imple-
mentation [126] simplifies decoding. For such schemes, the
generalized mutual information (GMI) is better suited [126],
[121]. The main difference with MI is that GMI depends on
the bit-symbol mapping. IfX = (B1B2 . . . BL) is the string of
bits, Bk ∈ (0, 1), corresponding to symbolX, GMI is defined
as [126], [127]:

GMI ,
L∑

k=1

MI(Bk, Y )

It is always GMI≤ MI. For instance, for BPSK it is GMI=MI
because here bits≡symbols. QPSK is the composition of two
BPSK in quadrature, hence with Gray coding and AWGN
each bit can be detected independently from the other by
using the real/imaginary axis as discriminating threshold.
Hence, even for QPSK GMI=MI. In particular, MIQPSK(SNR)
= 2∙MIBPSK(SNR/2).

For higher order PSK and QAM modulation formats GMI
< MI. The reason is that in these cases the mentioned bit-
independence in detection rule is broken, and thus we can
extract more information by using a symbol wise detector
rather than a bit-wise detector after bit interleaving.

For the AWGN channel the difference between GMI and
MI is limited to fractions of bits, see Appendix A.

The debate about the most appropriate performance metric
is still open. Schmalen et al. showed that with non-binary
FEC MI is the right candidate [128]. Cho et al. showed that
with probabilistic shaping normalized GMI yields a better
correlation with the post-FEC [129], while Yoshida et al. [131]
proposed asymmetric information (ASI) as a better predictor
in nonlinear regime.

B. Maximum reach and optimum launch power

According to the perturbative description of the NLSE, the
received SNR can be expressed by [43], [119]:

SNR=
P

σ2
ASE + σ2

NL
(104)

where P is the signal power,σ2
ASE is the cumulative ASE

power generated along the link whileσ2
NL is the nonlinear

interference variance. For a transparentN -span periodic link
with optical amplifiers of noise figureF and gain G it
is σ2

ASE = hνFGBN , with h Planck’s constant,ν carrier
frequency andB receiver bandwidth. According to GN model
theory, σ2

NL = ηP 3 where η is the unit-power nonlinear
interference coefficient discussed in the previous sections.

Several interesting implications for system design can be
inferred from (104). First, since ASE dominates the SNR at
small powers while nonlinear interference dominates at high
powers, an optimal power exists (see Fig. 1). Such a power is
generally referred to asnonlinear thresholdPNLT, and can be
easily found by setting to zerodSNR

dP , with result:

PNLT =

(
σ2

ASE

2η

)1/3

.

By inverting such relation we find thatσ2
ASE = 2ηP 3

NLT, i.e., at
the optimal launched power, also known as nonlinear threshold
(NLT), ASE variance is twice nonlinear interference variance.
This important result tells us that at best power the role of
linear ASE noise is more important than the role of nonlinear
distortions, such that it is better to put efforts in optimizing
linear propagation rather than nonlinear propagation.

By substitutingPNLT into (104) we get the corresponding
maximum SNR:

SNRNLT , max (SNR) =
PNLT
3
2σ2

ASE

=
1

[
27η

(
hνFGBN

2

)2]1/3
.

Besides these key ingredients to set up a connection, it is
interesting to have a look at the SNR penalty with respect
to linear impairments. By factoring out in (104) the SNR
impaired by linear effects only, SNRlin = P

σ2
ASE

, we can define
such a penalty SP by:

SP,
SNRlin

SNR
=

σ2
ASE + σ2

NL

σ2
ASE

.

The interesting implication is that at best powerPNLT the SNR
penalty it is always3/2, whatever the value ofσ2

ASE andη, i.e.,
whatever the link for which the GN model assumptions work!
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Such a3/2 factor is more conveniently expressed in dB by
10 log10 3/2 ' 1.76 dB. Therefore, if our system is working
at powerPNLT and we do not want to change such a power, at
best we can improve the SNR by 1.76 dB with an ideal receiver
able to exactly compensate for nonlinear impairments. Only
by increasing the power we can improve the SNR more than
1.76 dB by using a better receiver.

For the system designer used to work in dB it is interesting
to have a look at what happens by 3 dB changes in ASE and
nonlinear interference power. We have:

σ2′

ASE = σ2
ASE + 3 dB ⇒

{
P

′

NLT = PNLT + 1 dB

SNR
′

NLT = SNRNLT − 2 dB

η
′

= η + 3 dB ⇒

{
P

′

NLT = PNLT − 1 dB

SNR
′

NLT = SNRNLT − 1 . dB

Interestingly, a 3 dB change in ASE or nonlinear interference
induces an absolute change of 1 dB in nonlinear threshold.

The GN model can be used to infer the reach of the system
at a given SNR, i.e., the maximum transmission distance
ensuring the signal to noise ratio SNR at the receiver. Such
SNR can be, for instance, the SNR threshold of the FEC code
under use. An example of signal power contour levels and their
related reach is shown in Fig. 2. To estimate the reach we need
to know how the ASE power and the nonlinear interference
η scale with the number of spansN . The ASE power has
a simple linear scalingσ2

ASE = hνFGBN . Experiments,
numerical simulations, and theoretical models suggest indeed
that the nonlinear interference follows the scaling law [70],
[47], [62]:

η = η1N
1+ε

where η1 is the normalized nonlinear interference variance
after 1 span, whileε is the coherence accumulation factor ac-
counting for the super-linear accumulation of nonlinear effects
along distance. The presence ofε is due to correlations among
the different paths creating the first order perturbation (see
Fig. 10). In highly dispersive links the strong dispersion makes
the signal entering a given span almost uncorrelated with the
signal entering a different span, hence we expect also the
nonlinear interference to be almost uncorrelated span-by-span,
such that the cumulative effect accounted byη scales linearly
with distance, i.e.,ε ≈ 0. On the contrary, the accumulation
factor is 0 < ε < 1, with the extreme case ofε = 1
in fully-compensated dispersion-managed links. In dispersion
uncompensated links it is typicallyε < 0.2 [47], [62]. ε
would be almost zero if only cross-channel nonlinearities
were present because the channel-walk-off decorrelates cross-
nonlinear interference from span to span. Aε > 0 is thus due
to a significant single-channel nonlinearity. Therefore single
channel nonlinearity grows faster with distance than cross-
channel nonlinearity. This implies for instance that single
channel nonlinear equalizers become more effective at large
propagation distances.

In this framework the SNR is thus function of three vari-
ables,σ2

ASE, η1 andε. To get the reach we thus need at least
three measurements of power yielding the reference SNR at
different distances. Based on the previous discussion, at the

Fig. 18. Example of selected lightpath from source (S) to destination (D)
transmitted on a fixed wavelength across6 spans, with2 hops and3 span/hop.

reachN0 , max(N) the ASE variance is twice the nonlinear
interference variance, hence the following identities hold:

SNR=
P0

3
2hνFGBN0

=
P0

3η1N
1+ε
0 P 3

0

where P0 is the signal power at the reach. The previous
expression gives two equations in two variables(P0, N0)
from which we get our target, the reach [47]:

reach, N0 =
1

[
(3SNR)3 η1

(
hνFGB

2

)2] 1
3+ε

. [spans]

The reach is a function of the GN model key parametersη1, ε
whose estimation is affected by errors. It is interesting to have
a feeling of how reliable the formula of the reach is with
variations of such parameters. Since it is preferable to work
in dB scales, the following derivatives hold [47]:

∂NdB
0

∂SNRdB = −
3

3 + ε
,

∂NdB
0

∂F dB
= −

2
3 + ε

,
∂NdB

0

∂ηdB
1

= −
1

3 + ε
.

(105)
For instance, atε = 0 an estimation error onη1 of 1 dB

translates into a reach error of 0.33 dB [62], [150].
Another key message from (105) is the following. To

increase the reach we can play with i) the FEC by using a
better code with a smaller SNR threshold, with ii) the optical
link, for instance by using better amplifiers with a smaller
noise figureF , or with iii) the nonlinearity, for instance by
using a nonlinear equalizer to reduceη1. Equation (105) tell
us that such strategies are in order of effectiveness.

C. Modeling in networks

The GN model proved to be an invaluable analytical tool,
able to explain the most important scaling laws and features of
the new regime of highly dispersed transmission entailed by
dispersion uncompensated links with coherent detection and
electronic digital signal processing. However, the GN model
also finds one of its most practical uses in route selection in
modern optical networks with quality-of-transmission (QoT)
guarantees.

The dominant optical network paradigm is that of
wavelength-routed optical networks (WRON), where a trans-
parent optical channel (a lightpath) is established from source
to destination on a fixed wavelength across multiple fiber
links and optical switching nodes (see Fig. 18 for an ex-
ample). The most recent evolution of WRONs is that of
elastic optical networks (EON) (see, e.g., [151], [152] and
references therein), where bandwidth can be flexibly allocated
to lightpaths with a granularity down to 6.25 GHz, thanks to
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coherent detection and smart wavelength selective switches.
Flexibility may also concern the modulation format and/or the
forward error-correction (FEC) code of each lightpath at the
transmitter in order to assure reaching the destination without
intermediate regenerations. Electro-optical (EO) regenerations
at intermediate nodes may however be necessary to both
allow electrical multiplexing/demultiplexing onto the lightpath
at intermediate nodes (grooming) and possibly to change
the wavelength of the subsequent section of the lightpath in
order to reduce wavelength blocking (WB). Reduction of WB
through wavelength conversion has the beneficial effect of
allowing an increase of network utilization (i.e., the fraction
of used wavelengths in the network) and thus of network
throughput, but at the moment is still considered a too-costly
option because of the cost of EO regenerations and is used
with great care.

Initial efforts in dimensioning EONs when taking into
account nonlinear propagation effects assumed a worst-case
full-load scenario where all wavelengths in every fiber link
are populated, and nonlinear effects are at their maximum
[153]. Such a full-load assumption has the great advantage of
simplifying the routing, modulation and spectrum assignment
(RMSA), since it decouples the propagation problem from
the traffic-dependent linear and nonlinear interference. Hence
every modulation format has an optimal launch power spec-
tral density and a maximum error-free transmission distance,
known as thereach, and a simple comparison of the reach
with the requested source-destination distance is enough to
assess whether a connection is feasible without intermediate
regeneration or not. The other major advantage of the full-load
assumption is that of making existing lightpaths insensitive
to the establishment of new connections, a fact that makes
RMSA decisions fast even in a dynamic traffic scenario where
connections my be established and released on short time
scales.

The first RMSA algorithms were based on look-up tables
containing the reach for every possible modulation format. The
reach tables were evaluated offline by long statistical compu-
tations based on the split-step Fourier propagation method.
Semi-analytical methods based on a single span propagation
and tuning with variable residual input span dispersion were
also proposed to speed up reach computations [154].

However the fully-analytical formulas afforded by the GN
model quickly found their way in the RMSA design because
they drastically speed-up the calculation of the required re-
ceived optical signal to noise ratio (OSNR) of a reference light-
path for a given modulation format, and thus the assessment
of whether it is above its FEC threshold and the connection
is thus feasible.

In particular, the incoherent GN model treats the nonlinear
interference terms generated at each span as if they were
independent additive Gaussian noise, exactly as the optical
noise from the amplifiers.

The first proposed use of the incoherent GN model in
an EON scenario appeared in [88], [155] where the locally-
optimal globally-optimal Nyquist (LOGON) strategy was in-
troduced. It was there first observed that, when using the
optimal power spectral density at full load, the reach at any

load is never larger than 3/2 the full-load reach. This still
is the major theoretical justification for using the apparently
resource-wasteful full-load assumption for nonlinear interfer-
ence evaluation. The reach computation using the GN model
for optical networking was explored in [156]. The LOGON
strategy was analyzed in terms of blocking probability versus
carried traffic in a theoretical setting [157] and recently for
various network topologies [158], while in [159] the expected
gain in the network throughput due to transceiver adaptation
was studied in EONs using the full-load LOGON strategy.

Alternative, equivalent formulations of the GN model that
make the single- and cross-channel contributions explicit for
networking applications appeared in [160].

The enhanced GN (EGN) model, which takes into account
the effect of the modulation format on nonlinear interference,
can alternatively be used in place of the GN model [161] for
applications where route establishment can take place on time
scales of several minutes, thanks to the development of fast
computing techniques (see e.g., [162]).

Recently, many papers have appeared that use either the
GN or the EGN model within RMSA algorithms and try to
remove the full-load assumption in order to make a better use
of network resources.

One line of such developments [163], [164], [165], [166],
[167], [168] explores the use of the GN analytical OSNR
within a mixed nonlinear programming framework in order to
obtain the absolute optimal RMSA in a static traffic scenario
(one where a traffic matrix is offered to a green-field network
and lightpaths are set up one by one to satisfy as many
connections as possible) from complete knowledge of each
network fiber’s active lightpaths.

Since the problem is provably NP-hard [169], [170], such
techniques can work in reasonable time only for impractically
small networks. Heuristics have thus to be found in order
to make them work in practical-sized networks. In this con-
text, linearized GN formulas have been proposed in order to
effectively use the GN model within a mixed integer linear
programming framework [170], [171].

Another line of developments explores instead a statistical
approach to the RMSA problem, i.e., a model-based approach
for lightpath selection which is extremely fast to compute but
has a bounded probability of being incorrect, and thus may
sometimes require path re-computation. For instance, in [172]
a QoT-based routing method was proposed where a lightpath
is set-up based solely on wavelength load measurements along
its selected physical path, and the probability that the newly
set-up lightpath is unfeasible is bounded below a desired
threshold.

Another instance of the statistical RMSA approach is one
that makes use of machine learning techniques for route
selection. Here the GN/EGN model can be used to synthesize
positive and negative examples of feasible lightpaths, and such
examples are used to train the weights of a parametric model,
for instance a neural network [173] or a random forest [161].

In summary, the use of the GN/EGN model for network
planning and optimization is gaining momentum and is likely
to become the method of choice for RMSA in future EoNs.
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Fig. 19. Schematic representation of the DBP strategy

XI. N ONLINEARITY MITIGATION

This Section discusses the main approaches for nonlinearity
mitigation based on DSP. The interested reader might also refer
to [194] for an extensive review on this subject.

We point out that very recently artificial neural networks
(ANNs) have also been advocated as a possible DSP approach
for the mitigation of non-linear effects. We refrain from
dealing with it here, but the interested reader can see for
instance the recent prominent result [269].

We also point out that nonlinearity mitigation can be carried
out by means of all-optical techniques as well. One example
is for instance optical phase-conjugation [270]. All-optical
mitigation techniques are a vast and interesting investigation
field, but they are outside of the scope of this chapter.

A. Digital back-propagation

One of the most promising and studied strategies to combat
fiber nonlinearity is digital backpropagation (DBP). DBP is
a channel inversion technique which aims at removing fiber
propagation effects by digitally emulating the propagation of
the received signal through a fictitious fiber link—equal to the
actual fiber link but reversed in space and with opposite-sign
parameters−αP , −β2, and−γ for each span of fiber [195],
[196], [79]—as schematically depicted in Fig. 19. A simple
analysis reveals that DBP can, in principle, exactly invert the
propagation equation (1), hence removing all deterministic
propagation effects due to the interplay between dispersion and
nonlinearity. DBP can be implemented at the transmitter, at the
receiver, or both. Several numerical studies and experimental
demonstrations of DBP are available, reporting different gains
in terms of SNR and reach, depending on the considered
scenario [80], [71], [211], [210]. There is, anyway, a general
consensus that gains up to 1 dB might be realistically achieved,
and that DBP is a practical candidate for extending the reach
of next-generation transponders.

In practice, DBP operates on a digitized version of the
signal and is usually implemented by the SSFM algorithm
(Section II) for its good characteristics in terms of perfor-
mance and complexity. The sequence of received samples is
divided into several overlapping blocks of lengthN , with
Nm overlapping samples. Each block is propagated through
the whole link according to the algorithm in Fig. 3, with a
total of Ns steps. For a dual-polarization signal, the number
of real additions and multiplications required by an SSFM-
based implementation of DBP per each processed sample is
reported in Table II [212]. The parameterNc accounts for
alternative implementations of DBP (see later) and must be

GVD compensation DBP (perstep)

Additions N
N−Nm

(8 log2 N + 8) N
N−Nm

(8 log2 N + 21 + Nc)

Multiplications N
N−Nm

(8 log2 N + 4) N
N−Nm

(8 log2 N + 11 + 2Nc)
TABLE II

NUMBER OF REAL OPERATIONS REQUIRED BYGVD COMPENSATION AND

SSFM-BASED DBP (PER STEP)—Nc = 0 FOR STANDARD SSFM,AND

Nc > 0 FOR FILTERED OR ENHANCEDSSFMWITH Nc COEFFICIENTS.

set to zero for a standard SSFM implementation;Nm is of the
order of channel memory induced by GVD (see Section II);
and N is optimized to minimize the overall computational
complexity. For comparison, Table II shows the same figures
also for GVD compensation based on a frequency-domain
feed-forward equalizer. Each DBP step typically requires about
10–20% more operations than GVD compensation, such that
the overall complexity of conventional DBP (based on standard
SSFM and employing one step per span) easily exceeds a
factor×10 the complexity of GVD compensation in terrestrial
links [210].

Attaining better improvements with lower complexity is one
of the big challenges to bring DBP from the lab to the field.
A first solution is filtered DBP [198], [81], [197], in which
the nonlinear step uses a lowpass filtered version of the signal
power. The nonlinear step (5) is thus replaced by

Ak,i = A′
k,ie

−αph/2e−jγheff [c0|A
′
k,i|

2+
∑Nc

`=1 ci(|A
′
k−`,i|

2+|A′
k+`,i|

2)], i = 1, . . . , N
(106)

where co, . . . , cNC are Nc + 1 real coefficients of a tapped-
delay-line low-pass filter. ForNc = 0, the algorithm reduces
to the standard SSFM. The idea is to overcome the inability
of the standard SSFM to account for the continuously varying
phase mismatch induced by GVD along each nonlinear propa-
gation step—a problem that is particularly significant at large
frequencies. Filtered DBP attempts to mitigate such a problem
by low-pass filtering signal power during the nonlinear step in
a way to limit the intensity fluctuations induced by the artificial
phase matching condition of GVD [198]. Few taps are gener-
ally required in the additional filtering operation, such that the
additional complexity per step (shown in Table II) is usually
more than compensated for by the step elongation, with about
one order of magnitude reduction of the overall complexity.
A similar strategy is the one based on the enhanced SSFM
algorithm, in which the nonlinear step is still replaced by
(106), with the difference that the expression is derived from a
perturbation analysis based on the FRLP model (Section VII),
and theNc +1 coefficients are optimized by a minimum mean
square error criterion [213]. A single-step DBP achieving the
same performance as a standard DBP with a 16 times higher
complexity has been experimentally demonstrated [212].

Alternative DBP design methods showed that finely posi-
tioning the nonlinear step in a symmetric-SSFM implementa-
tion of DBP can enhance the algorithm performance [199].
Gonçalves et al. [205] showed that DBP can be aided by
a memory polynomial model, a technique used in wireless
communications to relax the requirements of Volterra equation.
In dispersion managed links the strong correlation of the
nonlinear interference from span to span can be efficiently
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exploited to build a folded DBP where many spans are folded
into a single span [206].

Low-complexity intrachannel nonlinearity mitigation tech-
niques based on the perturbation analysis in [24] have been
also proposed. In the special case of QPSK symbols, Tao
et al. [202] showed how to exploit the constant modulus
property of the constellation to build a multiplier-free intra-
channel Volterra-based equalizer by substituting multiplica-
tions with summations. Tao et al. [200] proposed to reduce
the number of multiplications in the perturbation evaluation
by quantization of the kernel function. By using 50% of
pre-compensation the number of quantized coefficients has
been shown to be reduced down to few units still keeping
significant gains [201]. Gao et al. [203] showed that with
50% of pre-compensation the symmetry of the dispersion map
with respect to the midpoint of transmission link can be used
to reduce the number of multiplications in a perturbation-
based nonlinear pre-compensation. The reason is that this
way the kernel coefficients are i) real-valued, thus halving
the number of complex multiplications and ii) evaluated over
half link length. A reduction factor of 6.8 has been exper-
imentally demonstrated. Although the kernel description of
the perturbation is a global input/output description of the
link, it has been shown that implementing the perturbative
nonlinear equalization by a multi-stage compensation cascade
may relax complexity at a given accuracy [207]. Indeed, when
dividing the link in N stages, the equalization procedure is
repeatedN times, once per stage. Nevertheless, since the total
number of nonlinear interactions per stage decreasesquadrat-
ically with N due to the shorter memory of each stage, the
overall complexity is reduced. A comprehensive analysis of the
symmetries in Volterra-based nonlinear equalization that help
practical implementation has been investigated in [204]. An
analytical expression for the computation of the coefficients
of perturbative nonlinear precompensation for Nyquist pulses
was derived and experimentally verified in [208]. The gains
achievable by DBP or perturbative nonlinear compensation
were investigated and compared in a C+L band ultralonghaul
transmission experiment in [209].

Besides computational issues, and despite the theoretical
possibility of an exact channel inversion, both fundamental and
practical limitations prevent DBP from completely removing
nonlinear impairments. A first limitation arises in WDM
systems, which are impaired by both intra- and inter-channel
nonlinearity. In typical systems, each channel is separately
detected and processed, such that only asingle-channel DBP
can be actually implemented, effectively compensating only
for intra-channel nonlinearity. In principle, it is possible to
implement a multi-channel DBPby jointly detecting and
processing two or more WDM channels [81], [211]. As the
number of backpropagated channel increases, a higher portion
of inter-channel nonlinearity can be effectively mitigated.
However, the required computational resources grow more
than linearly with the number of backpropagated channels.

The peak-SNR gains that can be theoretically achieved by
ideal single- and multi-channel DBP over typical dispersion-
unmanaged WDM systems are shown in Fig. 20 as a function
of the number of spans [4], for systems operating at 32 GBaud.
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Fig. 20. Peak-SNR gains achievable by single- and multi-channel DBP over
a fully-loaded (115 channels) dispersion-unmanaged WDM system over SMF,
with channel symbol rate 32 GBaud. The system parameters are set as in [4].

The various solid curves correspond to the number of channels
that are jointly backpropagated. The potential gain of single-
and 3-channel DBP is limited to about 0.5 dB and 1 dB,
respectively. Beyond 3-channel DBP, each additional back-
propagated channel provides an incremental gain of no more
than∼0.1 dB, possibly not enough to justify the corresponding
increase of the required computational resources. Slightly
higher gains are achievable when considering systems with
inter-channel phase noise and polarization rotation compen-
sation [4]. Moreover, in optically routed networks, signals
at different wavelengths may follow different paths in the
network, such that an effective multi-channel DBP is no longer
possible.

The possibility to obtain a perfect channel inversion may
be limited also by the presence of PMD [82]. In principle,
an exact knowledge of the PMD evolution both in time and
along the fiber link would still allow for a perfect channel
inversion without any performance degradation. In practice,
such a knowledge is unavailable both at the transmitter and
receiver, and DBP is usually performed by ignoring the
presence of PMD (which is separately compensated for by
an adaptive linear equalizer after DBP). In typical WDM
systems, the impact of PMD is negligible for single-channel
DBP, but becomes relevant when increasing the number of
backpropagated channels, practically limiting the achievable
SNR gains [211]. Some possible countermeasures, based on
the insertion of PMD sections among the DBP steps, have
been investigated in [215], [214], [216], considering different
strategies to configure the PMD sections.

Eventually, the nonlinear compensation achievable by DBP
is fundamentally limited by signal-noise interaction, for which
a channel inversion strategy turns out to be ineffective. This
is easily understood by noting that the ASE noise injected
by each in-line amplifier interacts with the propagating signal
along a different portion of the optical link, such that DBP
reduces the signal-noise interaction due to the first amplifiers,
but enhances that due to the last amplifiers. The impact of
signal-noise interaction on DBP is generally negligible com-
pared to that of inter-channel nonlinearity and of PMD. It is,
therefore, of little practical relevance in real systems. However,
it becomes essential when investigating the ultimate limitations
of optical fiber systems—for instance when considering single-
channel scenarios or, equivalently, in the case of an ideal multi-
channel DBP covering the whole WDM spectrum. This kind of
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analysis is complicated by the unavailability of an exact model
of the optical fiber channel accounting for signal-noise interac-
tion, though some approximated models, based on perturbation
theory, are indeed available, e.g., [140], [33], [141], [142],
[27], [145], [148], which would be required to optimize the
detection strategy, as discussed more in detail in Sect. XII. In
fact, DBP is not sufficient to implement an optimum detector,
and alternative strategies have been proposed to replace or
complement DBP [218], [217], [219]. One possible approach
is that of extending the DBP concept to include the uncertainty
due to amplifier ASE noise when backpropagating the received
signal. This procedure, known as stochastic DBP (SDBP),
consists in backpropagating distributions rather than signals,
eventually obtaining an estimate of the posterior distribution
of the transmitted symbols given the received signal, which is
required to implement an optimum detector [217]. The specific
SDBP algorithm proposed in [217] is based on a particle
representation of the distributions. It is too complex for a
practical implementation, but offers a benchmark for simpler
implementations.

Most DBP demonstrations assume that the required system
parameters (e.g., launch powers and fiber parameters for each
span of fiber) are known at the receiver. Often, this is not
the case. Moreover, some parameters may change over time
due, for instance, to network reconfigurations. It is therefore
essential to devise adaptive strategies for the configuration and
dynamic control of DBP parameters [220], [221]. While there
are no particularly stringent requirements in terms of conver-
gence and adaptation speed for standard DBP algorithms, this
issues becomes critical when considering PMD-aware DBP
algorithms.

B. Symbol Rate Optimization

One of the features of nonlinear fiber propagation is that
the amount of generated NLI power depends on the sym-
bol rate of the WDM channels. Specifically, it was shown
simulatively [84], [85] and then experimentally [83] that, by
distributing the same total data throughput across the same
optical bandwidth, over alarger number of WDM channels
at a smaller symbol rate, the NLI power impairing reception
would decrease. Initial theoretical studies concurred [86],
[104]. These findings were then investigated by means of the
EGN-model [268]. Further investigation was carried out in [4],
using both the time-domain and the pulse-collision models,
which also clarified the role and impact of NLPN in this
phenomenon. Interestingly, SRO was predicted by the EGN
model results to actually slightly increase its effectiveness
when the overall system WDM bandwidth is widened [268],
contrary, for instance, to DBP. Due to all these findings, the
idea of reducing the symbol rate per carrier in order to improve
system performance has been considered as a potential NLI
mitigation technique, under the acronym SRO (symbol rate
optimization).

SRO theory predicts that the optimum symbol rate is, in
uniform links of Ns spans, each of lengthLs [268]:

Ropt =
√

2/(π |β2 | Ls Ns) (107)

Fig. 21. Maximum reach vs. per-channel symbol rate. Solid lines:
calculations using the EGN-model. Markers: simulations. Span-length
100 km, SMF, EDFA noise figure 6 dB, roll-off 0.2. Target per-
formance: GMI 8.7 and 10.44 bits/symb, for PM-32QAM and PM-
64QAM, respectively. The total optical bandwidth is 1.83 THz for all
rates. For symbol rates from 8 to 256 GBaud, the number of channels
ranges from 192 to 6. Carrier spacing:Δf = 76.2Rs

64
, whereRs is

the symbol rate in GHz.

Values typically range between 1 and 10 GBaud. These
rates are quite low as compared to industry standards. In
addition, the industrial trend, for techno-economical reasons,
has historically been that of constantly ramping up symbol
rates, with a transition between 32 to 64 GBaud currently
taking place. This circumstance clearly clashes with the SRO
prescription of operating at low symbol rates.

One way to make an increase intotal symbol rate per
transponder compatible with a decrease of symbol rateper car-
rier is that of resorting tosubcarrier multiplexing. Essentially,
high-symbol-rate channels are created as a collection of DAC-
generated electrical subcarriers, which operate at the symbol-
rate that is optimum from the viewpoint of NLI mitigation.
For instance, a 64-GBaud channel could consist of sixteen 4-
GBaud subcarriers.

No closed-form formula currently exists for the prediction
of the potential MR gain. Estimating it requires the numerical
evaluation of the EGN model. Incidentally, SRO is one of those
contexts where the GN-model is inadequate, as suggested by
the strong violation of criterion (1), which prescribes high
symbol rate for GN-model accuracy (see Sect. IV-G1). Direct
EGN (or time-domain model) calculations or Monte-Carlo
simulations are required.

Fig. 21 provides a pictorial appreciation of the predicted
MR gain for two high-cardinality systems, either PM-64QAM
or PM-32QAM. The relevant system data is reported in the
figure caption. Both the solid line (EGN-model) and the mark-
ers (simulations) concur in predicting about 16%-18% MR
increase between the figure extremes, i.e., from 256 GBaud
down to 8 GBaud. The latter is close to the theoretical
optimum, which according to Eq. (107) is about 5 GBaud
for PM-32QAM and about 6.5 GBaud for PM-64QAM. Note
that in order to clearly show an optimum, Fig. 21 would have
to be pushed down to about 2 GBaud. This was not possible
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because the CPU time of the simulations as well as the their
memory occupation is inversely proportional to the symbol
rate. For the almost 2 THz total optical bandwidth considered
in Fig. 21, 8 GBaud was the practical limit. It was done instead
in [268], Figs. (1) and (4), because the total bandwidth was
500 GHz. There, the optimum is clearly visible.

The MR percentage gain due to SRO is actually larger for
longer links and for smaller constellations [268],[4], with PM-
QPSK being the format benefiting the most, with potential MR
gains on the order of 25%-30% across the same symbol rate
range as in Fig. 21. Also, there are important aspects as to the
role played by NLPN in the context of SRO. For more details
on this, see [4].

In addition, when GSCs are used, the gain due to SRO
essentially vanishes, as predicted by the GN-model (which is
equivalent to the EGN-model for GCSs). Part or all of the
gain could be gained back for GSCs if NLPN mitigation was
possible at low symbol rates. This is currently unclear and the
subject of ongoing research [4].

Despite all the limitations, SRO could be a possible way
to partially mitigate NLI, at least for QAM-based systems,
with relatively low complexity. In [268] it was shown by
EGN model calculations that for full C-band ultra-long-haul
systems, at 32 Gbaud, its MR gain could be comparable
to DBP.

It should however be mentioned that negative findings
regarding SRO have been published too. In particular [87]
found very limited gain from SRO, which also tended to vanish
as the number of WDM channels was increased, in contrast
with SRO theory. Overall, a conclusive specific experiment
proving the effectiveness of SRO over a fully-populated C-
band system is not yet available. Therefore, SRO should
still be considered a research topic, needing confirmation.
We should also mention that presently there are commercial
systems that use multi-subcarrier transmission. Whether its use
grants actual performance gain in these commercial systems,
and why, is currently undisclosed information.

C. Nonlinear Fourier transform

The nonlinear Fourier transform (NFT)—also known in the
mathematical community as inverse scattering transform—is a
mathematical tool to solve a certain class of nonlinear partial
differential equations—the so calledintegrableequations. The
NFT was introduced in [222] for the Kortweg–de Vries
equation and later applied to many other equations, including
the NLSE [223] and the Manakov equation [224]. A general
treatise on the NFT can be found in [225], while a more
specific review of the NFT for the NLSE and its application
to optical fiber communications can be found in [226], [227].

The NFT can be regarded as the generalization of the
ordinary Fourier transform to nonlinear systems [225]. The
basic idea is that of representing the propagating waveform
through a proper set of spectral data—the scattering data or
nonlinear spectrum—whose evolution along the fiber link is
simple and linear. As with linear systems and the ordinary
Fourier transform, the initial value problem is therefore solved
by performing three main steps: :

1) Computation of the input nonlinear spectrum by a direct
NFT. For the NLSE, this operation consists in solving
the Zakharov–Shabat spectral problem [223]. In general,
the Zakharov–Shabat operator has both a discrete and a
continuous spectrum. The former consists of a set of
eigenvalues in the complex plane and the related norm-
ing constants, and is associated withsolitoncomponents.
The latter is defined over the real line and is analogue
to the ordinary Fourier transform, to which it converges
in the low-power limit.

2) Propagation of the nonlinear spectrum. For the NLSE,
this is equivalent to the propagation of the linear spec-
trum in a linear dispersive fiber.

3) Reconstruction of the output waveform from its non-
linear spectrum by an inverse NFT (INFT). For
the NLSE, this is classically done by solving the
Gelfand–Levitan–Marchenko integral equation [223],
[225].

Many integrable equations, including the NLSE, havesoliton
solutions, which play an important role in the NFT theory.
Solitons maintain their shapes (or return periodically to it)
during propagation thanks to a cancellation of nonlinear and
dispersive effects. This property makes them attractive for
communications. Indeed, soliton-based communications have
been extensively explored during the eighties and nineties
(see [228] and references therein). However, they never made
their way to commercial systems because of their low spectral
efficiency (about 0.2 bit/s/Hz) and the detrimental impact of
the Gordon–Haus effect and inter-soliton interaction.

Soliton communication is just the simplest way in which
NFT-related concepts can be used to design nonlinearity-
tolerant communication systems. A more general approach,
originally named eigenvalue communication[229], is that
of avoiding nonlinear interference by encoding information
on the spectral data of the Zakharov-Shabat operator. After
going almost unnoticed for a couple of decades, this ap-
proach has been recently resurrected—with different names
and flavors such aseigenvalue communication[234], nonlinear
frequency–division multiplexing (NFDM)[226] andnonlinear
inverse synthesis[230]—thanks to the impressive progress in
DSP technology, which makes conceivable, if not yet feasible,
a real-time implementation of the NFT.

All the NFT-based approaches proposed so far can be
generally represented by one of the four schemes depicted
in Fig. 22 (the first three are discussed also in [227]). In the
standard NFDM scheme of Fig. 22(a), information is encoded
and decoded in the nonlinear frequency domain, using INFT
and NFT to convert the nonlinear spectrum into a time-domain
waveform and the other way around, respectively [229], [226],
[230], [231], [237]. On the other hand, in the scheme of
Fig. 22(b), information is encoded and decoded in time do-
main, as in conventional systems, while NFT and INFT are
used to implement DBP [232]. Fig. 22(c) represents a hybrid
approach in which information is encoded in time domain and
decoded in nonlinear frequency domain [234], [233]. Finally,
Fig. 22(d) shows the complementary hybrid approach in which
information is encoded in nonlinear frequency domain and
decoded in time domain [236], [235]. While the first two
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Fig. 22. Different ways to use NFT in optical communications: (a) Modulation
and detection in nonlinear frequency domain; (b) modulation and detection
in time domain, with NFT-based DBP; (c) modulation in time domain
and detection in nonlinear frequency domain; (d) modulation in nonlinear
frequency domain and detection in time domain.

approaches do achieve a diagonalization of the channel, such
that symbol-by-symbol detection can be employed, the last
two do not, in fact requiring some kind of sequence detection.
Quite interestingly, time-domain detection of NFDM signals
(fourth approach) seems to achieve a superior performance
compared to the conventional NFDM scheme (first approach),
though with some additional complexity, probably due to a
better matching between the employed detection metrics and
the actual channel statistics [235].

NFDM schemes can be further classified according to which
part of the nonlinear spectrum is used to encode information:
the discrete part [229], [234], [226], [236], the continuous
part [230], [226], [237], [235], or both [238]. Furthermore,
the NFT theory can be applied also to the Manakov equation,
such that the proposed schemes can be extended to consider
polarization-multiplexed signals [242], [243].

As for the ordinary Fourier transform, the NFT and INFT
can be computed analytically only in a few simple cases. In
general, one has to resort to numerical methods. An overview
of available numerical methods can be found in [226], [227].
While the complexity of the most classical methods usually
scales at least quadratically with the number of processed
samples, super fast algorithms with log–linear complexity (as
the FFT) have been also developed [239]. Research of low-
complexity methods with general validity is still ongoing and
will play an important role in determining the feasibility of
NFT-based techniques.

The NFT theory and the techniques mentioned in this
section are based onvanishing boundary conditionsfor the
optical signal, which is assumed to decay sufficiently fast
as t → ±∞. In a real transmission system, this condition
can be emulated by operating in burst mode and inserting a
sufficiently long guard time between bursts [230]. The NFT
theory has been developed also under different boundary con-
ditions. A typical case, extensively studied in the literature, is
that ofperiodic boundary conditions. This approach may offer
some advantages compared to the case of vanishing boundary
conditions [227], but its application to optical communications

has been much less explored [240].
Research about NFT-based techniques is still at an early

stage and there is not a general consensus about their po-
tentials, perspectives, and suitability for optical communica-
tions. Research is mostly following a trial-and-error approach,
and the lack of a unified theory makes hard to understand
which strategy (among those depicted in Fig. 22) is the most
promising, which part of the spectrum should be modulated,
how information should be encoded on it, and what kind of
boundary conditions should be considered. Several experimen-
tal demonstrations of the schemes in Fig. 22 can be found. Yet,
so far, there is no clear evidence of a performance improve-
ment compared to conventional systems. In fact, some critical
issues which seriously hamper the use of NFT operations
at high power [241] and the achievement of high spectral
efficiencies [237] have been highlighted. Performance needs
to be significantly improved and complexity reduced before
NFT-based techniques can make their way to real systems.
Moreover, some propagation effects, which are not included
in the NLSE (1) but can be easily described and coped with in
time domain (e.g., attenuation, higher-order dispersion, PMD),
break the integrability of the system and are extremely hard
to model in the nonlinear frequency domain. Their impact on
NFDM systems needs to be better investigated, as it might
be potentially more detrimental than the impact of nonlinear
effects on conventional systems. Yet, the promise of a tool
able to harness fiber nonlinearity keep research alive.

D. Other nonlinear compensation techniques

While DBP is certainly one of the most studied nonlinear
compensation techniques, other techniques have been also
proposed in the literature over the past years, ranging from
the quite practical and simple approach of SRO to the more
visionary techniques based on the NFT, both reviewed in this
Section. Nonlinearity compensation based on inverse Volterra
series transfer function [204] has been also studied. Given
the equivalence between the RP method and the Volterra
series approach, discussed in Section III, this technique can be
included in the broader category of perturbation-based channel
inversion techniques for alternative DBP implementations.

According to the time-domain perturbative model and the
FRLP model, introduced in Sections V and VII, respectively,
interchannel nonlinearity causes the emergence of phase noise,
polarization rotations, and ISI. These effects can be partly
mitigated by some classical algorithms typically employed to
counteract them, when generated by causes other than fiber
nonlinearity. These algorithms can hence be considered in all
respects as nonlinearity mitigation strategies. Some examples
are reported in [244], [67], [8], [10].

Another class of nonlinearity mitigation techniques aims at
reducing the amount of generated NLI by a proper combi-
nation of coding and modulation. Possible examples are the
design of nearly constant-envelope modulation formats [245];
the ad hoc probabilistic shaping of QAM constellations over
one [246] or several time slots [247]; and the use of twin waves
[248] or conjugate data repetition [249] to partly cancel NLI.
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Fig. 23. Schematic representation of a digital communication system

XII. C APACITY OF THE NONLINEAR CHANNEL

A. Capacity and spectral efficiency

One of the key results of Claude Shannon’s pioneering
work was demonstrating that a reliable communication over
a noisy channel is possible, provided that the information
rate is less than a characteristic quantity determined by the
statistical properties of the channel, which he namedchannel
capacity [77]. Other than laying the foundations of what is
now calledinformation theoryand establishing such a general
result, Shannon also derived a specific closed-form expression
for the capacity of an AWGN channel. As we shall see, this
expression is widely employed also in the context of optical
fibers, though its validity and interpretation need some care.
Shannon’s work has been since extended and generalized both
to account for a broader class of channels and to obtain
closed-form capacity expressions for other specific channels
(see [181] and references therein). In this context, the optical
fiber channel is a major challenge due to its peculiar nonlinear
behavior. In fact, as we shall see in this section, research to
determine channel capacity is still ongoing and the problem,
so far, remains essentially open [182].

We start by considering the generic digital communication
system schematically depicted in Fig. 23. Firstly, the channel
encoder takes a stream of information bits from the source
and adds some redundancy to it (e.g., parity check bits) to
be used for error correcting purposes. Then, the encoded
bits are mapped onto a sequence of information symbols
belonging to the input modulation alphabetX . Since the
physical channel is usually awaveform channel(e.g., an
optical fiber link), a DAC converts the sequence of symbols
into a waveform (e.g., by linearly modulating a sequence of
pulses of given shape) that propagates through the channel.
The opposite operations are then performed at the receiver:
the output waveform (possibly distorted and corrupted by
noise) is converted to a sequence of symbols belonging to
the output alphabetY (e.g., by filtering and sampling the
waveform). The detector converts the output symbols into
a sequence of bits, which are finally decoded (correcting
possible errors) and sent to destination. The combination of
DAC, waveform channel, and ADC constitutes thediscrete-
time channel, which is usually the subject of the information
theoretical analysis. In practical cases, the input and output
alphabetsX andY are determined by the quantization levels
available in the DAC and ADC and are, hence, finite. Often,
when no constraints about the DAC and ADC characteristics
are given, the whole field of complex numbers is considered

for both alphabets. The discrete-time channel is characterized
by a family of conditional distributionsp(yN |xN ), for N =
1, 2, . . . , wherexN = (x1, x2, . . . , xN ), with xi ∈ X , and
yN = (y1, y2, . . . , yN ), with yi ∈ Y , are length-N realizations
of the input and output processesX = X1, X2, . . ., and
Y = Y1, Y2, . . ., respectively.

A typical problem in information theory is that of determin-
ing channel capacity—operationally defined as the maximum
bit rate at which information can be reliably (i.e., at an arbi-
trarily low error probability) transmitted through the channel
with the best possible combination of coding and modula-
tion—without actually trying such (infinitely many) possible
combinations. Given the statistics of the input process, i.e., the
input distributionsp(xN ) for N = 1, 2, . . ., the maximum bit
rate at which information can be reliably transmitted through
the channel is given by the information rate [183]

I(X; Y ) = lim
N→∞

1
N

I(XN ;YN ) (108)

where

I(XN ;YN ) = E

{

log2

p(YN |XN )
p(YN )

}

(109)

is the mutual information betweenXN andYN , E{∙} being
the expectation operator. The information rate (108) depends
both on the input statistics—which are determined by the
channel user by selecting a combination of code and mod-
ulation—and on the channel itself. Eventually, the capacity
of the channel is obtained by selecting the input statistics for
which the information rate is maximized

C = lim
N→∞

1
N

sup
XN

I(XN ;YN ) (110)

where the supremumsupXN
is taken with respect to all input

distributionsp(xN ) satisfying a specific constraint (usually on
the average power) [183]. The capacity is, hence, a specific
property of the channel which determines a fundamental limit
for transferring information.

Both quantities in (108) and (110) refer to the discrete-time
channel and are measured in bit/symbol (or bit/channel). The
corresponding information rate and capacity of the waveform
channel are expressed in bit/s and are obtained by multiplying
(108) and (110) times the baudrateR at which symbols are
mapped to and demapped from the input and output wave-
forms. A further normalization by theoccupied bandwidth
(whenever a suitable definition of it is available) yields the
spectral efficiency(SE) in bit/s/Hz.

In general, only the capacity of some specific channels
can be evaluated analytically, the AWGN channel being per-
haps the most notable example [77]. A discrete-time AWGN
channel is characterized by the input-output relationyk =
xk + nk, where the noise samplesnk are realizations of
i.i.d. variables with a zero-mean proper complex Gaussian
distribution [184]—often referred to as circularly-symmetric
complex Gaussian (CSCG)—with variancePn. The analysis in
this case is greatly simplified by the absence of memory, which
allows to compute (109) by considering only a single pair of
input and output symbols (N = 1). Given a constraint on the
average signal powerPs, the capacity of the AWGN channel
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is given by the well known expressionC = log2(1 + Ps/Pn)
and is achievable by i.i.d. CSCG input symbols [77]. As the
capacity achieving input distribution and the corresponding
output distribution are zero-mean, this capacity can also be
expressed in terms of the input varianceσ2

x = Ps, output
varianceσ2

y = Ps + Pn, and covarianceσxy = Ps as

C = log2(1 + Ps/Pn) = log2

(
σ2

xσ2
y

σ2
xσ2

y − |σxy|2

)

(111)

In this case, it is apparent that, since the noise powerPn is
fixed and independent of the signal, the channel capacity grows
unbounded with signal powerPs. This means that the channel
capacity is limited only if the available resources (power) are
limited (e.g., due to economic or technological constraints).

When turning our attention to the optical fiber channel,
the picture is more complicated. At low signal power, the
nonlinear term of the NLSE (1) is practically negligible and the
channel essentially behaves like an AWGN channel, (Linear
propagation impairments, such as chromatic dispersion and
polarization mode dispersion, are characterized by a slowly
varying (or constant) unitary transfer matrix. Hence, in the
linear regime, their presence has no impact on channel capacity
as they can be fully compensated by a linear equalizer.)
with a capacity that grows logarithmically with launch power
according to (111). However, at higher signal power, the
nonlinear term of the NLSE is no longer negligible and must
be accounted for in the evaluation of channel capacity. This is
an extremely difficult task. First of all, an exact and mathemati-
cally tractable expression forp(yN |xN ) is unavailable, making
the analytical evaluation of (108) unfeasible. Moreover, its
numerical estimation, which must be performed in a4N -
dimensional space, is practically limited to very small values
of N . On the other hand, the convergence of (108) and (110)
to their actual limit can be expected whenN is of the order
of the channel memory, which can be many hundreds of
symbols in typical dispersion-unmanaged systems. For the
same reasons, also the optimization ofp(xN ) in (110) cannot
be performed analytically and, when resorting to numerical
approaches, it is limited to small values ofN . A further issues
arises when considering the discretization of the waveform
channel. In fact, due to nonlinearity, the propagating signal
is subject to spectral broadening and signal-noise interaction
during propagation. Therefore, the structure and bandwidth of
an optimum demodulator (providing a sufficient statistic) is
also unknown. Moreover, since the signal bandwidth changes
during propagation, there is not a general consensus on how
the spectral efficiency should be defined [185].

Typical optical systems employ WDM, in which many
transmitter/receiver pairs share the same fiber to transmit and
receive signals at different wavelengths. This multi-user sce-
nario requires some extra care to be modeled and analyzed. A
typical and reasonable assumption is that each user has access
only to its allotted portion of the WDM spectrum, and that all
the signals are independently generated and detected. In this
situation, the capacity analysis is performed from a single-
user perspective, i.e., by focusing on a single WDM channel
(user), typically referred to as the COI, and considering all the

source

p(x)
channel

p(y|x)
destination

q(y|x)

Modulation Mismatched
decoding

X Y

Fig. 24. Discrete-time channel with mismatched decoding.

other channels as a source of possible interference. Moreover,
a specific behavioral model for the interfering channels, i.e.,
a rule that relates the input distribution on the interfering
channels to the COI input distribution, should be specified
[186]. The most common (and fair) assumption is that all the
users transmit with same input distribution and power. Differ-
ent choices are possible, corresponding to different network
scenarios and leading to completely different results in terms
of capacity [186]. Eventually, in the WDM scenario, spectral
efficiency is usually defined by considering that the bandwidth
occupied by each channel equals channel spacing.

All the difficulties highlighted in this subsection make the
exact evaluation of the capacity of the optical fiber channel
extremely hard. In cases like this, a typical approach is that
of resorting to the computation of capacity upper and lower
bounds, trying to identify a possibly narrow range of values
in which the actual (unknown) capacity lies. This will be
discussed in the next subsections.

B. Achievable information rate with mismatched decoding

When the actual channel law is unknown, such as in the
case of the optical fiber channel, it is useful to consider the
more general case, depicted in Fig. 24, of a discrete-time
channel with a detector that makes maximum-a-posteriori-
probability (MAP) decisions based on a mismatched channel
law q(yN |xN ) 6= p(yN |xN ). Following [187], we define the
achievable information rate(AIR) with mismatched decoding
metricq(yN |xN ) as (In [187], this quantity is actually referred
to as theauxiliary-channel lower boundto the information
rate.)

Iq(X; Y ) , lim
N→∞

1
N

E

{

log
q(yN |xN )

∫
p(xN )q(yN |xN )dxN

}

(112)
With respect to the average mutual information rate (108),
(112) is obtained by replacing the actual channel law
p(yN |xN ) with an arbitrary mismatched lawq(yN |xN ), while
the expectation is still taken with respect to the actual true
distributionp(yN |xN )p(xN ) induced by the input distribution
and the actual channel law.

The AIR (112) has some interesting properties which hold
for any true and auxiliary channel and make it suitable for a
practical use in optical communications: i) It is a lower bound
to the information rate and, therefore, to channel capacity
Iq(X; Y ) ≤ I(X; Y ) ≤ C; ii) its maximization over any possi-
ble detection law (obtained forq(yN |xN ) = p(yN |xN )) leads
to the actual information rate; iii) its further maximization over
the input distributionp(xN ) leads to channel capacity; iv) it
is achievable over the true channel with source probability
p(xN ) and a MAP detector matched toq(yN |xN ); v) it can be
computed through numerical simulations, without an explicit
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knowledge of the true channel lawp(yN |xN ), provided that
q(yN |xN ) can be computed.

In practice, the system is designed by selecting a modulation
format, which determines the input distributionp(xN ), and
an approximated (auxiliary) channel model (e.g., one of those
discussed in Section III), which determines the mismatched
channel lawq(yN |xN ) and, hence, the detection metrics. The
AIR (112) for this configuration is then computed through
numerical simulations. Possibly,p(xN ) and/orq(yN |xN ) can
be numerically optimized by using the AIR as a performance
metric to be maximized.

While an exact analytical evaluation of (112) is still un-
feasible—as the joint distributionp(xK ,yK) of the true
channel, with respect to which the expectation in (112) must
be computed, is generally unknown—an accurate numerical
estimate can be efficiently obtained by relying on the asymp-
totic equipartition property [122] and following the procedure
described in [187]:

1) Draw a long input sequencexN = (x1, . . . , xN ) of
samples from the selected input distributionp(xN ).

2) Compute the corresponding output sequenceyN =
(x1, . . . , xN ) by using the SSFM to simulate the true
channel.

3) Compute the selected conditional distribution
q(yN |xN ).

4) Compute the corresponding output distributionq(yN ) =∫
p(xN )q(yN |xN )dxN .

5) Estimate the AIR as

Îq(X; Y ) =
1
N

log
q(yN |xN )

q(yN )

For finite-state source and auxiliary channel models, the actual
computation ofq(yN |xN ) andq(yN ) can be efficiently carried
out by the sum-product algorithm on a suitably defined factor
graph [187]. The procedure can be extended to the more
general case of a continuous state space by resorting to particle
methods [188].

C. The nonlinear ‘Shannon’ limit (NSL) lower bound

As already mentioned in the previous subsection, at low
signal powers the optical fiber channel behaves like an AWGN
channel; in fact, modern optical systems can achieve infor-
mation rates close to channel capacity (111) when working
in such a linear regime [41]. However, contrarily to the
AWGN case, when the signal power increases, the ensuing
nonlinearities impair the existing systems to the point that they
cease to work. This naturally poses questions about the impact
of nonlinearities on the capacity of a fiber-optic channel and
the possible existence of an ultimate limit to channel capacity.

A variety of studies and facts hint at the possibility that a
finite limit to the fiber-optic channel capacity does exist, so
much that a name for it was coined—thenonlinear Shannon
limit (NSL) [41]. To the best our knowledge, a finite capacity
limit for a fiber-optic channel was predicted for the first time
in [30]. Similar results were later obtained by using different
models and either analytical approximations or numerical
methods [32], [34], [68], [46], [26]. Such a convergence of

results has induced the belief that the actual channel capacity
is very close to the NSL or, at least, follows the same
trend. However, an analysis of the literature reveals that the
NSL, as defined in [32], [41], but also as computed in many
other publications [34], [68], [26], is just an instance of the
AIR (112), computed with specific input distributions (usually
i.i.d. symbols with CSCG or uniform-ring distribution) and
mismatched channel laws (usually memoryless Gaussian).
Therefore, it is only a lower bound to channel capacity, whose
tightness is not known a priori.

A special case of (112)—referred to as the Gaussian AIR
in the sequel—is obtained when considering i.i.d. CSCG input
variables and a detector matched to an AWGN channel with
the same input-output covariance matrix of the real channel

IG(X; Y ) = log2

(
σ2

xσ2
y

σ2
xσ2

y − |σxy|2

)

(113)

This result shows that the Gaussian AIR can be computed
for any channel by simply estimating—either analytically,
through an approximated channel model, or numerically,
through accurate but time consuming SSFM simulations—a
covariance matrix. Remarkably, (113) equals the expression
of the AWGN channel capacity (111). This means that the
same expression can be used (and, in fact, it is commonly
used) for any channel, but with different meanings: it gives the
true channel capacity for AWGN channels, while it provides
only a lower bound (achievable by a conventional detector
optimized for the AWGN channel) for generic channels [192].
In fact, the information theoretical limits computed in [30],
[32], [46], [26], [51] are all obtained by using (113), though
computing the covariance matrix with different approaches.
A good agreement between those results can be generally
observed.

When considering the GN model in Section ?, (113) reduces
to the simple expression

IG(X; Y ) = log2

(

1 +
Ps

PASE + PNLI

)

(114)

wherePASE is the power of the accumulated ASE noise over
the signal bandwidthW , andPNLI is the nonlinear interference
power obtained by integrating (34). Note that in this case, since
the input process is Gaussian by assumption, the EGN model
gives exactly the same result, as the correction term vanishes.

An alternative closed-form expression is obtained with the
FRLP model in Section VII. In this case, (113) reduces to

IG(X; Y ) = log2

[

1 +
Pse

−σ2
θ

PASE + Ps(1 − e−σ2
θ )

]

(115)

whereσ2
θ is the effective variance of the XPM termθ(f, t) over

the signal bandwidth [59]. A very good agreement between
(115) and the numerical computation of (113) based on SSFM
simulations has been demonstrated [59]. A similar expression,
with the same functional dependence on signal powerPs,
can be obtained through the Feynman’s path integral approach
[32]. Moreover, whenσ2

θ � 1—i.e., in most cases of practical
interest—(115) reduces to (114), withσ2

θ replacing PNLI.
In this case, the scaling of (114) and (115) with system
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Fig. 25. Gaussian AIR for a single-polarization fully loaded WDM system
(81 channels) with 50 GHz channel spacing on a dispersion-unmanaged IDA
link.

parameters becomes the same and equals the one obtained
in [26] with the RP method.

As an example, we compute the Gaussian AIR (115) for
a single-polarization fully-loaded Nyquist-WDM system (81
channels) with 50 GHz channel spacing, employing a standard
transmission fiber with attenuation, dispersion, and nonlin-
earity coefficientsα = [0.2]dB/km, D = [17]ps/nm/km,
and γ = [1.27 ∙ 10−3]W−1m−1, respectively. We consider
both ideal distributed amplification (IDA), with spontaneous
emission coefficientηs = 1, and the more practical case of
lumped amplification (LA) withηs = 1.6 (a noise figure of
about 5 dB) and different dispersion maps and span lengths.
The system includes single-channel ideal DBP to remove intra-
channel nonlinearity. The difference between the single- and
dual-polarization cases is usually small and will be investi-
gated in the next subsection. Fig. 25 shows the Gaussian AIR
as a function of the signal launch power (per channel)Ps,
for dispersion-unmanaged IDA links with different length. All
the curves reach a maximum at the same optimum power
([ ∼ −10]dBm per channel). Doubling the distance, the AIR
decreases of about[1]bit/symbol.

The more practical case of an LA link is considered in
Fig. 26, which shows the maximum Gaussian AIR (at opti-
mum launch power) for different link lengths. In particular,
Fig. 26a considers the case of a dispersion-unmanaged link
and shows the dependence of the maximum AIR on the
amplifier spacing (span length). Longer spacing means higher
attenuation; hence, more ASE noise, higher optimum power,
higher nonlinear interference, and, eventually, lower maximum
AIR. The limit of zero amplifier spacing corresponds to the
case of an IDA link (though with a higher noise figure and,
hence, a lower maximum AIR than Fig. 25). On the other hand,
Fig. 26b considers the case of a dispersion-managed link with
an amplifier spacing of 100 km and shows the dependence of
the maximum AIR on the residual dispersion per span. In-line
dispersion compensation turns out to be detrimental in terms
of AIR, as it reduces the walk-off between channels causing a
coherent accumulation of the nonlinear interference generated

in different fiber spans. However, since nonlinear interaction
mostly takes place at the beginning of each fiber span, a small
residual dispersion per span (about 20-30%) is sufficient to
avoid such a coherent accumulation and practically approach
the dispersion-uncompensated case.

D. Improved lower bounds

The Gaussian AIRs shown in Fig. 25 and 26 are capacity
lower bounds achievable by a detection strategy that does not
account for residual channel memory (after DBP) and for the
peculiar characteristics of nonlinear interference. The possible
exploitation of the long time coherence of nonlinear interchan-
nel interference (see Section VII) to compute tighter capacity
lower bounds is suggested in [51] and then demonstrated in
[189], with further improvements obtained in [67], [190].

Fig. 27 shows the AIR for a dispersion-unmanaged WDM
system, considering the same configuration of Fig. 25, an IDA
link of 1000 km, and different detection strategies. Both the
single- and dual-polarization cases are shown with solid and
dashed lines, respectively. Since these curves are obtained
by full SSFM simulations, only five WDM channels are
considered rather than a fully loaded system. Before estimat-
ing the Gaussian AIR (113), different nonlinear mitigation
strategies are considered: single-channel DBP as in Fig. 25
(the AIR is slightly higher because of considering only five
channels), single-channel DBP followed by adaptive least-
square equalization (LSE), and multi-channel DBP performed
on the whole received WDM spectrum. It turns out that the
maximum AIR can be improved by at least 1 bit/symbol by
including LSE to mitigate inter-channel nonlinearity (the gain
increases with the number of WDM channels [67]).

As shown in Section VII, the XPM term generated by
nonlinear interference is highly coherent (both in time and
frequency) for IDA links, but much less coherent for links with
lumped amplification. Thus, lower AIR gains are expected
over the latter. More in general, the coherence decreases as
the portion of the link along which nonlinear interaction takes
place decreases, such that the AIR gain achievable by LSE (or
similar techniques) compared to the Gaussian AIR over links
with lumped amplification decreases with amplifier spacing.
Fig. 28 shows the AIR gain (difference between the maximum
AIRs obtained with and without LSE) as a function of the
amplifier spacing for the same single-polarization system of
Fig. 27 over a 1000 km link with lumped amplification
(but unitary spontaneous emission factor). The limit of zero
amplifier spacing corresponds to the case of an IDA link.

E. Beyond the nonlinear ‘Shannon’ Limit

So far, only some capacitylower boundshave been pre-
sented, all sharing the same typical dependence on optical
power—they all reach a maximum at some optimum power
and then decrease again. We might be tempted to conclude
that even the true channel capacity follows the same trend
and has a finite maximum. However, as we already argued,
there is no proof of the existence of such anonlinear Shannon
limit. In fact, the tightest availableupper boundis the one
proposed in [185], stating that the capacity of the optical fiber
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channel is upper bounded bylog2(1+SNR)—the capacity of
an AWGN channel with same total accumulated noise. This
has important theoretical and practical implications. In fact, it
leaves the capacity problem essentially open, as the distance
between the available lower and upper bounds diverges at high
power, and stimulates the research to build communication
systems that operate in the highly nonlinear with increased

spectral efficiency. Nevertheless, despite a significant research
effort, only small improvements with respect to the Gaussian
AIR (the conventional NSL) have been demonstrated so far,
which leaves no much room for optimism. Yet, some theoret-
ical results suggest that more significant improvements might
be possible, and that channel capacity might even increase
unbounded with signal power.

One such result is the non-decreasing capacity lower bound
[191], which states that the capacity of a discrete-time channel
cannot decrease with power. This entails that the typical
behavior of the capacity lower bounds discussed before—their
decrease after some optimum power—is not a characteristic
of the true channel capacity and should be more properly
ascribed to the use of non-optimized input distributions. For
instance, the capacity bounds obtained with a Gaussian input
distribution (e.g., the Gaussian AIR) are very tight at low
power, but vanish at high power where, instead, satellite
distributions [191] or ripple distributions [254] can be used to
obtain non-decreasing lower bounds. This is a clear indication
that, in a strongly nonlinear regime, conventional modulation
formats are highly suboptimal, and that significant gains might
be expected from the optimization of the input distribution.

Other important results in this sense are the demonstrations
of the infinite asymptotic capacity (forP → ∞) of some
simplified channels related to the optical fiber channel. This
is the case, for instance, of the zero-dispersion fiber channel
[36], of the memoryless FWM model [186], and of the RP
model [192]. In all those cases, the Gaussian AIR has a finite
maximum, but the (per symbol) capacity grows unbounded
with power. This is still very far from a practical scheme that
can guarantee such an unlimited capacity over a realistic fiber
channel. Moreover, none of the previous results account for
spectral broadening induced by fiber nonlinearity, such that a
finite spectral efficiency limit can be still expected [45].

The asymptotic capacity of the optical fiber channel in the
presence of signal-noise interaction is eventually investigated
in [193], which suggests an alternative approach to address
the capacity problem in this case.



40

XIII. C ONCLUSION

The field of the investigation of the generation, charac-
terization, and assessment of the impact of nonlinear fiber
effects has been extremely active over the last 10-15 years.
Undoubtedly, remarkably useful results and practical tools
have been obtained and put at the community’s disposal. Their
use has become quite pervasive, both in the transmission and
in the optical networking sectors.

Investigation is still ongoing. What is probably at the
forefront of current research is the devising of mitigation
techniques to suppress the nonlinear disturbance affecting
signals. To this end, the current (and future) results obtained
in modeling provide an indispensable tool. The next few years
will certainly see further progress in mitigation, also because
the DSP power that can be used in transceivers is still ramping
up exponentially, so that sophisticated techniques that seemed
to be unrealistically complex not long ago, are gradually
becoming viable. This might lead to further substantial in-
crease in the performance of optical transmission systems and
networks.

APPENDIX A
CONVERSION AMONG SNR, Q-FACTOR, MI AND GMI FOR

THE AWGN CHANNEL

The BER is related to the Q-factor by the following defini-
tion:

Q-factor, 20 log10

(√
2erfc−1(2BER)

)
[dB]

with erfc−1 the inverse of the complementary error function.
The main advantage of the Q-factor is that it is linearly, or
almost linearly, related to SNR with slope 1 in a dB/dB scale
for several modulation formats, thus helping rule of thumb
design.

The relation between BER and SNR is modulation format
dependent. For the AWGN channel with squareM−QAM and
by neglecting more than one bit error per symbol error we
have:

BER' 2
log2 M

(
1 − 1√

M

)
erfc

(√
3

2(M−1)SNR
)

,

square QAM
(116)

The formula can be used even for BPSK withM = 4 but by
multiplying the SNR by 2, since QPSK, aka 4-QAM, has the
same minimum symbol distance as BPSK at twice SNR.

In the relevant case of a signal modulated with symbol rate
R Gbd at 1550 nm and traveling in aN -span periodic link
with EDFAs of gainGdB and noise figureFdB, the SNR in dB
is related to signal powerPdBm by:

SNRdB = PdBm+58−10 log10 N−GdB−FdB−10 log10

RGbd

12.5

If we neglect the last term accounting forR we get the optical
SNR (OSNR) that could be measured on an optical spectrum
analyzer (OSA) over a bandwidth of 12.5 GHz (0.1 nm).

Fig. 29 shows the relation between SNR, BER, MI and
GMI for the AWGN channel for the most popular modulation
formats. We reported the difference between GMI and MI

to better highlight the numerical values. The figure is for
single polarization: for PDM without polarization crosstalk
just multiply the MI and GMI values by 2.

The SNR mismatch between MI and GMI curves is a
fraction of dB at practical code overheads. For instance, error
free transmission of single polarization 64-QAM in AWGN is
possible by using FEC with overhead of 50% at SNR=9 dB
without BICM (i.e, at MI=3 bits/symbol), or at SNR=9.44 dB
with BICM (i.e., at GMI=3 bits/symbol). For smaller overhead
the difference is smaller.

APPENDIX B
NOTATION AND CONVENTIONS

• z: is the longitudinal spatial coordinate, along the link
[km].

• α: is the fiberfield loss coefficient (km−1), such that the
signalpower is attenuated asexp(−2αz).

• αP: is the fiber power loss coefficient (km−1), with αP ,
2α.

• β2: is the dispersion coefficient (ps2∙km−1). The relation-
ship betweenβ2 and the widely used dispersion parameter
D in ps/(nm∙km) is: D = −

(
2πc/λ2

)
β2, with c the

speed of light in km/s andλ the light wavelength in nm.
• γ: is the fiber nonlinearity coefficient (W−1∙km−1).
• Ls: is the span length (km).
• Leff : is the span effective length defined as:[1 −

exp(−2αLs)]/2α (km).
• Ns: is the total number of spans in a link, sometimes

written Nspan when necessary for clarity.
• GS(f): is the PSD of the overall WDM transmitted signal

(W/Hz).
• GNLI(f): is the PSD of NLI noise (W/Hz).
• Nch: is the total number of channels present in the WDM

comb.
• Pn: is the launch power of then-th channel in the

WDM comb (W). The power of a single channel is also
sometimes writtenPch when necessary for clarity.

• Rn: is the symbol rate of then-th channel (TBaud). The
symbol rate of a single channel is also writtenR, or Rch

when necessary for clarity.
• Tn = R−1

n : is the symbol time of then-th channel (ps).
• Δf : is the channel spacing, used for systems where it is

uniform (THz).
• sn(t): is the pulse used by then-th channel, in time

domain. Its Fourier transform issn (f ). The pulse is
assumed to be normalized (Note that according to such
normalization a channel with an ideal rectangular spec-
trum and bandwidthRn would have the flat-top value of
its Fourier transformsn(f) equal toR−1

n .) so that the
integral of its absolute value squared isTn. If any pre-
distortion or dispersion pre-compensation is applied at
the transmitter, this should be taken into account insn(t)
andsn(f).

• Bn: is the full bandwidth of then-th channel (THz). If
the channel is Nyquist thenBn = Rn.

• fn: is the center frequency of then-th channel (THz).
• ak

x,n, ak
y,n: are random variables corresponding to the

symbols sent on then-th channel at thek-th signal-



41

-10 -5 0 5 10 15 20 25 30 35
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

B
E

R

B
P

S
K

Q
P

S
K

8Q
A

M
16Q

A
M

32Q
A

M
64Q

A
M

128Q
A

M

256Q
A

M

-10 -5 0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9

10

SNR [dB]

Q
-f

ac
to

r 
[d

B
]

B
P

S
K

Q
P

S
K

8Q
A

M
16

Q
A

M
32

Q
A

M
64

Q
A

M
12

8Q
A

M
25

6Q
A

M

-10 -5 0 5 10 15 20 25 30 35
0

2

4

6

8

10

SNR [dB]

M
I [

bi
ts

/s
ym

bo
l]

BPSK

QPSK

8 QAM

16QAM

32QAM

64QAM

128QAM

256QAM

AW
G

N c
ha

nn
el

 c
ap

ac
ity

-10 -5 0 5 10 15 20 25 30 35
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

SNR [dB]

(M
I -

 G
M

I)
 [b

its
/s

ym
bo

l]
256 QAM

128 QAM

64 QAM

32 QAM

16 QAM

8QAM

BPSK, QPSK
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ing time, on either the polarization̂x or ŷ; note that
|ak

x,n|
2, |ak

y,n|
2 must have dimensions of power (W). See

also Eq. (63).
• E[.]: is the expected value of a random variable.
• Fl,k,m(Ω1, Ω2, Ω3) are kernels describing the NLI contri-

bution resulting from FWN interaction between frequency
tones Ω1, Ω2, Ω3 . The SPM and XPM kernels are
given by Sl,k,m = Fl,k,m(0, 0, 0) and Xl,k,m(Ω) =
Fl,k,m(0, Ω, Ω) , respectively.

• gΩ(z, t) represents the dispersed waveform of the pulse
transmitted over a WDM channel spaced byΩ from
the channel of interest, when reaching pointz along
the fiber. g̃j() represents the baseband spectral shape of
the transmitted pulses from thej-th interfering WDM
channel.

• an andrn represent the transmitted and received polariza-
tion multiplexed data symbols of the channel of interest
in the n-th time slot. bn,j represents the two-element
data-vector transmitted in then-th time-slot over thej-th
interfering WDM channel.

• H(n)
l are 2x2 matrices representing thel-th nonlinear ISI

term in then-th time slot.
• hzs(t): is the impulse response of a filter collecting all

linear effects accumulated from coordinatez to coordi-
nates.

• Rzs(τ): is the cross-correlation function between the
electric field at coordinatez and coordinates, i.e.,
Rzs(τ) = E[A(z, t + τ)A∗(s, t)]

• κn;n: is n-th-order cumulant of data symbolsa. They are
also written asκ2;2 = −μ2

2Φ and κ3;3 = −μ3
2Ψ, with

μ2 = E[|a|2].
• F : is the noise figure (dB) of an EDFA.
• PNLT: is the nonlinear threshold, i.e., the optimal launched

power maximizing the SNR at the receiver.
• η: is the normalized nonlinear interference variance

(1/mW2), i.e., σ2
NLI = ηP 3. For a single-span it is

indicated byη1.
• ε: is the coherence accumulation factor of nonlinear

interference along distance. It is0 ≤ ε ≤ 1 where
ε = 0 and ε = 1 indicate incoherent and fully-coherent
accumulation, respectively.

• N0: is the system reach (spans) of an homogeneous
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optical link, i.e., the maximum distance for which the
SNR is equal to a given threshold. The reach in km is
N0Ls.

• L: is a linear operator accounting for dispersive effects,
i.e., L = j(β2/2)(∂2/∂t2).

• N : is a nonlinear operator accounting for the nonlinear
Kerr effect and fiber attenuation, i.e.,N = −αp/2 −
jγ |A|2. Fiber attenuation, although a linear effect, is
included in the nonlinear operator to make the SSFM
more efficient.

• h(X); is the differential entropy of the random variable
X. It gives a measure of the average rate at which
information is produced byX. The differential entropy is
also called continuous entropy to emphasize that focus on
a continuous random variableX, contrary to the entropy
that refers to a discrete random variable.

APPENDIX C
LIST OF ACRONYMS

ACFS approximate closed-form solution
ADC analog to digital converter
AIR achievable information rate
AWGN additive white Gaussian noise
ASE amplified spontaneous-emission
ASI asymmetric information
BER bit error-rate
BICM Bit-interleaved coded modulation
CD chromatic dispersion
COI channel of interest
CPE carrier phase estimator
CSCG circularly symmetric complex Gaussian
CUT channel under test
DAC digital to analog converter
DGD differential group delay
DBP digital backward propagation
DCU dispersion-compensating unit
DM dispersion-managed
DP dual-polarization
DSP digital signal processing
EDFA erbium-doped fiber amplifier
EGN-model enhanced Gaussian-noise model
EON elastic optical network
eRP enhanced regular perturbation
FEC forward error-correcting code
FFT fast Fourier transform
FRLP frequency-resolved logarithmic perturbation
FWM four-wave mixing
GN-model Gaussian-noise model
GNRF GN-model reference formula
GMI Generalized mutual information
GVD group velocity dispersion
IAA incoherent accumulation assumption
IC interfering channel
IDA ideal distributed amplification
IFFT inverse fast Fourier transform
iGN-model incoherent Gaussian-noise model
IGNRF GN-model reference formula

INFT inverse nonlinear Fourier transform
ISI inter-symbol interference
LA lumped amplification
LDPC low-density parity check code
LOGO local-optimization, global optimization
LOGON LOGO with Nyquist-WDM
LP logarithmic perturbation
LSE least-square equalization
LWN locally-white noise
MAP maximum a-posteriori probability
ME Manakov equation
MCI multi-channel interference
MI mutual information
MR maximum (system) reach
NFDM nonlinear frequency-division multiplexing
NFT nonlinear Fourier transform
NLC nonlinearity compensation
NLI nonlinear interference
NLPN nonlinear phase noise
NLSE nonlinear Schroedinger equation
NLT nonlinear threshold
NSL nonlinear Shannon limit
NSNI nonlinear signal-noise interaction
NZDSF non-zero dispersion-shifted fiber
OFDM orthogonal frequency-division multiplexing
OPA optical parametric amplifier
OSNR optical signal-to-noise ratio
PDF probability density function
PDL polarization dependent loss
PDM polarization division multiplexing
PM polarization-multiplexed
PMD polarization mode dispersion
PPRN phase and polarization rotation noise
PSCF pure-silica-core fiber
PSD power spectral density
QAM quadrature amplitude modulation
QOT quality of transmission
QPSK quadrature phase-shift keying
RMSA routing modulation and spectrum assignment
RP regular perturbation
RPR random process
RV random variable
Rx receiver
SA statistical approach
SCI self-channel interference
SDBP stochastic digital backward propagation
SE spectral efficiency
SI statistical independence
SMF (standard) single-mode fiber
SNR signal-to-noise ratio
SPM self phase modulation
SRO symbol rate optimization
SSFM split-step Fourier method
TD time-domain
Tx transmitter
ULH ultra-long haul
UPA undepleted pump assumption
UT uncompensated transmission
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VS Volterra series
WDM wavelength-division multiplexing
WRON wavelength-routed optical network
XCI cross-channel interference
XPM cross phase modulation
XPolM cross polarization modulation
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