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Signal Analysis using Born-Jordan-type
Distributions

Elena Cordero, Maurice de Gosson, Monika Dörfler and Fabio Nicola

Abstract In this notewe exhibit recent advances in signal analysis via time-frequency
distributions. Newmembers of the Cohen class, generalizing theWigner distribution,
reveal to be effective in damping artefacts of some signals. We will survey their main
properties and drawbacks and present open problems related to such phenomena.

MSC: 42B10, 42B37

Key words: Time-frequency analysis, Wigner distribution, Born-Jordan distribu-
tion, B-Splines, Interferences, wave-front set, modulation spaces

1 Introduction

The Wigner distribution (Wigner transform, Wigner function or Wigner-Ville distri-
bution) has a long tradition which started as a probability quasi-distribution in 1932
with Eugene Wigner’s ground-breaking paper [30]. In 1948 it was reinvented by
Jean Ville in [19] as a quadratic representation of the local time-frequency energy of
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a signal. This was the starting point for its numerous applications in signal analysis:
from electrical engineering and communication theory to any field involving the
problem of treating signals: seismology, biology, medicine etc.

Given two functions 5 , 6 ∈ !2 (R3), their (cross-)Wigner distribution is defined
to be

, ( 5 , 6) (G, l) =
∫
R3
4−2c8lH 5 (G + 1

2 H)6(G −
1
2 H)3H, (1)

(lH = l · H denoting the scalar product in R3). If 5 = 6 we set , 5 := , ( 5 , 5 ),
named the Wigner distribution of 5 . The quadratic nature of the Wigner distribution
, 5 causes the appearance of interferences between the distinct components of the
signal. These interferences are artefacts and do not reflect true signal components,
compare the idealized TF representation in Figure 1 below. This representation is
ideal because it combines the beneficial properties of linear representations, namely
no unwanted interferences, with those of the quadratic Wigner-distribution, namely
no smearing in time-frequency. Roughly speaking, if a signal 5 is sum of two
components 51, 52, then its Wigner distribution becomes

, ( 51 + 52) = , 51 +, 52 + 2R4, ( 51, 52).

The cross-term, ( 51, 52) appearing above produces unwanted interferences, which
are thus also called ghost terms: they don’t correspond to actual signal components.
This will be made clear in the following examples.

Recall the translation and modulation operators:

)G 5 (H) = 5 (H − G), "l 5 (H) = 42c8Hl 5 (H), G, l ∈ R3 ,

which combined are called time-frequency shifts:

c(I) 5 (H) = "l)G 5 (H) = 42c8Hl 5 (H − G), I = (G, l).

We can show such unwanted phenomenum for a signal 5 that is the sum of four
Gaussian atoms, that is, time-frequency shifts of the Gaussian function. For example,
in dimension 3 = 1, consider the Gaussian function i(C) = 4−cC2 and the signal 5
that is the sum of the following 4 time-frequency shifts of i:

5 = c(20, 0.25)i + c(40, 0.15)i + c(40, 0.35)i + c(60, 0.25)i =
4∑
8=1

i8 . (2)

The plot below is an idealized TF representation, but does not correspond to
anything computable from the signal. The Wigner Distribution, 5 is represented in
Figure 2 and we observe the following. Since

, ( 5 , 5 ) =
4∑
8=1
,i8 +

4∑
8=1

∑
8≠ 9

R4, (i8 , i 9 ) (3)
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Fig. 1 An idealized TF representation of the sum of four Gaussian windows.

and since, with i8 (C) = c(G8 , l8)i, the cross term, (i8 , i 9 ) is given by

, (i8 , i 9 ) (G, l) = 24 [−
c
2 (G−

G8+G 9
2 )2−2c (l−

l8+l9

2 )2 ]42c8 [ (l8+l 9 )G−(G8−G 9 ) (
l8+l9

2 ) ] .
(4)

As depicted in Figure 2, we thus see six cross terms, of which two overlap in the
center of the four Gaussian windows.

The four spots placed at the vertices of the rhombus are the real time-frequency
content of the signal, whereas the other five spots represent the “ghost frequencies”,
as defined in [3], arising from the interferences of the four components of the signal.

To overcome this undesirable phenomenon, reduced interference distributions
were proposed by Leon Cohen in [6], see also the textbooks [7, 18].

The idea underneath the introduction of the so-called Cohen class is to reduce
the interferences by a smoothing operation obtained using a convolution product.
Precisely, we define the Cohen class a follows.

Definition 1 A member of the Cohen class & 5 is a quadratic time-frequency rep-
resentation obtained by convolving the Wigner function , 5 with a distribution
\ ∈ S′(R23) (called Cohen kernel), that is

& 5 = , 5 ∗ \, 5 ∈ S(R3). (5)

For 5 ∈ S(R3) it is easy to check that, 5 ∈ S(R23) (see, e.g., [17]) so that & 5 is
a well-defined tempered distribution for every 5 ∈ S(R3).
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Wigner Transform of four Gaussians with ghost terms
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Fig. 2 Wigner distribution of the sum of four Gaussian windows.

A possible choice for the Cohen kernel is \ = FfΘ1, with FfΘ1 being the
symplectic Fourier transform of the function

Θ1 (G, l) = sinc(Gl) =


sin(cGl)
cGl

for Gl ≠ 0

1 for Gl = 0.
(6)

In this way we obtain the Born-Jordan (BJ) distribution:

&1 5 = , 5 ∗ Ff (Θ1), 5 ∈ !2 (R3), (7)

see [3, 6, 7, 8, 10, 18, 24] and the references therein.
Such distribution was first introduced in 1925 as a quantization rule by the

phisicists M. Born and P. Jordan [5] and later widely employed by engineers for its
smoothing effects, cf. the textbook [18].

Examples for tests and real-world signals show in the BJ distribution:
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a) “ghost frequencies” (arising from the interferences of the several components
which do not share the same time or frequency localization) are damped very
well, see [3, 4].

b) The interferences arranged along the horizontal and vertical direction are sub-
stantially kept.

c) The noise is, on the whole, reduced.

The following picture represents the BJ distribution of the signal 5 in (4).

The smoothing effect of the BJ distribution can be seen quite clearly. But still there are
artefacts that one would like to damp. This is the main purpose of the contribution
[13], where new distributions from the Cohen class were proposed and studied.
Here we present the most relevant issues of the contribution above, highlighting the
mathematical explanation of the smoothing effects of the distributions.

Following the suggestions of Jean-Pierre Gazeau, in the manuscript [13] new
interesting Cohen kernels were proposed using the B-spline functions �=.

The sequence of B-splines {�=}=∈N+ is defined inductively as follows. The first
B-Spline is

�1 (C) = j[− 1
2 ,

1
2 ] (C),
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and the spline �=+1 is

�=+1 (C) = (�= ∗ �1) (C) =
∫
R
�= (C − H)�1 (H)3H =

∫ 1
2

− 1
2

�= (C − H)3H. (8)

The spline �= is a piecewise polynomial of degree at most = − 1, = ∈ N+, and
satisfying �= ∈ C=−2 (R), = ≥ 2. For the main properties we refer, e.g., to [16].

The B8=2 function is recaptured as sinc(b) = F �1 (b) and by induction we infer

sinc= (b) = F �= (b), = ∈ N+. (9)

This suggests the following definition.

Definition 2 For = ∈ N, the nth Born-Jordan kernel on R23 is defined by

Θ= (G, l) = sinc= (Gl), (G, l) ∈ R23 . (10)

The related Born-Jordan distribution of order = (BJDn) is

&= 5 = , 5 ∗ Ff (Θ=), 5 ∈ !2 (R3). (11)

The cross-BJDn is given by

&= ( 5 , 6) = , ( 5 , 6) ∗ Ff (Θ=), 5 , 6 ∈ !2 (R3). (12)

We write &= ( 5 , 5 ) = &= 5 , for every 5 ∈ !2 (R3).
For = = 0, Θ0 ≡ 1 and Ff (1) = X, so that &0 5 = , 5 , the Wigner distribution of

the signal 5 .

In the picture below we computed the Born-Jordan distribution of order 3 of the
signal in (4).

Notice that this new class is a subset of the Cohen class, containing theWigner and
the classical BJ distribution. This subclass can be applied to signal processing since
the mathematical explanations of their smoothing properties testifies the numerical
evidences of dumping artefacts in many examples, and such reduction increases
with =. We survey the different facets of this phenomenon, referring mainly to the
theoretical results in [13], highlighted by new pictures in this note.

First, in Figures 3, 4 and 5 we show the Wigner, BJ, BJ3 distribution of a ro-
tation of the original signal in (4). Figure 6 shows a comparison of the Wigner
transform, the Born-Jordan transform and the fifth Born-Jordan transform of another
sum of four time-frequency shifts of Gaussian functions. It is clearly visible, that
the amount of cross-term suppression increases by applying higher-order smoothing.

This suggests that such distributions could be successfully applied in signal
processing.

In the following sections we provide a rigorous mathematical explanation of the
regularity and smoothness properties of &=; the notion of Fourier Lebesgue wave-
front set will play the central role in showing the damping of interferences of &=
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Generalized BJ Transform of four Gaussians 
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in comparison with the Wigner distribution. The use of function spaces from time-
frequency analysis, combined with microlocal analysis techniques are the key tools
of our proofs.

1.1 Notation

We use Gl = G ·l = G1l1+ . . .+G3l3 for the scalar product inR3 . The brackets 〈·, ·〉
denote the inner product in !2 (R3) or the duality pairing between Schwartz functions
and temperate distributions (antilinear in the second argument). For functions 5 , 6,
we write 5 . 6 if 5 (G) ≤ �6(G) for every G and some constant � > 0, and similarly
for &. The notation 5 � 6 means 5 . 6 and 5 & 6. We write C∞2 (R3) for the
class of smooth functions on R3 with compact support. The notation f stands for
the standard symplectic form on the phase space R23 ≡ R3 × R3; the phase space
variable is denoted I = (G, l) and the dual variable by Z = (Z1, Z2). By definition
f(I, Z) = �I · Z = l · Z1 − G · Z2, where

� =

(
03×3 �3×3
−�3×3 03×3

)
.
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Wigner Transform of four Gaussians with ghost terms
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Fig. 3 The Wigner Transform shows 9 spots, only 4 spots represent the real signal, the others are
ghost terms

The Fourier transform of a function 5 in R3 is

F 5 (l) = 5̂ (l) =
∫
R3
4−2c8Gl 5 (G) 3G,

and the symplectic Fourier transform of a function � in the phase space R23 is

Ff� (Z) =
∫
R23

4−2c8f (Z ,I)� (I) 3I.

The symplectic Fourier transform is an involution, i.e., Ff (Ff�) = �. Moreover,
Ff� (Z) = F � (�Z).

Observe that Θ= (� (Z1, Z2)) = Θ= (Z1, Z2) so that

Ff (Θ=) = F (Θ=), ∀= ∈ N+. (13)
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BJ Transform of four Gaussians with ghost terms
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Fig. 4 The BJ Transform of the previous signal gives a better information than the Wigner one.
Here one sees 4 spots that represent the time-frequency content of the signal though few little
shades appear as interferences

2 Time-frequency and Microlocal Analysis Methods

In this section we recall the function spaces from time-frequency analysis and the
wave-front set from microlocal analysis that play the key role in this study.
Modulation Spaces. Let us first recall another very popular time-frequency rep-
resentation: the short-time Fourier transform (STFT). Fix a Schwartz function
6 ∈ S(R3) \ {0} (so-called window), then the short-time Fourier transform of
5 ∈ 2(′(R3) is

+6 5 (G, l) =
∫
R3
5 (H) 6(H − G) 4−2c8Hl 3H, (G, l) ∈ R23 . (14)

Consider 1 ≤ ?, @ ≤ ∞. Themodulation space" ?,@ (R3) consists of all tempered
distributions 5 ∈ S′(R3) such that

‖ 5 ‖" ?,@ :=

(∫
R3

(∫
R3
|+6 5 (G, l) |? 3G

)@/?
3l

)1/@

< ∞ (15)
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Gen. (n=3) BJ Transform of four Gaussians with damped ghost terms
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Fig. 5 The Generalized BJ Transform (order = = 3) of the same signal shows the best time-
frequency content of it. The interferences are almost disappeared

(with obvious modifications for ? = ∞ or @ = ∞). We write " ? (R3) instead of
" ?,? (R3). The modulation spaces are Banach spaces for any 1 ≤ ?, @ ≤ ∞, and
every non-zero 6 ∈ S(R3) yields an equivalent norm in (15).

Modulation spaces were introduced in [21] and are now available in textbooks, see
e.g., [23]. They include as special cases several function spaces arising in Harmonic
Analysis. In particular for ? = @ = 2 we have

"2 (R3) = !2 (R3),

whereas "1 (R3) is the Feichtinger algebra (0 (R3), cf. [22, 23].
In the notation " ?,@ the exponent ? is a measure of decay at infinity (on average)

in the scale of spaces ℓ? , whereas the exponent @ is a measure of smoothness in the
scale F !@ .

Other instances of modulation spaces, also known asWiener amalgam spaces, are
obtained by exchanging the order of integration in (15). Namely, for ?, @ ∈ [1,∞),
the modulation space , (F ! ? , !@) (R3) is the subspace of tempered distributions
5 ∈ S′(R3) such that

‖ 5 ‖, (F!? ,!@) (R3) :=

(∫
R3

(∫
R3
|+6 5 (G, l) |? 3l

)@/?
3G

)1/@

< ∞
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Wigner Transform of four Gaussians in rotated positions
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Born-Jordan Transform of four Gaussians in rotated positions
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Gen. (n=5) Born-Jordan Transform of four Gaussians in rotated positions
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Fig. 6 Sum of four Gaussian functions in rotated positions: Comparison of Wigner distribution,
Born-Jordan and generalised Born-Jordan distribution of order = = 5
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(with obvious changes for ? = ∞ or @ = ∞). Using Parseval identity in (14), we infer
the fundamental identity of time-frequency analysis

+6 5 (G, l) = 4−2c8Gl+6̂ 5̂ (l,−G),

hence
|+6 5 (G, l) | = |+6̂ 5̂ (l,−G) | = |F ( 5̂ )l 6̂) (−G) |

so that

‖ 5 ‖" ?,@ =

(∫
R3
‖ 5̂ )l 6̂‖@F!? 3l

)1/@
= ‖ 5̂ ‖, (F!? ,!@) .

Hence Wiener amalgam spaces can be viewed as the image under Fourier transform
of modulation spaces: F (" ?,@) = , (F ! ? , !@).

We will frequently use the following product property of Wiener amalgam spaces
([20, Theorem 1 (v)]): For 1 ≤ ?, @ ≤ ∞,

if 5 ∈ , (F !1, !∞) and 6 ∈ , (F ! ? , !@) then 5 6 ∈ , (F ! ? , !@). (16)

Taking ? = 1, @ = ∞, we obtain that , (F !1, !∞) (R23) is an algebra under point-
wise multiplication.

Proposition 1 Let 1 ≤ ?, @ ≤ ∞ and � ∈ �! (3,R). Then, for every 5 ∈
, (F ! ? , !@) (R3),

‖ 5 (� ·)‖, (F!? ,!@) ≤ � | det �| (1/?−1/@−1) (det(� + �∗�))1/2‖ 5 ‖, (F!? ,!@) . (17)

In particular, for � = _�, _ > 0,

‖ 5 (� ·)‖, (F!? ,!@) ≤ �_
3

(
1
?
− 1

@
−1

)
(_2 + 1)3/2‖ 5 ‖, (F!? ,!@) . (18)

In the sequel we shall use the following fact [12, Lemma 5.1].

Lemma 1 Let j ∈ �∞2 (R). Then the function j(Z1Z2) belongs to, (F !1, !∞) (R23).

Wave-front set for Fourier-Lebesgue spaces For B ∈ R the Sobolev space �B (R3)
is constituted by the distributions 5 ∈ S′(R3) such that

‖ 5 ‖� B := ‖ 5̂ (l)〈l〉B ‖!2 < ∞, (19)

where 〈l〉 = (1 + ||2)1/2. The �B wave-front set allows to quantify the regularity of
a function/distribution in the Sobolev scale, at any given point and direction. This
is achieved by microlocalizing the definition of the �B norm in (19) as follows (cf.
[25, Chapter XIII]).

Definition 3 Given a tempered distribution 5 ∈ S′(R3) itswave-front set,�� B ( 5 ) ⊂
R3 × (R3 \ {0}) is the set of points (G0, l0) ∈ R3 ×R3 , l0 ≠ 0, where the following
condition is not satisfied: for some cut-off function i ∈ �∞2 (R3) with i(G0) ≠ 0 and
some open conic neighborhood of Γ ⊂ R3 \ {0} of l0 we have
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‖F [i 5 ] (l)〈l〉B ‖!2 (Γ) < ∞.

More generally one can start from the Fourier-Lebesgue spaces F !@B (R3), B ∈ R,
1 ≤ @ ≤ ∞, which is the space of distributions 5 ∈ S′(R3) such that the norm

‖ 5 ‖F!@
B (R3) = ‖ 5̂ (l)〈l〉

B ‖!@ (R3) , (20)

is finite.
Arguing exactly as in Definition 3 with the space !2 replaced by !@ , one can

introduce the corresponding notion of wave-front set,�F!@
B
( 5 ).

Definition 4 Given 5 ∈ S′(R3) its wave-front set,�F!@
B
( 5 ) ⊂ R3 × (R3 \ {0}) is

the set of points (G0, l0) ∈ R3 × R3 , l0 ≠ 0, where the following condition is not
satisfied: for some cut-off function i (i.e., i is smooth and compactly supported on
R3), with i(G0) ≠ 0, and some open conic neighbourhood Γ ⊂ R3 \ {0} of l0 it
holds

‖F [i 5 ] (l)〈l〉B ‖!@ (Γ) < ∞. (21)

Observe that,�F!2
B
( 5 ) = ,�� B ( 5 ) is the standard �B wave-front set in Definition

3.
For our purposes we recall some basic results about the action of constant coeffi-

cient linear partial differential operators on such wave-front set (cf. [26]). Given the
operator

% =
∑
|U | ≤<

2Um
U, 2U ∈ C,

for 1 ≤ @ ≤ ∞, B ∈ R, 5 ∈ S′(R3),

,�F!@
B
(% 5 ) ⊂ ,�F!@

B+<
( 5 ).

Consider now the inverse inclusion. We say that Z ∈ R3 , Z ≠ 0, is non characteristic
for the operator % if ∑

|U |=<
2UZ

U ≠ 0.

The following result is amicrolocal version of the classical regularity result of elliptic
operators (see [26, Corollary 1 (2)]):

Proposition 2 Let 1 ≤ @ ≤ ∞, B ∈ R and 5 ∈ S′(R3). Let I ∈ R3 and assume that
Z ∈ R3 \ {0} is non characteristic for %. Then, if (I, Z) ∉ ,�F!@

B
(% 5 ), we have

(I, Z) ∉ ,�F!@
B+<
( 5 ).

3 Time-frequency Analysis of the nth Born-Jordan kernel

In this section we summarize the main results of the topic, obtained in the papers
[11, 12, 13]. The Born-Jordan kernel Θ1 in (6) satisfies
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Θ1 ∈ , (F !1, !∞) (R23),

cf. [12].
The previous property is true for any Θ=, = ∈ N+, as shown below (see [13]).

Proposition 3 For = ∈ N+, the function Θ= in (10) belongs to the Wiener algebra
, (F !1, !∞) (R23).

The properties of the kernels above yield the following result.

Theorem 1 Let 5 ∈ S′(R3) be a signal, with, 5 ∈ " ?,@ (R23) for some 1 ≤ ?, @ ≤
∞. Then &= 5 ∈ " ?,@ (R23), for every = ∈ N+.

Proof We need to show that &= 5 is in " ?,@ (R23). Taking the symplectic Fourier
transform in (7) this is equivalent to

Θ=Ff (, 5 ) = Θ=� 5 ∈ , (F ! ? , !@)

where Ff (, 5 ) = � 5 is called the ambiguity function of 5 , see e.g., [23]. The
claim is attained using the product property (16): by Proposition 3, the function
Θ= ∈ , (F !1, !∞) and by assumption, 5 ∈ " ?,@ (R23) so that we infer F (, 5 ) ∈
, (F ! ? , !@). Finally, Ff (, 5 ) (Z) = F (, 5 ) (�Z) ∈ , (F ! ? , !@) by Proposition
1. �

The previous statement holds in greater generality and can be rephrased for
members in the Cohen class as follows.

Theorem 2 Let 5 ∈ S′(R3) be a signal, with , 5 ∈ " ?,@ (R23) for some 1 ≤
?, @ ≤ ∞ and the Cohen kernel (cf. (5)) \ ∈ "1,∞ (R23). Then the corresponding
distribution & 5 is in " ?,@ (R23).

Proof It is the consequence of the following convolution relation for modulation
spaces in [9]:

" ?,@ (R23) ∗ "1,∞ (R23) ↩→ " ?,@ (R23),

for any 1 ≤ ?, @ ≤ ∞. �

The chirp function � (Z1, Z2) = 42c8Z1Z2 enjoys the following property, see [12, 22].

Proposition 4 The function � (Z1, Z2) = 42c8Z1Z2 belongs to, (F !1, !∞) (R23).

By Proposition 4 and by the dilation properties for Wiener amalgam spaces in (17)
we obtain

Corollary 1 For Z = (Z1, Z2), consider the function �� (Z) = � (�Z) = 4−2c8Z1Z2 .
Then �� ∈ , (F !1, !∞) (R23).
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4 Smoothness of the Born-Jordan distribution of order n

In this section we survey the results in [13, Sec. 5], comparing the smoothness of
the Born-Jordan distribution of order = with the Wigner distribution. To measure the
smoothness of a signal 5 we use modulation spaces. They detect the concentration
of functions and distributions on the time-frequency plane. Roughly speaking, a
distribution 5 ∈ S′(R3) belongs to " ?,@ (R3) if it decays at infinity like a function
in ! ? (R3), whereas it displays a F !@ (R3)-local regularity.

For the following global result we use the notation

∇G · ∇l :=
3∑
9=1

m2

mG 9ml 9
. (22)

Theorem 3 Let 5 ∈ S′(R3) be a signal, with, 5 ∈ " ?,@ (R23) for some 1 ≤ ?, @ ≤
∞. Then, for any = ∈ N+,

&= 5 ∈ " ?,@ (R23)

and
(∇G · ∇l)=&= 5 ∈ " ?,@ (R23). (23)

Proof The claim &= 5 ∈ " ?,@ (R23) is proven in Theorem 1.
We now prove (23). Taking the symplectic Fourier transform we see that it is

sufficient to prove that

(Z1Z2)= sinc= (Z1Z2)Ff, 5 =
1
c=

sin= (cZ1Z2)Ff, 5 ∈ , (F ! ? , !@).

Using

sin(cZ1Z2) =
4c8Z1Z2 − 4−c8Z1Z2

28
(24)

and applying Proposition 4, Corollary 1 and Proposition 1,with the scaling_ = 1/
√

2,
we get sin(cZ1Z2) ∈ , (F !1, !∞).

Hence, for = = 1,

1
c

sin(cZ1Z2)Ff, 5 ∈ , (F ! ? , !@)

by the product property (16). Assume now that, for a certain = ∈ N+,

1
c=

sin= (cZ1Z2)Ff, 5 ∈ , (F ! ? , !@).

Then

1
c=+1

sin=+1 (cZ1Z2)Ff, 5 =
1
c

sin(cZ1Z2)︸          ︷︷          ︸
∈, (F!1 ,!∞)

· 1
c=

sin= (cZ1Z2)Ff, 5︸                       ︷︷                       ︸
∈, (F!? ,!@)

∈ , (F ! ? , !@),
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by (24) and the product property (16) again. By induction we attain the result.

We can now provide the mathematical explanation of the&=’s smoothing effects:

Theorem 4 Let 5 ∈ S′(R3) be a signal, with, 5 ∈ "∞,@ (R23) for some 1 ≤ @ ≤
∞. Let (I, Z) ∈ R23 × R23 , with Z = (Z1, Z2) satisfying Z1 · Z2 ≠ 0. Then

(I, Z) ∉ ,�F!@

2=
(&= 5 ).

Proof Consider = ∈ N+. We will apply Proposition 2 to the 2=-th order operator %=,
where % is defined in (22). The non characteristic directions for %= are given by the
vectors Z = (Z1, Z2) ∈ R3 ×R3 , satisfying Z1 · Z2 ≠ 0. By (23) (with ? = ∞) we have

,�F!@ (%=&= 5 ) = ∅,

because i� ∈ F !@ if i ∈ �∞2 (R23) and � ∈ "∞,@ (R23) (with � = %=&= 5 ). This
implies

(I, Z) ∉ ,�F!@ (%=&= 5 ), ∀(I, Z) such that Z = (Z1, Z2), Z1 · Z2 ≠ 0.

Since Z is non characteristic for the operator %=, by Proposition 2 we infer

(I, Z) ∉ ,�F!@

2=
(&= 5 )

for every I ∈ R23 . �

Roughly speaking, if the Wigner distribution , 5 has local regularity F !@ and
some control at infinity, then&= 5 is smoother, possessing B = 2= additional deriva-
tives, at least in the directions Z = (Z1, Z2) satisfying Z1 · Z2 ≠ 0. In dimension 3 = 1
this condition reduces to Z1 ≠ 0 and Z2 ≠ 0. Hence this result explains the smoothing
phenomenon of such distributions, which involves all the directions except those of
the coordinates axes.

This is the reason why the interferences of two components which do not share
the same time or frequency localization come out substantially reduced.

Observe that for = = 1 we recapture the damping phenomenon of the classical
Born-Jordan distribution (cf. [12, Theorem 1.2]).

For signals in !2 (R3), the previous result can be rephrased in terms of the classical
Hörmander’s wave-front set.

Corollary 2 Let 5 ∈ !2 (R3), so that, 5 ∈ !2 (R23). Let (I, Z) be as in the statement
of Theorem4. Then (I, Z) ∉ ,�� 2= (&= 5 ), that is the distribution&= 5 has regularity
�2= at I and in the direction Z .

Proof We apply Theorem 4 with @ = 2. In fact, for 5 ∈ !2 (R3), Moyal’s formula
gives, 5 ∈ !2 (R23) = "2,2 (R3) ⊂ "∞,2 (R23), by inclusion relations for modula-
tion spaces. Observe that the F !2

2= wave-front set coincides with the �
2= wave-front

set. �
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What about smoothing effects in the directions Z = (Z1, Z2): Z1 · Z2 = 0?
It seems that the smoothing effects do not occur in these directions, as Fig.

1 shows. The mathematical explanation in terms of modulation spaces is below.
Roughly speaking, if we assume that the distribution &= 5 of a signal 5 has a local
regularity F !@1 better than the F !@2 -Wigner one, then necessarily it must hold
@1 ≥ @2. Hence the best we could expect is @1 = @2, that is, the same regularity.

Theorem 5 Suppose that for some 1 ≤ ?, @1, @2 ≤ ∞, = ∈ N+ and � > 0, it occurs

‖&= 5 ‖" ?,@1 ≤ �‖, 5 ‖" ?,@2 , (25)

for every 5 ∈ S(R3). Then @1 ≥ @2.

Proof The main steps are as follows. We will test the estimate (25) using rescaled
Gaussian functions 5 (G) = i(_G), with _ > 0 large parameter. Restricting to a
neighbourhood of Z1 · Z2 = 0, the constrain @1 ≥ @2 must be satisfied.

An easy computation yields

, (i(_ ·)) (G, l) = 23/2_−3i(
√

2_ G)i(
√

2_−1 l). (26)

For every 1 ≤ ?, @ ≤ ∞, the above formula gives

‖, (i(_ ·))‖" ?,@ = 23/2_−3 ‖i(
√

2_ ·)‖" ?,@ ‖i(
√

2_−1 ·)‖" ?,@ .

By the dilation properties of Gaussians (first proved in [29, Lemma 1.8], see also
[14, Lemma 3.2]):

‖, (i(_ ·))‖" ?,@ � _−23+3/@+3/? as _→ +∞. (27)

We now study the " ?,@-norm of the BJDn &= (i(_ ·)). It will be estimated from
below obtaining the same expansion as in (27). In detail,

‖&= (i(_ ·))‖" ?,@ = ‖Ff (Θ=) ∗, (i(_ ·))‖" ?,@ .

By taking the symplectic Fourier transform and using Lemma 1 and the product
property (16) we have

‖Ff (Θ=) ∗, (i(_ ·))‖" ?,@ � ‖Θ=Ff [, (i(_ ·))] ‖, (F!? ,!@)

& ‖Θ= (Z1, Z2)j(Z1Z2)Ff [, (i(_ ·))] ‖, (F!? ,!@)

for any j ∈ �∞2 (R) and = ∈ N+. Choosing the function j compactly supported in
the interval [−1/4, 1/4] and j ≡ 1 in the interval [−1/8, 1/8] (the latter condition
will be used later), we write

j(Z1Z2) = j(Z1Z2)Θ= (Z1, Z2)Θ−= (Z1, Z2) j̃(Z1Z2),

with j̃ ∈ �∞2 (R) supported in [−1/2, 1/2] and j̃ = 1 on [−1/4, 1/4], therefore
on the support of j. Since by Lemma 1 the function Θ−= (Z1, Z2) j̃(Z1Z2) belongs
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to, (F !1, !∞), by the product property the last expression can be estimated from
below as

‖j(Z1Z2)‖, (F!? ,!@) & ‖j(Z1Z2)Ff [, (i(_ ·))] ‖, (F!? ,!@) .

Finally in the proof of [12, Theorem 1.4] it was shown

‖j(Z1Z2)Ff [, (i(_ ·))] ‖, (F!? ,!@) & _
−23+3/?+3/@ as _→ +∞. (28)

Comparing (28) with (27) we obtain the desired conclusion. �

5 Conclusion and Perspectives

The generalized Born-Jordan distributions presented in these notes produce an im-
provement in the damping of unwanted artefacts of some signals as the one repre-
sented in Fig. 1. For other pictures of signals where the smoothing effects are visible
we refer to the original paper [13].

Let us underline that the emergence of interferences is a well-known drawback
of any quadratic representation, the distributions BJDn are not immune to this
phenomenon, as it can be seen in the following pictures, which are short extracts
from real music signals. For comparison, we also used the Spectrogram, which is
another member of the Cohen class (see [3] and references therein), given by

|+ 5 5 (G, l) |2, 5 ∈ !2 (R3).

Many other alternative time-frequency distributions have been proposed for dif-
ferent practical purposes, we refer the interested reader to the textbooks [7, 18].

If we consider linear perturbations of the Wigner distribution, introduced and
studied in [1, 2], then it turns out they do not provide effective damping of artefacts.
In fact a negative answer concerning reduction of interferences is shown in [15].

Although it is clear there is no time-frequency distribution which is the best
time-frequency representation to analyse any kind of signal, it is an open problem to
find the right distribution for a certain class of signals. For signals which are sums
of time-frequency shifts of Gaussians the representations BJDs work quite well, as
shown in the present note. This suggests the following question:

Concerning the members of the Cohen class, what are the best possible kernels
for damping artefacts?

Technical notes. The figures in these notes were produced using LTFAT (The
Large Time-Frequency Analysis Toolbox), cf. [27].
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Fig. 7 A short extract of a musical signal
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