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PHASE SPACE ANALYSIS OF THE HERMITE SEMIGROUP AND
APPLICATIONS TO NONLINEAR GLOBAL WELL-POSEDNESS

DIVYANG G. BHIMANI, RAMESH MANNA, FABIO NICOLA, SUNDARAM THANGAVELU,
AND S. IVAN TRAPASSO

Abstract. We study the Hermite operator H = −∆+ |x|2 in Rd and its fractional
powers Hβ , β > 0 in phase space. Namely, we represent functions f via the so-
called short-time Fourier, alias Fourier-Wigner or Bargmann transform Vgf (g being
a fixed window function), and we measure their regularity and decay by means of
mixed Lebesgue norms in phase space of Vgf , that is in terms of membership to
modulation spaces Mp,q, 0 < p, q ≤ ∞. We prove the complete range of fixed-time

estimates for the semigroup e−tHβ

when acting on Mp,q, for every 0 < p, q ≤ ∞,
exhibiting the optimal global-in-time decay as well as phase-space smoothing.

As an application, we establish global well-posedness for the nonlinear heat equa-
tion for Hβ with power-type nonlinearity (focusing or defocusing), with small initial
data in modulation spaces or in Wiener amalgam spaces. We show that such a global
solution exhibits the same optimal decay e−ct as the solution of the corresponding
linear equation, where c = dβ is the bottom of the spectrum of Hβ . Global existence
is in sharp contrast to what happens for the nonlinear focusing heat equation with-
out potential, where blow-up in finite time always occurs for (even small) constant
initial data (constant functions belong to M∞,1).

1. Introduction and discussion of the results

The heat semigroup et∆ associated to standard Laplacian has been studied by
many authors in PDEs and physics. In fact, the study of the heat semigroup per-
vades throughout mathematical analysis and physics, being indispensable in many
situations. Moreover, there has been increasing interest in applications of the frac-
tional Laplacian to the mathematical modelling of various physical phenomena, see
e.g. [18, 28] and the references therein. The Hermite operator (also known as quan-
tum harmonic oscillator) H = −∆+ |x|2 plays a vital role in quantum mechanics and
analysis [17, 42]. Nevertheless, there are only few mathematical papers which deal
with fractional powers of Hermite operator Hβ (β > 0), see e.g. [6, 10, 43].
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The spectral decomposition of H on Rd is given by

(1) H =
+∞∑
k=0

(2k + d)Pk, Pkf =
∑
|α|=k

⟨f,Φα⟩Φα,

where ⟨·, ·⟩ is the inner product in L2(Rd) and Φα, α ∈ Nd, are the normalised Hermite
functions, forming an orthonormal basis for L2(Rd). Observe the regularising effect
of Pk, which takes temperate distributions into Schwartz functions: Pk : S ′(Rd) →
S(Rd). Since 0 is not in the spectrum of H we can define the fractional powers Hβ

for any β ∈ R by means of the spectral theorem, namely

Hβf =
∞∑
k=0

(2k + d)βPkf.

We remark that Hβ is a densely defined unbounded operator for β > 0. We thus
define the heat semigroup associated to Hβ (β > 0) by

(2) e−tHβ

f =
+∞∑
k=0

e−t(2k+d)βPkf.

In this note we study the behaviour of this semigroup on modulation spaces. In order
to define these spaces, we recall the definition of short-time Fourier transform (STFT
- also known as the Bargmann transform [39]) of f ∈ S ′(Rd) with respect to a fixed
window function g ∈ S(Rd) \ {0}:

Vgf(x, ξ) :=

∫
Rd

e−iξ·yf(y) g(y − x) dy, x, ξ ∈ Rd.

We then measure the phase-space content of f by means of mixed Lebesgue (qua-
si) norms Lp,q(Rd × Rd) of Vgf , leading to the so-called modulation spaces Mp,q

[15, 21, 47]:
∥f∥Mp,q := ∥∥Vgf(x, ξ)∥Lp

x
∥Lq

ξ
,

with 0 < p, q ≤ ∞; see Section 2 for a more general definition involving weights.
Heuristically, one can think of a function in Mp,q as having the local regularity of a
function whose Fourier transform is in Lq and decaying at infinity as a function in Lp.
We have, in particular, M2,2 = L2. Modulation spaces can be equivalently designed
as a family of Besov-type spaces with the dyadic geometry in frequency replaced by
a decomposition in isometric boxes.

We now state our main result, concerning the action of e−tHβ
on such spaces.

Theorem 1.1. Let β > 0, 0 < p1, p2, q1, q2 ≤ ∞ and

1

p̃
:= max

{ 1

p2
− 1

p1
, 0
}
,

1

q̃
:= max

{ 1

q2
− 1

q1
, 0
}
, σ :=

d

2β

(1
p̃
+

1

q̃

)
.
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Then

(3) ∥e−tHβ

f∥Mp2,q2 ≤ C(t)∥f∥Mp1,q1

for every t > 0, where

(4) C(t) =

{
C0e

−tdβ t ≥ 1

C0t
−σ 0 < t ≤ 1

for some C0 > 0.

The constant C0 can be chosen independent of p1, p2, q1, q2 when these exponents
belong to the range [1,+∞] (Banach space cases), as one sees by complex interpolation
(see e.g. [46]).

To the best of our knowledge the result is new even in the case β = 1, p1 = q1 =
p2 = q2.

Let us give a flavour of the heuristics behind the behaviour of C(t). First, by
testing the above estimate on the ground state of H we see that the decay at infinity
is absolutely sharp for every choice of the exponents and also that the exponent of t
for t small can never be positive. Indeed, if f = Φ0 then P0f = f and Pkf = 0 for
k ̸= 0, so that e−tHβ

f = e−tdβf .
As the modulation spaces Mp,q increase when one of the exponents increases while

the other one is kept fixed, it is sufficient to prove the result with p2 replaced by
min{p1, p2} and similarly for q2, namely we can assume p2 ≤ p1, q2 ≤ q1. Now, in

somewhat sloppy terms, the effect of the map e−tHβ
in phase space is to damp the

content of a function in a way that roughly amounts to the multiplication by the
function

Ft(x, ξ) = e−t(|x|2+|ξ|2)β .

The operator norm of this pointwise multiplication operator, as a map Lp1,q1 → Lp2,q2

(mixed-norm Lebesgue spaces in Rd × Rd), can be computed by Hölder’s inequality,
namely ∥Ft∥Lp̃,q̃ = C(t), as given in the statement (0 < t ≤ 1). Of course the negative
exponent of t, for t small, is the price to pay for the phase-space smoothing, when
passing from p1 to p2 < p1 or from q1 to q2 < q1.

We emphasize that the exponents are just assumed to be positive, without further
conditions, similarly to the refined estimates for the heat semigroup in Besov spaces
[45] (see also [47, Sec. 2.2]) and in real Hardy spaces [9].

We also observe that the same estimates hold whenMp,q is replaced by the so-called
Wiener amalgam space W p,q := FMp,q, i.e. the image of Mp,q under the Fourier
transform, endowed with the obvious norm. This follows at once by applying the
above estimates to F−1f and using the fact that F−1 commutes with the spectral
projections Pk (because F−1Φα = i|α|Φα) and therefore with e−tHβ

by (2).
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Similar estimates for the fractional heat semigroup e−t(−∆)β were obtained in [9,
Thm. 3.1]; see also [47] for related results. However, our analysis follows a completely

different pattern and is necessarily less elementary, because the operator e−tHβ
is not

a Fourier multiplier. Actually, except for the case β = 1, there is not even an explicit
integral formula for e−tHβ

and we rely on the theory of fractional powers and heat
kernels of globally elliptic pseudodifferential operators in Rd (see e.g. [32, 37] for a
general account).

From the above fixed-time estimates one could deduce Strichartz (space-time) es-
timates by a standard machinery, via the TT ∗ method or real interpolation (see e.g.
[38] and [9, Thm. 3.1] respectively; see also [33]). However, in the case of the Her-
mite semigroup one should be able to obtain a broader range of space-time estimates
beyond those derived by the fixed-time estimates, see for instance [47, Cor. 2.1] for
the heat semigroup. Hence we prefer to postpone a systematic study of Strichartz
estimates, including some interesting related topics - in fact, it seems that the tech-
niques of this paper could be successfully applied to obtain some new Lp estimates as
well. Instead, here we focus on some direct applications of Theorem 1.1 to the heat
equation for Hβ with a nonlinearity of power type, providing some results which are
definitely a consequence of the trapping effect of the quadratic potential in H and do
not hold for the corresponding heat equation without potential.

Specifically, we consider the Cauchy problem for the nonlinear heat equation1 as-
sociated to Hβ :

(5)

{
∂tu+Hβu = λ|u|2ku
u(0, x) = u0(x)

with (t, x) ∈ (0,+∞)× Rd, where k ∈ N, k ̸= 0, λ ∈ C and β > 0.
As an application of Theorem 1.1, we establish global well-posedness for (5). Specif-

ically, we have following result.

Theorem 1.2. Let 1 ≤ p, q ≤ ∞, and

q′ ≥ 2k + 1, q′ >
kd

β
.

Define the subspace X ⊂ L∞([0,+∞),Mp,q) of elements u satisfying

∥u∥X :=
∥∥∥etdβ∥u(t, ·)∥Mp,q

∥∥∥
L∞
t ([0,∞))

< ∞.

1The subsequent arguments and results can be trivially modified for other algebraic nonlinearities
such as λuk, λ ∈ C, k ∈ N, k ≥ 2.
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(a) There exists ε > 0 such that for any u0 ∈ Mp,q satisfying ∥u0∥Mp,q ≤ ε, the
problem (5) has a unique global solution

u ∈ L∞([0,∞),Mp,q).

(b) We have u ∈ C([0,∞),Mp,q) if p < ∞.
(c) If ε is small enough the above solution enjoys exponential decay in time; specif-

ically, u ∈ X.
(d) The same results hold with Mp,q replaced by W q,p, for the same range of ex-

ponents.

The following remarks are in order (see Example 2.1 for details).

Remark 1.3. Let fα(x) = |x|−α, 0 ≤ α < d, x ∈ Rd.

(i) The hypothesis q′ ≥ 2k + 1 in Theorem 1.2 is natural. Indeed, fα ∈ M∞,q ⊂
W q,∞, q = 2k+1

2k
, if 0 ≤ α < d

2k+1
. But in the limiting case α = d

2k+1
we have

|fα(x)|2kfα(x) = |x|−d, which is not even locally integrable. Notice that when
β > kd

2k+1
, under the assumption q′ ≥ 2k+1 the additional condition q′ > kd/β

is automatically satisfied.
(ii) To give a flavour of the the type of singularities and oscillations at infinity ad-

mitted for the initial data, we observe that, for example, one can take as initial
datum u0(x) = εfα(x)(1 + c cos |ξ|2), c ∈ C, 0 ≤ α < min{d/(2k + 1), β/k},
with ε small enough. Also, if χ is any smooth function with compact support
in Rd and Λ is any lattice in Rd, one can consider u0(x) = ε

∑
µ∈Λ fα(x −

µ)χ(x − µ), with the same restrictions on α and ε. Observe that of course
fα ̸∈ Lp for every p (if α ̸= 0), thus Theorem 1.2 reveals that we can con-
trol initial data beyond Lp (there is an enormous literature on nonlinear heat
equations with Cauchy data in Lp; see e.g. [30, 44] and the references therein).

(iii) The results in Theorem 1.2 look interesting because they are in sharp contrast
to what happens for the standard heat equation with the above nonlinearity and
λ = 1 (focusing case), where for real constant initial data (hence in M∞,1),
even small, one has always blow-up in finite time for every k ̸= 0, as one sees
at once by solving the ordinary differential equation ut = u2k+1, u real (again
the literature in this connection is large; see [44] for a comprehensive survey).

(iv) In Theorem 1.2 we suppose p, q ≥ 1. In fact, we are interested in well-
posedness in the lowest regularity/biggest spaces; moreover, the proof relies
on the Minkowski integral inequality. However, the problem of the persistence
of regularity in quasi-Banach spaces, as well as weighted variants of the above
results, although not of primary interest, could be worth investigating.

The proof of Theorem 1.2 can be adapted (in fact simplified) to prove local well-
posedness for (5) in the same spaces without any smallness assumption on the initial
data. We leave the details to the interested reader and we limit ourselves to briefly
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state the result as follows (with the necessary clarifications in the case p = ∞, as in
Theorem 1.2).

Theorem 1.4. Let 1 ≤ p, q ≤ ∞, q′ ≥ 2k + 1 and q′ > kd/β. Then (5) is locally
well-posed in Mp,q and W q,p.

We observe that this result implies, in particular, local well-posedness in Mp,1,
1 ≤ p ≤ ∞. Actually this special case, when 0 < β ≤ 1, follows directly from [31,
Thm. 1.1] - it was also re-obtained in [10] (in fact, if β ≤ 1, the operator Hβ is
a pseudodifferentual operator with a real-valued Weyl symbol, bounded from below
and with bounded derivatives of order ≥ 2, therefore satisfying the assumptions in
[31, Thm. 1.1]; see Proposition 2.3 below). However Theorem 1.4 applies to every
β > 0 and for a range of q > 1, allowing more singular initial data (in contrast, M∞,1

contains only continuous functions).
Modulation spaces have been widely applied in the study of nonlinear PDEs. The

local and global well-posedness for the heat equation associated to Laplacian in
weighted modulation spaces goes back to the work of Iwabuchi [24]. In [23], au-
thors have proved ill-posedness for the fractional heat equation and in [6, Thm. 1.1]
finite time blow-up has been established in some modulation spaces. On the other
hand, Bhimani et al. proved in [8] global well-posedness for the Hartree-Fock equa-
tions associated to harmonic oscillator in some modulation spaces; see also [29]. There
is a large literature dealing with the analysis of PDEs on modulation spaces; we refer
to the surveys [2, 36] and the monograph [47], and the references therein (see also
[3, 11]); we also mention the article [27] for results on the Hermite operator obtained
using phase-space methods. However, the study of nonlinear global well-posedness
in modulation and Wiener amalgam spaces is very limited when the corresponding
linear propagator is not a Fourier multiplier and, in fact, new interesting phenomena
can occur, as observed in Remark 1.3 (iii).

In short, the paper is organised as follows. We collect some background material
on modulation spaces and a number of preliminary results in Section 2. Section 3
is devoted to the proof of Theorem 1.1, while in Section 4 we provide the proof of
Theorem 1.2.

2. Preliminary results

We write |x|2 = x · x for x ∈ Rd, where x · y is the inner product on Rd. We
denote by S(Rd) the Schwartz class of rapidly decaying smooth functions on Rd and
by S ′(Rd) the space of temperate distributions. The bracket ⟨f, g⟩ stands for the
inner product of f, g ∈ L2(Rd) as well as for the action of f ∈ S ′(Rd) on g ∈ S(Rd);
in both cases we assume it to be conjugate-linear in the second entry.
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Given x, ξ ∈ Rd, the translation operator Tx and the modulation operator Mξ are
defined as

Txf(y) := f(y − x), Mξf(y) := eiξ·yf(y), f ∈ S(Rd),

and can be extended to temperate distributions by duality. The composition π(z) =
MξTx, z = (x, ξ) ∈ R2d, is referred to as a time-frequency shift.

The short-time Fourier transform (STFT) of f ∈ S ′(Rd) with respect to a window
function g ∈ S(Rd) \ {0} is defined by

Vgf(x, ξ) := ⟨f, π(x, ξ)g⟩ =
∫
Rd

e−iξ·yf(y)g(y − x)dy.

Modulation spaces were introduced by Feichtinger [15] in the ’80s. They con-
sist of functions enjoying suitable summability/decay conditions on the phase-space
side. Consider a weight m(x, ξ) in phase space, i.e. a continuous and strictly posi-
tive function in Rd × Rd with at most polynomial growth - in fact, we will often use
the polynomial weight vs(x, ξ) := (1 + |x| + |ξ|)s, (x, ξ) ∈ Rd × Rd, s ∈ R 2. Let
0 < p, q ≤ ∞ and g ∈ S(Rd) \ {0}; the modulation space Mp,q

m (Rd) is the set of all
f ∈ S ′(Rd) such that

(6) ∥f∥Mp,q
m

:= ∥Vgf m∥Lp,q =

(∫
Rd

(∫
Rd

|Vgf(x, ξ)m(x, ξ)|pdx
)q/p

dξ

)1/q

< ∞,

with obvious modifications in the case where p = ∞ or q = ∞. When s = 0 we simply
write Mp,q. Here we used the notation Lp,q(Rd × Rd) for the mixed-norm Lebesgue
spaces, with (quasi-)norm ∥F (x, ξ)∥Lp,q = ∥∥F (x, ξ)∥Lp

x
∥Lq

ξ
.

It turns out that modulation spaces are quasi-Banach spaces (Banach spaces if
p, q ≥ 1) whose definition is independent of the choice of the window function g -
in the sense that different choices of the window provide equivalent norms; see e.g.
[4, 12, 19, 21, 34, 35] for proofs and further details. Here we observe that they
have a number of relations with standard function spaces of harmonic analysis, the
most notable being that M2,2(Rd) = L2(Rd), and the so-called Shubin-Sobolev, alias
Hermite-Sobolev, spaces Qs, s ∈ R [37], which can be defined [20, Thm. 2.1] as the
space of f ∈ S ′(Rd) such that

(7) ∥f∥2Qs := ∥Hs/2f∥2L2 =
+∞∑
k=0

||Pkf ||2L2(2k + d)s < ∞.

2Actually we need a further technical assumption which will be always verified in the following -
hence the reader could ignore this issue - namely m is required to be vs-moderate for some s ≥ 0;
see [21].
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It is well known that, for every 0 < p, q ≤ ∞, if s is large enough,

(8) Qs ↪→ Mp,q ↪→ M∞ ↪→ Q−s

(this follows easily from the characterisation Qs = M2,2
vs [12, Lem. 4.4.19], Hölder’s

inequality and the inclusion relations [12, Thm. 2.4.17]; see also [25] for an alternative
approach).

We recall that reversing the order of integration in (6), namely

(9) ∥f∥W p,q :=

(∫
Rd

(∫
Rd

|Vgf(x, ξ)|pdξ
)q/p

dx

)1/q

,

(here we take m = 1 for simplicity) gives rise to a norm that characterizes the so-
called Wiener amalgam spaces W p,q. In fact, they are strictly related to modulation
spaces via the Fourier transform, since W p,q = FMp,q. We stress that such spaces can
be equivalently characterized by decomposition methods as Wiener amalgams with
local component FLp and global component Lq, that is W p,q = W (FLp, Lq)(Rd) -
see [12, 13] for further details. We emphasize that modulation and Wiener amalgam
spaces are clearly invariant under complex conjugation; moreover, if p = q then Mp,p

coincides with W p,p, hence it is invariant under the action of the Fourier transform
[14].

Example 2.1. (i) Let fα(x) = |x|−α, 0 < α < d (cf. Remark 1.3). Let us show
that the function fα ∈ Mp,q(Rd) for p > d/α and q > d/(d − α). We just
sketch the proof, leaving the details to the interested reader.

One can estimate separately the STFT of χfα and (1 − χ)fα, where χ is
smooth with compact support in Rd, χ = 1 in a neighborhood of the origin,
taking a window g with compact support. Then Vg(χf)(x, ξ) = 0 if x is large

enough and for x in a compact subset one uses |Vg(χf)(x, ξ)| ≲ |f̂α| ∗ξ |χ̂| ∗ξ
|ĝ|(ξ) =: F (ξ). Indeed, since f̂α = cαfd−α for some cα ∈ R, by invoking the
Hardy-Littlewood-Sobolev inequality we have F ∈ Lq(Rd) for q > d

d−α
. On the

other hand, (1−χ)fα can be estimated using the embedding Lp
k ↪→ Mp,q which

holds for 1 < p < ∞ and k ∈ N large enough, where Lp
k denotes the space of

Lp functions with k distribution derivatives in Lp [26].

(ii) Since, as already observed, f̂α = cαfd−α, we have fα ∈ W q,p(Rd) for the same
range of exponents p, q.

(iii) Note that cos |x| ∈ M∞,1 [1, Cor. 15] and by the algebra property (Proposition
4.1) we have Mp,q · M∞,1 ⊂ Mp,q, 1 ≤ p, q ≤ ∞. Thus, if f ∈ Mp,q then
f(x) cos |x| ∈ Mp,q. Similarly, using that cos |x|2 ∈ W 1,∞ [1, Thm. 14] and
W q,p · W 1,∞ ⊂ W q,p, 1 ≤ p, q ≤ ∞, we see that if f belongs to W q,p then
f(x) cos |x|2 belongs to W q,p too.

(iv) Constant functions are in M∞,1 ⊂ W 1,∞.
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(v) If χ is any smooth function with compact support in Rd and Λ ⊂ Rd is any
lattice in Rd, q > d/(d − α), then

∑
µ∈Λ fα(x − µ)χ(x − µ) belongs to W q,∞,

as one verifies easily.

Modulation spaces can be used both as symbol classes as well as environment where
to study boundedness of pseudodifferential operators [12], i.e. operators formally given
by

awf(x) = (2π)−d

∫
R2d

eiξ·(x−y)a
(x+ y

2
, ξ
)
f(y) dydξ

where a(x, ξ) is a function in phase space - the Weyl symbol of the operator aw. In
fact the above integral, suitably interpreted in a weak sense, gives rise to a continuous
operator aw : S(Rd) → S ′(Rd) for any distribution symbol a ∈ S ′(R2d). However, in
the following we will only consider smooth symbols satisfying some growth conditions
at infinity. Indeed, the relevant symbol classes in this paper are given by the so-
called Shubin classes [22, 32, 37]: for s ∈ R we define Γs as the space of functions
a ∈ C∞(R2d) such that

|∂αa(z)| ≤ Cα(1 + |z|)s−|α| z ∈ R2d

for every α ∈ N2d. This space becomes a Fréchet space when endowed with the
obvious seminorms.

We state a generalized version of the Calderón-Vaillancourt theorem that will be
used below.

Theorem 2.2. Let a ∈ Γ−s, s ∈ R, and 0 < p, q ≤ ∞. Then aw : Mp,q → Mp,q
vs

continuously, with operator norm depending only on a finite number of seminorms of
a in Γ−s.

Proof. The desired continuity result follows from [40, Thm. 3.1] specialised to the case
of weights ω1(x, ξ) = 1, ω2(x, ξ) = (1+|x|+|ξ|)s (x, ξ ∈ Rd), ω0(z, w) = (1+|z|+|w|)s
(z, w ∈ R2d), which gives the continuity of aw : Mp,q → Mp,q

vs if a ∈ M∞,r
ω0

(R2d) for
r ≤ min{1, p, q}.

On the other hand, if a symbol a satisfies the estimates

|∂αa(z)| ≤ Cα(1 + |z|)−s z ∈ R2d

(no additional decay is needed for the derivatives), then it belongs to M∞,r
ω0

(R2d) for
any r > 0. In fact, writing e−iw·y = (1+ |w|2)−N(1−∆y)

Ne−iw·y (z, w, y ∈ R2d) in the
formula for the short-time Fourier transform of a, and repeated integration by parts
yield

|Vga(z, w)| ≤ CN(1 + |w|)−2N(1 + |z|)−s z, w ∈ R2d

for every N ∈ N (g ∈ S(R2d)), which easily gives the claim. □

To conclude this section we recall a result about complex powers of pseudodiffer-
ential operators.
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Proposition 2.3. Let β > 0. The fractional Hermite operator Hβ = (−∆+ |x|2)β is
a pseudodifferential operator with Weyl symbol aβ ∈ Γ2β. More precisely we have

(10) aβ(x, ξ) = (|x|2 + |ξ|2)β + r(x, ξ), |x|+ |ξ| ≥ 1,

where r ∈ Γ2β−2.

Proof. The result follows from the machinery of complex powers applied to the opera-
tor H (cf. [22, Thm. 1.11.1, Thm. 1.11.2]). Indeed H is a positive operator with Weyl
symbol |x|2 + |ξ|2, which is positive globally elliptic - in the sense that |x|2 + |ξ|2 ≥
C(1+ |x|+ |ξ|)2 for |x|+ |ξ| sufficiently large and some C > 0. The desired result then
follows e.g. from [32, Thm. 4.3.6] specialized to the symbol class S(M,Φ,Ψ) = Γm,
namely with M(x, ξ) = (1+ |x|+ |ξ|)m, Φ(x, ξ) = Ψ(x, ξ) = 1+ |x|+ |ξ|; the so-called
Planck function h(x, ξ) = Φ(x, ξ)−1Ψ(x, ξ)−1 = (1+ |x|+ |ξ|)−2, which gives the gain
in the asymptotic expansions within this symbol class, is responsible for the gain in
decay of the remainder r(x, ξ) compared with the “principal symbol” (|x|2+|ξ|2)β. □

3. Proof of the main result

Proof of Theorem 1.1. We prove the desired estimate separately in the regimes t ≥ 1
and 0 < t ≤ 1.

Case t ≥ 1. It is sufficient to prove the following estimates:

(11) ∥Pk∥Mp1,q1→Mp2,q2 ≤ C0(2k + d)s, k ∈ N

for some s ≥ 0 and C0 > 0, and

(12)
+∞∑
k=0

e−t(2k+d)β(2k + d)s ≤ C1e
−tdβ , t ≥ 1

for some C1 > 0. Let us prove (11). As a consequence of the characterization (7) and
the embeddings in (8), for s large enough we have

∥Pk∥Mp1,q1→Mp2,q2 ≤ C0∥Pk∥Q−s→Qs = C0(2k + d)s.

Let us now prove (12). Since the sequence N ∋ k 7→ e−t(2k+d)β(2k + d)s is decreasing
for, say, k ≥ k0, we estimate separately

k0∑
k=0

e−t(2k+d)β(2k + d)s ≤ C2e
−tdβ
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for some C2 > 0, and

+∞∑
k=k0+1

e−t(2k+d)β(2k + d)s ≤
∫ +∞

k0

e−t(2x+d)β(2x+ d)s dx

≤
∫ +∞

0

e−t(2x+d)β(2x+ d)s dx

=
e−tdβ

2β

∫ +∞

0

e−ty(y + dβ)−1+1/β+s/β dy,

where we applied the change of variable (2x + d)β = y + dβ. The latter integral is
decreasing in t, so that its value for t ≥ 1 is not larger than that corresponding to
t = 1, and the proof is concluded.

Case 0 < t ≤ 1. First of all we observe that, by the already mentioned inclusion
relations of modulation spaces, we can limit ourselves to prove the desired result with
p2 replaced by min{p1, p2} and q2 replaced by min{q1, q2}. Hence from now on p2 ≤ p1
and q2 ≤ q1.

Recall from Proposition 2.3 that Hβ is a pseudodifferential operator with a real-
valued Weyl symbol aβ ∈ Γ2β. Moreover, the machinery of the heat kernel of pseu-
dodifferential operators applies (see e.g. [32, Thm. 4.5.1], the global ellipticity as-
sumption being satisfied in view of the structure (10) of aβ), and the associated heat

semigroup e−tHβ
is therefore a pseudodifferential operator with Weyl symbol bt(x, ξ),

depending on the parameter t, such that, for every N ≥ 0, the symbol tNbt belongs
to a bounded subset of Γ−2βN when t stays in any compact subset of [0,+∞).

Now, fix N ∈ N such that 2βN > 2d; we can apply Theorem 2.2 to the symbols bt
and tNbt and we obtain, with m(x, ξ) = v2β(x, ξ) = (1 + |x|+ |ξ|)2β,

∥(1 + tNmN)Vg(e
−tHβ

f)∥Lp1,q1 ≤ C∥f∥Mp1,q1

for a constant C independent of t ∈ (0, 1]. Hence it is sufficient to prove that

∥F∥Lp2,q2 ≤ C(t)∥(1 + tNmN)F∥Lp1,q1

with C(t) as in the statement and for every measurable function F (x, ξ). This follows
by Hölder’s inequality since, under our assumption, 1/p2 = 1/p1 + 1/p̃ and 1/q2 =
1/q1 + 1/q̃ and

∥(1 + tNm(x, ξ)N)−1∥Lp̃,q̃ ≤ ∥(1 + tN(|x|+ |ξ|)2βN)−1∥Lp̃,q̃ = C(t)

as one sees by a linear change of variable. This proves the desired estimate in the
regime t ∈ (0, 1]. □
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Remark 3.1. We highlight that the estimate (11) for p1 = p2 = q1 = q2 can be
improved as follows:

(13) ∥Pk∥Mp,p→Mp,p ≤ 1, k ∈ N, p ≥ 1,

for a suitable choice of the window implicit in the definition of the Mp,p-norm. In
fact, for k ∈ N we can write

Pk = (2π)−1

+∞∑
ℓ=0

(∫ 2π

0

e−iθ(2ℓ+d)eiθ(2k+d) dθ

)
Pℓ

= (2π)−1

∫ 2π

0

e−iθHeiθ(2k+d) dθ,

where the interchange of the sum and the integral is justified by Fubini Theorem, after
interpreting the above equalities in weak sense and using that for f, g ∈ S(Rd) one
has

+∞∑
ℓ=0

|⟨Pℓf, g⟩| =
+∞∑
ℓ=0

|⟨Pℓf, Pℓg⟩| ≤ ∥f∥L2∥g∥L2 .

The estimate (13) then follows at once from the fact that

∥e−iθH∥Mp,p→Mp,p = 1, θ ∈ R,

for a suitable choice of the window implicit in the definition of the Mp,p-norm; see
the proof of [7, Thm. 1.7].
This argument fails for Mp,q with p ̸= q, because in that case e−iθH is not bounded

on Mp,q (except for special values of θ).

4. The nonlinear heat equation for Hβ

In this section we prove Theorem 1.2. We recall the following results [5, 15, 16, 48].

Proposition 4.1 (Algebra property). Let m ∈ N, m ≥ 1. Assume that
∑m

i=1
1
pi
= 1

p0
,∑m

i=1
1
qi

= m − 1 + 1
q0

with 0 < pi ≤ ∞, 1 ≤ qi ≤ ∞ for 1 ≤ i ≤ m. Then, for some
C > 0, ∥∥∥∥∥

m∏
i=1

fi

∥∥∥∥∥
Mp0,q0

≤ C
m∏
i=1

∥fi∥Mpi,qi .

Lemma 4.2. The multi-linear estimates

∥|f |2kf∥Mp,r ≤ C∥f∥2k+1
Mp,q

hold for 1 ≤ p, q, r ≤ ∞, k ∈ N, 2k+1
q

= 1
r
+ 2k.
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Proof. From Proposition 4.1 we have

∥|f |2kf∥Mp0,r ≤ C∥f∥2k+1
Mp,q ,

with 2k+1
p

= 1
p0

and the conclusion follows from the embedding Mp0,r ↪→ Mp,r (p0 ≤
p). □

Proof of Theorem 1.2. (a)We study (5) directly in integral form (Duhamel’s prin-
ciple), namely

u(t) = S(t)u0 + λ

∫ t

0

S(t− τ) [|u(τ)|2ku(τ)] dτ =: J (u)(14)

where S(t) = e−tHβ
.

Let p, q be as in the statement. By Theorem 1.1 we have, for t ≥ 0,

(15) ∥S(t)f∥Mp,q ≤ C1∥f∥Mp,q

for some C1 > 0 and, for r ≥ q,

∥S(t)f∥Mp,q ≤ C(t)∥f∥Mp,r ,

where

C(t) =

{
C0e

−tdβ t ≥ 1

C0t
−σ 0 < t ≤ 1

for some C0 > 0, with σ = d
2β

(
1
q
− 1

r

)
. Since q′ ≥ 2k + 1 we can choose r ∈ [1,∞]

such that 2k+1
q

= 1
r
+2k. Since q′ > kd/β, we have σ < 1. By Minkowski’s inequality

for integrals and Lemma 4.2, we obtain, for some constants C2, C3 > 0,∥∥∥∥∫ t

0

S(t− τ) [|u(τ)|2ku(τ)] dτ
∥∥∥∥
Mp,q

≤
∫ t

0

∥∥S(t− τ) [|u(τ)|2ku(τ)]
∥∥
Mp,q dτ

≤
∫ t

0

C(t− τ) ∥|u(τ)|2ku(τ)∥Mp,r dτ

≤ C2

∫ t

0

C(t− τ)∥u(τ)∥2k+1
Mp,qdτ

≤ C2∥u∥2k+1
L∞([0,t],Mp,q)

∫ t

0

C(s)ds ≤ C3 ∥u∥2k+1
L∞([0,+∞),Mp,q).

Combining this inequality with (15), we have

∥J (u)∥L∞([0,+∞),Mp,q) ≤ C4

(
∥u0∥Mp,q + ∥u∥2k+1

L∞([0,+∞),Mp,q)

)
(16)
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for some constant C4 > 0. For ε > 0, put

Bε = {u ∈ L∞([0,+∞),Mp,q) : ∥u∥L∞([0,∞),Mp,q) ≤ ε},
which is the closed ball of radius ε, centred at the origin in L∞([0,+∞),Mp,q). Next,
we show that the mapping J maps Bε into itself for suitable choice of ε. Now, if we
assume ∥u0∥Mp,q ≤ ε

2C4
then from (16) we obtain for u ∈ Bε

∥J (u)∥L∞([0,+∞),Mp,q) ≤
ε

2
+ C4ε

2k+1.

Since k > 0, we can choose ε such that ε2k ≤ 1
2C4

and as a consequence we have

∥J (u)∥L∞([0,+∞),Mp,q) ≤
ε

2
+

ε

2
= ε,

that is, J (u) ∈ Bε. Noticing the identity

|u|2ku− |v|2kv = (u− v)|u|2k + v(|u|2k − |v|2k)
and exploiting similar arguments as before, we obtain

∥J (u)− J (v)∥L∞([0,+∞),Mp,q) ≤
1

2
∥u− v∥L∞([0,+∞),Mp,q),

possibly by taking ε smaller. Therefore, using Banach’s contraction principle, we
conclude that J has a unique fixed point in Bε which is the solution of (14).

(b) Let us now show that when p < ∞ (q < ∞ because of the assumption q′ ≥
2k+1) the unique solution in L∞([0,+∞),Mp,q) in fact is continuous in t, i.e. belongs
to C([0,+∞),Mp,q). It is sufficient to repeat the above contraction argument with the
space C([0,+∞),Mp,q) in place of L∞([0,+∞),Mp,q), provided that the semigroup
S(t) is strongly continuous on Mp,q. To this end, observe that by (15) it is sufficient
to prove that the map t 7→ S(t)f is continuous with values in Mp,q for every f in
some dense subset of Mp,q.
Then, let us take f ∈ S(Rd). We know that the semigroup S(t) is strongly contin-

uous on L2. Hence for every k ∈ N, the map t 7→ S(t)Hkf = HkS(t)f is continuous
with values in L2. But the seminorms pk(f) := ∥Hkf∥L2 , k ∈ N, define an equivalent
family of seminorms for S(Rd), see [32]. Hence the map t 7→ S(t)f is continuous with
values in S(Rd) and a fortiori when regarded as a map valued in Mp,q.

(c) We shall now prove the desired decay of the solution. By Theorem 1.1 we have,
for t ≥ 0,

∥S(t)f∥Mp,q ≤ C0 e
−tdβ∥f∥Mp,q

for some C0 > 0. Thus, we have

∥S(t)f∥X ≤ C0 ∥f∥Mp,q .(17)
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We already know from part (a) that

etd
β

∥∥∥∥∫ t

0

S(t− τ) [|u(τ)|2ku(τ)] dτ
∥∥∥∥
Mp,q

≤ C1e
tdβ
∫ t

0

C(t− τ)∥u(τ)∥2k+1
Mp,qdτ

for some C1 > 0. To control the above integral we divide it into two parts. For t ≥ 0
we let E1 = {τ ∈ [0, t] : t− τ < 1} and E2 = {τ ∈ [0, t] : t− τ ≥ 1}. Note that

eτd
β∥u(τ)∥2k+1

Mp,q = e−2kτdβ(eτd
β∥u(τ)∥Mp,q)2k+1.

Hence, for some C2 > 0,

etd
β

∫
E1

C(t− τ)∥u(τ)∥2k+1
Mp,qdτ ≤ C2 e

tdβ
∫
E1

(t− τ)−σe−τdβe−2kτdβ∥u∥2k+1
X dτ

≤ C2 ∥u∥2k+1
X ed

β

∫ 1

0

s−σds

and, since k > 0,

etd
β

∫
E2

C(t− τ)∥u(τ)∥2k+1
Mp,qdτ ≤ C2 e

tdβ
∫
E2

e−(t−τ)dβ∥u(τ)∥2k+1
Mp,qdτ

≤ C2 ∥u∥2k+1
X

∫ +∞

0

e−2kτdβdτ.

Combining these inequalities with (17) yields

∥J (u)∥X ≤ C3(∥u0∥Mp,q + ∥u∥2k+1
X )

for some constant C3 > 0. Now, repeating similar arguments as before gives the
desired result.

(d) The proof of the global well-posedness in W q,p(Rd) goes as that above for the
modulation spaces Mp,q. We can replace indeed Mp,q with W q,p everywhere, using
the algebra properties of W q,p, analogous to Lemma 4.2, that are

∥|f |2kf∥W r,p ≤ C∥f∥2k+1
W q,p

for 1 ≤ p, q, r ≤ ∞, k ∈ N, 2k+1
q

= 1
r
+ 2k, which are in turn a consequence of the

convolution properties for modulation spaces [41] (the Fourier transform turns con-
volution into pointwise multiplication and modulation spaces into Wiener amalgam
spaces).

□
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