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Modeling the Background for Incremental and
Weakly-Supervised Semantic Segmentation

Fabio Cermelli, Massimiliano Mancini, Samuel Rota Buló, Elisa Ricci and Barbara Caputo

Abstract—Deep neural networks have enabled major progresses in semantic segmentation. However, even the most advanced neural
architectures suffer from important limitations. First, they are vulnerable to catastrophic forgetting, i.e. they perform poorly when they
are required to incrementally update their model as new classes are available. Second, they rely on large amount of pixel-level
annotations to produce accurate segmentation maps. To tackle these issues, we introduce a novel incremental class learning approach
for semantic segmentation taking into account a peculiar aspect of this task: since each training step provides annotation only for a
subset of all possible classes, pixels of the background class exhibit a semantic shift. Therefore, we revisit the traditional distillation
paradigm by designing novel loss terms which explicitly account for the background shift. Additionally, we introduce a novel strategy to
initialize classifier’s parameters at each step in order to prevent biased predictions toward the background class. Finally, we
demonstrate that our approach can be extended to point- and scribble-based weakly supervised segmentation, modeling the partial
annotations to create priors for unlabeled pixels. We demonstrate the effectiveness of our approach with an extensive evaluation on the
Pascal-VOC, ADE20K, and Cityscapes datasets, significantly outperforming state-of-the-art methods.

F

1 INTRODUCTION

T HE goal of semantic segmentation [1] is to correctly predict
the semantic label associated to each pixel in an image. In the

last years, thanks to the emergence of deep neural networks and
to the availability of large-scale human-annotated datasets [2], [3],
the state of the art in this task has improved significantly [1], [4],
[5], [6], [7]. Current approaches are based on Fully Convolutional
Networks (FCNs) [1] and mostly differ from the strategies used
to combine multiscale representations [6], [7], to model spatial
dependencies and contextual cues [4], [8], [9] or to integrate
attention models [10].

Despite their effectiveness, semantic segmentation models
need a large amount of images with paired pixel-level annotations
during training, which are extremely costly to collect. This can
be overcome by training semantic segmentation models with
weaker forms of supervisions, such as image-level labels [11]
and points [12]. Still, both fully-supervised and weakly-supervised
learning (WSL) algorithms assume that the annotated data for
all the semantic categories the model will be asked to recognize
should be available beforehand. This assumption rarely holds in
many practical applications; it would be desirable to dispose of
semantic segmentation models able to continuously incorporate
information about novel categories, while being able to retain
knowledge about the previous classes. In this paper we study
the problem of semantic segmentation in an incremental class
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Fig. 1: The figure depicts the content of the background pixels
in case of partial labels. In incremental learning (top), since we
have labels only for pixels of novel classes in the current training
step, the background may contain pixels of the old ones. In point-
supervised learning, every class with at least one annotated point
in the image is also present in the background. Image taken from
the Pascal-VOC dataset [2].

learning (ICL) scenario [13], i.e. we aim to build a deep model
able to incrementally learn new categories whilst preserving good
performance on the old ones avoiding catastrophic forgetting [14].

Our approach is inspired by previous ICL methods on im-
age classification [13], [15], [16], which address catastrophic
forgetting through knowledge distillation [17]. However, here
we show that a naive application of previous knowledge dis-
tillation strategies would not suffice in our setting. The reason
is that none of these approaches take explicitly into account
the evolving semantics of the background class among different
training steps, a problem that we called background shift. Indeed,
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since we have only partial annotations in each training step,
unlabeled/background pixels might belong to some of the classes
we have previously learned and even to classes we will learn in
the future. For instance (Fig. 1, top), we might have learned the
classes car, person and bus at a previous learning step t, and at
step t+ 1 we learn new classes (e.g., bike and train). Since in the
current training step we have annotations only for new classes, the
background might contain pixels of old classes as well. Note that
this problem is peculiar to semantic segmentation. To overcome
this issue, we revisit the classical distillation-based framework in
[15] by introducing two novel loss terms to properly account for
the semantic distribution shift within the background class. Our
approach is based on a simple principle: each background pixel in
the ground-truth might contain either the background or one of the
categories whose annotation is missing for the current image. This
means that, in the incremental learning setting, we consider pixels
labeled as background at a given learning step to contain either
the background or any of the previously seen classes. A similar
reasoning can be applied for the distillation loss, in a symmetric
manner. We extensively evaluate our method on three datasets,
Pascal-VOC [2], ADE20K [3] and Cityscapes [18] showing that
our approach, coupled with a novel classifier initialization strategy,
largely outperform traditional ICL methods.

Finally, we show how our ICL approach easily extends to
other partially-annotated scenarios, such as weakly supervised
semantic segmentation with point or scribble supervision. In this
setting, we consider non-annotated pixels containing either the
actual background or any of the weakly annotated classes in the
current image. As an example, in Fig.1 (bottom), we have point-
level annotations for bike, car and person. The definition of the
setting entails that non-annotated pixels might contain either the
background or one of the three classes above, but it does not
contain other classes (e.g., train and bus) without any annota-
tion in the current image. We encode this prior in the standard
cross-entropy loss and we benchmark this approach in semantic
segmentation in Pascal-VOC using point [12] and scribble [19]
supervision, showing performance superior or comparable to the
state of the art. We also evaluate our method on another scenario,
scene parsing with point supervision, where the background is
not present but unlabeled pixels might still contain any of the
classes with at least one point in the current image. Experiments
on ADE20k [20] demonstrate the effectiveness of our approach in
this scenario.
To summarize, the main contributions of this paper are as follows:

• We identify the problem of semantic shift of the back-
ground class arising in incremental class learning for
semantic segmentation.

• We revisit standard ICL approaches with a novel objective
function that is applied both to a cross-entropy and a
standard distillation loss. Coupled with a specific classi-
fier initialization strategy, our approach greatly alleviates
the catastrophic forgetting and the semantic shift of the
background class, leading to the state of the art.

• We benchmark our approach over several previous ICL
methods on three popular semantic segmentation datasets,
considering different experimental settings. We hope that
our results will serve as a reference for future works in
incremental learning in semantic segmentation.

• We show how the same approach can be applied to the
task of WSL using point or scribble supervision, achiev-

ing state-of-the-art results in three different experimental
settings.

This paper extends our earlier work [21] in many aspects.
In particular, we demonstrate that the key idea behind modeling
the background, i.e. considering unlabeled/background pixels as
belonging to any class in a specific set built through known
priors (i.e. old classes), can be extended to any partially-annotated
scenario, such as semantic segmentation with point or scribble
supervision. Experiments demonstrate that our approach is very
effective even in these new tasks, confirming that its underlying
idea of modeling the semantic of the background class is general
and it is applicable on multiple tasks consisting of noisy or partial
annotations. Finally, we expanded our experimental evaluation on
ICL considering other challenging scenarios in the Cityscapes
dataset [18]. We also provide a more comprehensive review of
related works, including the weakly-supervised learning literature.

The rest of this paper is organized as follows. We first intro-
duce related work in Section 2 and then describe our ICL method
and its extension to tackle WSL with weak supervision in Section
3. The results of our approach on ICL and WSL are provided in
Section 6. We conclude the paper in Section 7.

The code is available at https://github.com/fcdl94/MiB.

2 RELATED WORKS

Semantic Segmentation. Deep learning has enabled great ad-
vancements in semantic segmentation [1], [4], [5], [6], [7]. State-
of-the-art methods are based on Fully Convolutional Neural Net-
works [1], [22] and use different strategies to condition pixel-
level annotations on their global context, e.g. using multiple scales
[4], [5], [6], [7], [8], [9] and/or modeling spatial dependencies
[8], [23]. The vast majority of semantic segmentation methods
considers an offline setting, i.e. they assume that training data
for all classes is available beforehand. To our knowledge, the
problem of ICL in semantic segmentation has been addressed only
in [24], [25], [26], [27]. Ozdemir et al. [24], [25] describe an ICL
approach for medical imaging, extending a standard image-level
classification method [15] to segmentation and devising a strategy
to select relevant samples of old datasets for rehearsal. Tasar et al.
[26] proposed a similar approach for segmenting remote sensing
data. Differently, Michieli et al. [27] consider ICL for semantic
segmentation in a particular setting where labels are provided for
old classes while learning new ones. Moreover, they assume the
novel classes to be never present as background pixels in previous
learning steps. These assumptions strongly limit the applicability
of their method.

Here we propose a more principled formulation of the ICL
problem in semantic segmentation. In contrast with previous
works, we do not limit our analysis to medical [24] or remote
sensing data [26] and we do not impose any restrictions on how
the label space should change across different learning steps [27].
Moreover, we are the first to provide a comprehensive experimen-
tal evaluation of state of the art ICL methods on commonly used
semantic segmentation benchmarks and to explicitly introduce and
tackle the semantic shift of the background class, a problem rec-
ognized but largely overseen by previous works [27]. Our strategy
can be applied in different scenarios with partial annotations, such
as weakly supervised learning.

Incremental Learning. The problem of catastrophic forgetting
[14] has been extensively studied for image classification tasks

https://github.com/fcdl94/MiB
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[28]. Previous works can be grouped in three categories [28]:
replay-based [13], [16], [29], [30], [31], [32], regularization-based
[15], [33], [34], [35], [36], and parameter isolation-based [37],
[38], [39]. In replay-based methods, examples of previous tasks
are either stored [13], [16], [30], [40] or generated [29], [31],
[32] and then replayed while learning the new task. Parameter
isolation-based methods [37], [38], [39] assign a subset of the
parameters to each task to prevent forgetting. Regularization-based
methods can be divided in prior-focused and data-focused. The
former [33], [34], [35], [41] define knowledge as the parame-
ters value, constraining the learning of new tasks by penalizing
changes of important parameters for old ones. The latter [15],
[36], [42] exploits distillation [17] and use the distance between
the activations produced by the old network and the new one as a
regularization term to prevent catastrophic forgetting.

Despite these progresses, very few works have gone beyond
image-level classification. A first work in this direction is [43]
which considers ICL in object detection proposing a distillation-
based method adapted from [15] for tackling novel class recog-
nition and bounding box proposals generation. In this work we
also take a similar approach to [43] and we resort on distillation.
However, here we specifically propose to address the problem of
modeling the background shift which is peculiar of the semantic
segmentation setting.

Weakly Supervised Learning. The significant burden of requir-
ing annotations for each pixel of an image has lead to several
research efforts toward building semantic segmentation models
using cheaper (but weaker) annotations. Under this perspective,
different types of annotation has been explored, such as image-
level labels [11], [44], [45], [46], bounding boxes [47], [48], [49],
scribbles [19], [50] and points [12], [20].

Image-level labels only provide information about which
classes are contained in the image, without any hint on their
locations. Most approaches in this direction [11], [44], [45], [46],
[51], [52], [53], [54], [55] aim to generate pixel-wise pseudo-
labels obtaining and refining an initial localization map, which
is often a class activation maps (CAM) [56], [57] obtained from
an image-level classifier. [11] introduced the idea to use CAMs
as a seed for weak localization of the objects, expanding the
object prediction based on the information provided by image-
level labels and constraining the segmentation masks with CRF-
based object boundaries. On the intuition that better localiza-
tion cues may further improve performances, subsequent works
proposed to refine the localization priors. In [45] the seeded
region growing algorithm [58] is adapted to extend the prior, [52]
modeled the pixel similarity from the initial CAMs and employed
random walk to propagate the class labels, [44] extracted multiple
class activation maps using different combinations of the image
feature obtained with dropout [59], [46] exploited the cross-image
semantic relation and [55] adopted consistency regularization to
improve the localization seed.

A stronger form of weak annotations are bounding boxes
[47], providing information about the classes in the image, their
location and dimensions. In this scenario, various approaches
explore the use of region proposal methods to refine the candidate
object masks [47], [49]. To this extent, [47] uses multi-scale
combinatorial grouping (MCG) [60], refining the masks in an
iterative process involving the ground-truth bounding boxes and
the network predictions. Similarly, in [49] the segmentation masks
are refined using GrabCut [61], MCG and the network predictions.

Finally, cheaper than bounding boxes are scribbles [19] or
points [12]. Scribble annotations provide a strong localization
information and are very fast to collect, providing a class for each
scribble. In this scenario, [19] first proposed to expand the scribble
supervision by dividing pixels into super-pixels and exploiting
pixel-similarity as additional source of supervision. Differently,
[50], [62] integrates graphical models (e.g., graph cut or dense
CRFs) into regularization losses during training, forcing the model
to produce consistent outputs on similar pixels. Recently, [63]
proposed to use two additional sub-networks to fully exploit
scribble-annotation: one sub-network refines the model’s output
with an iterative up-sampling while the other performs boundary
prediction to obtain more precise segmentation results.

Point supervision is more challenging since it provides only
one point for each instance in the image. To solve this problem,
in [12] the authors propose to use three main components: (i)
an image-level prior to predict which objects are present in the
image, (ii) a partial cross-entropy on the labeled points, and (iii)
an objectness prior, extracted from a shallow model, which helps
in differentiating background and foreground pixels. In [20] the
authors propose a method using point supervision for the task of
scene parsing, where a model is asked to segment both objects and
stuffs. The authors propose to use the partial cross entropy coupled
with a distance metric regularization, forcing pixels of the same
classes to produce similar feature vectors.

In this work we focus on weak supervision with points and
scribbles, both in object segmentation and scene parsing settings.
We show how our simple loss formulation considering the uncer-
tainty on unlabeled pixels produces a boost on the performance
of the standard partial cross-entropy adopted by multiple works,
achieving state-of-the-art results in both scenarios.

3 MODELING THE UNCERTAINTY IN SEMANTIC
SEGMENTATION

3.1 Problem Definition
The goal of semantic segmentation is to produce a model capable
of assigning a class for each pixel of a given input image. Let us
denote asX the input space (i.e. the image space) and, without loss
of generality, let us assume that each image x ∈ X is composed
by a set of pixels I with constant cardinality |I| = N . The output
space is defined as YN , with the latter denoting the product set
of N -tuples with elements in a label space Y . Given an image x
the goal of semantic segmentation is to assign each pixel xi of
x a label yi ∈ Y , representing its semantic class. The mapping
is realized by learning a model fθ with parameters θ from the
image space X to a pixel-wise class probability vector, i.e. fθ :
X 7→ IRN×|Y|. To learn the mapping, it is provided a training set
T ⊂ X × (Y ∪u)N , where u indicates pixels that are not labeled,
either because they contain objects which are not of interest or
the labeling is partial. The output segmentation mask is obtained
as y∗ = {argmaxc∈Y fθ(x)[i, c]}Ni=1, where fθ(x)[i, c] is the
probability for class c in pixel i. In the following, we will indicate
the probability for class c in pixel i as qx(i, c) = fθ(x)[i, c].

3.2 Learning from the Unknown
Commonly, in the training procedure of semantic segmentation,
unlabeled pixels are discarded from the loss computation since it
is believed that they do not bring information or it is not known
what loss function should be minimized on them. However, we



4

argue that, if it is possible to make assumptions on the classes
they belong to, these pixels carry useful information that can be
used in the training procedure. In particular, denoting with U ⊆ Y
the set of classes to whom unlabeled pixels might belong to, we
can define a loss function on an image x, with label y as:

`(x, y) = −
∑
i∈I

log px(i, yi) , (1)

where yi is the ground truth label associated to pixel i and px is
computed as follow:

px(i, c) =

{
qx(i, c) if c 6= u∑
k∈U qx(i, k) if c = u .

(2)

The idea behind Eq. (1) and Eq. (2) is that unlabeled pixels
should provide a positive feedback for all the semantic classes they
might contain. Being simple and general, this loss allows to exploit
the information provided by both the labeled pixels (it degenerates
to the standard cross entropy when there are no unlabeled pixels)
and the unlabeled ones, through the prior that we have on their
semantic content.

In the following, we first show this idea can be effectively
used to address the background shift problem of ICL in semantic
segmentation. Next, we extend this idea to weakly-supervised
learning, showing that modeling the unlabeled pixels is beneficial
to improve the final performance.

4 INCREMENTAL LEARNING IN SEMANTIC SEG-
MENTATION

In the ICL setting, training is realized over multiple phases, called
learning steps, and each step introduces novel categories to be
learnt. In other terms, during the tth learning step, the previous
label set Yt−1 is expanded with a set of new classes Ct, yielding a
new label set Yt = Yt−1 ∪Ct. At learning step t we are provided
with a training set T which only contains labels for pixels of
novel classes while all the other pixels of the image are unlabeled.
However, ignoring these unlabeled pixels will prevent the model to
learn the boundary of novel classes. For this reason, we decide to
assign to the unlabeled pixels a special class, i.e. the background
class b. The background class is the only class which is shared by
multiple learning steps and it is included in any label and class set,
i.e. b ∈ Ct for any step t. The learning is then performed using
the current training set T t ⊂ X × (Ct)N in conjunction to the
previous model fθt−1 : X 7→ IRN×|Y

t−1| to obtain an updated
model fθt : X 7→ IRN×|Y

t|. As in standard ICL, in this paper we
assume the sets of labels Ct that we obtain at the different learning
steps to be disjoint, except for the special background class b.

4.1 Modeling the Background
A naive approach to address the ICL problem consists in retraining
the model fθt on each set T t sequentially. When the predictor fθt
is realized through a deep architecture, this corresponds to fine-
tuning the network parameters on the training set T t initialized
with the parameters θt−1 from the previous stage. This approach
is simple, but it leads to catastrophic forgetting. Indeed, when
training using T t no samples from the previously seen object
classes are provided. This biases the new predictor fθt towards the
novel set of categories in Ct to the detriment of the classes from the
previous sets. In the context of ICL for image-level classification,
a standard way to address this issue is coupling the supervised

loss on T t with a regularization term, either taking into account
the importance of each parameter for previous tasks [29], [33],
or by distilling the knowledge using the predictions of the old
model fθt−1 [13], [15], [16]. We take inspiration from the latter
solution to initialize the overall objective function of our problem.
In particular, we minimize a loss function of the form:

L(θt) = 1

|T t|
∑

(x,y)∈T t

(
`θ

t

ce(x, y) + λ`θ
t

kd(x)
)

(3)

where `ce is a standard supervised loss (e.g. cross-entropy loss),
`kd is the distillation loss and λ > 0 is a hyper-parameter
balancing the importance of the two terms.

As stated at the beginning of the Sec. 4, differently from
standard ICL settings considered for image classification prob-
lems, in semantic segmentation we have that two different label
sets Cs and Cu share the common background class b. However,
the distribution of the background class changes across different
incremental steps. In fact, background annotations given in T t
refer to classes not present in Ct, that might belong to the set of
seen classes Yt−1 and/or to still unseen classes i.e. Cu with u > t.
In the following, we show how to account for the semantic shift
of the the background class by revisiting standard choices for the
general objective defined in Eq. (3) with our formulation in 3.2.

Revisiting Cross-Entropy Loss. In Eq. (3), a possible choice
for `ce is the standard cross-entropy loss computed over all image
pixels:

`θ
t

ce(x, y) = −
1

|I|
∑
i∈I

log qtx(i, yi) , (4)

where qtx is the output of the model at the training step t, i.e.
qtx(i, c) = fθt(x)[i, c]

The problem with Eq. (4) is that the training set T t we use
to update the model only contains information about novel classes
in Ct. However, the unlabeled pixels in T t, that are assigned to
the background class, might include also pixels associated to the
previously seen classes in Yt−1. We argue that, without explicitly
taking into account this aspect, the catastrophic forgetting problem
would be even more severe. In fact, we would drive our model
to predict the background label b for pixels of old classes,
further degrading the capability of the model to preserve semantic
knowledge of past categories. To avoid this issue, we propose to
replace the cross-entropy loss in Eq. (4) with the loss function in
Eq. (1), by considering U = Yt−1. Therefore, we define:

`θ
t

ce(x, y) = −
1

|I|
∑
i∈I

log ptx(i, yi) , (5)

where:

ptx(i, c) =

{
qtx(i, c) if c 6= b∑
k∈Yt−1 qtx(i, k) if c = b .

(6)

Our intuition is that by using Eq.(5) we can update the model
to predict the new classes and, at the same time, account for the
uncertainty over the actual content of the background class. In
fact, in Eq. (5) the background class ground truth is not directly
compared with its probabilities qtx(i, b) obtained from the current
model fθt , but with the probability of having either an old class
or the background. A schematic representation of this procedure
is depicted in Fig. 2 (blue block).

It is worth noting that the alternative of ignoring the unlabeled
pixels within the cross-entropy loss is a worse solution than
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Fig. 2: Overview of our method. At learning step t an image is processed by the old (top) and current (bottom) models, mapping the
image to their respective output spaces. As in standard ICL methods, we apply a cross-entropy loss to learn new classes (blue block)
and a distillation loss to preserve old knowledge (yellow block). In this framework, we model the semantic changes of the background
across different learning steps by (i) initializing the new classifier using the weights of the old background one (left), (ii) comparing the
pixel-level background ground truth in the cross-entropy with the probability of having either the background (black) or an old class
(pink and grey bars) and (iii) relating the background probability given by the old model in the distillation loss with the probability of
having either the background or a novel class (green bar). Image taken from the Pascal-VOC dataset [2].

considering them as background. In fact, this would not allow the
model to correctly update its classifier to update its representation
of the background and to learn the boundary of novel objects.
Moreover, it would not allow to exploit the information that new
images might contain about old classes.

Revisiting Distillation Loss. In the context of incremental learn-
ing, distillation loss [17] is a common strategy to transfer knowl-
edge from the old model fθt−1 into the new one, preventing catas-
trophic forgetting. Formally, a standard choice for the distillation
loss `kd is:

`θ
t

kd(x, y) =
1

|I|
∑
i∈I

∑
c∈Yt−1

qt−1x (i, c) log p̂tx(i, c) , (7)

where p̂tx(i, c) is defined as the probability of class c for pixel i
given by fθt but re-normalized across all the classes in Yt−1 i.e.:

p̂tx(i, c) =

{
0 if c ∈ Ct \ {b}
qtx(i, c)/

∑
k∈Yt−1 qtx(i, k) if c ∈ Yt−1 .

(8)
The rationale behind `kd is that fθt should produce activations

close to the ones produced by fθt−1 . This regularizes the training
procedure such that the parameters θt remain anchored to the
solution found for classifying pixels of previous classes, i.e. θt−1.

The loss defined in Eq. (7) has been used either in its base
form or variants in different contexts, from incremental task [15]
and class learning [13], [16] in object classification to complex
scenarios such as detection [43] and segmentation [27]. Despite its
success, it has a fundamental drawback in semantic segmentation:
it completely ignores that the representation of the background
class evolves over time. While with Eq. (5) we tackled the first
problem linked to the semantic shift of the background (i.e.
b ∈ T t contains pixels of Yt−1), we use the distillation loss
to tackle the second: annotations for background in T s with
s < t might include pixels of classes in Ct. From the latter
considerations, the background probabilities assigned to a pixel by
the old predictor fθt−1 and by the current model fθt do not share

the same semantic content. More importantly, fθt−1 might predict
as background pixels of classes in Ct that we are currently trying
to learn. Notice that this aspect is peculiar to the segmentation task
and it is not considered in previous incremental learning models.

To address the semantic shift of the background class between
the old and the current model, we explicitly revise the distillation
loss in Eq. (7). In particular, we extend the reasoning behind
Sec.3.2 to the distillation soft-targets and we design a novel
distillation loss by rewriting the probability distribution p̂tx(i, c)
in Eq. (8) as:

p̂tx(i, c) =

{
qtx(i, c) if c 6= b∑
k∈Ct q

t
x(i, k) if c = b .

(9)

We note that Eq. (9) is identical to Eq. (2) by setting U = Yt and
by substituting the background class b to u.

Similarly to Eq. (7), we still compare the probability of a pixel
belonging to seen classes assigned by the old model, with its
counterpart computed with the current parameters θt. However,
differently from classical distillation, in Eq. (9) the probabilities
obtained with the current model are kept unaltered, i.e. normalized
across the whole label space Yt and not with respect to the
subset Yt−1 (Eq. (8)). More importantly, the background class
probability as given by fθt−1 is not directly compared with its
counterpart in fθt , but with the probability of having either a new
class or the background, as predicted by fθt (see Fig. 2, yellow
block).

We highlight that, with respect to Eq. (8) and other simple
choices (e.g. ignoring unlabeled pixels from Eq. (8)) this solution
has two advantages. First, we can use the full output space of the
old model to distill knowledge in the current one, without ignoring
any pixel or class. Second, we can propagate the uncertainty we
have on the semantic content of the background in fθt−1 without
penalizing the probabilities of new classes we are learning in the
current step t.

Classifiers’ Parameters Initialization. As discussed above, the
background class b is a special class devoted to collect the
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probability that a pixel belongs to an unknown object class. In
practice, at each learning step t, the novel categories in Ct are
unknowns for the old classifier fθt−1 . As a consequence, unless
the appearance of a class in Ct is very similar to one in Yt−1, it is
reasonable to assume that fθt−1 will likely assign pixels of Ct to
b. Taking into account this initial bias on the predictions of fθt on
pixels of Ct, it is detrimental to randomly initialize the classifiers
for the novel classes. A random initialization would provoke a
misalignment among the features extracted by the model (aligned
with the background classifier) and the random parameters of the
classifier itself. Notice that this could lead to possible training
instabilities while learning novel classes since the network could
initially assign high probabilities for pixels in Ct to b.

To address this issue, we propose to initialize the classi-
fier’s parameters for the novel classes in such a way that given
an image x and a pixel i, the probability of the background
qt−1x (i, b) is uniformly spread among the classes in Ct, i.e.
qtx(i, c) = qt−1x (i, b)/|Ct| ∀c ∈ Ct, where |Ct| is the number
of new classes (notice that b ∈ Ct). To this extent, let us
consider a standard fully connected classifier and let us denote
as {ωtc, βtc} ∈ θt the classifier parameters for a class c at learning
step t, with ω and β denoting its weights and bias respectively.
We can initialize {ωtc, βtc} as follows:

ωtc =

{
ωt−1b if c ∈ Ct

ωt−1c otherwise
(10)

βtc =

{
βt−1b − log(|Ct|) if c ∈ Ct

βt−1c otherwise
(11)

where {ωt−1b , βt−1b } are the weights and bias of the back-
ground classifier at the previous learning step. The fact that the
initialization defined in Eq.(10) and (11) leads to qtx(i, c) =
qt−1x (i, b)/|Ct| ∀c ∈ Ct is easy to obtain from qtx(i, c) ∝
exp(ωtb · x+ βtb).

As we will show in the experimental analysis, this simple
initialization procedure brings benefits in terms of both improving
the learning stability of the model and the final results, since it
eases the role of the supervision imposed by Eq.(5) while learning
new classes and follows the same principles used to derive our
distillation loss (Eq.(9)).

5 SEMANTIC SEGMENTATION USING WEAK SU-
PERVISION

In the previous section, we revisited standard cross-entropy and
distillation losses to take into account the prior we have on
the content of the unlabeled/background pixels (for the cross-
entropy loss) and the semantic of the predicted probabilities for the
background class (for the distillation loss). The overall idea of the
approach is that we can assume what is the set of semantic classes
to which unlabeled/background pixels belong. This idea can be
easily extended in other scenario where we can exploit partial
annotations to impose priors on the content of unlabeled pixels.
In the following, we will show how the same reasoning can be
applied to tackle weakly supervised segmentation with point and
scribble supervision.

5.1 Problem Formulation
In weakly supervised segmentation using points or scribbles the
goal is to obtain a model capable of predicting, for each pixel

of the image, its correct semantic class, as in standard semantic
segmentation. However, differently from the standard segmenta-
tion task, we train our model using a training set in which we do
not have full pixel-level annotation, but just points or scribbles.
In particular, for each instance of a class presented in a training
image, only one or few contiguous annotated pixels are provided.
Formally, considering an image x and its label y belonging to
the training set T , the annotation is provided only for pixels
IxS = {i : ∀ i ∈ I s.t. yi ∈ Y}, where |IxS | << |I|. All
the other image pixels are unlabeled.

We address three weakly semantic segmentation setting: point-
based [12] and scribble-based [19] object segmentation, and point-
based scene parsing [20]. The goal of object segmentation is to
predict object classes in a target image, where the objects are
countable things, such as cars, bikes, and dogs. All the pixels that
do not fall in these categories are labeled as background, which is
considered a class in the output space Y of our model, similarly
to Sec. 4. Formally, given a training set T ⊂ X × (Y ∪ u)N , the
goal is to learn a model able to predict, for each pixel i, a label
yi ∈ (Y). Following the protocols defined in [12] and [19], the
point annotations are given only for the objects, while no points
are provided for the background class. Differently, the scribble
annotations also contain a scribble for the background class.

Scene parsing, instead, is a more complex task where the goal
is to obtain a model able to predict both countable things and
stuff classes (i.e. all the non-countable classes, such as sky, road,
ground, etc.). In this setting, all the pixels in the image contain
a semantic category and the background class is not included in
the label space. Formally, the goal is to learn a model able to map
each pixel i to a label yi ∈ Y . The mapping is learned using a
training set T ⊂ X × (Y ∪ u)N .

5.2 Modeling the Unlabeled
Being provided few labeled pixels, previous approaches [12], [20]
proposed to apply a cross-entropy loss directly on the labeled
points. In particular, they defined a partial cross-entropy (PCE)
loss that considered only the pixels for which an annotation is
given. Formally, given an image x and the respective annotation
y, the PCE loss has the form:

`PCE(x, y) = −
1

|IxS |
∑
i∈IxS

log qx(i, yi). (12)

This loss is crucial for the network to discriminate the classes
and to localize them in the image. However, while this solution
is simple and easy to implement, it completely discards the
information provided by the unlabeled pixels. In Section 3.2 we
showed a simple principle to extract value from them and in this
section we will revisit the principle to adapt it in this scenario.

We start from the assumption that, for each instance of a class
in the image it has been provided at least one labeled pixel. This
assumption implies that we know which are the classes present in
the image and that all the pixels in the image belong to one of
those classes. Denoting the set of classes appearing in the label y
of an image x as Ux = {c : ∃ i ∈ IxS s.t. c = yi} , we can use the
loss in Eq. (1), with U = Ux to consider the uncertainty we have
on all the unlabeled pixels of the image. In particular, denoting as
Ixu = I \ IxS the set of unlabeled pixels, we propose to extend
Eq. (1) as follows:

`UNL(x, y) = `PCE(x, y)−
γ

|Ixu |
∑
i∈Ixu

log px(i, u) , (13)
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where px is the probability distribution defined in Eq.(2) with
U = Ux, and γ is a hyper-parameter to weight the importance of
unlabeled pixels since in this scenario unlabeled pixels are many
more than the labeled ones.

Using the `UNL loss provides two important benefits to our
training procedure when compared with `PCE : (i) information
from labeled pixels is propagated to unlabeled ones, providing
an additional source of supervision; (ii) if the network predicts an
unlabeled pixel as belonging to a class c which is not in the current
image (i.e. c /∈ Ux), receives a feedback on the error from the loss
function.

To summarize, given a training set T , we train the network to
minimize the following objective function:

L(θ) = 1

|T |
∑

(x,y)∈T

`UNL(x, y). (14)

We note that this loss function can be applied without any
modification both with point and scribble supervision to the object
segmentation and to the scene parsing tasks. The only difference
relies on the classes contained in the image, since for object
segmentation the background class b belongs to every image,
i.e. b ∈ Ux ∀x ∈ T , while in scene parsing the background
class is not considered. As far as we know, our method is the
first applicable on point and scribble supervision both on object
segmentation and scene parsing, achieving state of the art results
without relying on any other prior learned on additional data (e.g.
objectness prior [12]).

6 EXPERIMENTS

6.1 Datasets

In this work, we use three datasets: Pascal-VOC 2012, ADE20K
and Cityscapes. PASCAL-VOC 2012 [2] is a widely used bench-
mark that includes 20 foreground object classes. We use the
extra annotation provided in [64], resulting in a dataset containing
10582 images in the training set and 1449 images in the validation.
ADE20K [3] is a large-scale dataset that contains 150 classes.
Differently from Pascal-VOC 2012, this dataset contains both
stuff (e.g. sky, building, wall) and object classes. The dataset
comprises more than 25K scene-centric images. Adopting the
standard protocol [5] we use 20K images for training and we
reported the results on the 2K images of the validation set.
Cityscapes [18] is a dataset containing street-level images captured
in central Europe that includes 19 classes, which are both objects
or stuffs. The dataset provides high-resolution images with size
2048× 1024, which are splitted in 2975 images for training, 500
for validation and 1525 for testing. However, since the test set
ground truth are not available, we report results on the validation
set as done by [65]. We exclude from the training protocol the
coarse-annotations, and we use only the fine-grained annotations.

6.2 Incremental Learning in Semantic Segmentation

6.2.1 ICL Baselines
We compare our method against standard ICL baselines, originally
designed for classification tasks, on the considered segmentation
task, thus segmentation is treated as a pixel-level classifica-
tion problem. Specifically, we report the results of six different
regularization-based methods, three prior-focused and three data-
focused approaches.

In the first category, we chose Elastic Weight Consolidation
(EWC) [33], Path Integral (PI) [35], and Riemannian Walks (RW)
[34]. They employ different strategies to compute the importance
of each parameter for old classes: EWC uses the empirical Fisher
matrix, PI uses the learning trajectory, while RW combines EWC
and PI in a unique model. We choose EWC since it is a standard
baseline employed also in [43] and PI and RW since they are two
simple applications of the same principle. Since these methods
act at the parameter level, to adapt them to the segmentation
task we keep the loss in the output space unaltered (i.e. standard
cross-entropy across the whole segmentation mask), computing
the parameters’ importance by considering their effect on learning
old classes.

For the data-focused methods, we chose Learning without
forgetting (LwF) [15], LwF multi-class (LwF-MC) [13] and the
segmentation method of [27] (ILT). We denote as LwF the original
distillation based objective as implemented in Eq.(3) with basic
cross-entropy and distillation losses, which is the same as [15]
except that distillation and cross-entropy share the same label
space and classifier. LwF-MC is the single-head version of [15]
as adapted from [13]. It is based on multiple binary classifiers,
with the target labels defined using the ground truth for novel
classes (i.e. Ct) and the probabilities given by the old model for
the old ones (i.e. Yt−1). Since the background class is both in Ct
and Yt−1 we implement LwF-MC by a weighted combination of
two binary cross-entropy losses, on both the ground truth and the
probabilities given by fθt−1 . Finally, ILT [27] is the only method
specifically proposed for ICL in segmentation. It uses a distillation
loss in the output space, as in our adapted version of LwF [15]
and/or another distillation loss in the features space, attached to the
output of the network decoder. Here, we use the variant where both
losses are employed. As done by [43], we do not compare with
replay-based methods (e.g. [13]) since they violate the standard
ICL assumption regarding the unavailability of old data.

In all tables we report other two baselines: simple fine-tuning
(FT) on each T t (e.g. Eq.(4)) and training on all classes offline
(Joint). The latter can be regarded as an upper bound. In the tables
we denote our method as MiB (Modeling the Background for
incremental learning in semantic segmentation). All results are
reported as mean Intersection-over-Union (mIoU) in percentage,
averaged over all the classes of a learning step and all the steps.

6.2.2 Implementation Details
For all methods we use the Deeplab-v3 architecture [8]. We use a
ResNet-101 [66] backbone for Pascal-VOC 2012 and ADE20K,
and following [65] a ResNeXt-101 [67] for Cityscapes. For
both backbones we use an output stride of 16. Since memory
requirements are an important issue in semantic segmentation, we
use in-place activated batch normalization, as proposed in [65].
The backbone has been initialized using the ImageNet pretrained
model [65]. We follow [8], training the network with SGD and
the same learning rate policy, momentum and weight decay. For
ADE20K and Pascal-VOC 2012 we use an initial learning rate of
10−2 for the first learning step and 10−3 for the followings, as
in [43], while for Cityscapes we employed 2 × 10−3 for the first
step and 2 × 10−4 in the following. We train the model with a
batch-size of 24 for 30 epochs for Pascal-VOC 2012, 60 epochs
for ADE20K and 360 epochs for Cityscapes in every learning
step. We apply the same data augmentation of [8] and we crop
the images to 512 × 512 during training. During test, we make
a center crop 512 × 512 of for Pascal-VOC 2012 and ADE20K,
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while we use the full-resolution images for Cityscapes. For setting
the hyper-parameters of each method, we use the protocol of
incremental learning defined in [28], using 20% of the training
set as validation. The final results are reported on the standard
validation set of the datasets.

6.2.3 Pascal-VOC 2012
Following [27], [43], we define two experimental settings, depend-
ing on how we sample images to build the incremental datasets.
Following [27], we define an experimental protocol called the
disjoint setup: each learning step contains a unique set of images,
whose pixels belong to classes seen either in the current or in
the previous learning steps. Differently from [27], at each step we
assume to have only labels for pixels of novel classes, while the
old ones are labeled as background in the ground truth. The second
setup, that we denote as overlapped, follows what done in [43] for
detection: each training step contains all the images that have at
least one pixel of a novel class, with only the latter annotated. It is
important to note a difference with respect to the previous setup:
images may now contain pixels of classes that we will learn in the
future, but labeled as background. This is a more realistic setup
since it does not make any assumption on the objects present in
the images.

As done by previous works [27], [43], we perform three
different experiments concerning the addition of one class (19-
1), five classes all at once (15-5), and five classes sequentially
(15-1), following the alphabetical order of the classes to split the
content of each learning step.

Addition of one class (19-1). In this experiment, we perform two
learning steps: the first in which we observe the first 19 classes,
and the second where we learn the tv-monitor class. Results
are reported in Table 1. Without employing any regularization
strategy, the performance on past classes drops significantly. FT,
in fact, performs poorly, completely forgetting the first 19 classes.
Unexpectedly, using PI as a regularization strategy does not
provide benefits, while EWC and RW improve performance of
nearly 15%. However, prior-focused strategies are not compet-
itive with data-focused ones. In fact, LwF, LwF-MC, and ILT,
outperform them by a large margin, confirming the effectiveness
of this approach on preventing catastrophic forgetting. While ILT
surpasses standard ICL baselines, our model is able to obtain a
further boost. This improvement is remarkable for new classes,
where we gain 11% in mIoU, while do not experience forgetting
on old classes. It is especially interesting to compare our method
with the baseline LwF which uses the same principles of ours but
without modeling the background. Compared to LwF we achieve
an average improvement of about 15%, thus demonstrating the
importance of modeling the background in ICL for semantic
segmentation. These results are consistent in both the disjoint and
overlapped scenarios.

Single-step addition of five classes (15-5). In this setting we
add, after the first training set, the following classes: plant, sheep,
sofa, train, tv-monitor. Results are reported in Table 1. Overall,
the behavior on the first 15 classes is consistent with the 19-1
setting: FT and PI suffer a large performance drop, data-focused
strategies (LwF, LwF-MC, ILT) outperform EWC and RW by far,
while our method gets the best results, obtaining performances
closer to the joint training upper bound. For what concerns the
disjoint scenario, our method improves over the best baseline
of 4.6% on old classes, of 2% on novel ones and of 4% in all

classes. These gaps increase in the overlapped setting where our
method surpasses the baselines by nearly 10% in all cases, clearly
demonstrating its ability to take advantage of the information
contained in the background class.

Multi-step addition of five classes (15-1). This setting is similar
to the previous one except that the last 5 classes are learned
sequentially, one by one. From Table 1 we can observe that
performing multiple steps is challenging and existing methods
work poorly for this setting, reaching performance inferior to 7%
on both old and new classes. In particular, FT and prior-focused
methods are unable to prevent forgetting, biasing their prediction
completely towards new classes and demonstrating performances
close to 0% on the first 15 classes. Even data-focused methods
suffer a dramatic loss in performances in this setting, decreasing
their score from the single to the multi-step scenarios of more than
50% on all classes. On the other side, our method is still able to
achieve good performances. Compared to the other approaches,
MiB outperforms all baselines by a large margin in both old
(46.2% on the disjoint and 35.1% on the overlapped), and new
(nearly 13% on both setups) classes. As the overall performance
drop (11% on all classes) shows, the overlapped scenario is the
most challenging one since it does not impose any constraint on
which classes are present in the background.

Ablation Study. In Table 2 we report a detailed analysis of our
contributions, considering the overlapped setup. We start from
the baseline LwF [15] which employs standard cross-entropy and
distillation losses. We first add to the baseline our modified cross-
entropy (CE): this increases the ability to preserve old knowledge
in all settings without harming (15-1) or even improving (19-
1, 15-5) performances on the new classes. Second, we add our
distillation loss (KD) to the model. Our KD provides a boost on
the performances for both old and new classes. The improvement
on old classes is remarkable, especially in the 15-1 scenario (i.e.
22.8%). For the novel classes, the improvement is constant and is
especially pronounced in the 15-5 scenario (7%). Notice that this
aspect is peculiar of our KD since standard formulation work only
on preserving old knowledge. This shows that the two losses pro-
vide mutual benefits. Finally, we add our classifiers’ initialization
strategy (init). This component provides an improvement in every
setting, especially on novel classes: it doubles the performance
on the 19-1 setting (22.1% vs 11.9%) and triplicates on the 15-
1 (4.5% vs 13.5%). This confirms the importance of accounting
for the background shift at the initialization stage to facilitate the
learning of new classes.

6.2.4 ADE20K
We create the incremental datasets T t by splitting the whole
dataset into disjoint image sets, without any constraint except
ensuring a minimum number of images (i.e. 50) where classes on
Ct have labeled pixels. Obviously, each T t provides annotations
only for classes in Ct while other classes (old or future) appear
as background in the ground truth. In Table 3 we report the mean
IoU obtained averaging the results on two different class orders:
the order proposed by [3] and a random one. In this experiments,
we compare our approach with data-focused methods only (i.e.
LwF, LwF-MC, and ILT) due to their gap in performance with
prior-focused ones.

Single-step addition of 50 classes (100-50). In the first ex-
periment, we initially train the network on 100 classes and we
add the remaining 50 all at once. From Table 3 we can observe



9

TABLE 1: Mean IoU (in %) on the Pascal-VOC 2012 dataset for different incremental class learning scenarios.

19-1 15-5 15-1
Disjoint Overlapped Disjoint Overlapped Disjoint Overlapped

Method 1-19 20 all 1-19 20 all 1-15 16-20 all 1-15 16-20 all 1-15 16-20 all 1-15 16-20 all
FT 5.8 12.3 6.2 6.8 12.9 7.1 1.1 33.6 9.2 2.1 33.1 9.8 0.2 1.8 0.6 0.2 1.8 0.6
PI [35] 5.4 14.1 5.9 7.5 14.0 7.8 1.3 34.1 9.5 1.6 33.3 9.5 0.0 1.8 0.4 0.0 1.8 0.5
EWC [33] 23.2 16.0 22.9 26.9 14.0 26.3 26.7 37.7 29.4 24.3 35.5 27.1 0.3 4.3 1.3 0.3 4.3 1.3
RW [34] 19.4 15.7 19.2 23.3 14.2 22.9 17.9 36.9 22.7 16.6 34.9 21.2 0.2 5.4 1.5 0.0 5.2 1.3
LwF [15] 53.0 9.1 50.8 51.2 8.5 49.1 58.4 37.4 53.1 58.9 36.6 53.3 0.8 3.6 1.5 1.0 3.9 1.8
LwF-MC [13] 63.0 13.2 60.5 64.4 13.3 61.9 67.2 41.2 60.7 58.1 35.0 52.3 4.5 7.0 5.2 6.4 8.4 6.9
ILT [27] 69.1 16.4 66.4 67.1 12.3 64.4 63.2 39.5 57.3 66.3 40.6 59.9 3.7 5.7 4.2 4.9 7.8 5.7
MiB 69.6 25.6 67.4 70.2 22.1 67.8 71.8 43.3 64.7 75.5 49.4 69.0 46.2 12.9 37.9 35.1 13.5 29.7
Joint 77.4 78.0 77.4 77.4 78.0 77.4 79.1 72.6 77.4 79.1 72.6 77.4 79.1 72.6 77.4 79.1 72.6 77.4

TABLE 2: Ablation study of the proposed method on the Pascal-
VOC 2012 overlapped setup. CE and KD denote our cross-entropy
and distillation losses, while init our initialization strategy.

19-1 15-5 15-1
1-19 20 all 1-15 16-20 all 1-15 16-20 all

LwF [15] 51.2 8.5 49.1 58.9 36.6 53.3 1.0 3.9 1.8
+ CE 57.6 9.9 55.2 63.2 38.1 57.0 12.0 3.7 9.9
+ KD 66.0 11.9 63.3 72.9 46.3 66.3 34.8 4.5 27.2
+ init 70.2 22.1 67.8 75.5 49.4 69.0 35.1 13.5 29.7

that FT is clearly a bad strategy on large scale settings since it
completely forgets old knowledge. Using a distillation strategy
enables the network to reduce the catastrophic forgetting: LwF
obtains 21.1% on past classes, ILT 22.9%, and LwF-MC 34.2%.
Regarding new classes, LwF is the best strategy, exceeding LwF-
MC by 18.9% and ILT by 6.6%. However, our method is far
superior to all others, improving on the first classes and on the
new ones. Moreover, we can observe that we are close to the joint
training upper bound, especially considering new classes, where
the gap with respect to it is only 0.3%. In Figure 3 we report
some qualitative results which demonstrate the superiority of our
method compared to the baselines.

Multi-step addition of 50 classes (100-10). We then evaluate
the performance on multiple incremental steps: we start from 100
classes and we add the remaining classes 10 by 10, resulting in 5
incremental steps. In Table 3 we report the results on all sets of
classes after the last learning step. In this setting the performance
of FT, LwF and ILT are very poor because they strongly suffers
catastrophic forgetting. LwF-MC demonstrates a better ability to
preserve knowledge on old classes, at the cost of a performance
drop on new classes. Again, our method achieves the best trade-
off between learning new classes and preserving past knowledge,
outperforming LwF-MC by 11.6% considering all classes.

Three steps of 50 classes (50-50). Finally, in Table 3 we analyze
the performance on three sequential steps of 50 classes. Previous
ICL methods achieve different trade-offs between learning new
classes and not forgetting old ones. LwF and ILT obtain a good
score on new classes, but they forget old knowledge. On the
contrary, LwF-MC preserves knowledge on the first 50 classes
without being able to learn new ones. Our method outperforms
all the baselines by a large margin with a gap of 11.9% on the
best performing baseline, achieving the highest mIoU on every
step. Remarkably, the highest gap is on the intermediate step,
where there are classes that we must both learn incrementally and
preserve from forgetting on the subsequent learning step.

6.2.5 Cityscapes
As done for the ADE20K dataset, we split the dataset into disjoint
sets, one for each learning step t. Annotations are provided only
for classes in Ct while other classes (old or future) appear as
background in the ground truth. Also for Cityscapes, we compare
our method with data-focused methods only (i.e. LwF, LwF-MC,
and ILT). Table 4 reports the mean IoU obtained on three different
settings: vehicles, non-driving, and 11-2.

Addition of vehicles classes (vehicles). In the first setting,
we initially train the network on the non-vehicles classes of
Cityscapes (i.e. road, sidewalk, building, wall, fence, pole, light,
sign, vegetation, terrain, sky, person, rider) and then we add in
a single step all the vehicle classes (i.e. car, truck, bus, train,
motorcycle, bicycle). From Table 4, we note that fine-tuning the
network on the novel classes gives good results, but at cost of
completely forgetting the old classes. Adding a distillation strategy
to it improves the results, especially on old classes. In particular,
LwF and ILT obtain respectively 69.0% and 68.3%, while LwF-
MC achieves a lower mIoU 58.9% but it is the highest among the
three on the novel classes, achieving 47.0%. Comparing MiB with
the other methods, it is able to maintain a good performance on
old classes, achieving the best result 69.4%, while it is also able
to learn properly the novel classes, being inferior to FT only of
4.4%. Overall, the best method is MiB, exceeding other methods
more than 7.2% mIoU on all classes and being inferior to the joint
training upper-bound only by 4.6%.

Addition of non-driving classes (non-driving). In this exper-
iment we use the same number of incremental classes as the
previous but we propose a different grouping. The classes are
semantically divided in two groups, depending if they are strictly
related to driving or not. The first group, which we train first, is
made by driving classes: road, sidewalk, pole, light, sign, person,
rider, car, truck, bus, train, motorcycle and bicycle. The sec-
ond group, which is learned incrementally, contains non-driving
classes: building, wall, fence, vegetation, terrain, sky. As can be
noted in Table 4, the results are coherent with the findings on
the previous setting. FT performs well on novel classes, while
it completely forgets about old ones. LwF, LwF-MC, and ILT
achieve good performances on both old and novel classes. In
particular, the best among the three is LwF, which obtains 63.9%
on the driving classes, 63.1% on the non-driving classes and an
overall mIoU of 63.6%. However, the best method is MiB, which
exceeds LwF both on driving (2.5%) and non-driving (6.9%)
classes. Overall, it achieves 67.6% mIoU, which is inferior to
the upper-bound of 5.5%.

Multi-step addition of 2 classes (11-2). Finally, we analyze the
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TABLE 3: Mean IoU (in %) on the ADE20K dataset for different incremental class learning scenarios.

100-50 100-10 50-50
Method 1-100 101-150 all 1-100 100-110 110-120 120-130 130-140 140-150 all 1-50 51-100 101-150 all
FT 0.0 24.9 8.3 0.0 0.0 0.0 0.0 0.0 16.6 1.1 0.0 0.0 22.0 7.3
LwF [15] 21.1 25.6 22.6 0.1 0.0 0.4 2.6 4.6 16.9 1.7 5.7 12.9 22.8 13.9
LwF-MC [13] 34.2 10.5 26.3 18.7 2.5 8.7 4.1 6.5 5.1 14.3 27.8 7.0 10.4 15.1
ILT [27] 22.9 18.9 21.6 0.3 0.0 1.0 2.1 4.6 10.7 1.4 8.4 9.7 14.3 10.8
MiB 37.9 27.9 34.6 31.8 10.4 14.8 12.8 13.6 18.7 25.9 35.5 22.2 23.6 27.0
Joint 44.3 28.2 38.9 44.3 26.1 42.8 26.7 28.1 17.3 38.9 51.1 38.3 28.2 38.9

TABLE 4: Mean IoU (in %) on the Cityscapes dataset for different incremental class learning scenarios.

vehicles non-driving 11-2
Method old novel all old novel all 1-11 12-13 14-15 16-17 18-19 all
FT 0.0 71.0 22.4 0.0 69.0 21.8 0.0 0.0 0.0 0.0 57.3 6.0
LwF [15] 69.0 44.4 61.3 63.9 63.1 63.6 27.8 0.0 4.8 38.5 49.7 25.9
LwF-MC [13] 58.9 47.0 55.2 48.7 58.5 51.8 60.6 0.0 0.0 9.6 33.5 39.6
ILT [27] 68.3 37.4 58.5 64.9 54.8 61.7 28.9 0.0 6.8 27.3 33.2 23.8
MiB 69.4 66.6 68.5 66.4 70.0 67.6 70.2 33.7 53.7 49.0 53.9 60.7
Joint 72.8 73.8 73.1 72.5 74.3 73.1 73.6 68.3 79.0 72.4 69.9 73.1

TABLE 5: Results on point-based weakly supervised object seg-
mentation on Pascal-VOC (mIoU in %).

Method mIoU P-Acc
Img Lvl [12] 33.2 76.0
Img Lvl + PCE [12] 34.7 58.9
Img Lvl + PCE + Obj [12] 42.1 81.5
PCE + bkg 38.8 81.9
MiB (lr 10−5) 45.3 82.3
MiB (lr 10−4) 46.7 83.6
Full Supervision 58.8 89.9

performance on a multi-step setting, where we add two classes
in four different steps. We start from 11 classes (road, sidewalk,
building, wall, fence, pole, light, sign, vegetation, terrain, sky) and
then we add person and rider, then car and truck, then bus and
train, and finally motorcycle and bicycle. In Table 4, we report the
results for each group of classes, after all the classes have been
learned. As before, fine-tuning the network provide good perfor-
mance on the novel classes but it suffers catastrophic forgetting
and obtains 0.0% mIoU on old classes. LwF-MC obtains a good
results on the first set of classes (1-11) but it struggles to learn the
novel ones, especially considering the intermediate classes. LwF
and ILT demonstrate a similar behavior, forgetting old classes both
on the first and intermediate steps. However, LwF achieves better
results on the novel ones, exceeding ILT by 16.5%. Our method
outperforms all the other baselines by more than 21% mIoU. In
particular, it is the only method the only method able to maintain
good performances on the intermediate steps.

6.3 Semantic Segmentation with Weak Supervision
6.3.1 Point-based Object Segmentation on Pascal-VOC
Following the work of [12], we evaluate our method on object seg-
mentation using the Pascal-VOC dataset and the point annotations
the authors’ provide. Differently from [12], we employ a Resnet-
101 [66] as our backbone, with the modification of dilated convo-
lutions, as in standard state-of-the-art architectures [8]. To recover
the input resolution, we add after a bilinear interpolation layer on
top of the Resnet-101, without additional trainable parameters. We
initialize the backbone with an ImageNet pretrained model, as in
[12], using the weights provided by [65]. However, differently

TABLE 6: Results on scribble-based weakly supervised object
segmentation on Pascal-VOC (mIoU in %).

Method wo/ CRF w/ CRF
PCE 69.5 72.8
MiB 72.3 75.1
Scribble-Sup [19] - 63.1
NormalizedCut [50] 72.8 74.5
KernelCut [62] 73.0 75.0
BPG [63] 73.2 76.0
Full Supervision 75.8 76.4

TABLE 7: Results on point-based weakly supervised scene pars-
ing on ADE20K (mIoU in %).

Our protocol [20] protocol
Method mIoU P-Acc mIoU P-Acc
PCE 22.4 60.9 20.2 (17.7) 58.3 (58.0)
PDML [20] 21.1 56.6 19.3 (19.6) 55.5 (61.0)
MiB 22.9 62.2 21.0 59.5
Full Supervision 29.7 68.8 25.1 66.0

from them, we did not initialize the classifier since we were
not able to establish the correct mapping among the ImageNet
indices published by [12] and the ImageNet classes. For fairness
of comparison, we implemented [12] using our same backbone
and training protocol. We follow [8] and we train the network
using SGD with momentum 0.9, weight decay 10−4, and the same
learning rate polynomial policy base lr×(1− iteration

max iterations )
0.9.

We use an initial learning rate of 10−5 for the methods in [12] and
10−4 for the fully-supervised baseline. We report the results for
our method with both learning rates. For all the methods we train
the network using a batch size of 24 for 30 epochs. We crop the
images to 512× 512 during training and we apply the same data
augmentation of [8].

Results. In Table 5 we report the mIoU and the overall pixel
accuracy (P-Acc). The first three rows of the table refer to the
methods proposed in [12]. In particular, we refer to Img Lvl as the
model trained only using Eq.2 of [12] which does not consider
points location, but only image-level labels. This method achieves
33.2% mIoU, which is 4.4% better than the one reported by [12].
In the second row, we add the partial cross-entropy (PCE) loss, as
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Fig. 3: Qualitative results on the 100-50 setting of the ADE20K dataset using different incremental methods. The image demonstrates
the superiority of our approach on both new (e.g. building, floor, table) and old (e.g. car, wall, person) classes. From left to right:
image, FT, LwF [15], ILT [27], LwF-MC [13], our method, and the ground-truth. Best viewed in color.

proposed by [12], and we refer to it as Img Lvl + PCE. For this
method, we use all the points available in the annotation and we do
not weight them (αi = 1,∀i ∈ IS). Adding the PCE improves the
mIoU of 1.5% but deteriorates the pixel accuracy by 17.1%. This
is due to the bias of the model toward the semantic classes, which
led the model to assign an object label even to background pixels,
which are the majority. However, introducing the Objectness Prior
(Img Lvl + PCE + Obj) [12] computed on an additional dataset
(following [12]) improves the results, achieving 42.1% mIoU and
81.5% pixel accuracy.

Nonetheless, our method outperforms all the three variants of
[12]. In particular, we report it twice to be fair in the comparison:
MiB (lr 10−5) employs the same learning rate of [12], while MiB
(lr 10−4) uses a learning rate 10−4 which we found better With
both learning rates, MiB achieves better performance than [12],
demonstrating that our method is better in modeling the unknown
pixels. In particular, MiB (lr 10−4) achieves 46.7% mIoU and
83.6% pixel accuracy, being inferior to the fully supervised
baselines of 12.1% 6.3% respectively. We would like to highlight
that, differently from [12], MiB does not use any objectness prior.

Finally, to prove that the improvement of our method is given
by the way we model unlabeled pixels and not by rescaling
the contribution of the background, we introduce the baseline
referred as PCE + bkg. In this method, we still use Eq. (14),
but we consider as possible class for the unlabeled pixels only
the background. As can be noted in Table 5, this method is not
able to learn properly the classes, obtaining 38.8% mIoU, which
is 7.9% less than MiB (lr 10−4). In particular, considering all the
unlabeled pixels as background biases PCE+bkg toward this class.
Instead, MiB models the unlabeled pixels using the prior given by
the point labels, i.e. U = Ux, pushing the network to predict them
either as background or as any of the annotated classes.

6.3.2 Scribble-based Object Segmentation on Pascal-VOC
To evaluate our method on scribble-supervised semantic segmen-
tation we followed the experimental protocol defined in [62], [63],
using the Pascal-VOC 2012 dataset and the scribble annotation
released by [19]. We employ the Deeplab-v2 architecture [9] with
the Resnet-101 backbone [66]. As in [62], [63], we use dilated
convolutions obtaining an output resolution 8 times smaller than
the input. Moreover, we follow the strategy used in [63] and we
train the network on a single-scale resolution using a polynomial
learning rate policy base lr × (1 − iteration

max iterations )
0.9 with a

batch size of 10 images and with base lr = 2.5 × 10−4,
momentum 0.9 and weight decay 5× 10−4. We train the network
for 20K iterations using 321×321 cropped images, after applying
horizontally flip (left-right) and randomly scaling the input images
(from 0.5 to 2.0). In the testing stage, similarly to previous works
[62], [63] we use multi-scale inputs (i.e. [0.5, 0.75, 1.0, 1.25, 1.5])
with max voting to get the final prediction.

Results Table 6.3.2 reports the mIoU with and without applying
the dense CRF [68] post-processing using scribble-supervision.
The top part reports the results of methods not explicitly de-
signed for the scribble annotation (i.e. the PCE baseline and
MiB), while the following reports the scribble-specific state-of-
the-art approaches [19], [50], [50], [63], and the fully-supervised
upper-bound. As for point supervision, the PCE baseline trains
the network using the cross-entropy only on labeled pixels, as
described in Eq.(12). We note that PCE is already a competi-
tive baseline, obtaining 72.8% mIoU, i.e. 3.6% below the fully-
supervised upper bound (76.4%), demonstrating that the model
is able to extract meaningful information even from few pixels.
However, introducing our loss as reported in Eq. (14), we are able
to outperform the PCE baseline. In particular, MiB obtains 72.3%
(+1.8% w.r.t. PCE) without CRF and 75.1% (+2.3) with CRF. This
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remarks that unlabeled pixels bring crucial information to improve
the results.

Comparing MiB with the state-of-the-art methods, we note that
it achieves competitive performance. In particular, comparing with
NormalizedCut [50] and KernelCut [62], we see that MiB obtains
inferior performance without using the CRF, but it achieves
superior performance while using it (+0.6% w.r.t. NormalizedCut
and +0.1% w.r.t. KernelCut). We argue that KernelCut and Nor-
malizedCut are superior to MiB without CRF since they already
integrate the CRF in their training objective to better model the
boundaries. However, the CRF post-processing is useful to correct
boundary predictions and improves MiB performance while hav-
ing less impact on NormalizedCut and KernelCut. Finally, BPG
[63] achieves better results than MiB both without (+0.9%) and
with (+0.9%) CRF post-processing. However, we remark that BPG
introduces two sub-networks in the segmentation architecture to
model boundaries, largely increasing the number of parameters
and requiring additional supervision for boundary prediction. On
the contrary, MiB is a general method that introduces only a loss
function on unlabeled pixels, without requiring either to modify
the network architecture or additional supervision.

6.3.3 Scene Parsing on ADE20K
We evaluate our method also on the scene parsing task, as
proposed by [20]. The task is based on the ADE20K dataset and
on the point annotation used by [20], which have been released
in the LID Challenge 2020 1. Since the code of [20] has not
been released, we re-implemented it following the details and
the algorithm provided in the paper. Moreover, we report the
results using two different training protocols, since we noted that
the protocol of [20] was sub-optimal. Both protocols employ a
Resnet-101 [66] architecture with dilated convolutions, followed
by a bilinear interpolation layer to recover the input resolution,
as proposed by [20]. The first protocol we implemented is the
same of [20]. The network is trained using SGD with momentum
0.9, weight decay 5 × 10−4 and an initial learning rate of
2.5 × 10−4 that is decayed following a polynomial schedule
base lr × (1 − iteration

max iterations )
0.8. The dataset is iterated using

a batch size of 16 and the images are randomly cropped with size
321×321. However, the number of epochs has not been specified
in [20] and we train the network for 60 epochs. The second
protocol follows the protocol and hyperparameters described in
Sec. 6.3.1. We only change the base learning rate that we set to
10−3.

Results. The results are shown in Table 7 where we report
the mean Intersection-over-Union (mIoU) and the overall pixel
accuracy (P-Acc). In the bracket we reported the numbers as
reported in [20]. Following [20], we implemented the partial cross
entropy (PCE) baseline, which only applies the cross-entropy loss
on the pixels to whom a label is provided, as described in Eq.12.
As observed by [20], this is a strong baseline for point-supervised
methods: it achieves 22.4% mIoU using our protocol and 20.2%
mIoU on the one of [20]. However, we note that the result obtained
by this baseline are better than the one found in [20] with a gap
of 2.5% mIoU and 0.3% pixel accuracy. The PDML [20] baseline
obtains results in line with [20]. However, comparing it with the
PCE baseline, it perform worse, exhibiting a drop of performance
of 1.3% and 0.9% mIoU in the two protocols. However, our
method outperforms both baselines. It achieves 22.9% mIoU using

1. https://lidchallenge.github.io/challenge.html, see track 2.

our protocol, which is 0.5% more than PCE, and 21.0% using the
[20] protocol, with a gap of 0.8% with respect to PCE.

7 CONCLUSIONS

In this work, we proposed a general loss function for semantic
segmentation under partial or weak supervision. This formulation
considers unlabeled pixels as ground-truth annotation for any pos-
sible class that pixel might contain. We considered two application
scenarios for the method, incremental class learning and point-
based weakly supervised semantic segmentation. In incremental
class learning, we analyze the realistic scenario where the new
training set does not provide annotations for old classes, leading
to the semantic shift of the background class and exacerbating
the catastrophic forgetting problem. We addressed this issue by
revisiting standard distillation-based ICL algorithms with our
general principle in both cross-entropy and distillation losses,
where the uncertainty on the unlabeled/background pixels is on the
presence of old classes for the former and of new classes for the
latter. Additionally, we propose a classifiers’ initialization strategy
which allows our network to explicitly model the semantic shift
of the background. Results show that our approach outperforms
regularization-based ICL methods by a large margin, considering
both small and large scale datasets.

In a second series of experiments, we apply our general
formulation to semantic segmentation with point and scribble
supervision, where the prior on unlabeled pixels is given by the set
of classes present in the current image. We show how our model
obtains competitive performance with respect previous approaches
in both objects segmentation and scene parsing, without any
additional prior on the objects or without making assumptions
on the provided annotations.

Future works might consider the application of the approach
under different levels of weak supervision (e.g. bounding boxes
[49], polygons [18]) and on new tasks with partial knowledge on
the unlabeled pixels, such as zero-shot learning [69].
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