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Abstract Two artificial neural network (ANN) models are presented to predict power profiles over
C+L–band in presence of inter-channel stimulated Raman scattering (ISRS) and to support non-linear
interference (NLI) modeling. High prediction accuracy are obtained with maximum errors ≤ 0.1 dB over
thousands different partial loads.

Introduction
Optimization of optical networks requires the
knowledge of physical layer behavior: accurate
modeling of propagation effects is fundamental
for performance assessment of transmission sys-
tems. In the past years several analytical mod-
els accounting for both amplified spontaneous
emission (ASE) noise and non-linear interference
(NLI) impairments were proposed[1]–[5].

The ever growing internet data traffic will lead to
an increasing capacity demand and a promising
solution is to extend the standard C–band toward
the L–band, and in a longer term even beyond. In
this multi-band scenario, besides the non-linear
interaction between channels due to Kerr effect,
it becomes relevant the inter-channel stimulated
Raman scattering (ISRS), consisting in the power
transfer from higher frequencies carriers to lower
frequencies carriers[6]. The resulting effect is a
tilt of the power profile over frequencies which de-
pends on the spectral load. Consequently, up-
graded analytical models for NLI estimation ac-
counting for ISRS have been proposed[7],[8].

For applications to network control and opti-
mization we need simplified models, capable of
real-time predictions. Of particular interest are the
closed-form models (CFMs)[9]–[11] which, following
some approximations, allow to easily evaluate the
generation of non-linear interference (NLI) con-
sidering also the ISRS interaction.

In general, a quality of transmission evaluator
accounting for both linear and nonlinear effects,
considering the impact of ASE and NLI requires
a fast and accurate evaluation of power profiles,
spectrally and spatially resolved. Analytical mod-
els for ISRS for a large channel count, may not
satisfy speed requirements as they are based on
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the solution of large systems of ordinary differen-
tial equations (ODEs). Moreover, CFMs are en-
abled by fitting these power profiles with simplified
analytical expressions[11] and this requires further
computational effort to get the required parame-
ters for all channels.

In the last years, machine learning (ML) was
successfully applied in different areas of optical
communications, with a good success in the de-
sign and analysis of Raman amplification[12]–[15].
Based on these recent advances, to overcome
the computational time problem, we propose two
artificial neural network (ANN) models to evalu-
ate power profiles evolution over frequency and
distance. A first model is used to predict power
profiles, whilst the second one is directly used to
predict fitted parameters for the NLI modeling[11].

We perform a comprehensive simulation study
considering different spectral loads over C+L–
band, showing very high accurate and fast predic-
tions with maximum error always below 0.1 dB.

Scenario and Datasets Generation
We consider a wavelength division multiplexing
(WDM) comb over the C+L–band between 185
THz and 196 THz with 220 channels in a 50 GHz
grid and carrying 1 mW when turned ON. The
ISRS effect is analyzed over a single span of
standard single mode fiber (SSMF) with length
Lspan=100 km and fiber intrinsic attenuation coef-
ficient α=0.21 dB/km. For ANN training and test-
ing, we generate two independent datasets. To
reduce the ANN complexity, as proposed in[12],
the training dataset is generated grouping to-
gether 10 adjacent channel slots, resulting in 22
subbands of 500 GHz. This simplification is sup-
ported by the fact that the power profile does not
change significantly over frequency among ad-
jacent channels, therefore the granularity of 10
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Fig. 1: ANN models, training and testing process for (a)
model 1 and (b) model 2.

channels per subband is a good trade-off be-
tween accuracy and complexity. To emulate par-
tial loads on subbands, three types of datasets
are generated based on different power levels per
subband (Psb) with same probability: two power
levels with Psb=[1e-9,10] mW (actually all chan-
nels OFF or ON, respectively), three power lev-
els with Psb=[1e-9,5,10] mW, and five power lev-
els with Psb=[1e-9,2.5,5,7.5,10] mW. To consider
a more realistic scenario, the testing dataset is
generated on a channel-basis with channels be-
ing OFF or ON, i.e. Pch=[1e-10,1] mW.

For each type of dataset (training dataset with
multi-power levels and testing dataset), we ex-
tract Nloads=5000 different spectral loads with
randomly selected frequency position for sub-
bands/channels, such that the average load cor-
responds to 50% of the WDM comb. The datasets
are actually generated by means of the numerical
Raman solver available within the open source
library GNPy[16] and power profiles evolution is
evaluated over frequency and distance at every
kilometer. As the channels are randomly posi-
tioned in frequency, their distribution over sub-
bands may be non-uniform, and this is the reason
behind the choice of considering multiple power
levels in the generation of the training dataset.

Artificial Neural Network Models

In Fig. 1 the two considered ANN models are
shown together with the training and testing pro-
cess. Input and output are properly normalized
with respect to their mean and standard deviation.

In Fig. 1(a) we have the first ANN (model 1)
designed to predict power profiles receives at the
input the spectral load S = [S1, . . . ,SNsb] and the
distance L. At the output it has the net gain
Gnet = [Gnet,1, . . . ,Gnet,Nsb] defined as the dif-
ference in logarithmic units between the output
power profiles and the input spectral loads. We
set a target maximum prediction error (EMAX) ≤
0.1 dB. To achieve this goal in the first ANN we
had to split the span length into four sub-span
sections (1-10 km, 11-20 km, 21-50 km, and 51-
100 km) and to train four ANN in parallel, as
we were not able to reach the accuracy target
with a single ANN working over the entire span.
Shorter intervals are in the first kilometers, where
the fiber experiences higher ISRS due to higher
power levels. For each section we train 20 paral-
lel and independent ANNs (for model averaging)
using random projection (RP) method with the fol-
lowing hyper-parameters values: NHL=1 hidden
layer (HL), NHN=1000 (for 1-10 km, 11-20 km, 21-
50 km) and 2000 (for 51-100 km) hidden nodes
(HNs), σ=0.1 (standard deviation for weights ini-
tialization), λ=10 (regularization parameter) and
hyperbolic-tangent as activation function. The
training is applied independently on all the three
power-levels granularity datasets.

Once trained, the ANNs is used for testing con-
sidering now the testing dataset generated con-
sidering channels, while the ANN works on sub-
bands. At the ANN input the power per subband
is given as the sum of the powers of the ON chan-
nels contained in each subband. At the ANN out-
put the 22 net gain samples are interpolated over
220 channels that are then applied to the original
per-channel spectral load to obtain the resulting
power profiles.

Moving to the second ANN (model 2), we need
first to describe the fitting parameters introduced
in[11] to enable CFM with ISRS. For each chan-
nel/subband, power profile evolution along dis-
tance is given by Eq. (1)

P (z) = P (0)× e−2α0z+
2α1
σ (exp(−σz)−1), (1)

where the triplet of coefficients {α0,α1,σ} is an-
alytically determined by fitting the actual power
profile with a dedicated cost function that weights
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Fig. 2: Probability density function (pdf) of EMAX of power profiles predicted using ANN model 1 considering the three power
levels granularity for the training dataset for different distance ranges: (a) 1-10 km, (b) 11-20 km, (c) 21-50 km, and (d) 51-100 km.
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Fig. 3: Probability density functions (pdfs) of RMSE and
EMAX of power profiles obtained using ANN model 2
considering two distance ranges: (a) 1-30 km and (b)

1-Lfiber km, where Lfiber=[50-100] km.

error along the span, assigning higher weights
when the power is higher, i.e. in the first kilome-
ters of the span.

In Fig. 1(b) we have the second ANN that
receives the same input as model 1, but
at the output it has the triplet of vectors
α0 = [α0,1, . . . , α0,Nsb], α1 = [α1,1, . . . , α1,Nsb] and
σ = [σ1, . . . , σNsb]. For ANN model2 we only
consider the training dataset with two power-
levels (subbands ON or OFF) and a single ANN
is trained considering back-propagation (BP)
method with 2 HLs, 20 HNs and logistic sigmoid
as activation function. For ANN testing, we con-
sider only α0, α1 and σ for Lfiber=[50-100] km.
Also in this case linear interpolation is performed
to obtain α0, α1 and σ on a channel basis.

Simulation Results
The prediction accuracy is evaluated in terms
of root-mean-square-error (RMSE) and maximum
error between the predicted power profiles Ppred

and the target profiles Ptarget. Fig. 2 shows the
probability density functions (pdfs) of the EMAX

for the four sub-span sections and for the three
different power granularity datasets using ANN
model 1. In this case Ptarget is the power pro-
file given by the numerical Raman solver. For
sections 1-10 km and 11-20 km (Figs. 2(a),(b)),
EMAX is always below 0.1 dB, therefore there is
no need of increasing the granularity of power lev-
els in the training dataset. For section 21-50 km
(Fig. 2(c)), with 2 power levels EMAX reaches val-

ues up to 0.26 dB and only with 3 and 5 power
levels EMAX is below our target value. Finally, for
section 51-100 km only with 5 power levels we are
able to have all EMAX ≤ 0.1 dB.

Fig. 3 shows the pdfs of RMSE and EMAX in
case of ANN model 2, for which Ptarget is the
power profile computed inserting fitted α0, α1 and
σ in Eq. (1). Here, performance are assessed
over two ranges of distance: 1-30 km (Fig. 3(a))
where the power is higher and most of NLI gen-
eration takes place, and 1-Lfiber (Fig. 3(b)) with
Lfiber=[50-100] km. In both cases, EMAX is al-
ways below 0.1 dB with very high accuracy in
range 1-30 km.

To quantify the advantage of ANNs we com-
pared the time needed to generate the testing
dataset (5000 partially loaded power profiles over
channels) and to fit α0, α1 and σ with respect
to the time needed by the trained ANN to deter-
mine same power profile and fitting coefficients.
These are respectively 9.5x105 s, 2.5x104 s, and
few tens of seconds, with a great advantage in us-
ing ANN that satisfy the requirements for real-time
applications.

Conclusions
We presented two ANN models for power pro-
file prediction in support of NLI modeling over the
C+L–band in presence of ISRS, an effect strongly
dependent on input spectral loads. Considering
an extensive set of thousands of partial loads, we
showed fast and highly accurate predictions, with
EMAX always below 0.1 dB. Very high accuracy
is achieved in particular in the first 30 km of the
fiber span, where the nonlinearities are stronger.
Moreover, a significant advantage is shown with
respect to standard approaches in terms of com-
putational time.
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